Advanced Mathematical Programming
 Formulations \& Applications

Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

INF580-2017

Practicalities

- URL:

http://www.lix.polytechnique.fr/~liberti/teaching/dix/inf580-17

- Dates: wed-fri

4-6, 11-13, 18, 25-27 jan
1-3, 8-10, 22-24 feb
1-3, 8-10, 15 mar

- Place: PC 37 (lectures \& tutorials)
bring your laptops! (Linux/MacOSX/Windows)
- Exam: either a project (max 2 people) or oral

Section 1

Introduction

What is Mathematical Programming?

- Formal declarative language for describing optimization problems
- As expressive as any imperative language
- Interpreter = solver
- Shifts focus from algorithmics to modelling

Syntax

- A valid sentence:

$$
\left.\min \begin{array}{l}
x_{1}+2 x_{2}-\log \left(x_{1} x_{2}\right) \\
x_{1} x_{2}^{2} \geq 1 \\
0 \leq x_{1} \leq 1 \\
x_{2} \in \mathbb{N} .
\end{array}\right\} \quad[P]
$$

- An invalid one:

$$
\begin{array}{ll}
\min & \frac{\dot{x_{2}}}{}+x_{1}++\sin \cos \\
& x_{x_{2}} \geq x_{x_{1}} \\
& \sum_{i \leq x_{1}} x_{i}=0 \\
& x_{1} \neq x_{2} \\
& x_{1}<x_{2}
\end{array}
$$

MINLP Formulation

Given functions $f, g_{1}, \ldots, g_{m}: \mathbb{Q}^{n} \rightarrow \mathbb{Q}$ and $Z \subseteq\{1, \ldots, n\}$

$$
\left.\begin{array}{rr}
\min & f(x) \\
\forall i \leq m & g_{i}(x) \\
\leq 0 \\
\forall j \in Z & x_{j}
\end{array}\right\}
$$

- $\phi(x)=0 \quad \Leftrightarrow \quad(\phi(x) \leq 0 \wedge-\phi(x) \leq 0)$
- $L \leq x \leq U \quad \Leftrightarrow \quad(L-x \leq 0 \wedge x-U \leq 0)$
- f, g_{i} represented by expression DAGs

$$
x_{1}+\frac{x_{1} x_{2}}{\log \left(x_{2}\right)}
$$

Semantics

$$
P \equiv \min \left\{x_{1}+2 x_{2}-\log \left(x_{1} x_{2}\right) \mid x_{1} x_{2}^{2} \geq 1 \wedge 0 \leq x_{1} \leq 1 \wedge x_{2} \in \mathbb{N}\right\}
$$

$\llbracket P \rrbracket=(\operatorname{opt}(P), \operatorname{val}(P)) \quad \operatorname{opt}(P)=(1,1) \quad \operatorname{val}(P)=3$

What is a solution of an MP?

- Given an MP P, there are three possibilities:

1. $\llbracket P \rrbracket$ exists
2. P is unbounded
3. P is infeasible

- P has a feasible solution iff $\llbracket P \rrbracket$ exists or is unbounded otherwise it is infeasible
- P has an optimum iff $\llbracket P \rrbracket$ exists
otherwise it is infeasible or unbounded
- Asymmetry between optimization and feasibility
- Feasibility prob. $g(x) \leq 0$ can be written as MP

$$
\min \{0 \mid g(x) \leq 0\}
$$

Solvers (or "interpreters")

- Take formulation P as input
- Output $\llbracket P \rrbracket$ and possibly other information
- Trade-off between generality and efficiency
(i) Linear Programming (LP)
f, g_{i} linear, $Z=\varnothing$
(ii) Mixed-Integer Linear Programming (MILP)
f, g_{i} linear, $Z \neq \varnothing$
(iii) Nonlinear Programming (NLP)
some nonlinearity in $f, g_{i}, Z=\varnothing$
(iv) Mixed-Integer Nonlinear Programming (MINLP) some nonlinearity in $f, g_{i}, Z \neq \varnothing$
(way more classes than these!)
- Each solver targets a given class

Why should you care?

