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Practicalities

I URL:
http://www.lix.polytechnique.fr/~liberti/teaching/dix/inf580-17

I Dates: wed-fri
4-6, 11-13, 18, 25-27 jan
1-3, 8-10, 22-24 feb
1-3, 8-10, 15 mar

I Place: PC 37 (lectures & tutorials)
bring your laptops! (Linux/MacOSX/Windows)

I Exam: either a project (max 2 people) or oral
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Section 1

Introduction
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What isMathematical Programming?

I Formal declarative language for describing
optimization problems

I As expressive as any imperative language
I Interpreter= solver
I Shifts focus from algorithmics tomodelling
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Syntax

I A valid sentence:

min x1 + 2x2 − log(x1x2)
x1x

2
2 ≥ 1

0 ≤ x1 ≤ 1
x2 ∈ N.

 [P ]

I An invalid one:

min ·
x2

+ x1 + + sin cos

xx2 ≥ xx1∑
i≤x1

xi = 0

x1 6= x2

x1 < x2.
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MINLP Formulation
Given functions f, g1, . . . , gm : Qn → Q and Z ⊆ {1, . . . , n}

min f(x)
∀i ≤ m gi(x) ≤ 0
∀j ∈ Z xj ∈ Z


I φ(x) = 0 ⇔ (φ(x) ≤ 0 ∧ −φ(x) ≤ 0)

I L ≤ x ≤ U ⇔ (L− x ≤ 0 ∧ x− U ≤ 0)

I f, gi represented by expression DAGs
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Semantics

P ≡ min{x1 + 2x2 − log(x1x2) | x1x
2
2 ≥ 1∧ 0 ≤ x1 ≤ 1∧ x2 ∈ N}

JP K = (opt(P ), val(P )) opt(P ) = (1, 1) val(P ) = 3
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What is a solution of anMP?

I Given anMP P , there are three possibilities:
1. JP K exists
2. P is unbounded
3. P is infeasible

I P has a feasible solution i� JP K exists or is unbounded
otherwise it is infeasible

I P has an optimum i� JP K exists
otherwise it is infeasible or unbounded

I Asymmetry between optimization and feasibility
I Feasibility prob. g(x) ≤ 0 can be written as MP

min{0 | g(x) ≤ 0}
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Solvers (or “interpreters”)

I Take formulation P as input
I Output JP K and possibly other information
I Trade-o� between generality and e�ciency

(i) Linear Programming (LP)
f, gi linear, Z = ∅

(ii) Mixed-Integer Linear Programming (MILP)
f, gi linear, Z 6= ∅

(iii) Nonlinear Programming (NLP)
some nonlinearity in f, gi, Z = ∅

(iv) Mixed-Integer Nonlinear Programming (MINLP)
some nonlinearity in f, gi, Z 6= ∅

(way more classes than these!)
I Each solver targets a given class
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Why should you care?

I Production industry
planning, scheduling, allocation, . . .

I Transportation & logistics
facility location, routing, rostering, . . .

I Service industry
pricing, strategy, product placement, . . .

I Energy industry (all of the above)
I Machine Learning & Arti�cial Intelligence
clustering, approximation error minimization

I Biochemistry &medicine
protein structure, blending, tomography, . . .

I Mathematics
Kissing number, packing of geometrical objects,. . .
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Section 2

Decidability
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Formal systems (FS)
I A formal system consists of:

I an alphabet
I a formal grammar
allowing the determination of formulæ and sentences

I a setA of axioms (given sentences)
I a setR of inference rules
allowing the derivation of new sentences from old
ones

I A theory T is the smallest set of sentences that is
obtained by recursively applyingR toA

I Example 1 (PA1): +,×,∧,∨,∀,∃,= and variable names; 1st
order sentences aboutN; Peano’s Axioms;modus ponens and
generalization

I Example 2 (Reals): +,×,∧,∨,=, >, variables, real constants;
polynomials overR; �eld and order axioms forR, “basic
operations on polynomials”
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What is decidability?

Given a FSF ,
I a decision problem P inF is a set of sentences inF
I Decide whether a given sentence f inF belongs to P
or not

I PA1: decide whether a sentence f aboutN has a proof
or not
a proof of f is a sequence of sentences that begins with axioms
and ends with f , each other sentence in the sequence being
derived from applying inference rules to previous sentences

I Reals: decide whether a given system of polynomials p
onR has a solution or not
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Decision and proof in PA1

I Given a decision problem, is there an algorithm with
input f , output YES/NO?
YES: “f has proof inF”
NO: “f does not have a proof inF”

I [Turing 1936]: an encoding of Halting Problem in
PA1 is undecidable in PA1

I A FSF is complete if, for every f inF
either f or ¬f is provable inF

Gödel’s �rst incompleteness theorem⇒ PA1 is incomplete ∃f
s.t. f and ¬f are unprovable inF (such f are called independent inF )

I PA1 is undecidable and incomplete
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Decision and proof in Reals

I Given poly system p(x) ≥ 0, is there alg. deciding
YES/NO?
YES: “p(x) ≥ 0 has a solution inR”
NO: “p(x) ≥ 0 has no solution inR”

I [Tarski 1948]: Reals is decidable
I Tarski’s algorithm:
constructs solution sets (YES) or derives contradictions (NO)
Best kind of decision algorithm: also provides proofs!
⇒ Reals is also complete

I Reals is decidable and complete
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A stupid FS

I NoInference:
Any FS with<∞ axiom schemata and no inference rules

I Only possible proofs: sequences of axioms
I Only provable sentences: axioms
I For any other sentence f : no proof of f or ¬f
I Trivial decision algorithm:
given f , output YES if f is an axiom, NO otherwise

I NoInference is decidable and incomplete
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Undecidability & Incompleteness

I [Nonexistence of a proof for f ] 6≡ [Proof of ¬f ]
In a decidable and incomplete FS, a decision algorithm answers
NO to both f and ¬f if f is independent

I Information complexity:
decision= 1 bit, proof=many bits

I Undecidability and incompleteness aredi�erent!

17 / 246



Decidability, computability, solvability

I Decidability: applies to decision problems
I Computability: applies to function evaluation

I Is the function f , mapping i to the i-th prime integer,
computable?

I Is the function g, mapping Cantor’s CH to 1 if provable in
ZFC axiom system and to 0 otherwise, computable?

I Solvability: applies to other problems
E.g. to optimization problems!
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Is MP solvable?

I Hilbert’s 10th problem: is there an algorithm for
solving polynomial Diophantine equations?

I Modern formulation:
are polynomial systems over Z solvable?

I [Matiyasevich 1970]: NO
can encode universal TMs in them

I Let p(α, x) = 0 be a Univ. Dioph. Eq. (UDE)
I min{0 | p(α, x) = 0} is an undecidable (feasibility) MP
I min(p(α, x))2 is an unsolvable (optimization) MP
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Section 3

E�ciency and Hardness
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Worst-case algorithmic complexity

I Computational complexity theory:
worst-case time/space taken by an algorithm to complete

I AlgorithmA
I e.g. to determine whether a graphG = (V,E) is
connected or not

I input: G; size of input: ν = |V |+ |E|
I How does the CPU time τ(A) used byA vary with ν?

I τ(A) = O(νk) for �xed k: polytime
I τ(A) = O(2ν): exponential

I polytime↔ e�cient
I exponential↔ ine�cient
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Polytime algorithms are “e�cient”

I Why are polynomials special?
I Many di�erent variants of TuringMachines (TM)
I Polytime is invariant to all de�nitions of TM
I In practice,O(ν)-O(ν3) is an acceptable range
coveringmost practically useful e�cient algorithms

I Many exponential algorithms are also usable in
practice for limited sizes
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Instances and problems

I An input to an algorithmA: instance
I Collection of all inputs forA: problem
consistent with “set of sentences” from decidability

I BUT:
I A problem can be solved by di�erent algorithms
I There are problems which no algorithm can solve

I Given a problem P , what is the complexity of the best
algorithm that solves P ?
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Complexity classes

I Focus on decision problems
I If ∃ polytime algorithm for P , then P ∈ P

I If there is a polytime checkable certi�cate for all YES
instances of P , then P ∈ NP

I No-one knows whetherP = NP (we think not)

I NP includes problems for which we don’t think a
polytime algorithms exist
e.g. k-clique, subset-sum, knapsack, hamiltonian
cycle, sat, . . .
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Subsection 1

Some combinatorial problems

25 / 246



k-clique
I Instance: (G = (V,E), k)
I Problem: determine whetherG has a clique of size k

I 1-clique? YES (every graph is YES)
I 2-clique? YES (every non-empty graph is YES)
I 3-clique? YES (triangle {1, 2, 4} is a certi�cate)
certi�cate can be checked inO(k) < O(n)

I 4-clique? NO
no polytime certi�cate unlessP = NP
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MP formulations for clique
Variables? Objective? Constraints?

I Pure feasibility problem:

∀{i, j} 6∈ E xi + xj ≤ 1∑
i∈V

xi = k

x ∈ {0, 1}n


I Max Clique:

max
∑
i∈V

xi

∀{i, j} 6∈ E xi + xj ≤ 1
x ∈ {0, 1}n
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subset-sum

I Instance: list a = (a1, . . . , an) ∈ Nn and b ∈ N
I Problem: is there J ⊆ {1, . . . , n} such that

∑
j∈J

aj = b?

I a = (1, 1, 1, 4, 5), b = 3: YES J = {1, 2, 3}
all b ∈ {0, . . . , 12} yield YES instances

I a = (3, 6, 9, 12), b = 20: NO
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MP formulations for subset-sum

Variables? Objective? Constraints?

I Pure feasibility problem:∑
j≤n

ajxj = b

x ∈ {0, 1}n

}
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MP formulations for subset-sum

Variables? Objective? Constraints?
I Pure feasibility problem:∑

j≤n
ajxj = b

x ∈ {0, 1}n

}
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knapsack
I Instance: c, w ∈ Nn,K ∈ N
I Problem: �nd J ⊆ {1, . . . , n} s.t. c(J) ≤ K andw(J) is
maximum

I c = (1, 2, 3),w = (3, 4, 5),K = 3

I c(J) ≤ K feasible for J in∅, {j}, {1, 2}
I w(∅) = 0, w({1, 2}) = 3 + 4 = 7, w({j}) ≤ 5 for j ≤ n
⇒ Jmax = {1, 2}

I K = 0: infeasible

I natively expressed as an optimization problem
I notation: c(J) =

∑
j∈J

cj (similarl forw(J))
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MP formulation for knapsack

Variables? Objective? Constraints?

max
∑
j≤n

wjxj∑
j≤n

cjxj ≤ K

x ∈ {0, 1}n
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MP formulation for knapsack

Variables? Objective? Constraints?

max
∑
j≤n

wjxj∑
j≤n

cjxj ≤ K

x ∈ {0, 1}n
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Hamiltonian Cycle

I Instance: G = (V,E)

I Problem: doesG have aHamiltonian cycle?
cycle covering every v ∈ V exactly once

NO YES (cert. 1→ 2→ 5→ 3→ 4→ 1)
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MP formulation forHamiltonian Cycle

Variables? Objective? Constraints?

∀i ∈ V
∑
j∈V
{i,j}∈E

xij = 1 (1)

∀j ∈ V
∑
i∈V
{i,j}∈E

xij = 1 (2)

∀∅ ( S ( V
∑

i∈S,j 6∈S
{i,j}∈E

xij ≥ 1 (3)

WARNING: second order statement!
quanti�ed over sets

other warning: need arcs not edges in (5)-(7)
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Satisfiability (sat)
I Instance: open boolean logic sentence f in CNF∧

i≤m

∨
j∈Ci

`j

where `j ∈ {xj, x̄j} for j ≤ n

I Problem: is there φ : x→ {0, 1}n s.t. φ(f) = 1?

I f ≡ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2)
x1 = x2 = 1, x3 = 0 is a YES certi�cate

I f ≡ (x1 ∨ x2) ∧ (x̄1 ∨ x̄2) ∧ (x̄1 ∨ x2) ∧ (x1 ∨ x̄2)

φ x = (1, 1) x = (0, 0) x = (1, 0) x = (0, 1)
false C2 C1 C3 C4
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MP formulation for sat

Exercise
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Subsection 2

NP-hardness
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NP-Hardness

I Do hard problems exist? Depends onP 6= NP

I Next best thing: de�ne hardest problem inNP

I A problem P isNP-hard if
Every problemQ inNP can be solved in this way:
1. given an instance q ofQ transform it in polytime to
an instance ρ(q) of P s.t. q is YES i� ρ(q) is YES

2. run the best algorithm for P on ρ(q), get answer
α ∈ {YES,NO}

3. return α
ρ is called a polynomial reduction fromQ to P

I If P is inNP and isNP-hard, it is calledNP-complete

I Every problem inNP reduces to sat [Cook 1971]
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Cook’s theorem

Boolean decision variables store TM dynamics
De�nition of TM dynamics in CNF

Description of a dynamical system using a declarative program-
ming language (sat) — what MP is all about!
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Reduction graph
After Cook’s theorem
To proveNP-hardness of a new problem P , pick a knownNP-hard
problemQ that “looks similar enough” to P and �nd a polynomial
reduction ρ fromQ to P [Karp 1972]

Why itworks: supposeP easier thanQ, solveQ by calling ρ ◦ AlgP , concludeQ as easy asP , contradiction
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Example of polynomial reduction
I stable: givenG = (V,E) and k ∈ N, does it contain a stable
set of size k?

