Section 7

Kissing Number Problem

Definition

Given $n, K \in \mathbb{N}$, determine whether n unit spheres can be placed adjacent to a central unit sphere so that their interiors do not overlap

Funny story: Newton and Gregory went down the pub...

Some examples

$$
n=6, K=2 \quad n=12, K=3
$$

more dimensions
$n \quad \tau$ (lattice) τ (nonlattice)

0	0	
1	2	
2	6	
3	12	
4	24	
5	40	
6	72	
7	126	
8	240	
9	272	$(306)^{*}$
10	336	$(500)^{*}$
11	438	$(582)^{*}$
12	756	$(840)^{*}$
13	918	$(1130)^{*}$
14	1422	$(1582)^{*}$
15	2340	
16	4320	
17	5346	
18	7398	
19	10668	
20	17400	
21	27720	
22	49896	

Equivalent formulation

Given $n, K \in \mathbb{N}$, determine whether there exist n vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{K}$ such that:

$$
\begin{aligned}
\forall i \leq n \quad\left\|x_{i}\right\|_{2}^{2} & =1 \\
\forall i<j \leq n \quad\left\|x_{i}-x_{j}\right\|_{2}^{2} & \geq 1
\end{aligned}
$$

Spherical codes

- $\mathbb{S}^{K-1} \subset \mathbb{R}^{K}$ unit sphere centered at origin
- K-dimensional spherical z-code:
- (finite) subset $\mathcal{C} \subset \mathbb{S}^{K-1}$
- $\forall x \neq y \in \mathcal{C} \quad x \cdot y \leq z$
- non-overlapping interiors:

$$
\forall i<j \quad\left\|x_{i}-x_{j}\right\| \geq 2 \quad \Longleftrightarrow x_{i} \cdot x_{j} \geq \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}
$$

...can use norm-1 projections on \mathbb{S}^{K-1} instead

Lower bounds

- Construct spherical $\frac{1}{2}$-code \mathcal{C} with $|\mathcal{C}|$ large
- Nonconvex NLP formulations
- SDP relaxations
- Combination of the two techniques

MINLP formulation

Maculan, Michelon, Smith 1995

Parameters:

- K: space dimension
- n : upper bound to $\mathrm{kn}(K)$

Variables:

- $x_{i} \in \mathbb{R}^{K}$: center of i-th vector
- $\alpha_{i}=1$ iff vector i in configuration

$$
\left.\begin{array}{rrll}
\max & \sum_{i=1}^{n} \alpha_{i} & & \\
\forall i \leq n & \left\|x_{i}\right\|^{2} & = & \alpha_{i} \\
\forall i<j \leq n & \left\|x_{i}-x_{j}\right\|^{2} & \geq & \alpha_{i} \alpha_{j} \\
\forall i \leq n & x_{i} & \in & {[-1,1]^{K}} \\
\forall i \leq n & \alpha_{i} & \in\{0,1\}
\end{array}\right\}
$$

Reformulating the binary products

- Additional variables: $\beta_{i j}=1$ iff vectors i, j in configuration
- Linearize $\alpha_{i} \alpha_{j}$ by $\beta_{i j}$
- Add constraints:

$$
\begin{array}{ll}
\forall i<j \leq n & \beta_{i j} \leq \alpha_{i} \\
\forall i<j \leq n & \beta_{i j} \leq \alpha_{j} \\
\forall i<j \leq n & \beta_{i j} \geq \alpha_{i}+\alpha_{j}-1
\end{array}
$$

AMPL and Baron

- Certifying YES
- $n=6, K=2$: OK, $\mathbf{0 . 6 0 s}$
- $n=12, K=3$: OK, $\mathbf{0 . 0 7 s}$
- $n=24, K=4$: FAIL, CPU time limit (100s)
- Certifying NO
- $n=7, K=2$: FAIL, CPU time limit (100s)
- $n=13, K=3$: FAIL, CPU time limit (100s)
- $n=25, K=4$: FAIL, CPU time limit (100s)

