Advanced Mathematical Programming
 Formulations \& Applications

Leo Liberti, CNRS LIX Ecole Polytechnique

INF580-2017

Practicalities

- URL:
http://www.lix.polytechnique.fr/~liberti/teaching/dix/inf580-17
- Dates: wed-fri

4-6, 11-13, 18, 25-27 jan
1-3, 8-10, 22-24 feb
1-3, 8-10, 15 mar

- Place: PC 37 (lectures \& tutorials)
bring your laptops! (Linux/MacOSX/Windows)
- Exam: either a project (max 2 people) or oral

Section 1

Introduction

What is Mathematical Programming?

- Formal declarative language for describing optimization problems
- As expressive as any imperative language
- Interpreter = solver
- Shifts focus from algorithmics to modelling

Syntax

- A valid sentence:

$$
\left.\min \begin{array}{l}
x_{1}+2 x_{2}-\log \left(x_{1} x_{2}\right) \\
x_{1} x_{2}^{2} \geq 1 \\
0 \leq x_{1} \leq 1 \\
x_{2} \in \mathbb{N} .
\end{array}\right\} \quad
$$

- An invalid one:

$$
\begin{array}{ll}
\min & \dot{\overline{x_{2}}}+x_{1}++\sin \cos \\
& x_{x_{2}} \geq x_{x_{1}} \\
& \sum_{i \leq x_{1}} x_{i}=0 \\
& x_{1} \neq x_{2} \\
& x_{1}<x_{2}
\end{array}
$$

MINLP Formulation

Given functions $f, g_{1}, \ldots, g_{m}: \mathbb{Q}^{n} \rightarrow \mathbb{Q}$ and $Z \subseteq\{1, \ldots, n\}$

- $\phi(x)=0 \quad \Leftrightarrow \quad(\phi(x) \leq 0 \wedge-\phi(x) \leq 0)$
- $L \leq x \leq U \quad \Leftrightarrow \quad(L-x \leq 0 \wedge x-U \leq 0)$
- f, g_{i} represented by expression DAGs

$$
x_{1}+\frac{x_{1} x_{2}}{\log \left(x_{2}\right)}
$$

Semantics

$$
P \equiv \min \left\{x_{1}+2 x_{2}-\log \left(x_{1} x_{2}\right) \mid x_{1} x_{2}^{2} \geq 1 \wedge 0 \leq x_{1} \leq 1 \wedge x_{2} \in \mathbb{N}\right\}
$$

$\llbracket P \rrbracket=(\operatorname{opt}(P), \operatorname{val}(P)) \quad \operatorname{opt}(P)=(1,1) \quad \operatorname{val}(P)=3$

What is a solution of an MP?

- Given an MP P, there are three possibilities:

1. $\llbracket P \rrbracket$ exists
2. P is unbounded
3. P is infeasible

- P has a feasible solution iff $\llbracket P \rrbracket$ exists or is unbounded otherwise it is infeasible
- P has an optimum iff $\llbracket P \rrbracket$ exists
otherwise it is infeasible or unbounded
- Asymmetry between optimization and feasibility
- Feasibility prob. $g(x) \leq 0$ can be written as MP

$$
\min \{0 \mid g(x) \leq 0\}
$$

Solvers (or "interpreters")

- Take formulation P as input
- Output $\llbracket P \rrbracket$ and possibly other information
- Trade-off between generality and efficiency
(i) Linear Programming (LP)
f, g_{i} linear, $Z=\varnothing$
(ii) Mixed-Integer Linear Programming (MILP)
f, g_{i} linear, $Z \neq \varnothing$
(iii) Nonlinear Programming (NLP)
some nonlinearity in $f, g_{i}, Z=\varnothing$
(iv) Mixed-Integer Nonlinear Programming (MINLP)
some nonlinearity in $f, g_{i}, Z \neq \varnothing$
(way more classes than these!)
- Each solver targets a given class

Why should you care?

- Production industry
planning, scheduling, allocation, ...
- Transportation \& logistics facility location, routing, rostering, ...
- Service industry
pricing, strategy, product placement, ...
- Energy industry (all of the above)
- Machine Learning \& Artificial Intelligence clustering, approximation error minimization
- Biochemistry \& medicine protein structure, blending, tomography, ...
- Mathematics

Kissing number, packing of geometrical objects,...

