Subsection 2

NP-hardness

NP-Hardness

- Do hard problems exist? Depends on $\mathbf{P} \neq \mathrm{NP}$
- Next best thing: define hardest problem in NP
- A problem P is NP-hard if Every problem Q in NP can be solved in this way:

1. given an instance q of Q transform it in polytime to an instance $\rho(q)$ of P s.t. q is YES iff $\rho(q)$ is YES
2. run the best algorithm for P on $\rho(q)$, get answer $\alpha \in\{\mathrm{YES}, \mathrm{NO}\}$
3. return α
ρ is called a polynomial reduction from Q to P

- If P is in NP and is NP-hard, it is called NP-complete
- Every problem in NP reduces to SAt [Cook 1971]

Cook's theorem

> Theorem l: If a set S of strings is accepted by some nondeterministic Turing machine within polynomial time, then S is P-reducible to \{DNF tautologies\}.

Boolean decision variables store TM dynamics

Proposition symbols:

```
    Ps,t for 1\leqi i\leql, 1\leqs,t\leqT.
P i
at step t contains the symbol }\mp@subsup{\sigma}{i}{}\mathrm{ .
            Q i
true iff at step t the machine is in
state q}\mp@subsup{\textrm{g}}{\textrm{i}}{
    S.s,t for l\leqs,t\leqT is true iff at
time t square number s}\mathrm{ is scanned
by the tape head.
```

Definition of TM dynamics in CNF

$$
B_{t} \text { asserts that at time } t \text { one and }
$$

only one square is scanned:

$$
\begin{aligned}
& B_{t}=\left(S_{1, t} \vee S_{2, t} \vee \ldots \vee S_{T, t}\right) \& \\
& {\left[\underset{1 \leq i<j \leq T}{\mathcal{G}}\left(\neg S_{i, t} \vee \neg S_{j, t}\right)\right]}
\end{aligned}
$$

that if at time t the machine is in state q_{i} scanning symbol σ_{j}, then at time $t+1$ the machine is in state q_{k}, where q_{k} is the state given by the transition function for M.
$\left.G_{i, j}^{t}={\underset{S}{G}=1}_{T}^{T} \neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee Q_{t+1}^{k}\right)$

Description of a dynamical system using a declarative programming language (SAT) - what MP is all about!

Reduction graph

After Cook's theorem

To prove NP-hardness of a new problem P, pick a known NP-hard problem Q that "looks similar enough" to P and find a polynomial reduction ρ from Q to P [Karp 1972]

Why it works: suppose P easier than Q, solve Q by calling $\rho \circ \operatorname{Alg}_{P}$, conclude Q as easy as P, contradiction

Example of polynomial reduction

- STABLE: given $G=(V, E)$ and $k \in \mathbb{N}$, does it contain a stable set of size k ?
- We know k-cligue is NP-complete, reduce from it
- Given instance (G, k) of cligue consider the complement graph (computable in polytime)

$$
\bar{G}=(V, \bar{E}=\{\{i, j\} \mid i, j \in V \wedge\{i, j\} \notin E\})
$$

- Thm.: G has a clique of $\operatorname{size} k$ iff \bar{G} has a stable set of size k
- $\rho(G)=\bar{G}$ is a polynomial reduction from cligue to STABLE
- \Rightarrow stable is $\mathbb{N P}$-hard
- stable is also in NP $U \subseteq V$ is a stable set iff $E(G[U])=\varnothing$ (polytime verification)
- \Rightarrow stable is $\mathbb{N P}$-complete

MILP is NP-hard

- sat is NP-hard by Cook's theorem, Reduce from sat in CNF

$$
\bigwedge_{i \leq m} \bigvee_{j \in C_{i}} \ell_{j}
$$

where ℓ_{j} is either x_{j} or $\bar{x}_{j} \equiv \neg x_{j}$

- Polynomial reduction ρ

SAT	x_{j}	\bar{x}_{j}	\vee	\wedge
MILP	x_{j}	$1-x_{j}$	+	≥ 1

- E.g. $\rho \operatorname{maps}\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right)$ to

$$
\min \left\{0 \mid x_{1}+x_{2} \geq 1 \wedge x_{3}-x_{2} \geq 0 \wedge x \in\{0,1\}^{3}\right\}
$$

- sat is YES iff MLLP is feasible (same solution, actually)

Complexity of Quadratic Programming

$$
\left.\begin{array}{rl}
\min \quad x^{\top} Q x & +c^{\top} x \\
A x & \geq b
\end{array}\right\}
$$

- Quadratic Programming $=$ QP
- Quadratic objective, linear constraints, continuous variables
- Many applications (e.g. portfolio selection)
- If Q PSD then objective is convex, problem is in P
- If Q has at least one negative eigenvalue, NP-hard
- Decision problem: "is the min. obj.fun. value $=0$?"

