
Section 7

Kissing Number Problem
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De�nition

Given n,K 2 N, determine whether n unit spheres can be
placed adjacent to a central unit sphere so that their
interiors do not overlap

Funny story: Newton and Gregory went down the pub. . .
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Some examples

n = 6,K = 2 n = 12,K = 3 more dimensions

2 1 0 -1 -2210-1-2

-2

-1

0

1

2
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Equivalent formulation

Given n,K 2 N, determine whether there exist n vectors
x
1

, . . . , xn 2 RK such that:

8i  n kxik2
2

= 1

8i < j  n kxi � xjk2
2

� 1.
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Spherical codes
I SK�1 ⇢ RK unit sphere centered at origin
I K-dimensional spherical z-code:

I (�nite) subset C ⇢ SK�1

I 8x 6= y 2 C x · y  z

I non-overlapping interiors:

8i < j ||xi � xj|| � 2 () xi · xj � cos(

⇡

3

) =

1

2

. . .can use norm-1 projections
on SK�1 instead

164 / 185



Lower bounds

I Construct spherical 1
2

-code C with |C| large
I Nonconvex NLP formulations
I SDP relaxations
I Combination of the two techniques
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MINLP formulation

Maculan, Michelon, Smith 1995

Parameters:
I K : space dimension
I n: upper bound to kn(K)

Variables:
I xi 2 RK : center of i-th vector
I ↵i = 1 i� vector i in con�guration

max

nP
i=1

↵i

8i  n ||xi||2 = ↵i

8i < j  n ||xi � xj ||2 � ↵i↵j

8i  n xi 2 [�1, 1]K

8i  n ↵i 2 {0, 1}

9
>>>>>>=

>>>>>>;
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Reformulating the binary products

I Additional variables: �ij = 1 i� vectors i, j in
con�guration

I Linearize ↵i↵j by �ij

I Add constraints:

8i < j  n �ij  ↵i

8i < j  n �ij  ↵j

8i < j  n �ij � ↵i + ↵j � 1
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AMPL and Baron

I CertifyingYES
I n = 6,K = 2: OK, 0.60s
I n = 12,K = 3: OK, 0.07s
I n = 24,K = 4: FAIL, CPU time limit (100s)

I CertifyingNO
I n = 7,K = 2: FAIL, CPU time limit (100s)
I n = 13,K = 3: FAIL, CPU time limit (100s)
I n = 25,K = 4: FAIL, CPU time limit (100s)

Almost useless
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Modelling the decision problem

max

x,↵
↵

8i  n ||xi||2 = 1

8i < j  n ||xi � xj||2 � ↵
8i  n xi 2 [�1, 1]K

↵ � 0

9
>>>>>=

>>>>>;

I Feasible solution (x⇤,↵⇤
)

I KNP instance is YES i� ↵⇤ � 1

[Kucherenko, Belotti, Liberti, Maculan,Discr. Appl. Math. 2007]
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AMPL and Baron
I CertifyingYES

I n = 6,K = 2: FAIL, CPU time limit (100s)
I n = 12,K = 3: FAIL, CPU time limit (100s)
I n = 24,K = 4: FAIL, CPU time limit (100s)

I CertifyingNO

I n = 7,K = 2: FAIL, CPU time limit (100s)
I n = 13,K = 3: FAIL, CPU time limit (100s)
I n = 25,K = 4: FAIL, CPU time limit (100s)

Apparently even more useless
But more informative (arccos↵ =min. angular sep)

CertifyingYESby↵ � 1

I n = 6,K = 2: OK, 0.06s
I n = 12,K = 3: OK, 0.05s
I n = 24,K = 4: OK, 1.48s
I n = 40,K = 5: FAIL, CPU time limit (100s)
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What about polar coordinates?

y = (y
1

, . . . , yK) ! (⇢,#
1

, . . . ,#K�1

)

⇢ = ||y||

8k  K yk = ⇢ sin#k�1

K�1Y

h=k

cos#h

I Only need to decide sk = sin#k and ck = cos#k

I Get polynomial program in s, c
I Numerically more challenging to solve
I But maybe useful for bounds?
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SDP relaxation of Euclidean distances

I Linearization of scalar products

8i, j  n xi · xj �! Xij

whereX is an n⇥ n symmetric matrix
I kxik2

2

= xi · xi = Xii

I kxi�xjk2
2

= kxik2
2

+ kxjk2
2

� 2xi ·xj = Xii +Xjj � 2Xij

I X = xx> ) X � xx>
= 0makes linearization exact

I Relaxation:

X � xx> ⌫ 0 ) Schur(X, x) =

✓
IK x>

x X

◆
⌫ 0
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SDP relaxation of binary constraints

I 8i  n ↵i 2 {0, 1} , ↵2

i = ↵i

I LetA be an n⇥ n symmetric matrix

I Linearize ↵i↵j byAij (hence ↵2

i byAii)

I A = ↵↵>makes linearization exact

I Relaxation: Schur(A,↵) ⌫ 0
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SDP relaxation of [MMS95]

max

nP
i=1

↵i

8i  n Xii = ↵i

8i < j  n Xii +Xjj � 2Xij � Aij

8i  n Aii = ↵i

8i < j  n Aij  ↵j

8i < j  n Aij  ↵i

8i < j  n Aij � ↵i + ↵j � 1

Schur(X, x) ⌫ 0

Schur(A,↵) ⌫ 0

8i  n xi 2 [�1, 1]K

↵ 2 [0, 1]n

X 2 [�1, 1]n
2

A 2 [0, 1]n
2

9
>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>;
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Python, PICOS andMosek

I bound always equal to n
I prominent failure :-(
I Why?

