Section 3

Efficiency and Hardness

Worst-case algorithmic complexity

- Computational complexity theory: worst-case time/space taken by an algorithm to complete
- Algorithm \mathcal{A}
- e.g. to determine whether a graph $G=(V, E)$ is connected or not
- input: G; size of input: $\nu=|V|+|E|$
- How does the CPU time $\tau(\mathcal{A})$ used by \mathcal{A} vary with ν ?
- $\tau(\mathcal{A})=O\left(\nu^{k}\right)$ for fixed k : polytime
- $\tau(\mathcal{A})=O\left(2^{\nu}\right)$: exponential
- polytime \leftrightarrow efficient
- exponential \leftrightarrow inefficient

Polytime algorithms are "efficient"

-Why are polynomials special?

- Many different variants of Turing Machines (TM)
- Polytime is invariant to all definitions of TM
- In practice, $O(\nu)-O\left(\nu^{3}\right)$ is an acceptable range covering most practically useful efficient algorithms
- Many exponential algorithms are also usable in practice for limited sizes

Instances and problems

- An input to an algorithm \mathcal{A} : instance
- Collection of all inputs for \mathcal{A} : problem consistent with "set of sentences" from decidability
- BUT:
- A problem can be solved by different algorithms
- There are problems which no algorithm can solve
- Given a problem P, what is the complexity of the best algorithm that solves P ?

Complexity classes

- Focus on decision problems
- If \exists polytime algorithm for P, then $P \in \mathbf{P}$
- If there is a polytime checkable certificate for all YES instances of P, then $P \in \mathbf{N P}$
- No-one knows whether $\mathbf{P}=\mathbf{N P}$ (we think not)
- NP includes problems for which we don't think a polytime algorithms exist e.g. k-CLIQUE, SUBSET-SUM, KNAPSACK, HAMILTONIAN CYCLE, SAT, ...

Subsection 1

Some combinatorial problems

k-CLIQUE

- Instance: $(G=(V, E), k)$
- Problem: determine whether G has a clique of size k

- 1-CLIgUE? YES (every graph is YES)
- 2-CLIgUE? YES (every non-empty graph is YES)
- 3-CLIgUE? YES (triangle $\{1,2,4\}$ is a certificate) certificate can be checked in $O(k)<O(n)$
- 4-cligue? NO
no polytime certificate unless $\mathrm{P}=\mathrm{NP}$

MP formulations for cLIgUE

Variables? Objective? Constraints?

MP formulations for cLIgUE

Variables? Objective? Constraints?

- Pure feasibility problem:

MP formulations for CLIgUE

Variables? Objective? Constraints?

- Pure feasibility problem:
- Max Cligue:

$$
\left.\begin{array}{rrl}
\max & \sum_{i \in V} x_{i} & \\
\\
\} \notin E & x_{i}+x_{j} & \leq 1 \\
& x & \in\{0,1\}^{n}
\end{array}\right\}
$$

SUBSET-SUM

- Instance: list $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ and $b \in \mathbb{N}$
- Problem: is there $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} a_{j}=b$?
- $a=(1,1,1,4,5), b=3:$ YES $J=\{1,2,3\}$
all $b \in\{0, \ldots, 12\}$ yield YES instances
- $a=(3,6,9,12), b=20: \mathbf{N O}$

MP formulations for SUBSET-SUM

Variables? Objective? Constraints?

MP formulations for SUBSET-SUM

Variables? Objective? Constraints?

- Pure feasibility problem:

$$
\left.\begin{array}{rl}
\sum_{j \leq n} a_{j} x_{j} & =b \\
x & \in\{0,1\}^{n}
\end{array}\right\}
$$

KNAPSACK

- Instance: $c, w \in \mathbb{N}^{n}, K \in \mathbb{N}$
- Problem: find $J \subseteq\{1, \ldots, n\}$ s.t. $c(J) \leq K$ and $w(J)$ is maximum
- $c=(1,2,3), w=(3,4,5), K=3$
- $c(J) \leq K$ feasible for J in $\varnothing,\{j\},\{1,2\}$
- $w(\varnothing)=0, w(\{1,2\})=3+4=7, w(\{j\}) \leq 5$ for $j \leq n$
$\Rightarrow J_{\text {max }}=\{1,2\}$
- $K=0$:infeasible
- natively expressed as an optimization problem
- notation: $c(J)=\sum_{j \in J} c_{j}$ (similarl for $w(J)$)

MP formulation for KNAPSACK

Variables? Objective? Constraints?