QP is NP-hard

- By reduction from SAT, let σ be an instance
- $\hat{\rho}(\sigma, x) \geq 1$: linear constraints of SAT \rightarrow MILP reduction
- Consider QP

$$
\left.\begin{array}{rl}
\min & f(x)=\sum_{j \leq n} x_{j}\left(1-x_{j}\right) \\
& \hat{\rho}(\sigma, x) \geq 1 \\
& 0 \leq x \leq 1
\end{array}\right\}
$$

- Claim: σ is YES iff $\operatorname{val}(\dagger)=0$
- Proof:
- assume σ YES with soln. x^{*}, then $x^{*} \in\{0,1\}^{n}$, hence $f\left(x^{*}\right)=0$, since $f(x) \geq 0$ for all $x, \operatorname{val}(\dagger)=0$
- assume $\sigma \mathrm{NO}$, suppose $\mathrm{val}(\dagger)=0$, then (\dagger) feasible with soln. x^{\prime}, since $f\left(x^{\prime}\right)=0$ then $x^{\prime} \in\{0,1\}$, feasible in sat hence σ is YES, contradiction

Box-constrained QP is NP-hard

- Add surplus vars v to sat \rightarrow MILP constraints:

$$
\begin{aligned}
& \hat{\rho}(\sigma, x)-1-v=0 \\
& \quad\left(\text { denote by } \forall i \leq m\left(a_{i}^{\top} x-b_{i}-v_{i}=0\right)\right)
\end{aligned}
$$

- Now sum them on the objective

$$
\left.\begin{array}{ll}
\min & \sum_{j \leq n} x_{j}\left(1-x_{j}\right)+\sum_{i \leq m}\left(a_{i}^{\top} x-b_{i}-v_{i}\right)^{2} \\
& 0 \leq x \leq 1, v \geq 0
\end{array}\right\}
$$

- Issue: v not bounded above
- Reduce from 3sAt, get ≤ 3 literals per clause \Rightarrow can consider $0 \leq v \leq 2$

cQKP is NP-hard

- continuous Quadratic Knapsack Problem (cQKP)

$$
\left.\begin{array}{rl}
\left.\left.\min \begin{array}{rl}
f(x)=x^{\top} Q x & +c^{\top} x \\
\sum_{j \leq n} a_{j} x_{j} & =\gamma \\
x & \in[0,1]^{n}
\end{array}\right\}\right\} \text {, }
\end{array}\right\}
$$

- Reduction from subset-SUM
given list $a \in \mathbb{Q}^{n}$ and γ, is there $J \subseteq\{1, \ldots, n\}$ s.t. $\sum_{j \in J} a_{j}=\gamma$?
reduce to $f(x)=\sum_{j} x_{j}\left(1-x_{j}\right)$
- σ is a YES instance of SUBSET-SUM
- let $x_{j}^{*}=1$ iff $j \in J, x_{j}^{*}=0$ otherwise
- feasible by construction
- $\quad f$ is non-negative on $[0,1]^{n}$ and $f\left(x^{*}\right)=0$: optimum
- σ is a NO instance of SUBSET-SUM
- suppose opt $(\mathbf{c Q K P})=x^{*}$ s.t. $f\left(x^{*}\right)=0$
- then $x^{*} \in\{0,1\}^{n}$ because $f\left(x^{*}\right)=0$
- feasibility of $x^{*} \rightarrow \operatorname{supp}\left(x^{*}\right)$ solves σ, contradiction, hence $f\left(x^{*}\right)>0$

QP on a simplex is NP-hard

$$
\left.\min \begin{array}{rl}
f(x)=x^{\top} Q x & +c^{\top} x \\
\sum_{j \leq n} x_{j} & =1 \\
\forall j \leq n & x_{j}
\end{array}\right\}
$$