I can combine inequalities to removeA from SDP
I integrality of ↵ completely lost
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SDP relaxation of [KBLM07]

max ↵
8i  n Xii = 1

8i < j  n Xii +Xjj � 2Xij � ↵
X 2 [�1, 1]n

2

X ⌫ 0

↵ � 0

9
>>>>>>=

>>>>>>;
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Python, PICOS andMosek

WithK = 2

n ↵⇤

2 4.00
3 3.00
4 2.66
5 2.50
6 2.40
7 2.33
8 2.28
9 2.25
10 2.22
11 2.20
12 2.18
13 2.16
14 2.15
15 2.14
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Python, PICOS andMosek
WithK = 3

Enforces some separation between “relaxed vectors”
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An SDP-based heuristic

1. X⇤ 2 Rn2

: SDP relaxation solution of [KBLM07]

2. Perform Principal Component Analysis (PCA), get x̄ 2 RnK

I concatenateK eigenvectors2 Rn corresponding toK largest eigenvalues

3. Use x̄ as starting point for local NLP solver on [KBLM07]
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Python, PICOS, Mosek + AMPL, IPOPT

I n = 6, K = 2: OK, 0.02s
I n = 12, K = 3: OK, 0.02s
I n = 24, K = 4: 4% error, 0.32s
I n = 40, K = 5: 5% error, 1.57s
I n = 72, K = 6: 7% error, 12.26s

180 / 185



Surface upper bound
Szpiro 2003, Gregory 1694
Consider a kn(3) con�guration
inscribed into a super-sphere of
radius 3. Imagine a lamp at the
centre of the central sphere that
casts shadows of the surround-
ing balls onto the inside sur-
face of the super-sphere. Each
shadowhas a surface area of 7.6;
the total surface of the super-
ball is 113.1. So 113.1

7.6 = 14.9 is an
upper bound to kn(3).

At end of XVII century, yielded Newton/Gregory dispute
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Another upper bound

Thm.
Let: C

z

= {x
i

2 SK�1 | i  n ^ 8j 6= i (x
i

· x
j

 z)}; c0 > 0; f : [�1, 1] ! R s.t.:
(i)

P
i,jn

f(x
i

· x
j

) � 0 (ii) f(t) + c0  0 for t 2 [�1, z] (iii) f(1) + c0  1

Then n  1
c0

([Delsarte 1977]; [Pfender 2006])
Let g(t) = f(t) + c0

n2c0  n2c0 +

X

i,jn

f(x
i

· x
j

) by (i)

=

X

i,jn

(f(x
i

· x
j

) + c0) =
X

i,jn

g(x
i

· x
j

)


X

in

g(x
i

· x
i

) since g(t)  0 for t  z and x
i

2 C
z

for i  n

= ng(1) since kx
i

k2 = 1 for i  n

 n since g(1)  1.
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The Linear Programming Bound
I Condition (i) of Theorem valid for conic combinations of
suitable functionsF = {f1, . . . , fH}:

f(t) =
X

hH

chfh(t) for some ch � 0

I Let T = {ti | i  s ^ t1 = �1 ^ ts = z ^ 8i < j (ti < tj)}, get LP:

max

c2RK+1
c0 n = 1/c0 smallest

8 t 2 T
P

1hH

chfh(t) + c0  0 (ii)
P

1hH

chfh(1) + c0  1 (iii)

8 1  h  H ch � 0 (conic comb.)

9
>>>>>=

>>>>>;

I E.g.F =Gegenbauer polynomials [Delsarte 1977]

I T ✓ [�1, z], don’t know how to solve in�nite LPs so we discretize it
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Some results
I Gegenbauer polynomialsG�

h (recursive de�nition):

G�
0(t) = 1, G�

1(t) = 2�t,

8h > 1 hG�
h(t) = 2t(h+ � � 1)G�

h�1(t)� (h� 2� � 2)G�
h�2(t)

(all normalized soG�
h(1) = 1)

I Special caseG�
h = P �,�

h of Jacobi polynomials:

P↵,�
h =

1

2

h

hX

i=0

✓
h+ ↵

i

◆✓
h+ �

h� 1

◆
(t+ 1)

i
(t� 1)

h�i

I [Delsarte 1977, Odlyzko & Sloane 1998]
kn(3)  12, kn(4)  25, kn(5)  46, kn(8)  240, kn(24)  196560

I Used to prove the “Twelve spheres theorem” (kn(3) = 12)
I My test: works forK > 4, couldn’t make it work forK = 3
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Where doesK appear in the LP bound?

I F containing Gegenbauer polynomials
I InG�

h(t), � =

K�3

2

I K determined by lowest � appearing inF
I E.g.F = {G1

h(t), G
1.5
h (t) | h  10} yields bound

25.5581 � kn(4) = 24
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