- Production industry
planning, scheduling, allocation, ...
- Transportation \& logistics facility location, routing, rostering, ...
- Service industry pricing; strategy, product placement, ...
- Energy industry (all of the above)
- Machine Learning \& Artificial Intelligence clustering, approximation error minimization
- Biochemistry \& medicine protein structure, blending, tomography, ...
- Mathematics

Kissing number, packing of geometrical objects,...

Section 2

Decidability

Formal systems (FS)

- A formal system consists of:
- an alphabet
- a formal grammar
allowing the determination of formulce and sentences
- a set A of axioms (given sentences)
- a set R of inference rules allowing the derivation of new sentences from old ones
- A theory T is the smallest set of sentences that is obtained by recursively applying R to A
- Example 1 (PA1): $+, \times, \wedge, \vee, \forall, \exists,=$ and variable names; 1st order sentences about \mathbb{N}; Peano's Axioms; modus ponens and generalization
- Example 2 (Reals): $+, \times, \wedge, \vee,=,>$, variables, real constants; polynomials over \mathbb{R}; field and order axioms for \mathbb{R}, "basic operations on polynomials"

What is decidability?

Given a FS \mathcal{F},

- a decision problem P in \mathcal{F} is a set of sentences in \mathcal{F}
- Decide whether a given sentence f in \mathcal{F} belongs to P or not
- PA1: decide whether a sentence f about \mathbb{N} has a proof or not
a proof of f is a sequence of sentences that begins with axioms and ends with f, each other sentence in the sequence being derived from applying inference rules to previous sentences
- Reals: decide whether a given system of polynomials p on \mathbb{R} has a solution or not

Decision and proof in PA1

- Given a decision problem, is there an algorithm with input f, output YES/NO?
YES: " f has proof in \mathcal{F} "
NO: " f does not have a proof in \mathcal{F} "
- [Turing 1936]: an encoding of Halting Problem in PA1 is undecidable in PA1
- AFS \mathcal{F} is complete if, for every f in \mathcal{F} either f or $\neg f$ is provable in \mathcal{F} Gödel's first incompleteness theorem \Rightarrow PA1 is incomplete $\exists f$ s.t. f and $\neg f$ are unprovable in \mathcal{F} (such f are called independent in \mathcal{F})
- PA1 is undecidable and incomplete

Decision and proof in Reals

- Given poly system $p(x) \geq 0$, is there alg. deciding YES/NO?
YES: " $p(x) \geq 0$ has a solution in \mathbb{R} "
NO: " $p(x) \geq 0$ has no solution in \mathbb{R} "
- [Tarski 1948]: Reals is decidable
- Tarski's algorithm:
constructs solution sets (YES) or derives contradictions (NO) Best kind of decision algorithm: also provides proofs!
\Rightarrow Reals is also complete
- Reals is decidable and complete

A stupid FS

- Nolnference:

Any FS with $<\infty$ axiom schemata and no inference rules

- Only possible proofs: sequences of axioms
- Only provable sentences: axioms
- For any other sentence f : no proof of f or $\neg f$
- Trivial decision algorithm: given f, output YES if f is an axiom, NO otherwise
- Nolnference is decidable and incomplete

Undecidability \& Incompleteness

- [Nonexistence of a proof for $f] \not \equiv[$ Proof of $\neg f]$ In a decidable and incomplete FS, a decision algorithm answers NO to both f and $\neg f$ if f is independent
- Information complexity: decision $=1$ bit, proof $=$ many bits
- Undecidability and incompleteness are different!

Decidability, computability, solvability

- Decidability: applies to decision problems
- Computability: applies to function evaluation
- Is the function f, mapping i to the i-th prime integer, computable?
- Is the function g, mapping Cantor's CH to 1 if provable in ZFC axiom system and to 0 otherwise, computable?
- Solvability: applies to other problems E.g. to optimization problems!

Is MP solvable?