Almost useless

Modelling the decision problem

$$
\left.\begin{array}{rlrl}
\max _{x, \alpha} & \alpha & \\
\forall i \leq n & \left\|x_{i}\right\|^{2} & =1 \\
\forall i<j \leq n & \left\|x_{i}-x_{j}\right\|^{2} & \geq \alpha \\
\forall i \leq n & x_{i} & \in[-1,1]^{K} \\
& \alpha & \geq 0
\end{array}\right\}
$$

- Feasible solution $\left(x^{*}, \alpha^{*}\right)$
- KNP instance is YES iff $\alpha^{*} \geq 1$

AMPL and Baron

- Certifying YES
- $n=6, K=2$: FAIL, CPU time limit (100s)
- $n=12, K=3$: FAIL, CPU time limit (100s)
- $n=24, K=4$: FAIL, CPU time limit (100s)
- Certifying NO
- $n=7, K=2$: FAL, CPU time limit (100s)
- $n=13, K=3$: FAIL, CPU time limit (100s)
- $n=25, K=4$: FAIL, CPU time limit (100s)

Apparently even more useless
But more informative (arccos $\alpha=$ min. angular sep)
Certifying YES by $\alpha \geq 1$

- $n=6, K=2$: OK, 0.06s
- $n=12, K=3: \mathbf{O K}, \mathbf{0 . 0 5 s}$
- $n=24, K=4$: OK, 1.48s
- $n=40, K=5$: FAIL, CPU time limit (100s)

What about polar coordinates?

$$
\begin{aligned}
y=\left(y_{1}, \ldots, y_{K}\right) & \rightarrow\left(\rho, \vartheta_{1}, \ldots, \vartheta_{K-1}\right) \\
\rho & =\|y\| \\
\forall k \leq K \quad y_{k} & =\rho \sin \vartheta_{k-1} \prod_{h=k}^{K-1} \cos \vartheta_{h}
\end{aligned}
$$

- Only need to decide $s_{k}=\sin \vartheta_{k}$ and $c_{k}=\cos \vartheta_{k}$
- Get polynomial program in s, c
- Numerically more challenging to solve
- But maybe useful for bounds?

SDP relaxation of Euclidean distances

- Linearization of scalar products

$$
\forall i, j \leq n \quad x_{i} \cdot x_{j} \longrightarrow X_{i j}
$$

where X is an $n \times n$ symmetric matrix

- $\left\|x_{i}\right\|_{2}^{2}=x_{i} \cdot x_{i}=X_{i i}$
- $\left\|x_{i}-x_{j}\right\|_{2}^{2}=\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2 x_{i} \cdot x_{j}=X_{i i}+X_{j j}-2 X_{i j}$
- $X=x x^{\top} \Rightarrow X-x x^{\top}=0$ makes linearization exact
- Relaxation:

$$
X-x x^{\top} \succeq 0 \Rightarrow \operatorname{Schur}(X, x)=\left(\begin{array}{cc}
I_{K} & x^{\top} \\
x & X
\end{array}\right) \succeq 0
$$

SDP relaxation of binary constraints

- $\forall i \leq n \quad \alpha_{i} \in\{0,1\} \Leftrightarrow \alpha_{i}^{2}=\alpha_{i}$
- Let A be an $n \times n$ symmetric matrix
- Linearize $\alpha_{i} \alpha_{j}$ by $A_{i j}$ (hence α_{i}^{2} by $A_{i i}$)
- $A=\alpha \alpha^{\top}$ makes linearization exact
- Relaxation: $\operatorname{Schur}(A, \alpha) \succeq 0$