I We know k-clique isNP-complete, reduce from it
I Given instance (G, k) of clique consider the complement
graph (computable in polytime)

Ḡ = (V, Ē = {{i, j} | i, j ∈ V ∧ {i, j} 6∈ E})

I Thm.: G has a clique of size k i� Ḡ has a stable set of size k
I ρ(G) = Ḡ is a polynomial reduction from clique to

stable
I ⇒ stable isNP-hard
I stable is also inNP
U ⊆ V is a stable set i�E(G[U ]) = ∅ (polytime veri�cation)

I ⇒ stable isNP-complete
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MILP isNP-hard
I sat isNP-hard by Cook’s theorem, Reduce from sat in
CNF ∧

i≤m

∨
j∈Ci

`j

where `j is either xj or x̄j ≡ ¬xj
I Polynomial reduction ρ

sat xj x̄j ∨ ∧
MILP xj 1− xj + ≥ 1

I E.g. ρmaps (x1 ∨ x2) ∧ (x̄2 ∨ x3) to

min{0 | x1 + x2 ≥ 1 ∧ x3 − x2 ≥ 0 ∧ x ∈ {0, 1}3}

I sat is YES i�MILP is feasible
(same solution, actually)
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Complexity of Quadratic Programming

min x>Qx + c>x
Ax ≥ b

}
I Quadratic Programming =QP
I Quadratic objective, linear constraints, continuous
variables

I Many applications (e.g. portfolio selection)
I IfQ PSD then objective is convex, problem is inP
I IfQ has at least one negative eigenvalue,NP-hard
I Decision problem: “is the min. obj. fun. value= 0?”
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QP isNP-hard
I By reduction from SAT, let σ be an instance
I ρ̂(σ, x) ≥ 1: linear constraints of sat→ MILP reduction

I Consider QP

min f(x) =
∑
j≤n

xj(1− xj)

ρ̂(σ, x) ≥ 1
0 ≤ x ≤ 1

 (†)

I Claim: σ is YES i� val(†) = 0

I Proof:
I assume σ YES with soln. x∗, then x∗ ∈ {0, 1}n, hence
f(x∗) = 0, since f(x) ≥ 0 for all x, val(†) = 0

I assume σ NO, suppose val(†) = 0, then (†) feasible
with soln. x′, since f(x′) = 0 then x′ ∈ {0, 1}, feasible
in sat hence σ is YES, contradiction
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Box-constrained QP isNP-hard

I Add surplus vars v to sat→MILP constraints:
ρ̂(σ, x)− 1− v = 0

(denote by ∀i ≤ m (a>i x− bi − vi = 0))
I Now sum them on the objective

min
∑
j≤n

xj(1− xj) +
∑
i≤m

(a>i x− bi − vi)2

0 ≤ x ≤ 1, v ≥ 0

}

I Issue: v not bounded above
I Reduce from 3sat, get≤ 3 literals per clause
⇒ can consider 0 ≤ v ≤ 2
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cQKP isNP-hard
I continuous Quadratic Knapsack Problem (cQKP)

min f(x) = x>Qx + c>x∑
j≤n

ajxj = γ

x ∈ [0, 1]n,


I Reduction from subset-sum

given list a ∈ Qn and γ, is there J ⊆ {1, . . . , n} s.t.
∑
j∈J

aj = γ?

reduce to f(x) =
∑
j xj(1− xj)

I σ is a YES instance of subset-sum
I let x∗j = 1 i� j ∈ J , x∗j = 0 otherwise
I feasible by construction
I f is non-negative on [0, 1]n and f(x∗) = 0: optimum

I σ is a NO instance of subset-sum
I suppose opt(cQKP) = x∗ s.t. f(x∗) = 0

I then x∗ ∈ {0, 1}n because f(x∗) = 0

I feasibility of x∗→ supp(x∗) solves σ, contradiction, hence f(x∗) > 0
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QP on a simplex isNP-hard

min f(x) = x>Qx + c>x∑
j≤n

xj = 1

∀j ≤ n xj ≥ 0


I Reducemax clique to subclass f(x) = −

∑
{i,j}∈E

xixj

Motzkin-Straus formulation (MSF)

I Theorem [Motzkin& Straus 1964]
LetC be themaximum clique of the instanceG = (V,E) ofmax clique

∃x∗ ∈ opt (MSF) f∗ = f(x∗) = 1
2

(
1− 1

ω(G)

)
∀j ∈ V x∗j =

{ 1
ω(G) if j ∈ C
0 otherwise
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Proof of theMotzkin-Straus theorem
x∗ = opt( max

x∈[0,1]n∑
j xj=1

∑
ij∈E

xixj) s.t. |C = {j ∈ V |;x∗j > 0}| smallest (‡)

1. C is a clique
I Suppose 1, 2 ∈ C but {1, 2} 6∈ E[C], then x∗1, x

∗
2 > 0, can perturb by small

ε ∈ [−x∗1, x∗2], get xε = (x∗1 + ε, x∗2 − ε, . . .), feasible w.r.t. simplex and bounds

I {1, 2} 6∈ E ⇒ x1x2 does not appear in f(x)⇒ f(xε) depends linearly on ε; by

optimality of x∗, f achieves max for ε = 0, in interior of its range⇒ f(ε)

constant

I set ε = −x∗1 or= x∗2 yields global optima withmore zero components than x
∗,

against assumption (‡), hence {1, 2} ∈ E[C], by relabelingC is a clique
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Proof of theMotzkin-Straus theorem
x∗ = opt( max

x∈[0,1]n∑
j xj=1

∑
ij∈E

xixj) s.t. |C = {j ∈ V |;x∗j > 0}| smallest (‡)

2. |C| = ω(G)
I square simplex constraint

∑
j xj = 1, get∑

j∈V
x2j + 2

∑
i<j∈V

xixj = 1

I by construction x∗j = 0 for j 6∈ C⇒

ψ(x∗) =
∑
j∈C

(x∗j )2 + 2
∑

i<j∈C
x∗jx
∗
j =

∑
j∈C

(x∗j )2 + 2f(x∗) = 1

I ψ(x) = 1 for all feasible x, so f(x) achieves maximumwhen
∑
j∈C(x∗j )2 is

minimum, i.e. x∗j = 1
|C| for all j ∈ C

I again by simplex constraint

f(x∗) = 1−
∑
j∈C

(x∗j )2 = 1− |C|
1

|C|2
≤ 1−

1

ω(G)

so f(x∗) attains maximum 1− 1/ω(G) when |C| = ω(G)
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Two exercises

I Prove that quartic polynomial optimization is
NP-hard; reduce from one of the combinatorial
problems given during the course, andmake sure
that at least onemonomial of degree four appears
with non-zero coe�cient in theMP formulation.

I As above, but for cubic polynomial optimization.
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Portfolio optimization

You, a private investment banker, are seeing a customer.
She tells you “I have 3,450,000$ I don’t need in the next three
years. Invest them in low-risk assets so I get at least 2.5% re-
turn per year.”

Model the problem of determining the required portfolio.
Missing data are part of the fun (and of real life).

[Hint: what are the decision variables, objective, constraints? What data are missing?]
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Section 4

Systematics
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Types of MP

Continuous variables:

I LP (linear functions)

I QP (quadratic obj. over a�ne sets)

I QCP (linear obj. over quadratically def’d sets)

I QCQP (quadr. obj. over quadr. sets)

I cNLP (convex sets, convex obj. fun.)

I SOCP (LP over 2nd ord. cone)

I SDP (LP over PSD cone)

I COP (LP over copositive cone)

I NLP (nonlinear functions)
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Types of MP

Mixed-integer variables:

I IP (integer programming), MIP (mixed-integer programming)

I extensions:MILP, MIQ, MIQCP, MIQCQP, cMINLP, MINLP

I BLP (LP over {0, 1}n)
I BQP (QP over {0, 1}n)

More “exotic” classes:

I MOP (multiple objective functions)

I BLevP (optimization constraints)

I SIP (semi-in�nite programming)
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Section 5

Linear Programming
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Generalities
I Simplex method

I practically fast
I exploration of polyhedron vertices
I exponential-time in the worst-case
I average complexity: polynomial
I smoothed complexity: polynomial

I Ellipsoid method
I (weakly) polytime
I mostly used for theoretical purposes

I Interior-point method (IPM)
I practically fast
I follows a central path
I (weakly) polytime
I can be used for many convexMPs, nost just linear
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Distribution of oil

An oil distribution company needs to ship a large quantity
of crude from themain port to the re�ning plant, which is un-
fortunately far from the port, using their pipe networks over
the country.

Model the problem of determining the maximum quantity
of oil they can hope to ship.

[Hint: what are the decision variables? (etc.)]
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Subsection 1

Maximum �ow
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Network �ows

Given a digraph G = (V,A) with an arc capacity function
c : A → R+ and two distinct nodes s, t ∈ V , �nd the �ow
from s to t havingmaximum value

I GivenG = (V,A, c, s, t) a �ow from s to t is a function
f : A→ R+ s.t.:

∀v ∈ V r {s, t}
∑

u∈N−(v)

fuv =
∑

w∈N+(v)

fvw

∀(u, v) ∈ A fuv ≤ cuv

I The value of a �ow f is given by
∑

v∈N+(s)

fsv

Defn.:N−(v) = {u ∈ V | (u, v) ∈ A},N+(v) = {w ∈ V | (v, w) ∈ A}
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TheMax Flow problem

max
∑

v∈N+(s)

fsv

∀v ∈ V r {s, t}
∑

u∈N−(v)

fuv =
∑

w∈N+(v)

fvw

∀(u, v) ∈ A fuv ∈ [0, cij]


I Constraint matrix is totally unimodular

⇒ optima have integer components
I Dual ofMax Flow isMin Cut

⇒ optimal value= 0 i� network disconnected
I for these two important results, see MAP557
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Multicommodity �ow
I Many di�erent �ows on the same network
I GivenN = (V,A, c, s, t) where:

I G = (V,A) is a digraph
I c : A→ R+ is an arc capacity function
I s, t ∈ V r s.t.∀k ≤ r (sk 6= tk)

I Find a set of �ows {fk | k ≤ r} from sk to tk
I havingmax. total value
I satisfying arc capacity
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LP Formulation
I Maximize total value:

max
∑
k≤r

∑
v∈N+(sk)

fkskv

I Satisfy �ow equations:

∀k ≤ r, v ∈ V r {sk, tk}
∑

u∈N−(v)

fkuv =
∑

w∈N+(v)

fkvw

I Satisfy arc capacity:

∀(u, v) ∈ A
∑
k≤r

fkuv ≤ cuv

I They are bounded:

∀k ≤ r, (u, v) ∈ A fkuv ∈ [0, cuv]
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Minimum cost �ows

I Flow equations de�ne connected subgraphs:
G connected⇒∀u 6= v ∈ V (G) a unit of �ow entering uwill exit u
as long as “demand”= 0 at intermediate nodes. Conversely: if there
is a �ow from u to v thenGmust be connected

I E.g. a SP s→ t is the connected subgraph of minimum cost
containing s, t:

min
x:A→R

∑
(u,v)∈A

cuvxuv

∀v ∈ V
∑

(u,v)∈A
xuv −

∑
(v,u)∈A

xvu =

 −1 u = s
1 u = t
0 othw.

∀(u, v) ∈ A xuv ∈ [0, 1]


[SP]

Test thiswithAMPL
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Flattening the formulation
I EveryMP involving linear forms only can be written in the form

minx γ>x
Ax ≤ β
x ∈ X

 [P ]

I γ, x ∈ Rn, β ∈ Rm,A ism× n,X is the set where variables range

I For P2PSP on with s = 1 and t = 7we have:

I γ = (2, 1, 1, 2, 1, 1, 0, 1, 5, 4, 3, 2, 6),
β = (1, 0, 0, 0, 0, 0,−1),X = [0, 1]13

I A =

1 1 1 1 0 0 0 0 0 0 0 0 0
−1 0 0 0 1 1 0 0 0 0 0 0 0
0 −1 0 0 −1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 1 1 0 0
0 0 −1 0 0 −1 0 −1 0 0 0 1 1
0 0 0 −1 0 0 0 0 0 −1 0 −1 0
0 0 0 0 0 0 0 0 −1 0 −1 0 −1
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Transpose
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A dual view

I Let A> =



1 −1 0 0 0 0 0
1 0 −1 0 0 0 0
1 0 0 0 −1 0 0
1 0 0 0 0 −1 0
0 1 −1 0 0 0 0
0 1 0 0 −1 0 0
0 0 1 −1 0 0 0
0 0 1 0 −1 0 0
0 0 1 0 0 0 −1
0 0 0 1 0 −1 0
0 0 0 1 0 0 −1
0 0 0 0 1 −1 0
0 0 0 0 1 0 −1


I Turn rows into columns (constraints into variables)
I . . .and columns into rows (variables into constraints)
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LPDual

I For each constraint de�ne a variable yi (i ≤ 7)
I The LPdual is

maxy −yβ
yA ≤ γ

}
[D]

I In the case of the SP formulation, the dual is:

maxy yt − ys
∀(u, v) ∈ A yv − yu ≤ cuv

}
[DSP]

I For the P2PSP formulation, dual gives same optimal
value as the “primal” (test with AMPL)

How the hell is this an SP formulation?
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Amechanical algorithm
I Weighted arcs = strings as long as the weights
I Nodes = knots
I Pull nodes s, t as far as you can
I Atmaximum pull, strings corresponding to arcs

(u, v) in SP have horizontal projections whose length
is exactly cuv
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Telecom

An internetproviderusedhistoricaldata to estimatea traf-
�c matrix T = (Tij), such that Tij is the typical demand be-
tween two nodes i, j of its network digraphG = (V,A). It has
a contract with the backbone provider that limits the capac-
ity (inGbs) on each arc (i, j) ∈ A to cij ; the same contract also
regulates the cost per Gbs, set to γij

Model theproblemof�nding the feasiblemulti�owofmin-
imumcost that satis�es eachdemandbetween sourceanddes-
tination.
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Logistics
A truck-based transportation company needs to plan the

routes for the incomingweek. The demands are given as a list
((sk, tk, dk) | k ≤ r) where dk trucks have to be dispatched
fromnode sk to node tk . The capacities cuv on the arcs (u, v) ∈
A are estimated using tra�c data, and the operations cost are
estimated to 100$ per Km.