- Hilbert's 10th problem: is there an algorithm for solving polynomial Diophantine equations?
- Modern formulation: are polynomial systems over \mathbb{Z} solvable?
- [Matiyasevich 1970]: NO can encode universal TMs in them
- Let $p(\alpha, x)=0$ be a Univ. Dioph. Eq. (UDE)
- $\min \{0 \mid p(\alpha, x)=0\}$ is an undecidable (feasibility) MP
- $\min (p(\alpha, x))^{2}$ is an unsolvable (optimization) MP

Section 3

Efficiency and Hardness

Worst-case algorithmic complexity

- Computational complexity theory: worst-case time/space taken by an algorithm to complete
- Algorithm \mathcal{A}
- e.g. to determine whether a graph $G=(V, E)$ is connected or not
- input: G; size of input: $\nu=|V|+|E|$
- How does the CPU time $\tau(\mathcal{A})$ used by \mathcal{A} vary with ν ?
- $\tau(\mathcal{A})=O\left(\nu^{k}\right)$ for fixed k : polytime
- $\tau(\mathcal{A})=O\left(2^{\nu}\right)$: exponential
- polytime \leftrightarrow efficient
- exponential \leftrightarrow inefficient

Polytime algorithms are "efficient"

-Why are polynomials special?

- Many different variants of Turing Machines (TM)
- Polytime is invariant to all definitions of TM
- In practice, $O(\nu)-O\left(\nu^{3}\right)$ is an acceptable range covering most practically useful efficient algorithms
- Many exponential algorithms are also usable in practice for limited sizes

Instances and problems

- An input to an algorithm \mathcal{A} : instance
- Collection of all inputs for \mathcal{A} : problem consistent with "set of sentences" from decidability
- BUT:
- A problem can be solved by different algorithms
- There are problems which no algorithm can solve
- Given a problem P, what is the complexity of the best algorithm that solves P ?

Complexity classes

- Focus on decision problems
- If \exists polytime algorithm for P, then $P \in \mathbf{P}$
- If there is a polytime checkable certificate for all YES instances of P, then $P \in \mathbf{N P}$
- No-one knows whether $\mathbf{P}=\mathbf{N P}$ (we think not)
- NP includes problems for which we don't think a polytime algorithms exist e.g. k-CLIQUE, SUBSET-SUM, KNAPSACK, HAMILTONIAN CYCLE, SAT, ...

Subsection 1

Some combinatorial problems

k-CLIQUE

- Instance: $(G=(V, E), k)$
- Problem: determine whether G has a clique of size k

- 1-CLIgUE? YES (every graph is YES)
- 2-CLIgUE? YES (every non-empty graph is YES)
- 3-CLIgUE? YES (triangle $\{1,2,4\}$ is a certificate) certificate can be checked in $O(k)<O(n)$
- 4-cligue? NO
no polytime certificate unless $\mathrm{P}=\mathrm{NP}$

MP formulations for CLIQUE

Variables? Objective? Constraints?

MP formulations for cLIgUE

Variables? Objective? Constraints?

- Pure feasibility problem:

MP formulations for CLIgUE

Variables? Objective? Constraints?

- Pure feasibility problem:
- Max Cligue:

$$
\left.\begin{array}{rrl}
\max & \sum_{i \in V} x_{i} & \\
\\
\} \notin E & x_{i}+x_{j} & \leq 1 \\
& x & \in\{0,1\}^{n}
\end{array}\right\}
$$

SUBSET-SUM

- Instance: list $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ and $b \in \mathbb{N}$
- Problem: is there $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} a_{j}=b$?
- $a=(1,1,1,4,5), b=3:$ YES $J=\{1,2,3\}$
all $b \in\{0, \ldots, 12\}$ yield YES instances
- $a=(3,6,9,12), b=20: \mathbf{N O}$

MP formulations for SUBSET-SUM

Variables? Objective? Constraints?

MP formulations for SUBSET-SUM

Variables? Objective? Constraints?

- Pure feasibility problem:

$$
\left.\begin{array}{rl}
\sum_{j \leq n} a_{j} x_{j} & =b \\
x & \in\{0,1\}^{n}
\end{array}\right\}
$$

KNAPSACK

- Instance: $c, w \in \mathbb{N}^{n}, K \in \mathbb{N}$
- Problem: find $J \subseteq\{1, \ldots, n\}$ s.t. $c(J) \leq K$ and $w(J)$ is maximum
- $c=(1,2,3), w=(3,4,5), K=3$
- $c(J) \leq K$ feasible for J in $\varnothing,\{j\},\{1,2\}$
- $w(\varnothing)=0, w(\{1,2\})=3+4=7, w(\{j\}) \leq 5$ for $j \leq n$
$\Rightarrow J_{\text {max }}=\{1,2\}$
- $K=0$:infeasible
- natively expressed as an optimization problem
- notation: $c(J)=\sum_{j \in J} c_{j}$ (similarl for $w(J)$)

MP formulation for KNAPSACK

Variables? Objective? Constraints?