Section 2

Decidability

Formal systems (FS)

- A formal system consists of:
- an alphabet
- a formal grammar
allowing the determination of formulce and sentences
- a set A of axioms (given sentences)
- a set R of inference rules allowing the derivation of new sentences from old ones
- A theory T is the smallest set of sentences that is obtained by recursively applying R to A
- Example 1 (PA1): $+, \times, \wedge, \vee, \forall, \exists,=$ and variable names; 1st order sentences about \mathbb{N}; Peano's Axioms; modus ponens and generalization
- Example 2 (Reals): $+, \times, \wedge, \vee,=,>$, variables, real constants; polynomials over \mathbb{R}; field and order axioms for \mathbb{R}, "basic operations on polynomials"

What is decidability?

Given a FS \mathcal{F},

- a decision problem P in \mathcal{F} is a set of sentences in \mathcal{F}
- Decide whether a given sentence f in \mathcal{F} belongs to P or not
- PA1: decide whether a sentence f about \mathbb{N} has a proof or not
a proof of f is a sequence of sentences that begins with axioms and ends with f, each other sentence in the sequence being derived from applying inference rules to previous sentences
- Reals: decide whether a given system of polynomials p on \mathbb{R} has a solution or not

Decision and proof in PA1

- Given a decision problem, is there an algorithm with input f, output YES/NO?
YES: " f has proof in \mathcal{F} "
NO: " f does not have a proof in \mathcal{F} "
- [Turing 1936]: an encoding of Halting Problem in PA1 is undecidable in PA1
- AFS \mathcal{F} is complete if, for every f in \mathcal{F} either f or $\neg f$ is provable in \mathcal{F} Gödel's first incompleteness theorem \Rightarrow PA1 is incomplete $\exists f$ s.t. f and $\neg f$ are unprovable in \mathcal{F} (such f are called independent in \mathcal{F})
- PA1 is undecidable and incomplete

Decision and proof in Reals

- Given poly system $p(x) \geq 0$, is there alg. deciding YES/NO?
YES: " $p(x) \geq 0$ has a solution in \mathbb{R} "
NO: " $p(x) \geq 0$ has no solution in \mathbb{R} "
- [Tarski 1948]: Reals is decidable
- Tarski's algorithm:
constructs solution sets (YES) or derives contradictions (NO) Best kind of decision algorithm: also provides proofs!
\Rightarrow Reals is also complete
- Reals is decidable and complete

A stupid FS

- Nolnference:

Any FS with $<\infty$ axiom schemata and no inference rules

- Only possible proofs: sequences of axioms
- Only provable sentences: axioms
- For any other sentence f : no proof of f or $\neg f$
- Trivial decision algorithm: given f, output YES if f is an axiom, NO otherwise
- Nolnference is decidable and incomplete

Undecidability \& Incompleteness

- [Nonexistence of a proof for $f] \not \equiv[$ Proof of $\neg f]$ In a decidable and incomplete FS, a decision algorithm answers NO to both f and $\neg f$ if f is independent
- Information complexity: decision $=1$ bit, proof $=$ many bits
- Undecidability and incompleteness are different!

Decidability, computability, solvability

- Decidability: applies to decision problems
- Computability: applies to function evaluation
- Is the function f, mapping i to the i-th prime integer, computable?
- Is the function g, mapping Cantor's CH to 1 if provable in ZFC axiom system and to 0 otherwise, computable?
- Solvability: applies to other problems E.g. to optimization problems!

Is MP solvable?

- Hilbert's 10th problem: is there an algorithm for solving polynomial Diophantine equations?
- Modern formulation: are polynomial systems over \mathbb{Z} solvable?
- [Matiyasevich 1970]: NO can encode universal TMs in them
- Let $p(\alpha, x)=0$ be a Univ. Dioph. Eq. (UDE)
- $\min \{0 \mid p(\alpha, x)=0\}$ is an undecidable (feasibility) MP
- $\min (p(\alpha, x))^{2}$ is an unsolvable (optimization) MP