- Reduce max cligue to subclass $f(x)=-\sum_{\{i, j\} \in E} x_{i} x_{j}$

Motzkin-Straus formulation (MSF)

- Theorem [Motzkin\& Straus 1964]

Let C be the maximum clique of the instance $G=(V, E)$ of max cligue
$\exists x^{*} \in \mathrm{opt}(\mathrm{MSF}) \quad f^{*}=f\left(x^{*}\right)=\frac{1}{2}\left(1-\frac{1}{\omega(G)}\right)$
$\forall j \in V \quad x_{j}^{*}= \begin{cases}\frac{1}{\omega(G)} & \text { if } j \in C \\ 0 & \text { otherwise }\end{cases}$

Proof of the Motzkin-Straus theorem

$$
x^{*}=\operatorname{opt}\left(\max _{\substack{x \in[0,1] n \\ \sum_{j} x_{j}=1}} \sum_{i j \in E} x_{i} x_{j}\right) \text { s.t. }\left|C=\left\{j \in V \mid ; x_{j}^{*}>0\right\}\right| \text { smallest }(\ddagger)
$$

1. C is a clique

- Suppose $1,2 \in C$ but $\{1,2\} \notin E[C]$, then $x_{1}^{*}, x_{2}^{*}>0$, can perturb by small $\epsilon \in\left[-x_{1}^{*}, x_{2}^{*}\right]$, get $x^{\epsilon}=\left(x_{1}^{*}+\epsilon, x_{2}^{*}-\epsilon, \ldots\right)$, feasible w.r.t. simplex and bounds
- $\{1,2\} \notin E \Rightarrow x_{1} x_{2}$ does not appear in $f(x) \Rightarrow f\left(x^{\epsilon}\right)$ depends linearly on ϵ; by optimality of x^{*}, f achieves max for $\epsilon=0$, in interior of its range $\Rightarrow f(\epsilon)$ constant
- set $\epsilon=-x_{1}^{*}$ or $=x_{2}^{*}$ yields global optima with more zero components than x^{*}, against assumption (\ddagger), hence $\{1,2\} \in E[C]$, by relabeling C is a clique

Proof of the Motzkin-Straus theorem

$$
x^{*}=\operatorname{opt}\left(\max _{\substack{x \in[0,1] \\ \sum_{j} x_{j}=1}} \sum_{i j \in E} x_{i} x_{j}\right) \text { s.t. }\left|C=\left\{j \in V \mid ; x_{j}^{*}>0\right\}\right| \text { smallest }(\ddagger)
$$

2. $|C|=\omega(G)$

- square simplex constraint $\sum_{j} x_{j}=1$, get

$$
\sum_{j \in V} x_{j}^{2}+2 \sum_{i<j \in V} x_{i} x_{j}=1
$$

- by construction $x_{j}^{*}=0$ for $j \notin C \Rightarrow$

$$
\psi\left(x^{*}\right)=\sum_{j \in C}\left(x_{j}^{*}\right)^{2}+2 \sum_{i<j \in C} x_{j}^{*} x_{j}^{*}=\sum_{j \in C}\left(x_{j}^{*}\right)^{2}+2 f\left(x^{*}\right)=1
$$

- $\psi(x)=1$ for all feasible x, so $f(x)$ achieves maximum when $\sum_{j \in C}\left(x_{j}^{*}\right)^{2}$ is minimum, i.e. $x_{j}^{*}=\frac{1}{|C|}$ for all $j \in C$
- again by simplex constraint

$$
f\left(x^{*}\right)=1-\sum_{j \in C}\left(x_{j}^{*}\right)^{2}=1-|C| \frac{1}{|C|^{2}} \leq 1-\frac{1}{\omega(G)}
$$

so $f\left(x^{*}\right)$ attains maximum $1-1 / \omega(G)$ when $|C|=\omega(G)$

Portfolio optimization

You, a private investment banker, are seeing a customer. She tells you "I have 3,450,000\$ I don't need in the next three years. Invest them in low-risk assets so I get at least 2.5\% return per year."

Model the problem of determining the required portfolio. Missing data are part of the fun (and of real life).