1. Model the problem, assuming the company has enough
trucks to cover every demand

2. Adjust the problem to the situation where the company
has su�cient trucks to satisfy half of the total demand,
and has to rent the others: the operations costs for the
rented trucks are 200$ per Km.

3. Suggest a way to e�ciently compute a lower bound on
the total cost.
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Air courier
The air branch of a shipping company uses a �eet of Boeing 777s

and 747s cargo to serve the EMEA demands. A 777 can carry 653
m3 in volume and 103 tonnes (t) in weight. A 747 can carry 854.5
m3 and 134.2 t. Each freighter is dedicated to a single segment (ori-
gin to destination airport and back once a day: both �ights hap-
pen within the same 24 hours). The demand matrix is extremely
�ne-grained, and consists of all order IDs (packages) for the week,
with origin and destination airports, weight and volume. The net-
work consists of airports, linked by the segments that are actually
�own. Theper-mile cost of �ying is a linearly increasing functionof
the loaded weight (the two functions are di�erent for 777 and 747).
Flights can leave empty (in which case the company subcontracts
the �ight); company policy states that, if loaded, the loaded volume
has to �ll at least half the capacity. Model the corresponding vari-
ant of the multicommodity �ow problem.
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Air courier: .mod �le

## airports
set Airports;
param Dist{Airports, Airports} >= 0, default Uniform(100,2000);
## aircrafts
set AircraftTypes;
# max volume per aircraft type
param AV{AircraftTypes} >= 0;
# max weight per aircraft type
param AW{AircraftTypes} >= 0;
# cost per mile per aircraft type
param ACpM{AircraftTypes} >= 0;
# number of flights on the time horizon
param DaysMax := 7;
set Days := 1..DaysMax;

71 / 246



Air courier: .mod �le

## flight segment network
set Segments within {Airports, Airports};
param Aircraft{Segments} symbolic;
param VolumeCap{(u,v) in Segments} >= 0, default DaysMax*AV[Aircraft[u,v]];
param WeightCap{(u,v) in Segments} >= 0, default DaysMax*AW[Aircraft[u,v]];
param ArcCost{(u,v) in Segments} default ACpM[Aircraft[u,v]]*Dist[u,v];

## fine-grained demand
param Dmax;
set Demand;
param Volume{Demand} >= 0;
param Weight{Demand} >= 0;
param Orig{Demand} symbolic;
param Dest{Demand} symbolic;

## aggregated demand
set D within {Airports,Airports};
param dV{D} >= 0, default 0;
param dW{D} >= 0, default 0;
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Air courier: .mod �le

## decision variables

# volume (unsplittable) flow
var V{Segments,D} binary;
# weight (unsplittable) flow
var W{Segments,D} binary;
# whether a flight leaves empty
var E{Segments,Days} binary;

## objective function
minimize cost:

sum{(h,k) in D, (u,v) in Segments} ArcCost[u,v]*W[u,v,h,k];
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Air courier: .mod �le

## constraints
# volume multiflow
subject to volumeFlow{(h,k) in D, v in Airports}:

sum{w in Airports: (v,w) in Segments} V[v,w,h,k] -
sum{u in Airports: (u,v) in Segments} V[u,v,h,k] =

if (v == h) then 1 else if (v == k) then -1 else 0;
subject to volumeCapacity{(u,v) in Segments}:

sum{(h,k) in D} dV[h,k]*V[u,v,h,k] <= VolumeCap[u,v];

# weight multiflow
subject to weightFlow{(h,k) in D, v in Airports}:

sum{w in Airports: (v,w) in Segments} W[v,w,h,k] -
sum{u in Airports: (u,v) in Segments} W[u,v,h,k] =

if (v == h) then 1 else if (v == k) then -1 else 0;
subject to weightCapacity{(u,v) in Segments}:

sum{(h,k) in D} dW[h,k]*W[u,v,h,k] <= WeightCap[u,v];
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Air courier: .mod �le

# consistency: can’t spread the aggregated flow!
subject to consistent{(h,k) in D, (u,v) in Segments}:

V[u,v,h,k] = W[u,v,h,k];

# company policy on non-empty flights (at least half volume)
subject to companypolicy1{(u,v) in Segments}:

sum{(h,k) in D} dV[h,k]*V[u,v,h,k] >=
(0.5*VolumeCap[u,v]/DaysMax)*sum{t in Days} E[u,v,t];

subject to companypolicy2{(u,v) in Segments}:
sum{(h,k) in D} dV[h,k]*V[u,v,h,k] <=

(VolumeCap[u,v]/DaysMax)*sum{t in Days} E[u,v,t];
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Air courier: .run �le

param eps := 1e-6;
model air_courier.mod;
data airports.dat;
data aircrafts.dat;
data segments.dat;
data demands.dat;

# aggregate the fine-grained demand
let D := {};
param orig symbolic;
param dest symbolic;
for {d in Demand} {

let orig := Orig[d];
let dest := Dest[d];
let D := D union {(orig,dest)};
let dV[orig,dest] := dV[orig,dest] + Volume[d];
let dW[orig,dest] := dW[orig,dest] + Weight[d];

}

option solver cplex;
solve;
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Air courier: .run �le
param curra symbolic;
param nexta symbolic;
param nnext integer, default 0;
if solve_result == "infeasible" then {

printf "instance is infeasible\n";
} else {

for {(h,k) in D} {
printf "demand [%s,%s]: %s", h,k, h;
let curra := h;
repeat while(curra != k) {

let nnext :=
card({v in Airports: (curra,v) in Segments and abs(V[curra,v,h,k]-1)<eps});

if (nnext != 1) then {
printf "ERROR: %d next vtx after %d (check absmipgap)\n",curra,nnext;
break;

}
for {v in Airports:(curra,v) in Segments and abs(V[curra,v,h,k]-1)<eps}{

let nexta := v;
}
printf " -(%d)-> %s", sum{t in Days} E[curra,nexta,t], nexta;
let curra := nexta;

}
printf "\n";

}
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Subsection 2

Sparsity and `1minimization

78 / 246



Coding problem 1

I Need to send sparse vector y ∈ Rn with n� 1

1. Sample full rank k × nmatrixA with k � n
preliminary: both parties knowA

2. Encode b = Ay ∈ Rk

3. Send b
I Decode by �nding sparsest x s.t.Ax = b
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Coding problem 2
I Need to send a sequencew ∈ Rk

I Encoding n× kmatrixQ, with n� k, send z = Qw ∈ Rn
preliminary: both parties knowQ

I (Low) prob. e of error: e n comp. of z sent wrong
they can be totally o�

I Receive (wrong) vector z̄ = z + xwhere x is sparse

I Can we recover z?
I Choose k × nmatrixA s.t.AQ = 0
I Let b = Az̄ = A(z + x) = A(Qw + x) = AQw +Ax = Ax
I Suppose we can �nd sparsest x′ s.t.Ax′ = b
I ⇒ we can recover z′ = z̄ − x′

I Recoverw′ = (Q>Q)−1Q>z′

Likelihood of getting small ‖w − w′‖?
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Sparsest solution of a linear system

I Problemmin{‖x‖0 | Ax = b} isNP-hard
Reduction fromExact Cover by 3-Sets [Garey&Johnson 1979, A6[MP5]]

I Relax tomin{‖x‖1 | Ax = b}
I Reformulate to LP:

min
∑
j≤n

sj

∀j ≤ n −sj ≤ xj ≤ sj
Ax = b


I Empirical observation: can often �nd optimum

Too often for this to be a coincidence
I Theoretical justi�cation by Candès, Tao, Donoho
“Mathematics of sparsity”, “Compressed sensing”
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Graphical intuition 1

I Wouldn’t work with `2, `∞ norms
Ax = b �at at poles— “zero probability of sparse solution”

Warning: this is not a proof, and there are cases not explained by this drawing [Candès 2014]
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Graphical intuition 2

I x̂ such thatAx̂ = b approximates x in `p norms
I p = 1 only convex case zeroing some components

From [Davenport et al., 2012]; again, this is not a proof!
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Not for the faint-hearted

1. Hand, Voroninski:
arxiv.org/pdf/1611.03935v1.pdf

2. Candès and Tao:
statweb.stanford.edu/~candes/papers/DecodingLP.pdf

3. Candès:
statweb.stanford.edu/~candes/papers/ICM2014.pdf

4. Davenport et al.:
statweb.stanford.edu/~markad/publications/

ddek-chapter1-2011.pdf

5. Lustig et al.:
people.eecs.berkeley.edu/~mlustig/CS/CSMRI.pdf

6. and many more (look for “compressed sensing”)
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Subsection 3

Random projections
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The gist

I LetA, b be very large, consider LP

min{c>x | Ax = b ∧ x ≥ 0}

I T short & fat normally sampled
I Then

Ax = b ∧ x ≥ 0 ⇔ TAx = Tb ∧ x ≥ 0

with high probability
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Linear feasibility with constrained
multipliers

RestrictedLinearMembership (RLMX )
GivenA1, . . . , An, b ∈ Rm andX ⊆ Rn, ∃ ? x ∈ X s.t.

b =
∑
i≤n

xiAi

I LinearFeasibilityProblem (LFP) withX = Rn+

I IntegerFeasibilityProblem (IFP) withX = Zn+
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The shape of a set of points
I Losedimensionsbutnot toomuchaccuracy
GivenA1, . . . , An ∈ Rm �nd k � m and points
A′1, . . . , A

′
n ∈ Rk s.t. A andA′ “have almost the same

shape”
I What is the shape of a set of points?

A’

A

congruent sets have the same shape
I Approximate congruence⇔ distortion:
A,A′ have almost the same shape if
∀i < j ≤ n (1− ε)‖Ai −Aj‖ ≤ ‖A′i −A′j‖ ≤ (1 + ε)‖Ai −Aj‖

for some small ε > 0

Assume norms are all Euclidean
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Losing dimensions in the RLM

Given X ⊆ Rn and b, A1, . . . , An ∈ Rm, �nd k � m,
b′, A′1, . . . , A

′
n ∈ Rk such that:

∃x ∈ X b =
∑
i≤n

xiAi︸ ︷︷ ︸
high dimensional

i� ∃x ∈ X b′ =
∑
i≤n

xiA
′
i︸ ︷︷ ︸

low dimensional

with high probability
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Losing dimensions= “projection”

In the plane, hopeless

In 3D: no better
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Johnson-Lindenstrauss Lemma

Thm.
GivenA ⊆ Rm with |A| = n and ε > 0 there is k ∼ O( 1

ε2
lnn)

and a k ×mmatrix T s.t.

∀x, y ∈ A (1− ε)‖x− y‖ ≤ ‖Tx− Ty‖ ≤ (1 + ε)‖x− y‖

If k×mmatrixT is sampled componentwise fromN(0, 1√
k
),

thenA and TA have almost the same shape
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Sketch of a JLL proof by pictures
Thm.
Let T be a k × m rectangular ma-

trix with each component sampled from

N(0, 1√
k

), and u ∈ Rm s.t. ‖u‖ = 1.

Then E(‖Tu‖2) = 1
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Sampling to desired accuracy
I Distortion has low probability:

∀x, y ∈ A P(‖Tx− Ty‖ ≤ (1− ε)‖x− y‖) ≤ 1

n2

∀x, y ∈ A P(‖Tx− Ty‖ ≥ (1 + ε)‖x− y‖) ≤ 1

n2

I Probability ∃ pair x, y ∈ A distorting Euclidean
distance: union bound over

(
n
2

)
pairs

P(¬(A and TA have almost the same shape)) ≤
(n

2

) 2

n2
= 1−

1

n

P(A and TA have almost the same shape) ≥
1

n

⇒ re-sampling T gives JLL with arbitrarily high
probability
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In practice

I Empirically, sample T very few times (e.g. once will
do!)
on average ‖Tx− Ty‖ ≈ ‖x− y‖, and distortion decreases
exponentially with n

We only need a logarithmic number of dimensions in
function of the number of points

Surprising fact:
k is independent of the original number of dimensionsm
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Projecting feasibility

95 / 246



Projecting infeasibility (easy cases)
Thm.
T : Rm → Rk a JLL random projection, b, A1, . . . , An ∈ Rm a RLMX

instance. For any given vector x ∈ X , we have:

(i) If b =
n∑
i=1

xiAi then Tb =
n∑
i=1

xiTAi

(ii) If b 6=
n∑
i=1

xiAi thenP
(
Tb 6=

n∑
i=1

xiTAi

)
≥ 1− 2e−Ck

(iii) If b 6=
n∑
i=1

yiAi for all y ∈ X ⊆ Rn, where |X| is �nite, then

P
(
∀y ∈ X Tb 6=

n∑
i=1

yiTAi

)
≥ 1− 2|X|e−Ck

for some constant C > 0 (independent of n, k).
[arXiv:1507.00990v1/math.OC]
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Separating hyperplanes

When |X| is large, project separating hyperplanes instead

I ConvexC ⊆ Rm,x 6∈ C: then∃hyperplane c
separatingx,C

I In particular, true ifC = cone(A1, . . . , An) forA ⊆ Rm

I Wecan showx ∈ C ⇔ Tx ∈ TC withhigh
probability

I As above, if x ∈ C then Tx ∈ TC by linearity of T
Di�cult part is proving the converse

We can also project point-to-cone distances
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Projecting the separation
Thm.
Given c, b, A1, . . . , An ∈ Rm of unit norm s.t. b /∈ cone{A1, . . . , An} pointed, ε > 0,
c ∈ Rm s.t. c>b < −ε, c>Ai ≥ ε (i ≤ n), and T a random projector:

P
[
Tb /∈ cone{TA1, . . . , TAn}

]
≥ 1− 4(n+ 1)e−C(ε

2−ε3)k

for some constant C.
Proof
Let A be the event that T approximately preserves ‖c − χ‖2 and ‖c + χ‖2 for all χ ∈
{b, A1, . . . , An}. SinceA consists of 2(n+ 1) events, by the JLL Corollary (squared ver-
sion) and the union bound, we get