MP formulation for KNAPSACK

Variables? Objective? Constraints?

$$
\left.\max \begin{array}{rl}
\sum_{j \leq n} w_{j} x_{j} & \\
\sum_{j \leq n} c_{j} x_{j} & \leq K \\
x & \in\{0,1\}^{n}
\end{array}\right\}
$$

Hamiltonian Cycle

- Instance: $G=(V, E)$
- Problem: does G have a Hamiltonian cycle?
cycle covering every $v \in V$ exactly once

NO

1—N (cert. $\rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 1$)

MP formulation for Hamiltonian Cycle

Variables? Objective? Constraints?

MP formulation for Hamiltonian Cycle

Variables? Objective? Constraints?

$$
\begin{array}{r}
\forall i \in V \quad \sum_{\substack{j \in V \\
\{i, j \in \in \in}} x_{i j}=1 \\
\forall j \in V \sum_{\substack{i, V V \\
\{i, j\} \in E}} x_{i j}=1 \\
\sum_{\substack{i \in S, j \notin S \\
\{i, j \in \mathcal{E}}} x_{i j} \geq 1 \tag{3}
\end{array}
$$

WARNING: second order statement!
quantified over sets
other warning: need arcs not edges in (5)-(7)

Satisfiability (SAT)

- Instance: open boolean logic sentence f in CNF

$$
\bigwedge_{i \leq m} \bigvee_{j \in C_{i}} \ell_{j}
$$

where $\ell_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}$ for $j \leq n$

- Problem: is there $\phi: x \rightarrow\{0,1\}^{n}$ s.t. $\phi(f)=1$?
- $f \equiv\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right)$
$x_{1}=x_{2}=1, x_{3}=0$ is a YES certificate
- $f \equiv\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$

ϕ	$x=(1,1)$	$x=(0,0)$	$x=(1,0)$	$x=(0,1)$
false	C_{2}	C_{1}	C_{3}	C_{4}

MP formulation for SAT

Exercise

Subsection 2

NP-hardness

NP-Hardness

- Do hard problems exist? Depends on $\mathbf{P} \neq \mathrm{NP}$
- Next best thing: define hardest problem in NP
- A problem P is NP-hard if Every problem Q in NP can be solved in this way:

1. given an instance q of Q transform it in polytime to an instance $\rho(q)$ of P s.t. q is YES iff $\rho(q)$ is YES
2. run the best algorithm for P on $\rho(q)$, get answer $\alpha \in\{\mathrm{YES}, \mathrm{NO}\}$
3. return α
ρ is called a polynomial reduction from Q to P

- If P is in NP and is NP-hard, it is called NP-complete
- Every problem in NP reduces to sat [Cook 1971]

Cook's theorem

> Theorem l: If a set S of strings is accepted by some nondeterministic Turing machine within polynomial time, then S is P-reducible to \{DNF tautologies\}.

Boolean decision variables store TM dynamics

Proposition symbols:

```
    Ps,t for 1\leqi i\leql, 1\leqs,t\leqT.
P i
at step t contains the symbol }\mp@subsup{\sigma}{i}{}\mathrm{ .
            Q i
true iff at step t the machine is in
state q}\mp@subsup{\textrm{g}}{\textrm{i}}{
    S.s,t for l\leqs,t\leqT is true iff at
time t square number s}\mathrm{ is scanned
by the tape head.
```

Definition of TM dynamics in CNF

$$
B_{t} \text { asserts that at time } t \text { one and }
$$

only one square is scanned:

$$
\begin{aligned}
& B_{t}=\left(S_{1, t} \vee S_{2, t} \vee \ldots \vee S_{T, t}\right) \& \\
& {\left[\underset{1 \leq i<j \leq T}{\mathcal{G}}\left(\neg S_{i, t} \vee \neg S_{j, t}\right)\right]}
\end{aligned}
$$

that if at time t the machine is in state q_{i} scanning symbol σ_{j}, then at time $t+1$ the machine is in state q_{k}, where q_{k} is the state given by the transition function for M.
$\left.G_{i, j}^{t}={\underset{S}{G}=1}_{T}^{T} \neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee Q_{t+1}^{k}\right)$

Description of a dynamical system using a declarative programming language (SAT) - what MP is all about!