SDP relaxation of [MMS95]

$$
\begin{aligned}
& \sum_{i=1}^{n} \alpha_{i} \\
& X_{i i}=\alpha_{i} \\
& \forall i<j \leq n \quad X_{i i}+X_{j j}-2 X_{i j} \geq A_{i j} \\
& \forall i \leq n \quad A_{i i}=\alpha_{i} \\
& \forall i<j \leq n \\
& \forall i<j \leq n \\
& \forall i<j \leq n \\
& \forall i \leq n \\
& \left.\begin{array}{rl}
A_{i j} & \leq \alpha_{j} \\
A_{i j} & \leq \alpha_{i} \\
A_{i j} & \geq \alpha_{i}+\alpha_{j}-1 \\
\operatorname{Schur}(X, x) & \succeq 0 \\
\operatorname{Schur}(A, \alpha) & \succeq 0 \\
x_{i} & \in[-1,1]^{K} \\
\alpha & \in[0,1]^{n} \\
X & \in[-1,1]^{n^{2}} \\
A & \in[0,1]^{n^{2}}
\end{array}\right\}
\end{aligned}
$$

Python, PICOS and Mosek

- bound always equal to n
- prominent failure :-(
- Why?
- can combine inequalities to remove A from SDP
- integrality of a completely lost

SDP relaxation of [KBLM07]

$$
\begin{aligned}
& \max \alpha \\
& \\
& \forall i \leq n X_{i i}
\end{aligned}=1
$$

Python, PICOS and Mosek

With $K=2$

n	α^{*}
2	4.00
3	3.00
4	2.66
5	2.50
6	2.40
7	2.33
8	2.28
9	2.25
10	2.22
11	2.20
12	2.18
13	2.16
14	2.15
15	2.14

Python, PICOS and Mosek

With $K=3$

Enforces some separation between "relaxed vectors"

An SDP-based heuristic

1. $X^{*} \in \mathbb{R}^{n^{2}}$: SDP relaxation solution of [KBLM07]
2. Perform Principal Component Analysis (PCA), get $\bar{x} \in \mathbb{R}^{n K}$

- concatenate K eigenvectors $\in \mathbb{R}^{n}$ corresponding to K largest eigenvalues

3. Use \bar{x} as starting point for local NLP solver on [KBLM07]

Python, PICOS, Mosek + AMPL, IPOPT

- $n=6, K=2$: OK, 0.02 s
- $n=12, K=3$: OK, 0.02 s
- $n=24, K=4: 4 \%$ error, 0.32 s
- $n=40, K=5: 5 \%$ error, 1.57 s
- $n=72, K=6: 7 \%$ error, 12.26 s

Surface upper bound

Szpiro 2003, Gregory 1694

Consider a kn(3) configuration inscribed into a super-sphere of radius 3. Imagine a lamp at the centre of the central sphere that casts shadows of the surrounding balls onto the inside surface of the super-sphere. Each shadow has a surface area of 7.6; the total surface of the superball is 113.1. So $\frac{113.1}{7.6}=14.9$ is an
 upper bound to $\mathrm{kn}(3)$.

At end of XVII century, yielded Newton/Gregory dispute

Another upper bound

Thm.

$$
\begin{aligned}
& \text { Let: } \mathcal{C}_{z}=\left\{x_{i} \in \mathbb{S}^{K-1} \mid i \leq n \wedge \forall j \neq i\left(x_{i} \cdot x_{j} \leq z\right)\right\} ; c_{0}>0 ; f:[-1,1] \rightarrow \mathbb{R} \text { s.t.: } \\
& \begin{array}{ll}
\text { (i) } \sum_{i, j \leq n} f\left(x_{i} \cdot x_{j}\right) \geq 0 & \text { (ii) } f(t)+c_{0} \leq 0 \text { for } t \in[-1, z] \\
\text { Then } n \leq \frac{1}{c_{0}} & \text { (iii) } f(1)+c_{0} \leq 1
\end{array}
\end{aligned}
$$