P(A ) ≥ 1− 4(n+ 1)e−C(ε
2−ε3)k

Now consider χ = b

〈Tc, T b〉 =
1

4
(‖T (c+ b)‖2 − ‖T (c− b)‖2)

by JLL ≤
1

4
(‖c+ b‖2 − ‖c− b‖2) +

ε

4
(‖c+ b‖2 + ‖c− b‖2)

= c>b+ ε < 0

and similarly 〈Tc, TAi〉 ≥ 0

[arXiv:1507.00990v1/math.OC]

98 / 246



The feasibility projection theorem

Thm.
Given δ > 0, ∃ su�ciently largem ≤ n such that:

for any LFP inputA, bwhereA ism× n
we can sample a random k×mmatrixT with k � m and

P(orig. LFP feasible⇐⇒ proj. LFP feasible) ≥ 1− δ
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Projectingoptimality
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Notation

I P ≡ min{cx | Ax = b ∧ x ≥ 0} (original problem)

I TP ≡ min{cx | TAx = Tb ∧ x ≥ 0} (projected problem)

I v(P ) = optimal objective function value of P

I v(TP ) = optimal objective function value of TP
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The optimality projection theorem

I Assume feas(P ) is bounded
I Assume all optima of P satisfy

∑
j xj ≤ θ for some

given θ > 0
(prevents cones from being “too �at”)

Thm.
Given δ > 0,

v(P )− δ ≤ v(TP ) ≤ v(P ) (∗)

holds with arbitrarily high probability (w.a.h.p.)

in fact (∗) holds with prob. 1− 4ne−C(ε
2−ε3)k where

ε = δ/(2(θ + 1)η) and η = O(‖y‖2) where y is a dual optimal
solution of P havingminimum norm
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The easy part

Show v(TP ) ≤ v(P ):
I Constraints of P : Ax = b ∧ x ≥ 0

I Constraints of TP : TAx = Tb ∧ x ≥ 0

I ⇒ constraints of TP are lin. comb. of constraints ofP

I ⇒ any solution of P is feasible in TP
(btw, the converse holds almost never)

I P and TP have the same objective function

I ⇒ TP is a relaxation of P ⇒ v(TP ) ≤ v(P )
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The hard part (sketch)
I Eq. (4) equivalent to P for δ = 0

cx = v(P )− δ
Ax = b
x ≥ 0

 (4)

Note: for δ > 0, Eq. (4) is infeasible

I By feasibility projection theorem,

cx = v(P )− δ
TAx = Tb

x ≥ 0


is infeasible w.a.h.p. for δ > 0

I Hence cx < v(P )− δ ∧ TAx = Tb ∧ x ≥ 0 infeasible w.a.h.p.
I ⇒ cx ≥ v(P )− δ holds w.a.h.p. for x ∈ feas(TP )

I ⇒ v(P )− δ ≤ v(TP )
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Solution retrieval
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Projected solutions are infeasible in P

I Ax = b ⇒ TAx = Tb by linearity

I However,
Thm.
For x ≥ 0 s.t. TAx = Tb,Ax = bwith probability zero

I Can’t get solution for original LFP using projected
LFP!
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Solution retrieval from optimal basis

I Primal min{c>x | Ax = b ∧ x ≥ 0} ⇒
dual max{b>y | A>y ≤ c}

I Let x′ = sol(TP ) and y′ = sol(dual(TP ))

I ⇒ (TA)>y′ = (A>T>)y′ = A>(T>y′) ≤ c

I ⇒ T>y′ is a solution of dual(P )

I ⇒ we can compute an optimal basis J for P

I SolveAJxJ = b, get xJ , obtain a solution x∗ of P
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Solving largequantile regressionLPs
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Regression
I multivariate random var.X
function y = f(X)
sample {(ai, bi) ∈ Rp × R | i ≤ m}

I sample mean:

µ̂ = argmin
µ∈R

∑
i≤m

(bi − µ)2

I sample mean conditional toX = A = (aij):

ν̂ = argmin
ν∈Rp

∑
i≤m

(bi − νai)2
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Quantile regression

I sample median:

ξ̂ = argmin
ξ∈R

∑
i≤m
|bi − ξ|

= argmin
ξ∈R

∑
i≤m

(
1

2
max(bi − ξ, 0)− 1

2
min(bi − ξ, 0)

)

I sample τ-quantile:

ξ̂ = argmin
ξ∈R

∑
i≤m

(τ max(bi − ξ, 0)− (1− τ)min(bi − ξ, 0))

I sample τ-quantile conditional toX = A = (aij):

β̂ = argmin
β∈Rp

∑
i≤m

(τ max(bi − βai, 0)− (1− τ)min(bi − βai, 0))
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Usefulness

Amuch better visibility of one’s own poverty!
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Linear Programming formulation

min τu+ + (1− τ)u−

A(β+ − β−) + u+ − u− = b
β, u ≥ 0


I parameters: A ism× p, b ∈ Rm, τ ∈ R
I decision variables: β+, β− ∈ Rp, u+, u− ∈ Rm

I LP constraint matrix ism× (2p+ 2m)
density: p/(p+m)— can be high
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Large datasets
I Russia Longitudinal Monitoring Survey, household
data (hh1995f)

I m = 3783, p = 855
I A = hf1995f, b = log avg(A)
I 18.5% dense
I poorly scaled data, CPLEX yields infeasible (!!!) after
around 70s CPU

I quantreg in R fails

I 14596 RGB photos onmyHD, scaled to 90× 90 pixels

I m = 14596, p = 24300
I each row ofA is an image vector, b =

∑
A

I 62.4% dense
I CPLEX killed by OS after≈30min (presumably for
lack of RAM) on 16GB
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Results on large datasets
Instance Projection Original

τ m p k opt CPU feas opt CPU qnt err
hh1995f

0.25 3783 856 411 0.00 8.53 0.038% 71.34 17.05 0.16
0.50 0.00 8.44 0.035% 89.17 15.25 0.05
0.75 0.00 8.46 0.041% 65.37 31.67 3.91

jpegs
0.25 14596 24300 506 0.00 231.83 0.51% 0.00 3.69E+5 0.04
0.50 0.00 227.54 0.51% 0.00 3.67E+5 0.05
0.75 0.00 228.57 0.51% 0.00 3.68E+5 0.05

random
0.25 1500 100 363 0.25 2.38 0.01% 1.06 6.00 0.00
0.50 0.40 2.51 0.01% 1.34 6.01 0.00
0.75 0.25 2.57 0.01% 1.05 5.64 0.00
0.25 2000 200 377 0.35 4.29 0.01% 2.37 21.40 0.00
0.50 0.55 4.37 0.01% 3.10 23.02 0.00
0.75 0.35 4.24 0.01% 2.42 21.99 0.00

feas = 100
‖Ax− b‖2
‖b‖1/m

qnt err =
‖qnt− proj. qnt‖2

# cols

IPMwith no simplex crossover:
solution w/o opt. guarantee
cannot trust results
simplex method won’t work
due to ill-scaling and size
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Section 6

Interlude: Clustering in Natural
Language
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C∗Os

What you hear

I We optimized our strategy (CEO)

I We optimized our revenues (CFO)

I We optimized our processes (CTO)

I We optimized our operation (COO)

I Oh yes we can do big data (CIO)

What they mean
We keep changing everything so that investors will mistake
our wasteful dynamism for growth
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Something else they mean
I Departments are compartimentalized
so they can blame each other when they fuck up

I Every division is a separate legal entity
so complaining customers must address divisions separately

I Customers must pay to contact the �rm
so no-one will complain

I The �rm heavily invests in IBMWatson Technologies
so insistent customers will only ever talk to a computer
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And their reasons
I Departments are compartimentalized
so they can blame each other when they fuck up

I Every division is a separate legal entity
so complaining customers must address divisions separately

I Customers must pay to contact the �rm
so no-one will complain

I The �rm heavily invests in IBMWatson Technologies
so insistent customers will only ever talk to a computer
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I may be overly optimistic
I Departments are compartimentalized
as a result of internal �ghts

I Every division is a separate legal entity
because of a recent merge

I Customers must pay to contact the �rm
as the �rm has no other revenue

I The �rm heavily invests in IBMWatson Technologies
because the CIO heard it’s fashionable

119 / 246



Job o�ers
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An example
Under the responsibility of the Commercial Director, the Optimisation / Operations Senior Manager
will have the responsibility to optimise and develop operational aspects for VINCI Airports current
and future portfolio of airports. They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering the objectives of the Technical
Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial
Director in the development and implementation of plans, strategies and reporting processes. As part
of the exercise of its function, the Optimisation Manager will undertake the following: Identification
and development of cross asset synergies with a specific focus on the operations and processing functions
of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives
of the various technical services agreements, the strategy of the individual airports and the Group.
This function will include: Participation in the definition of airport strategy. Definition of this
airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation
Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various
technical services agreements with our airports by developing specific technical competences from the
Head Office level. Oversee the management and definition of all optimisation projects. Identification,
overview and management of the project managers responsible for the delivery of the various optimization
projects at each asset. Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Development and implementation of the Group
optimisation plan. Definition of economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service
levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the
strategies, trends and best practices of the airport industry and other reference industries in terms of
the applicability to the optimization plan. Study of the needs and preferences of the passengers,
through a continuous process of marketing research at all of the airports within the VINCI Airports
portfolio. Development of benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Development and participation in the expansion or refurbishment projects
of the airports, to assure a correct configuration and positioning of the operational and commercial
area that can allow the optimization of the revenues and operational efficiency. Support the Director
Business Development through the analysis and opportunity assessment of areas of optimization for all
target assets in all bids and the preparation and implementation of the strategic plan once the
assets are acquired. Maintain up to date knowledge of market trends and key initiatives related
to the operational and commercial aspects of international airports [...]

. . .and blah blah blah: IS THIS APPROPRIATE FORMYCV?
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Try Natural Language Processing

I Automated summary
I Relation Extraction
I Named Entity Recognition (NER)
I Keywords
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Automated summary
./summarize.py job01.txt

They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering
the objectives of the Technical Services Agreements activities of VINCI
Airports. The Optimisation Manager will support the Commercial Director
in the development and implementation of plans, strategies and reporting
processes. Identification and development of cross asset synergies with
a specific focus on the operations and processing functions of the airport.
Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Definition of
economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of
processing efficiency, service levels, passenger convenience and
harmonization of the non-aeronautical activities. Development of
benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Maintain up to date knowledge of market
trends and key initiatives related to the operational and commercial
aspects of international airports. You have a diverse range of
experiences working at or with airports across various disciplines such
as operations, ground handling, commercial, etc. Demonstrated high
level conceptual thinking, creativity and analytical skills.

Does it help? hard to say
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Relation Extraction
./relextr-mitie.py job01.txt

======= RELATIONS =======
Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports
Self [ INCLUDES_EVENT ] Head Office
Head Office [ INFLUENCED_BY ] Self
Head Office [ INTERRED_HERE ] Self
VINCI Airports [ INTERRED_HERE ] Optimisation Strategy
Head Office [ INVENTIONS ] Self
Optimisation Strategy [ LOCATIONS ] VINCI Airports
Self [ LOCATIONS ] Head Office
Self [ ORGANIZATIONS_WITH_THIS_SCOPE ] Head Office
Self [ PEOPLE_INVOLVED ] Head Office
Self [ PLACE_OF_DEATH ] Head Office
Head Office [ RELIGION ] Self
VINCI Airports [ RELIGION ] Optimisation Strategy

Does it help? hardly
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Named Entity Recognition

./ner-mitie.py job01.txt

==== NAMED ENTITIES =====
English MISC
French MISC
Head Office ORGANIZATION
Optimisation / Operations ORGANIZATION
Optimisation Strategy ORGANIZATION
Self PERSON
Technical Services Agreements MISC
VINCI Airports ORGANIZATION

Does it help? . . .maybe

For a documentD, let NER(D) = named entity words
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Idea

1. Recognize named entities from all documents
2. Use them to compute distances among documents
3. Usemodularity clustering
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The named entities
1. Operations Head Airports O�ce VINCI Technical Self French / Strategy Agreements English Services Optimisation
2. Europe and P&CWork Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate

International English
3. Scientist Product Analyze Java Features & Statistics Science PHP Pig/Hive/Spark Optimization Crunch/analyze Team Press

Performance Deezer Data Computer
4. Lean6Sigma Lean-type O�ce Banking Paris CDI France RPAMiddle Accenture English Front Benelux
5. Partners Management Monitor BC Provide Support Sites Regions Mtiers Program Performance market develop Finance & IS&T

Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector and Alstom Tax Directors Strategic Committee
6. Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia English Fares with Company

Inc
7. Paris Integration France Automation Automotive French . Linux/Genivi HMI UI Software EB Architecture Elektrobit technologies

GUIDE Engineers German Technology SWwell-structured Experts Tools
8. Product Google Managers Python JavaScript AWS JSONBigQuery Java Platform Engineering HTMLMySQL Services Professional

Googles Ruby Cloud OAuth
9. EHR Aledades Provide Wellness Perform ACO Visits EHR-system-speci�c Coordinator AledadeMedicare Greenway Allscripts
10. Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata & Python Company GDIA Ford Visa SPARKData

Applied Science Work C++ RUnix/Linux Physics Microsoft Operations Monte JAVAMobility Insight Analytics Engineering Computer
Motor SQLOperation Carlo PowerPoint

11. Management Java CANDIDATE Application Statistics Gurobi Provides Provider Mathematics Service Maintains Deliver SM&G
SAS/HPF SAS Data Science Economics Marriott PROFILE Providers OR Engineering Computer SQL Education