MP formulation for KNAPSACK

Variables? Objective? Constraints?

$$
\left.\max \begin{array}{rl}
\sum_{j \leq n} w_{j} x_{j} & \\
\sum_{j \leq n} c_{j} x_{j} & \leq K \\
x & \in\{0,1\}^{n}
\end{array}\right\}
$$

Hamiltonian Cycle

- Instance: $G=(V, E)$
- Problem: does G have a Hamiltonian cycle?
cycle covering every $v \in V$ exactly once

NO

1—N (cert. $\rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 1$)

MP formulation for Hamiltonian Cycle

Variables? Objective? Constraints?

MP formulation for Hamiltonian Cycle

Variables? Objective? Constraints?

$$
\begin{array}{r}
\forall i \in V \quad \sum_{\substack{j \in V \\
\{i, j \in \in \in}} x_{i j}=1 \\
\forall j \in V \sum_{\substack{i, V V \\
\{i, j\} \in E}} x_{i j}=1 \\
\sum_{\substack{i \in S, j \notin S \\
\{i, j \in \mathcal{E}}} x_{i j} \geq 1 \tag{3}
\end{array}
$$

WARNING: second order statement!
quantified over sets
other warning: need arcs not edges in (1)-(3)

Satisfiability (SAT)

- Instance: open boolean logic sentence f in CNF

$$
\bigwedge_{i \leq m} \bigvee_{j \in C_{i}} \ell_{j}
$$

where $\ell_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}$ for $j \leq n$

- Problem: is there $\phi: x \rightarrow\{0,1\}^{n}$ s.t. $\phi(f)=1$?
- $f \equiv\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right)$
$x_{1}=x_{2}=1, x_{3}=0$ is a YES certificate
- $f \equiv\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$

ϕ	$x=(1,1)$	$x=(0,0)$	$x=(1,0)$	$x=(0,1)$
false	C_{2}	C_{1}	C_{3}	C_{4}

MP formulation for SAT

Exercise

Subsection 2

NP-hardness

NP-Hardness

- Do hard problems exist? Depends on $\mathbf{P} \neq \mathrm{NP}$
- Next best thing: define hardest problem in NP
- A problem P is NP-hard if Every problem Q in NP can be solved in this way:

1. given an instance q of Q transform it in polytime to an instance $\rho(q)$ of P s.t. q is YES iff $\rho(q)$ is YES
2. run the best algorithm for P on $\rho(q)$, get answer $\alpha \in\{\mathrm{YES}, \mathrm{NO}\}$
3. return α
ρ is called a polynomial reduction from Q to P

- If P is in NP and is NP-hard, it is called NP-complete
- Every problem in NP reduces to sat [Cook 1971]

Cook's theorem

> Theorem l: If a set S of strings is accepted by some nondeterministic Turing machine within polynomial time, then S is P-reducible to \{DNF tautologies\}.

Boolean decision variables store TM dynamics

Proposition symbols:

```
    Ps,t for 1\leqi i\leql, 1\leqs,t\leqT.
P i
at step t contains the symbol }\mp@subsup{\sigma}{i}{}\mathrm{ .
            Q i
true iff at step t the machine is in
state q}\mp@subsup{\textrm{g}}{\textrm{i}}{
    S.s,t for l\leqs,t\leqT is true iff at
time t square number s}\mathrm{ is scanned
by the tape head.
```

Definition of TM dynamics in CNF

$$
B_{t} \text { asserts that at time } t \text { one and }
$$

only one square is scanned:

$$
\begin{aligned}
& B_{t}=\left(S_{1, t} \vee S_{2, t} \vee \ldots \vee S_{T, t}\right) \& \\
& {\left[\underset{1 \leq i<j \leq T}{\mathcal{G}}\left(\neg S_{i, t} \vee \neg S_{j, t}\right)\right]}
\end{aligned}
$$

that if at time t the machine is in state q_{i} scanning symbol σ_{j}, then at time $t+1$ the machine is in state q_{k}, where q_{k} is the state given by the transition function for M.
$\left.G_{i, j}^{t}={\underset{S}{G}=1}_{T}^{T} \neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee Q_{t+1}^{k}\right)$

Description of a dynamical system using a declarative programming language (SAT) - what MP is all about!