([Delsarte 1977]; [Pfender 2006])
Let $g(t)=f(t)+c_{0}$

$$
\begin{aligned}
n^{2} c_{0} & \leq n^{2} c_{0}+\sum_{i, j \leq n} f\left(x_{i} \cdot x_{j}\right) \quad \text { by }(\mathrm{i}) \\
& =\sum_{i, j \leq n}\left(f\left(x_{i} \cdot x_{j}\right)+c_{0}\right)=\sum_{i, j \leq n} g\left(x_{i} \cdot x_{j}\right) \\
& \leq \sum_{i \leq n} g\left(x_{i} \cdot x_{i}\right) \quad \text { since } g(t) \leq 0 \text { for } t \leq z \text { and } x_{i} \in \mathcal{C}_{z} \text { for } i \leq n \\
& =n g(1) \quad \text { since }\left\|x_{i}\right\|_{2}=1 \text { for } i \leq n \\
& \leq n \quad \text { since } g(1) \leq 1 .
\end{aligned}
$$

The Linear Programming Bound

- Condition (i) of Theorem valid for conic combinations of suitable functions $\mathcal{F}=\left\{f_{1}, \ldots, f_{H}\right\}$:

$$
f(t)=\sum_{h \leq H} c_{h} f_{h}(t) \quad \text { for some } c_{h} \geq 0
$$

- Let $T=\left\{t_{i} \mid i \leq s \wedge t_{1}=-1 \wedge t_{s}=z \wedge \forall i<j\left(t_{i}<t_{j}\right)\right\}$, get LP:

$$
\left.\begin{array}{ccl}
\max _{c \in \mathbb{R}^{K+1}} & c_{0} & n=1 / c_{0} \text { smallest } \\
\forall t \in T & \sum_{1 \leq h \leq H} c_{h} f_{h}(t)+c_{0} \leq 0 & \text { (ii) } \\
& \sum_{1 \leq h \leq H} c_{h} f_{h}(1)+c_{0} \leq 1 & \text { (iii) } \\
\leq h \leq H & c_{h} \geq 0 & \text { (conic comb.) }
\end{array}\right\}
$$

- E.g. $\mathcal{F}=$ Gegenbauer polynomials [Delsarte 1977]
- $T \subseteq[-1, z]$, don't know how to solve infinite LPs so we discretize it

Some results

- Gegenbauer polynomials G_{h}^{γ} (recursive definition):

$$
\begin{aligned}
G_{0}^{\gamma}(t) & =1, \quad G_{1}^{\gamma}(t)=2 \gamma t, \\
\forall h>1 h G_{h}^{\gamma}(t) & =2 t(h+\gamma-1) G_{h-1}^{\gamma}(t)-(h-2 \gamma-2) G_{h-2}^{\gamma}(t)
\end{aligned}
$$

(all normalized so $G_{h}^{\gamma}(1)=1$)

- Special case $G_{h}^{\gamma}=P_{h}^{\gamma, \gamma}$ of Jacobi polynomials:

$$
P_{h}^{\alpha, \beta}=\frac{1}{2^{h}} \sum_{i=0}^{h}\binom{h+\alpha}{i}\binom{h+\beta}{h-1}(t+1)^{i}(t-1)^{h-i}
$$

- [Delsarte 1977, Odlyzko \& Sloane 1998] $\mathrm{kn}(3) \leq 12, \mathrm{kn}(4) \leq 25, \mathrm{kn}(5) \leq 46, \mathrm{kn}(8) \leq 240, \mathrm{kn}(24) \leq 196560$
- Used to prove the "Twelve spheres theorem" $(\mathrm{kn}(3)=12)$
- My test: works for $K>4$, couldn't make it work for $K=3$

Where does K appear in the LP bound?

- \mathcal{F} containing Gegenbauer polynomials
- $\operatorname{In} G_{h}^{\gamma}(t), \gamma=\frac{K-3}{2}$
- K determined by lowest γ appearing in \mathcal{F}
- E.g. $\mathcal{F}=\left\{G_{h}^{1}(t), G_{h}^{1.5}(t) \mid h \leq 10\right\}$ yields bound $25.5581 \geq \mathrm{kn}(4)=24$