12. Alto Statistics Java Sunnyvale ResearchML Learning Science Operational Machine Amazon Computer C++ Palo Internet R Seattle
13. LLamasoft Work Fortune Chain Supply C# Top GuruWhat Impactful Team LLamasofts Makes Gartner Gain
14. Worldwide Customer JavaMosel Service Python Energy Familiarity CPLEX Research Partnering Amazon R SQL CSOperations
15. Operations Science Research Engineering Computer Systems or Build
16. Statistics Italy Broad Coins France Australia Python Amazon Germany SAS Appstore Spain Economics Experience R Research US

Scientist UK SQL Japan Economist
17. Competency Statistics Knowledge Employer communication ResearchMachine EEOUnited ORMAWay OFCCP CorporationMining

&C# Python Visual Studio Opportunity Excellent Modeling Data Jacksonville Arena Talent Skills Science Florida Life Equal
AnyLogic Facebook CSX Oracle The Strategy Vision Operations Industrial Stream of States Analytics Engineering Computer
Framework Technology

18. Java Asia Research Safety in Europe Activities North CompanyWestRocks Sustainability AmericaMasters WRKC++Norcross
Optimization GA ILOG South NYSEOperations AMPL CPLEX Identify Participate OPLWestRock

19. Management Federal Administration SystemNAS Development JMP Tra�c Aviation FAA AdvancedMcLean Center CAASD Flow Air
Tableau Oracle MITRE TFM Airspace National SQL Campus

20. Abilities & Skills 9001-Quality SManagement ISOGED
21. Statistics Group RDBMSResearchMathematics Teradata ORSA Greenplum Java SAS U.S. Solution Time Oracle Military Strategy

Physics Linear/Non-Linear Operations both Industrial Series Econometrics Engineering Clarity Regression 127 / 246



Word similarity: WordNet
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WordNet: hyponyms of “boat”
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Wu-Palmer word similarity
Semantic WordNet distance between wordsw1, w2

wup(w1, w2) =
2 depth(lcs(w1, w2))

len(shortest_path(w1, w2)) + 2 depth(lcs(w1, w2))

I lcs: lowest common subsumer
earliest common word in paths from both words toWordNet root

I depth: length of path from root to word

Example: wup(dog,boat)?
depth( whole ) = 4
18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate

-> chordate -> animal -> organism -> living_thing -> whole -> artifact
-> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat

13 -> dog -> domestic_animal -> animal -> organism -> living_thing
-> whole -> artifact -> instrumentality -> conveyance -> vehicle
-> craft -> vessel -> boat

wup(dog,boat) = 8/21 = 0.380952380952
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Extensions of Wu-Palmer similarity

I to lists of wordsH,L:

wup(H,L) =
1

|H| |L|
∑
v∈H

∑
w∈L

wup(v, w)

I to pairs of documentsD1, D2:

wup(D1, D2) = wup(NER(D1),NER(D2))

I wup and its extensions are always in [0, 1]
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The similarity matrix

Too uniform! Try zeroing values belowmedian

1.00 0.63 0.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.38 0.49 0.47 0.47 0.44 0.54 0.31 0.44
0.63 1.00 0.45 0.45 0.54 0.40 0.42 0.42 0.57 0.49 0.46 0.45 0.59 0.35 0.43 0.42 0.42 0.41 0.47 0.32 0.40
0.51 0.45 1.00 0.40 0.53 0.35 0.37 0.37 0.58 0.47 0.43 0.40 0.59 0.28 0.39 0.37 0.38 0.35 0.43 0.24 0.35
0.51 0.45 0.40 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.38 0.48 0.47 0.47 0.45 0.53 0.33 0.44
0.66 0.54 0.53 0.63 1.00 0.34 0.35 0.35 0.49 0.42 0.39 0.37 0.50 0.29 0.36 0.35 0.35 0.34 0.40 0.26 0.34
0.45 0.40 0.35 0.45 0.34 1.00 0.42 0.43 0.66 0.54 0.49 0.45 0.67 0.34 0.44 0.43 0.43 0.40 0.49 0.28 0.40
0.46 0.42 0.37 0.46 0.35 0.42 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.34 0.45 0.45 0.44 0.42 0.50 0.28 0.40
0.47 0.42 0.37 0.46 0.35 0.43 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.36 0.47 0.45 0.45 0.43 0.51 0.30 0.42
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.33 0.31 0.29 0.40 0.23 0.28 0.27 0.28 0.26 0.31 0.21 0.26
0.58 0.49 0.47 0.56 0.42 0.54 0.54 0.55 0.33 1.00 0.46 0.43 0.59 0.34 0.42 0.41 0.41 0.39 0.46 0.31 0.39
0.54 0.46 0.43 0.52 0.39 0.49 0.49 0.51 0.31 0.46 1.00 0.39 0.56 0.29 0.38 0.36 0.36 0.34 0.41 0.24 0.35
0.50 0.45 0.40 0.49 0.37 0.45 0.47 0.48 0.29 0.43 0.39 1.00 0.70 0.40 0.50 0.49 0.48 0.46 0.54 0.35 0.46
0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.40 0.59 0.56 0.70 1.00 0.23 0.29 0.29 0.29 0.28 0.33 0.20 0.27
0.38 0.35 0.28 0.38 0.29 0.34 0.34 0.36 0.23 0.34 0.29 0.40 0.23 1.00 0.48 0.45 0.46 0.42 0.52 0.30 0.43
0.49 0.43 0.39 0.48 0.36 0.44 0.45 0.47 0.28 0.42 0.38 0.50 0.29 0.48 1.00 0.39 0.39 0.36 0.45 0.26 0.37
0.47 0.42 0.37 0.47 0.35 0.43 0.45 0.45 0.27 0.41 0.36 0.49 0.29 0.45 0.39 1.00 0.48 0.46 0.54 0.33 0.44
0.47 0.42 0.38 0.47 0.35 0.43 0.44 0.45 0.28 0.41 0.36 0.48 0.29 0.46 0.39 0.48 1.00 0.43 0.51 0.32 0.43
0.44 0.41 0.35 0.45 0.34 0.40 0.42 0.43 0.26 0.39 0.34 0.46 0.28 0.42 0.36 0.46 0.43 1.00 0.53 0.31 0.43
0.54 0.47 0.43 0.53 0.40 0.49 0.50 0.51 0.31 0.46 0.41 0.54 0.33 0.52 0.45 0.54 0.51 0.53 1.00 0.36 0.46
0.31 0.32 0.24 0.33 0.26 0.28 0.28 0.30 0.21 0.31 0.24 0.35 0.20 0.30 0.26 0.33 0.32 0.31 0.36 1.00 0.47
0.44 0.40 0.35 0.44 0.34 0.40 0.40 0.42 0.26 0.39 0.35 0.46 0.27 0.43 0.37 0.44 0.43 0.43 0.46 0.47 1.00
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The similarity matrix

Too uniform! Try zeroing values belowmedian

1.00 0.63 0.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.00 0.49 0.47 0.47 0.44 0.54 0.00 0.44
0.63 1.00 0.45 0.45 0.54 0.00 0.00 0.00 0.57 0.49 0.46 0.45 0.59 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00
0.51 0.45 1.00 0.00 0.53 0.00 0.00 0.00 0.58 0.47 0.00 0.00 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.51 0.45 0.00 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.00 0.48 0.47 0.47 0.45 0.53 0.00 0.44
0.66 0.54 0.53 0.63 1.00 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.45 0.00 0.00 0.45 0.00 1.00 0.00 0.00 0.66 0.54 0.49 0.45 0.67 0.00 0.44 0.00 0.00 0.00 0.49 0.00 0.00
0.46 0.00 0.00 0.46 0.00 0.00 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.00 0.45 0.45 0.44 0.00 0.50 0.00 0.00
0.47 0.00 0.00 0.46 0.00 0.00 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.00 0.47 0.45 0.45 0.00 0.51 0.00 0.00
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.58 0.49 0.47 0.56 0.00 0.54 0.54 0.55 0.00 1.00 0.46 0.43 0.59 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00
0.54 0.46 0.00 0.52 0.00 0.49 0.49 0.51 0.00 0.46 1.00 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.45 0.00 0.49 0.00 0.45 0.47 0.48 0.00 0.43 0.00 1.00 0.70 0.00 0.50 0.49 0.48 0.46 0.54 0.00 0.46
0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.00 0.59 0.56 0.70 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.48 0.45 0.46 0.00 0.52 0.00 0.43
0.49 0.00 0.00 0.48 0.00 0.44 0.45 0.47 0.00 0.00 0.00 0.50 0.00 0.48 1.00 0.00 0.00 0.00 0.45 0.00 0.00
0.47 0.00 0.00 0.47 0.00 0.00 0.45 0.45 0.00 0.00 0.00 0.49 0.00 0.45 0.00 1.00 0.48 0.46 0.54 0.00 0.44
0.47 0.00 0.00 0.47 0.00 0.00 0.44 0.45 0.00 0.00 0.00 0.48 0.00 0.46 0.00 0.48 1.00 0.00 0.51 0.00 0.00
0.44 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.46 0.00 1.00 0.53 0.00 0.00
0.54 0.47 0.00 0.53 0.00 0.49 0.50 0.51 0.00 0.46 0.00 0.54 0.00 0.52 0.45 0.54 0.51 0.53 1.00 0.00 0.46
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.47
0.44 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.43 0.00 0.44 0.00 0.00 0.46 0.47 1.00
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The graph

G = (V,E), weighted adjacencymatrixA
A is likeB with zeroed low components
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Modularity clustering
“Modularity is the fraction of the edges that fall within a cluster minus
the expected fraction if edges were distributed at random.”

I “at random”= random graphs over same degree sequence

I degree sequence= (k1, . . . , kn) where ki = |N(i)|
I “expected”= all possible “half-edge” recombinations

I expected edges between u, v: kukv/(2m) wherem = |E|
I mod(u, v) = (Auv − kukv/(2m))

I mod(G) =
∑

{u,v}∈E
mod(u, v)xuv

xuv = 1 if u, v in the same cluster and 0 otherwise

I “Natural extension” to weighted graphs: ku =
∑
v Auv ,m =

∑
uv Auv
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Usemodularity to de�ne clustering
I What is the “best clustering”?

I Maximize discrepancy between actual and expected
“as far away as possible from average”

max
∑

{u,v}∈E
mod(u, v)xuv

∀u ∈ V, v ∈ V xuv ∈ {0, 1}


I Issue: trivial solution x = 1 “one big cluster”

I Idea: treat clusters as cliques (even if zero weight)
then clique partitioning constraints for transitivity

∀i < j < k xij + xjk − xik ≤ 1

∀i < j < k xij − xjk + xik ≤ 1

∀i < j < k − xij + xjk + xik ≤ 1

∀{i, j} 6∈ E xij = 0

if i, j ∈ C and j, k ∈ C then i, k ∈ C
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The resulting clustering

cluster 1: job01, job02, job03, job05, job10

cluster 2: job04, job06, job22

cluster 3: job07, job08, job11, job12, job20

cluster 4: job13, job21, job23, job24, job25, job26, job27, job28
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Is it good?

Vinci Accenture Elektrobit Amazon 1-3
Axa Expedia Google CSX
Deezer fragment1 Ford Westrock
Alstom Marriott Mitre
Aledade Llamasoft Clarity

fragment2

I ?— named entities rarely appear in WordNet
I Desirable property: chooses number of clusters
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Keywords
Most frequent words w over collection C of documents d
./keywords.py
global environment customers strategic processes teams sql job industry use
java developing project process engineering field models opportunity drive
results statistical based operational performance using mathematical computer
new technical highly market company science role dynamic background products
level methods design looking modeling manage learning service customer
effectively technology requirements build mathematics problems plan services
time scientist implementation large analytical techniques lead available plus
technologies sas provide machine product functions organization algorithms
position model order identify activities innovation key appropriate different
complex best decision simulation strategy meet client assist quantitative
finance commercial language mining travel chain amazon pricing practices
cloud supply

tfidfC(w, d) =
|{t ∈ d | t = w}| |C|
|{d ∈ C | w ∈ d}|

keywordC(i, d) = wordw having ith best tfidfC(w, d)value
vecmC (d) = (tfidfC(keywordC(i, d), d) | i ≤ m)

Transforms documents to vectors
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Minimum sum-of-squares clustering

I MSSC, a.k.a. the k-means problem
I Given points p1, . . . , pn ∈ Rm, �nd clustersC1, . . . , Ck

min
∑
j≤k

∑
i∈Cj

‖pi − centroid(Cj)‖2
2

where centroid(Cj) = 1
|Cj |

∑
i∈Cj

pi

I k-means alg.: given initial clusteringC1, . . . , Ck

1: ∀j ≤ k compute yj = centroid(Cj)
2: ∀i ≤ n, j ≤ k if yj is the closest centr. to pi let xij = 1 else 0
3: ∀j ≤ k updateCj ← {pi | xij = 1 ∧ i ≤ n}
4: repeat until stability
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k-means with k = 2

Vinci AXA
Deezer Alstom
Accenture Elektrobit
Expedia Ford
Google Marriott
Aledade Amazon 1-3
Llamasoft CSX

WestRock
MITRE
Clarity

fragments 1-2
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k-means with k = 2: another run

Deezer Vinci
Elektrobit AXA
Google Accenture
Aledade Alstom

Expedia
Ford

Marriott
Llamasoft
Amazon 1-3

CSX
WestRock
MITRE
Clarity

fragments 1-2
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k-means with k = 2: third run!

