
Section 3

E�ciency and Hardness
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Worst-case algorithmic complexity

I Computational complexity theory:
worst-case time/space taken by an algorithm to complete

I AlgorithmA
I e.g. to determine whether a graphG = (V,E) is
connected or not

I input: G; size of input: ν = |V |+ |E|
I How does the CPU time τ(A) used byA vary with ν?

I τ(A) = O(νk) for �xed k: polytime
I τ(A) = O(2ν): exponential

I polytime↔ e�cient
I exponential↔ ine�cient
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Polytime algorithms are “e�cient”

I Why are polynomials special?
I Many di�erent variants of TuringMachines (TM)
I Polytime is invariant to all de�nitions of TM
I In practice,O(ν)-O(ν3) is an acceptable range
coveringmost practically useful e�cient algorithms

I Many exponential algorithms are also usable in
practice for limited sizes
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Instances and problems

I An input to an algorithmA: instance
I Collection of all inputs forA: problem
consistent with “set of sentences” from decidability

I BUT:
I A problem can be solved by di�erent algorithms
I There are problems which no algorithm can solve

I Given a problem P , what is the complexity of the best
algorithm that solves P ?
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Complexity classes

I Focus on decision problems
I If ∃ polytime algorithm for P , then P ∈ P

I If there is a polytime checkable certi�cate for all YES
instances of P , then P ∈ NP

I No-one knows whetherP = NP (we think not)

I NP includes problems for which we don’t think a
polytime algorithms exist
e.g. k-clique, subset-sum, knapsack, hamiltonian
cycle, sat, . . .
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Subsection 1

Some combinatorial problems
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k-clique
I Instance: (G = (V,E), k)
I Problem: determine whetherG has a clique of size k

I 1-clique? YES (every graph is YES)
I 2-clique? YES (every non-empty graph is YES)
I 3-clique? YES (triangle {1, 2, 4} is a certi�cate)
certi�cate can be checked inO(k) < O(n)

I 4-clique? NO
no polytime certi�cate unlessP = NP
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MP formulations for clique
Variables? Objective? Constraints?

I Pure feasibility problem:

∀{i, j} 6∈ E xi + xj ≤ 1∑
i∈V

xi = k

x ∈ {0, 1}n


I Max Clique:

max
∑
i∈V

xi

∀{i, j} 6∈ E xi + xj ≤ 1
x ∈ {0, 1}n
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subset-sum

I Instance: list a = (a1, . . . , an) ∈ Nn and b ∈ N
I Problem: is there J ⊆ {1, . . . , n} such that

∑
j∈J

aj = b?

I a = (1, 1, 1, 4, 5), b = 3: YES J = {1, 2, 3}
all b ∈ {0, . . . , 12} yield YES instances

I a = (3, 6, 9, 12), b = 20: NO
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MP formulations for subset-sum

Variables? Objective? Constraints?

I Pure feasibility problem:∑
j≤n

ajxj = b

x ∈ {0, 1}n

}
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knapsack
I Instance: c, w ∈ Nn,K ∈ N
I Problem: �nd J ⊆ {1, . . . , n} s.t. c(J) ≤ K andw(J) is
maximum

I c = (1, 2, 3),w = (3, 4, 5),K = 3

I c(J) ≤ K feasible for J in∅, {j}, {1, 2}
I w(∅) = 0, w({1, 2}) = 3 + 4 = 7, w({j}) ≤ 5 for j ≤ n
⇒ Jmax = {1, 2}

I K = 0: infeasible

I natively expressed as an optimization problem
I notation: c(J) =

∑
j∈J

cj (similarl forw(J))
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MP formulation for knapsack

Variables? Objective? Constraints?

max
∑
j≤n

wjxj∑
j≤n

cjxj ≤ K

x ∈ {0, 1}n
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MP formulation for knapsack

Variables? Objective? Constraints?

max
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Hamiltonian Cycle

I Instance: G = (V,E)

I Problem: doesG have aHamiltonian cycle?
cycle covering every v ∈ V exactly once

NO YES (cert. 1→ 2→ 5→ 3→ 4→ 1)
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MP formulation forHamiltonian Cycle

Variables? Objective? Constraints?

∀i ∈ V
∑
j∈V
{i,j}∈E

xij = 1 (1)

∀j ∈ V
∑
i∈V
{i,j}∈E

xij = 1 (2)

∀∅ ( S ( V
∑

i∈S,j 6∈S
{i,j}∈E

xij ≥ 1 (3)

WARNING: second order statement!
quanti�ed over sets

other warning: need arcs not edges in (1)-(3)
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Satisfiability (sat)
I Instance: open boolean logic sentence f in CNF∧

i≤m

∨
j∈Ci

`j

where `j ∈ {xj, x̄j} for j ≤ n

I Problem: is there φ : x→ {0, 1}n s.t. φ(f) = 1?

I f ≡ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2)
x1 = x2 = 1, x3 = 0 is a YES certi�cate

I f ≡ (x1 ∨ x2) ∧ (x̄1 ∨ x̄2) ∧ (x̄1 ∨ x2) ∧ (x1 ∨ x̄2)
φ x = (1, 1) x = (0, 0) x = (1, 0) x = (0, 1)

false C2 C1 C3 C4
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MP formulation for sat

Exercise
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Subsection 2

NP-hardness
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NP-Hardness

I Do hard problems exist? Depends onP 6= NP

I Next best thing: de�ne hardest problem inNP

I A problem P isNP-hard if
Every problemQ inNP can be solved in this way:
1. given an instance q ofQ transform it in polytime to
an instance ρ(q) of P s.t. q is YES i� ρ(q) is YES

2. run the best algorithm for P on ρ(q), get answer
α ∈ {YES,NO}

3. return α
ρ is called a polynomial reduction fromQ to P

I If P is inNP and isNP-hard, it is calledNP-complete

I Every problem inNP reduces to sat [Cook 1971]

37 / 48



Cook’s theorem

Boolean decision variables store TM dynamics
De�nition of TM dynamics in CNF

Description of a dynamical system using a declarative program-
ming language (sat) — what MP is all about!
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