AXA Vinci
Deezer Accenture
Expedia Alstom
Ford Elektrobit
Marriott Google
Llamasoft Aledade
Amazon 1-3
CSX
WestRock
MITRE
Clarity
fragments 1-2

A �ckle algorithm

143 / 246



We can’t trust k-means
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Let’s �ndMSSC’s global optimum!

min
x,y,s

∑
i≤n

∑
j≤k
‖pi − yj‖2

2 xij

∀j ≤ k 1
sj

∑
i≤n

pixij = yj

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k
∑
i≤n

xij = sj

∀j ≤ k yj ∈ Rd

x ∈ {0, 1}nk
s ∈ Nk


(MSSC)

Nonconvex terms; continuous, binary and integer variables:
sounds very di�cult!
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Reformulations
The (MSSC) formulation has the same optima as:

min
x,y,P

∑
i≤n

∑
j≤k

Pij xij

∀i ≤ n, j ≤ k ‖pi − yj‖2
2 ≤ Pij

∀j ≤ k
∑
i≤n

pixij =
∑
i≤n

yjxij

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ [min
i≤n

pia,max
i≤n

pia | a ≤ d]

x ∈ {0, 1}nk
P ∈ [0, PU ]nk


I Only nonconvexities:
products of bounded by binary variables

I Caveat: cannot have empty clusters
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Products of binary and continuous vars.

I Suppose term xy appears in a formulation

I Assume x ∈ {0, 1} and y ∈ [0, 1] is bounded
I means “either z = 0 or z = y”
I Replace xy by a new variable z
I Adjoin the following constraints:

z ∈ [0, 1]

y − (1− x) ≤ z ≤ y + (1− x)

−x ≤ z ≤ x

I ⇒Everything’s linear now!
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Products of binary and continuous vars.

I Suppose term xy appears in a formulation

I Assume x ∈ {0, 1} and y ∈ [yL, yU ] is bounded
I means “either z = 0 or z = y”
I Replace xy by a new variable z
I Adjoin the following constraints:

z ∈ [min(yL, 0),max(yU , 0)]

y − (1− x) max(|yL|, |yU |) ≤ z ≤ y + (1− x) max(|yL|, |yU |)
−xmax(|yL|, |yU |) ≤ z ≤ xmax(|yL|, |yU |)

I ⇒Everything’s linear now!
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MSSC is a convexMINLP
min

x,y,P,χ,ξ

∑
i≤n

∑
j≤k

χij

∀i ≤ n, j ≤ k 0 ≤ χij ≤ Pij
∀i ≤ n, j ≤ k Pij − (1− xij)PU ≤ χij ≤ xijPU

∀i ≤ n, j ≤ k ‖pi − yj‖22 ≤ Pij ⇐ convex

∀j ≤ k
∑
i≤n

pixij =
∑
i≤n

ξij

∀i ≤ n, j ≤ k yj − (1− xij) max(|yL|, |yU |) ≤ ξij ≤ yj + (1− xij) max(|yL|, |yU |)

∀i ≤ n, j ≤ k − xij max(|yL|, |yU |) ≤ ξij ≤ xij max(|yL|, |yU |)

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ [yL, yU ]

x ∈ {0, 1}nk

P ∈ [0, PU ]nk

χ ∈ [0, PU ]nk

∀i ≤ n, j ≤ k ξij ∈ [min(yL, 0),max(yU , 0)]

yj , ξij , yL, yU are vectors inRd 149 / 246



How to solve it

I Encoding the problem: AMPL
I cMINLP isNP-hard, no e�cient algorithm
I Technologically advanced: Branch-and-Bound
I Best (open source) solver: Bonmin
I With k = 2, unfortunately. . .

Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution,
best possible 6.1855969 (32142.17 seconds)

I Interesting feature: the bound
guarantees we can’t to better than bound
all BB algorithms provide it
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Bonmin’s �rst solution

Alstom Vinci
Elektrobit AXA
Ford Deezer
Llamasoft Accenture
Amazon 2 Expedia
CSX Google
MITRE Aledade
Clarity Marriott
fragment 2 Amazon 1 & 3

WestRock
fragment 1
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Couple of things left to try

I Approximate `2 by `1 norm
`1 is a linearizable norm

I Randomly project the data
lose dimensions but keep approximate shape
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Linearizing convexity
I Replace ‖pi − yj‖22 by ‖pi − yj‖1
I Warning: optima will change

but still within “clustering by distance” principle

∀i ≤ n, j ≤ k ‖pi − yj‖1 =
∑
a≤d
|pia − yja|

I Replace each | · | term by new vars.Qija ∈ [0, PU ]
Adjust PU in terms of ‖ · ‖1

I Adjoin constraints

∀i ≤ n, j ≤ k
∑
a≤d

Qija ≤ Pij

∀i ≤ n, j ≤ k, a ≤ d −Qija ≤ pia − yja ≤ Qija

I Obtain aMILP
Most advancedMILP solver: CPLEX
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CPLEX’s �rst solution

objective 112.24, bound 39.92, in 44.74s

AXA Vinci
Deezer Accenture
Ford Alstom
Marriott Expedia
Amazon 1-3 Elektrobit
Llamasoft Google
CSX Aledade
WestRok
MITRE
Clarity
fragments 1-2

Interrupted after 281s with bound 59.68
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Themagic of random projections

I Very advanced theoretical framework
I Truly a piece of “mathematics of big data”
I In a nutshell

I Clustering on q rather than p
yields approx. same results with high probability
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Themagic of random projections

I Very advanced theoretical framework
I Truly a piece of “mathematics of big data”
I In a nutshell

1. Given points pi, . . . , pn ∈ Rd with d large and ε ∈ (0, 1)

2. Pick “appropriate” k ≈ O( 1
ε2

log n)

3. Sample k × dmatrixA (each comp. i.i.d.N (0, 1√
k
))

4. Consider projected points qi = Api ∈ Rk for i ≤ n

5. With prob→ 1 exponentially fast as k →∞

∀i, j ≤ n (1−ε)‖pi−pj‖2 ≤ ‖qi−qj‖2 ≤ (1+ε)‖pi−pj‖2
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Bonmin on randomly proj. data
objective 5.07, bound 0.48, stopped at 180s

Deezer Vinci
Ford AXA
Amazon 1-3 Accenture
CSX Alstom
MITRE Expedia
fragment 1 Elektrobit

Google
Aledade
Marriott
Llamasoft
WestRock
Clarity

fragment 2
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CPLEX on randomly proj. data

objective 53.19, bound 20.68, stopped at 180s

Vinci AXA
Deezer Accenture
Expedia Alstom
Google Elektrobit
Aledade Marriott
Ford Llamasoft
Amazon 1-3 WestRock
CSX MITRE
Clarity fragment 1-2
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Many clusterings

This ain’t �nished. . .
I We obtainedmany di�erent clusterings
I Is there any common sense?
I How do we compare them?
I Can we extract useful information from the
comparison?

I Howmany clusters should we look for? Is k = 2OK?
I Did we just turn the issue of “I have too many data” into
“I have too many solutions”?
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Section 7

Kissing Number Problem
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De�nition

Given n,K ∈ N, determine whether n unit spheres can be
placed adjacent to a central unit sphere so that their
interiors do not overlap

Funny story: Newton and Gregory went down the pub. . .

161 / 246



Some examples

n = 6,K = 2 n = 12,K = 3 more dimensions

2 1 0 -1 -2210-1-2

-2

-1

0

1

2
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Equivalent formulation

Given n,K ∈ N, determine whether there exist n vectors
x1, . . . , xn ∈ RK such that:

∀i ≤ n ‖xi‖2
2 = 1

∀i < j ≤ n ‖xi − xj‖2
2 ≥ 1.
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Spherical codes
I SK−1 ⊂ RK unit sphere centered at origin
I K-dimensional spherical z-code:

I (�nite) subset C ⊂ SK−1

I ∀x 6= y ∈ C x · y ≤ z
I non-overlapping interiors:

∀i < j ||xi − xj|| ≥ 2 ⇐⇒ xi · xj ≥ cos(
π

3
) =

1

2

. . .can use norm-1 projections
on SK−1 instead
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Lower bounds

I Construct spherical 1
2
-code C with |C| large

I Nonconvex NLP formulations
I SDP relaxations
I Combination of the two techniques
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MINLP formulation

Maculan, Michelon, Smith 1995

Parameters:
I K : space dimension
I n: upper bound to kn(K)

Variables:
I xi ∈ RK : center of i-th vector
I αi = 1 i� vector i in con�guration

max
n∑
i=1

αi

∀i ≤ n ||xi||2 = αi
∀i < j ≤ n ||xi − xj ||2 ≥ αiαj
∀i ≤ n xi ∈ [−1, 1]K

∀i ≤ n αi ∈ {0, 1}
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Reformulating the binary products

I Additional variables: βij = 1 i� vectors i, j in
con�guration

I Linearize αiαj by βij
I Add constraints:

∀i < j ≤ n βij ≤ αi

∀i < j ≤ n βij ≤ αj

∀i < j ≤ n βij ≥ αi + αj − 1
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AMPL and Baron

I CertifyingYES
I n = 6,K = 2: OK, 0.60s
I n = 12,K = 3: OK, 0.07s
I n = 24,K = 4: FAIL, CPU time limit (100s)

I CertifyingNO
I n = 7,K = 2: FAIL, CPU time limit (100s)
I n = 13,K = 3: FAIL, CPU time limit (100s)
I n = 25,K = 4: FAIL, CPU time limit (100s)

Almost useless
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Modelling the decision problem

max
x,α

α

∀i ≤ n ||xi||2 = 1
∀i < j ≤ n ||xi − xj||2 ≥ α
∀i ≤ n xi ∈ [−1, 1]K

α ≥ 0


I Feasible solution (x∗, α∗)

I KNP instance is YES i� α∗ ≥ 1

[Kucherenko, Belotti, Liberti, Maculan,Discr. Appl. Math. 2007]
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AMPL and Baron
I CertifyingYES

I n = 6,K = 2: FAIL, CPU time limit (100s)
I n = 12,K = 3: FAIL, CPU time limit (100s)
I n = 24,K = 4: FAIL, CPU time limit (100s)

I CertifyingNO

I n = 7,K = 2: FAIL, CPU time limit (100s)
I n = 13,K = 3: FAIL, CPU time limit (100s)
I n = 25,K = 4: FAIL, CPU time limit (100s)

Apparently even more useless
But more informative (arccosα =min. angular sep)

CertifyingYESbyα ≥ 1

I n = 6,K = 2: OK, 0.06s
I n = 12,K = 3: OK, 0.05s
I n = 24,K = 4: OK, 1.48s
I n = 40,K = 5: FAIL, CPU time limit (100s)
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What about polar coordinates?

y = (y1, . . . , yK) → (ρ, ϑ1, . . . , ϑK−1)

ρ = ||y||

∀k ≤ K yk = ρ sinϑk−1

K−1∏
h=k

cosϑh

I Only need to decide sk = sinϑk and ck = cosϑk
I Get polynomial program in s, c
I Numerically more challenging to solve
I But maybe useful for bounds?
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SDP relaxation of Euclidean distances

I Linearization of scalar products

∀i, j ≤ n xi · xj −→ Xij

whereX is an n× n symmetric matrix
I ‖xi‖2

2 = xi · xi = Xii

I ‖xi−xj‖2
2 = ‖xi‖2

2 + ‖xj‖2
2− 2xi ·xj = Xii +Xjj − 2Xij

I X = xx> ⇒ X − xx> = 0makes linearization exact
I Relaxation:

X − xx> � 0⇒ Schur(X, x) =

(
IK x>

x X

)
� 0
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SDP relaxation of binary constraints

I ∀i ≤ n αi ∈ {0, 1} ⇔ α2
i = αi

I LetA be an n× n symmetric matrix

I Linearize αiαj byAij (hence α2
i byAii)

I A = αα>makes linearization exact

I Relaxation: Schur(A,α) � 0
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SDP relaxation of [MMS95]

max
n∑
i=1

αi

∀i ≤ n Xii = αi
∀i < j ≤ n Xii +Xjj − 2Xij ≥ Aij
∀i ≤ n Aii = αi

∀i < j ≤ n Aij ≤ αj
∀i < j ≤ n Aij ≤ αi
∀i < j ≤ n Aij ≥ αi + αj − 1

Schur(X, x) � 0
Schur(A,α) � 0

∀i ≤ n xi ∈ [−1, 1]K

α ∈ [0, 1]n

X ∈ [−1, 1]n
2

A ∈ [0, 1]n
2
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Python, PICOS andMosek

I bound always equal to n
I prominent failure :-(
I Why?

I can combine inequalities to removeA from SDP
I integrality of α completely lost
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SDP relaxation of [KBLM07]

max α
∀i ≤ n Xii = 1

∀i < j ≤ n Xii +Xjj − 2Xij ≥ α

X ∈ [−1, 1]n
2

X � 0
α ≥ 0
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Python, PICOS andMosek

WithK = 2

n α∗

2 4.00
3 3.00
4 2.66
5 2.50
6 2.40
7 2.33
8 2.28
9 2.25
10 2.22
11 2.20
12 2.18
13 2.16
14 2.15
15 2.14
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Python, PICOS andMosek
WithK = 3

Enforces some separation between “relaxed vectors”
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An SDP-based heuristic

1. X∗ ∈ Rn2

: SDP relaxation solution of [KBLM07]

2. Perform Principal Component Analysis (PCA), get x̄ ∈ RnK

I concatenateK eigenvectors∈ Rn corresponding toK largest eigenvalues

3. Use x̄ as starting point for local NLP solver on [KBLM07]
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Python, PICOS, Mosek + AMPL, IPOPT

I n = 6, K = 2: OK, 0.02s
I n = 12, K = 3: OK, 0.02s
I n = 24, K = 4: 4% error, 0.32s
I n = 40, K = 5: 5% error, 1.57s
I n = 72, K = 6: 7% error, 12.26s
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Surface upper bound
Szpiro 2003, Gregory 1694
Consider a kn(3) con�guration
inscribed into a super-sphere of
radius 3. Imagine a lamp at the
centre of the central sphere that
casts shadows of the surround-
ing balls onto the inside sur-
face of the super-sphere. Each
shadowhas a surface area of 7.6;
the total surface of the super-
ball is 113.1. So 113.1

7.6 = 14.9 is an
upper bound to kn(3).

At end of XVII century, yielded Newton/Gregory dispute
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Another upper bound

Thm.
Let: Cz = {xi ∈ SK−1 | i ≤ n ∧ ∀j 6= i (xi · xj ≤ z)}; c0 > 0; f : [−1, 1]→ R s.t.:
(i)

∑
i,j≤n

f(xi · xj) ≥ 0 (ii) f(t) + c0 ≤ 0 for t ∈ [−1, z] (iii) f(1) + c0 ≤ 1

Then n ≤ 1
c0

([Delsarte 1977]; [Pfender 2006])
Let g(t) = f(t) + c0

n2c0 ≤ n2c0 +
∑
i,j≤n

f(xi · xj) by (i)

=
∑
i,j≤n

(f(xi · xj) + c0) =
∑
i,j≤n

g(xi · xj)

≤
∑
i≤n

g(xi · xi) since g(t) ≤ 0 for t ≤ z and xi ∈ Cz for i ≤ n

= ng(1) since ‖xi‖2 = 1 for i ≤ n
≤ n since g(1) ≤ 1.
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The Linear Programming Bound
I Condition (i) of Theorem valid for conic combinations of
suitable functionsF = {f1, . . . , fH}:

f(t) =
∑
h≤H

chfh(t) for some ch ≥ 0

I Let T = {ti | i ≤ s ∧ t1 = −1 ∧ ts = z ∧ ∀i < j (ti < tj)}, get LP:

max
c∈RK+1

c0 n = 1/c0 smallest

∀ t ∈ T
∑

1≤h≤H
chfh(t) + c0 ≤ 0 (ii)∑

1≤h≤H
chfh(1) + c0 ≤ 1 (iii)

∀ 1 ≤ h ≤ H ch ≥ 0 (conic comb.)


I E.g.F =Gegenbauer polynomials [Delsarte 1977]

I T ⊆ [−1, z], don’t know how to solve in�nite LPs so we discretize it
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Some results
I Gegenbauer polynomialsGγ

h (recursive de�nition):

Gγ0(t) = 1, Gγ1(t) = 2γt,

∀h > 1 hGγh(t) = 2t(h+ γ − 1)Gγh−1(t)− (h− 2γ − 2)Gγh−2(t)

(all normalized soGγh(1) = 1)
I Special caseGγh = P γ,γh of Jacobi polynomials:

Pα,βh =
1

2h

h∑
i=0

(
h+ α

i

)(
h+ β

h− 1

)
(t+ 1)i(t− 1)h−i

I [Delsarte 1977, Odlyzko & Sloane 1998]
kn(3) ≤ 12, kn(4) ≤ 25, kn(5) ≤ 46, kn(8) ≤ 240, kn(24) ≤ 196560

I Used to prove the “Twelve spheres theorem” (kn(3) = 12)

I My test: works forK > 4, couldn’t make it work forK = 3
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Where doesK appear in the LP bound?

I F containing Gegenbauer polynomials
I InGγ

h(t), γ = K−3
2

I K determined by lowest γ appearing inF
I E.g.F = {G1

h(t), G
1.5
h (t) | h ≤ 10} yields bound

25.5581 ≥ kn(4) = 24
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Section 8

Distance Geometry

186 / 246



A gem in Distance Geometry

I Heron’s theorem

I Heron lived
around year 0

I Hang out at
Alexandria’s library

a

c

b

A =
√
s(s− a)(s− b)(s− c)

I A = area of triangle
I s = 1

2
(a+ b+ c)

Useful to measure areas of agricultural land
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Heron’s theorem: Proof
A. 2α+ 2β + 2γ = 2π ⇒ α+ β + γ = π

r + ix = ueiα

r + iy = veiβ

r + iz = weiγ

⇒ (r+ ix)(r+ iy)(r+ iz) = (uvw)ei(α+β+γ) =

uvw eiπ = −uvw ∈ R

⇒ Im((r + ix)(r + iy)(r + iz)) = 0

⇒ r2(x+ y+ z) = xyz ⇒ r =
√

xyz
x+y+z

B. s = 1
2 (a+ b+ c) = x+ y + z

s− a = x+ y + z − y − z = x

s− b = x+ y + z − x− z = y

s− c = x+ y + z − x− y = z

A =
1

2
(ra+ rb+ rc) = r

a+ b+ c

2
= rs =

√
s(s− a)(s− b)(s− c)
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Heron’s gifted disciple
I This proof byMilesEdwards as a high school student in 2007

lhsblogs.typepad.com/files/
a-proof-of-heron-formula-miles-edwards.pdf

(tried to contact him, never got an answer)
I Beats all other proofs for compactness and elegance

. . .Other people think so too!
jwilson.coe.uga.edu/emt725/Heron/HeronComplex.html

I He was ranked 16th in the PutnamCompetition 2010
newsinfo.iu.edu/news/page/normal/13885.html

I Want to see what kind of exercises he was able to solve?
kskedlaya.org/putnam-archive/2010.pdf

I An example:

Given thatA,B,C are noncollinear points in the plane
with integer coordinates such that the distancesAB,
AC andBC are integers, what is the smallest possible
value ofAB?
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Another gem in DG
I [I. Schoenberg,Remarks to Maurice Fréchet’s article “Sur
la dé�nition axiomatique d’une classe d’espaces distanciés
vectoriellement applicable sur l’espace de Hilbert”,
Ann. Math., 1935]

I Question: Given n× n symmetric matrixD, what are
necessary and su�cient conditions s.t.D is a EDM1

corresponding to n points x1, . . . , xn ∈ RK withK
minimum?

I Main theorem:
Thm.
D = (dij) is an EDM i� 1

2(d2
1i + d2

1j − d2
ij | 2 ≤ i, j ≤ n) is

PSD of rankK

I Gave rise to one of themost important results in data
science: ClassicMultidimensional Scaling

1Euclidean Distance Matrix
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Gram in function of EDM

I x = (x1, . . . , xn) ⊆ RK , written as n×K matrix
I matrixG = xx> = (xi · xj) is theGrammatrix of x
I Schoenberg’s theorem: relation between EDMs and
Grammatrices

G = −1

2
JD2J (§)

I D2 = (d2
ij), J = In − 1

n
11>
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Multidimensional scaling (MDS)

I Often get approximate EDMs D̃ from raw data
(dissimilarities, discrepancies, di�erences)

I G̃ = −1
2
JD̃2J is an approximate Grammatrix

I Approximate Gram⇒ spectral decomposition P Λ̃P> has Λ̃ 6≥ 0

I Let Λ closest PSD diagonal matrix to Λ̃:
zero the negative components of Λ̃

I x = P
√

Λ is an “approximate realization” of D̃
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Classic MDS: Main result

1. ProveG = −1
2
JD̃2J

2. Provematrix is Gram i� it is PSD
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Classic MDS: Proof 1/3
I Assume zero centroidWLOG (can translate x as needed)
I Expand: d2ij = ‖xi − xj‖22 = (xi − xj)(xi − xj) = xixi + xjxj − 2xixj (∗)
I Aim at “inverting” (∗) to express xixj in function of d2ij

I Sum (∗) over i:
∑
i d

2
ij =

∑
i xixi + nxjxj − 2xj���:

0 by zero centroid∑
i xi

I Similarly for j and divide by n, get:

1

n

∑
i≤n

d2ij =
1

n

∑
i≤n

xixi + xjxj (†)

1

n

∑
j≤n

d2ij = xixi +
1

n

∑
j≤n

xjxj (‡)

I Sum (†) over j, get:

1

n

∑
i,j

d2ij = n
1

n

∑
i

xixi +
∑
j

xjxj = 2
∑
i

xixi

I Divide by n, get:
1

n2

∑
i,j

d2ij =
2

n

∑
i

xixi (∗∗)
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Classic MDS: Proof 2/3
I Rearrange (∗), (†), (‡) as follows:

2xixj = xixi + xjxj − d2ij (5)

xixi =
1

n

∑
j

d2ij −
1

n

∑
j

xjxj (6)

xjxj =
1

n

∑
i

d2ij −
1

n

∑
i

xixi (7)

I Replace LHS of Eq. (6)-(7) in Eq. (5), get

2xixj =
1

n

∑
k

d2ik +
1

n
d2kj − d

2
ij −

2

n

∑
k

xkxk

I By (∗∗) replace 2
n

∑
i
xixi with 1

n2

∑
i,j
d2ij , get

2xixj =
1

n

∑
k

(d2ik + d2kj)− d
2
ij −

1

n2

∑
h,k

d2hk (§)

which expresses xixj in function ofD
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Classic MDS: Proof 3/3
I Gram⊆ PSD

I x is an n×K real matrix
I G = xx> its Grammatrix
I For each y ∈ Rn we have

yGy> = y(xx>)y> = (yx)(x>y>) = (yx)(yx)> = ‖yx‖22 ≥ 0

I ⇒ G � 0

I PSD⊆Gram
I LetG � 0 be n× n
I Spectral decomposition: G = PΛP>

(P orthogonal,Λ ≥ 0 diagonal)

I Λ ≥ 0⇒
√

Λ exists
I G = PΛP> = (P

√
Λ)(
√

Λ
>
P>) = (P

√
Λ)(P

√
Λ)
>

I Let x = P
√

Λ, thenG is the Grammatrix of x
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Principal Component Analysis (PCA)

I You want to draw x = P
√

Λ in 2D or 3D
but rank(Λ) = K > 3

I Only keep 2 or 3 largest components of Λ
zero the rest

I Get realization in desired space
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Example 1/3
Mathematical genealogy skeleton
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Example 2/3
A partial view

Euler Thibaut Pfa� Lagrange Laplace Möbius Gudermann Dirksen Gauss
Kästner 10 1 1 9 8 2 2 2 2
Euler 11 9 1 3 10 12 12 8
Thibaut 2 10 10 3 1 1 3
Pfa� 8 8 1 3 3 1

Lagrange 2 9 11 11 7
Laplace 9 11 11 7
Möbius 4 4 2

Gudermann 2 4
Dirksen 4

D =



0 10 1 1 9 8 2 2 2 2
10 0 11 9 1 3 10 12 12 8
1 11 0 2 10 10 3 1 1 3
1 9 2 0 8 8 1 3 3 1
9 1 10 8 0 2 9 11 11 7
8 3 10 8 2 0 9 11 11 7
2 10 3 1 9 9 0 4 4 2
2 12 1 3 11 11 4 0 2 4
2 12 1 3 11 11 4 2 0 4
2 8 3 1 7 7 2 4 4 0
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Example 3/3

In 2D In 3D
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The Distance Geometry Problem (DGP)

GivenK ∈ N andG = (V,E, d)with d : E → R+,
�nd x : V → RK s.t.

∀{i, j} ∈ E ‖xi − xj‖2
2 = d2

ij

Given a weighted graph , draw it so edges are drawn as

segments with lengths= weights
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Some applications

I clock synchronization (K = 1)
I sensor network localization (K = 2)
I molecular structure from distance data (K = 3)
I autonomous underwater vehicles (K = 3)
I distancematrix completion (whateverK)
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Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from a partial
measurements of their time di�erences

I K = 1

I V : timestamps
I {u, v} ∈ E if known time di�erence between u, v
I d: values of the time di�erences

Used in time synchronization of distributed networks
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Clock synchronization
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Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to
locate a set of geographically distributed objects using
measurements of the distances between some object pairs

I K = 2

I V : (mobile) sensors
I {u, v} ∈ E i� distance between u, v is measured
I d: distance values

Used whenever GPS not viable (e.g. underwater)
duv ∝∼ battery consumption in P2P communication betw. u, v
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Sensor network localization
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Molecular structure from distance data
From [Liberti et al., SIAMRev., 2014]

I K = 3

I V : atoms
I {u, v} ∈ E i� distance between u, v is known
I d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely
Distances/ 5.5measured approximately by NMR
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Complexity

I DGP1 with d : E → Q+ is inNP
I if instance YES ∃ realization x ∈ Rn×1
I if some component xi 6∈ Q translate x so xi ∈ Q
I consider some other xj
I let ` = (length sh. pathp : i→ j) =

∑
{u,v}∈p

duv ∈ Q

I then xj = xi ± `→ xj ∈ Q
I ⇒ veri�cation of

∀{i, j} ∈ E |xi − xj | = dij

in polytime
I DGPK may not be inNP forK > 1
don’t know how to verify ‖xi − xj‖2 = dij for x 6∈ QnK
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Hardness
Partition isNP-hard
Given a = (a1, . . . , an) ∈ Nn, ∃ I ⊆ {1, . . . , n} s.t.

∑
i∈I

ai =
∑
i 6∈I

ai ?

I Reduce Partition to DGP1

I a −→ cycleC
V (C) = {1, . . . , n},E(C) = {{1, 2}, . . . , {n, 1}}

I For i < n let di,i+1 = ai
dn,n+1 = dn1 = an

I E.g. for a = (1, 4, 1, 3, 3), get cycle graph:
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Partition is YES⇒DGP1 is YES

I Given: I ⊂ {1, . . . , n} s.t.
∑
i∈I
ai =

∑
i 6∈I
ai

I Construct: realization x ofC inR
1. x1 = 0 // start

2. induction step: suppose xi known
if i ∈ I
let xi+1 = xi + di,i+1 // go right

else
let xi+1 = xi − di,i+1 // go left

I Correctnessproof: by the same induction
but careful when i = n: have to show xn+1 = x1
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Partition is YES⇒DGP1 is YES

(1) =
∑
i∈I

(xi+1 − xi) =
∑
i∈I

di,i+1 =

=
∑
i∈I

ai =
∑
i 6∈I

ai =

=
∑
i 6∈I

di,i+1 =
∑
i 6∈I

(xi − xi+1) = (2)

(1) = (2)⇒
∑
i∈I

(xi+1 − xi) =
∑
i 6∈I

(xi − xi+1)⇒
∑
i≤n

(xi+1 − xi) = 0

⇒ (xn+1 − xn) + (xn − xn−1) + · · ·+ (x3 − x2) + (x2 − x1) = 0

⇒ xn+1 = x1
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Partition is NO⇒DGP1 is NO
I By contradiction: suppose DGP1 is YES, x realization ofC
I F = {{u, v} ∈ E(C) | xu ≤ xv},
E(C) r F = {{u, v} ∈ E(C) | xu > xv}

I Trace x1, . . . , xn: follow edges in F (→) and inE(C) r F (←)

∑
{u,v}∈F

(xv − xu) =
∑

{u,v}6∈F
(xu − xv)

∑
{u,v}∈F

|xu − xv| =
∑

{u,v}6∈F
|xu − xv|

∑
{u,v}∈F

duv =
∑

{u,v}6∈F
duv

I Let J = {i < n | {i, i+ 1} ∈ F} ∪ {n | {n, 1} ∈ F}

⇒
∑
i∈J

ai =
∑
i 6∈J

ai

I So J solves Partition instance, contradiction
I ⇒DGP isNP-hard, DGP1 isNP-complete
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Number of solutions: with congruences

I (G,K): DGP instance

I X̃ ⊆ RKn: set of solutions

I Congruence: composition of translations, rotations, re�ections

I C = set of congruences inRK

I x ∼ ymeans ∃ρ ∈ C (y = ρx):
distances inxarepreserved in y through ρ

I ⇒ if |X̃| > 0, |X̃| = 2ℵ0
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Number of solutions: without congruences

I Congruence is an equivalence relation∼ on X̃
(re�exive, symmetric, transitive)

I Partitions X̃ into equivalence classes

I X = X̃/∼: sets of representatives of equivalence classes

I Focuson |X| rather than |X̃|
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Rigidity, �exibility and |X|

I infeasible⇔ |X| = 0

I rigid graph⇔ |X| < ℵ0

I globally rigid graph⇔ |X| = 1

I �exible graph⇔ |X| = 2ℵ0

I |X| = ℵ0: impossible byMilnor’s theorem
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Milnor’s theorem implies |X| 6= ℵ0

I System S of polynomial equations of degree 2

∀i ≤ m pi(x1, . . . , xnK) = 0

I LetX be the set of x ∈ RnK satisfying S

I Numberof connectedcomponents ofX isO(3nK)
[Milnor 1964]

I If |X| is countably∞ thenG cannot be �exible
⇒ incongruent elts ofX are separate connected components
⇒ byMilnor’s theorem, there’s �nitely many of them
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Examples
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DGP formulations andmethods

I System of equations
I Unconstrained global optimization (GO)
I Constrained global optimization
I SDP relaxations and their properties
I Diagonal dominance
I Concentration of measure in SDP
I Isomap for DGP
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System of quadratic equations

∀{u, v} ∈ E ‖xu − xv‖2 = d2
uv (8)

Computationally: useless
(less than 10 vertices withK = 3 using Octave)
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Unconstrained Global Optimization

min
x

∑
{u,v}∈E

(‖xu − xv‖2 − d2
uv)

2 (9)

Globally optimal obj. fun. value of (9) is 0 i� x solves (8)

Computational experiments in [Liberti et al., 2006]:
I GO solvers from 10 years ago

I randomly generated protein data: ≤ 50 atoms

I cubic crystallographic grids: ≤ 64 atoms
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Constrained global optimization

I minx
∑

{u,v}∈E
|‖xu − xv‖2 − d2uv| exactly reformulates (8)

I Relax objective f to concave part, remove constant term,
rewritemin−f asmax f

I Reformulate convex part of obj. fun. to convex constraints

I Exact reformulation

maxx
∑

{u,v}∈E
‖xu − xv‖2

∀{u, v} ∈ E ‖xu − xv‖2 ≤ d2uv

}
(10)

Theorem (Activity)
At a glob. opt. x∗ of a YES instance, all constraints of (10) are active
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Linearization

⇒ ∀{i, j} ∈ E ‖xi‖2
2 + ‖xj‖2

2 − 2xi · xj = d2
ij

⇒
{
∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

X = x x>
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Relaxation

X = x x>

⇒ X − x x> = 0

(relax) ⇒ X − x x> � 0

Schur(X, x) =

(
IK x>

x X

)
� 0

If x does not appear elsewhere⇒ get rid of it (e.g. choose x = 0):

replace Schur(X, x) � 0 byX � 0
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SDP relaxation

minF •X
∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

X � 0

How do we choose F ?
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Some possible objective functions

I For protein conformation:

max
∑
{i,j}∈E

(Xii +Xjj − 2Xij)

with= changed to≤ in constraints (ormin and≥)

“push-and-pull” the realization

I [Ye, 2003], application to wireless sensors localization

min Tr(X)

improve covariance estimator accuracy

I How about “just random”?
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How do you choose?
for want of some better criterion. . .

TEST!

I Download protein �les from Protein Data Bank (PDB)
they contain atom realizations

I Mimick a Nuclear Magnetic Resonance experiment
Keep only pairwise distances< 5.5

I Try and reconstruct the protein shape from those
weighted graphs

I Quality evaluation of results:

I LDE(x) = max
{i,j}∈E

| ‖xi − xj‖ − dij |

I MDE(x) = 1
|E|

∑
{i,j}∈E

| ‖xi − xj‖ − dij |
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Objective function tests

SDP solved withMosek

SDP + PCA
Instance LDE MDE CPU

Name |V | |E| PP Ye Rnd PP Ye Rnd PP Ye Rnd
C0700odd.1 15 39 3.31 4.57 4.44 1.92 2.52 2.50 0.13 0.07 0.08
C0700odd.C 36 242 10.61 4.85 4.85 3.02 3.02 3.02 0.69 0.43 0.44
C0700.odd.G 36 308 4.57 4.77 4.77 2.41 2.84 2.84 0.86 0.54 0.54
C0150alter.1 37 335 4.66 4.88 4.86 2.52 3.00 3.00 0.97 0.59 0.58
C0080create.1 60 681 7.17 4.86 4.86 3.08 3.19 3.19 2.48 1.46 1.46
tiny 37 335 4.66 4.88 4.88 2.52 3.00 3.00 0.97 0.60 0.60
1guu-1 150 959 10.20 4.93 4.93 3.43 3.43 3.43 9.23 5.68 5.70

SDP + PCA + NLP
Instance LDE MDE CPU

Name |V | |E| PP Ye Rnd PP Ye Rnd PP Ye Rnd
1b03 89 456 0.00 0.00 0.00 0.00 0.00 0.00 8.69 6.28 9.91
1crn 138 846 0.81 0.81 0.81 0.07 0.07 0.07 33.33 31.32 44.48
1guu-1 150 959 0.97 4.93 0.92 0.10 3.43 0.08 56.45 7.89 65.33
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Choice

I Ye very fast but often imprecise
I Random good but nondeterministic
I Push-and-Pull relaxesXii +Xjj − 2Xij = d2

ij to
Xii +Xjj − 2Xij ≥ d2

ij , feasibility easier to satisfy

. . .will be useful later on

Focus on Push-and-Pull objective
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When SDP solvers hit their size limit

I SDPsolver: technological bottleneck
I How can we best use an LP solver?
I Diagonally Dominant (DD) matrices are PSD
I Not vice versa: inner approximate PSD cone Y � 0

I Idea by A.A. Ahmadi [Ahmadi &Hall 2015]
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Diagonally dominant matrices

n× nmatrixX is DD if

∀i ≤ n Xii ≥
∑
j 6=i

|Xij|.

E.g.


1 0.1 −0.2 0 0.04 0

0.1 1 −0.05 0.1 0 0
−0.2 −0.05 1 0.1 0.01 0

0 0.1 0.1 1 0.2 0.3
0.04 0 0.01 0.2 1 −0.3

0 0 0 0.3 −0.3 1
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DDLinearization

∀i ≤ n Xii ≥
∑
j 6=i

|Xij| (∗)

I introduce “sandwiching” variable T
I write |X| as T
I add constraints−T ≤ X ≤ T

I by≥ constraint sense, write (∗) as

Xii ≥
∑
j 6=i

Tij
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DDProgramming (DDP)

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij

X is DD

}

⇒


∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

∀i ≤ n+K
∑

j≤n+K
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T
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DDP formulation for the DGP

min
∑

{i,j}∈E
(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2
ij

∀i ≤ n+K
∑

j≤n+K
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T
T ≥ 0
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SDP vs. DDP: tests

Using “push-and-pull” objective in SDP
SDP solved withMosek, DDP with CPLEX

SDP + PCA
SDP DDP

Instance LDE MDE CPUmodl/soln LDE MDE CPUmodl/soln
C0700odd.1 0.79 0.34 0.06/0.12 0.38 0.30 0.15/0.15
C0700.odd.G 2.38 0.89 0.57/1.16 1.86 0.58 1.11/0.95
C0150alter.1 1.48 0.45 0.73/1.33 1.54 0.55 1.23/1.04
C0080create.1 2.49 0.82 1.63/7.86 0.98 0.67 3.39/4.07
1guu-1 0.50 0.15 6.67/684.89 1.00 0.85 37.74/153.17
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Concentration of measure

From [Barvinok, 1997]
The value of a “well behaved” function at a
random point of a “big” probability spaceX is
“very close” to the mean value of the function.

and
In a sense, measure concentration can be
considered as an extension of the law of large
numbers.
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Concentration of measure

Given Lipschitz function f : X → R s.t.

∀x, y ∈ X |f(x)− f(y)| ≤ L‖x− y‖2

for some L ≥ 0, there is concentration of measure if ∃
constants c, C s.t.

∀ε > 0 Px(|f(x)− E(f)| > ε) ≤ c e−Cε
2/L2

≡ “discrepancy frommean is unlikely”
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Barvinok’s theorem

Consider:

I for each k ≤ m, manifoldsXk = {x ∈ Rn | x>Qkx = ak}
I a feasibility problem x ∈

⋂
k≤m
Xk

I its SDP relaxation ∀x ≤ m (Qk •X = ak) with soln. X̄

Let T = factor(X̄) , y ∼ Nn(0, 1) and x′ = Ty

Then ∃c and n0 ∈ N s.t. if n ≥ n0,

Prob
(
∀k ≤ m dist(x′,Xk) ≤ c

√
‖X̄‖2 lnn

)
≥ 0.9.

IDEA: since x′ is “close” to eachXk, try local descent!
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Application to the DGP

I ∀{i, j} ∈ E Xij = {x | ‖xi − xj‖2
2 = d2

ij}

I DGP can be written as
⋂

{i,j}∈E
Xij

I SDP relaxationXii +Xjj − 2Xij = d2
ij ∧X � 0 with

soln. X̄

I Di�erence with Barvinok: x ∈ RKn, rk(X̄) ≤ K

I IDEA: sample y ∼ N nK(0, 1√
K

)

I Thm. Barvinok’s theorem works in rankK
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The heuristic

1. Solve SDP relaxation of DGP, get soln. X̄
use DDP+LP if SDP+IPM too slow

2. a. T = factor(X̄)
b. y ∼ N nK(0, 1√

K
)

c. x′ = Ty

3. Use x′ as starting point for a local NLP solver on
formulation

min
x

∑
{i,j}∈E

(
‖xi − xj‖2 − d2

ij

)2

and return improved solution x
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SDP+Barvinok vs. DDP+Barvinok

SDP DDP
Instance LDE MDE CPU LDE MDE CPU
C0700odd.1 0.00 0.00 0.63 0.00 0.00 1.49
C0700.odd.G 0.00 0.00 21.67 0.42 0.01 30.51
C0150alter.1 0.00 0.00 29.30 0.00 0.00 34.13
C0080create.1 0.00 0.00 139.52 0.00 0.00 141.49
1b03 0.18 0.01 132.16 0.38 0.05 101.04
1crn 0.78 0.02 800.67 0.76 0.04 522.60
1guu-1 0.79 0.01 1900.48 0.90 0.04 667.03

Most of the CPU time taken by local NLP solver

240 / 246



Isomap for DG
1. LetD′ be the (square) weighted adjacencymatrix ofG

2. CompleteD′ to approximate sqEDM D̃

3. Let B̃ = −(1/2)JD̃J , where J = I − (1/n)11>

4. Find eigenval/vectsΛ, P so B̃ = P>ΛP

5. Keep≤ K largest nonneg. eigenv. ofΛ to get Λ̃ (MDS/PCA)

6. Let x̃ = P>
√

Λ̃

Vary Step 2 to generate Isomap heuristics
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Why it works

I G represented by weighted adjacencymatrixD′

I do not knowD, approximate to D̃ not sqEDM
I ⇒ get B̃, not generally Gram
I ≤ K largest nonnegative eigenvalues
⇒ “closest PSDmatrix”B′ to B̃ having rank≤ K

I Factor it to get x̃ ∈ RKn
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Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm onG
(classic Isomap)

B. Find a spanning tree (SPT) ofG and compute a random
realization in x̄ ∈ RK , use its sqEDM

C. Solve a push-and-pull SDP relaxation to �nd a realization x̄ ∈ Rn,
use its sqEDM

D. Solve an SDP relaxation with Barvinok objective to �nd x̄ ∈ Rr

(with r ≤ b(
√

8|E|+ 1− 1)/2c), use its sqEDM
haven’t really talked about this, sorry

Post-processing: x̃ as starting point for NLP descent in GO formulation
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Results
Comparison with dgsol [Moré, Wu 1997]
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Large instances

Instance mde lde CPU
Name |V | |E| IsoNLP dgsol IsoNLP dgsol IsoNLP dgsol
water 648 11939 0.005 0.15 0.557 0.81 26.98 15.16
3al1 678 17417 0.036 0.007 0.884 0.810 170.91 210.25
1hpv 1629 18512 0.074 0.078 0.936 0.932 374.01 60.28
il2 2084 45251 0.012 0.035 0.910 0.932 465.10 139.77
1tii 5684 69800 0.078 0.077 0.950 0.897 7400.48 454.375
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THEEND
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