Reduction graph

After Cook's theorem

To prove NP-hardness of a new problem P, pick a known NP-hard problem Q that "looks similar enough" to P and find a polynomial reduction ρ from Q to P [Karp 1972]

Why it works: suppose P easier than Q, solve Q by calling $\rho \circ \operatorname{Alg}_{P}$, conclude Q as easy as P, contradiction

Example of polynomial reduction

- STABLE: given $G=(V, E)$ and $k \in \mathbb{N}$, does it contain a stable set of size k ?
- We know k-cligue is NP-complete, reduce from it
- Given instance (G, k) of cligue consider the complement graph (computable in polytime)

$$
\bar{G}=(V, \bar{E}=\{\{i, j\} \mid i, j \in V \wedge\{i, j\} \notin E\})
$$

- Thm.: G has a clique of size k iff \bar{G} has a stable set of size k
- $\rho(G)=\bar{G}$ is a polynomial reduction from cligue to STABLE
- \Rightarrow stable is $\mathbb{N P}$-hard
- stable is also in NP $U \subseteq V$ is a stable set iff $E(G[U])=\varnothing$ (polytime verification)
- \Rightarrow stable is $\mathbb{N P}^{-c o m p l e t e}$

MILP is NP-hard

- sat is NP-hard by Cook's theorem, Reduce from sat in CNF

$$
\bigwedge_{i \leq m} \bigvee_{j \in C_{i}} \ell_{j}
$$

where ℓ_{j} is either x_{j} or $\bar{x}_{j} \equiv \neg x_{j}$

- Polynomial reduction ρ

SAT	x_{j}	\bar{x}_{j}	\vee	\wedge
MILP	x_{j}	$1-x_{j}$	+	≥ 1

- E.g. $\rho \operatorname{maps}\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right)$ to

$$
\min \left\{0 \mid x_{1}+x_{2} \geq 1 \wedge x_{3}-x_{2} \geq 0 \wedge x \in\{0,1\}^{3}\right\}
$$

- sat is YES iff MILP is feasible (same solution, actually)

Complexity of Quadratic Programming

$$
\left.\begin{array}{rl}
\min \quad x^{\top} Q x & +c^{\top} x \\
A x & \geq b
\end{array}\right\}
$$

- Quadratic Programming $=$ QP
- Quadratic objective, linear constraints, continuous variables
- Many applications (e.g. portfolio selection)
- If Q PSD then objective is convex, problem is in P
- If Q has at least one negative eigenvalue, NP-hard
- Decision problem: "is the min. obj.fun. value $=0$?"

QP is NP-hard

- By reduction from SAT, let σ be an instance
- $\hat{\rho}(\sigma, x) \geq 1$: linear constraints of SAT \rightarrow MILP reduction
- Consider QP

$$
\left.\begin{array}{rl}
\min & f(x)=\sum_{j \leq n} x_{j}\left(1-x_{j}\right) \\
& \hat{\rho}(\sigma, x) \geq 1 \\
& 0 \leq x \leq 1
\end{array}\right\}
$$

- Claim: σ is YES iff $\operatorname{val}(\dagger)=0$
- Proof:
- assume σ YES with soln. x^{*}, then $x^{*} \in\{0,1\}^{n}$, hence $f\left(x^{*}\right)=0$, since $f(x) \geq 0$ for all $x, \operatorname{val}(\dagger)=0$
- assume σ NO, suppose $\operatorname{val}(\dagger)=0$, then (\dagger) feasible with soln. x^{\prime}, since $f\left(x^{\prime}\right)=0$ then $x^{\prime} \in\{0,1\}$, feasible in sat hence σ is YES, contradiction

Box-constrained QP is NP-hard

- Add surplus vars v to sat \rightarrow MILP constraints:

$$
\begin{aligned}
& \hat{\rho}(\sigma, x)-1-v=0 \\
& \quad\left(\text { denote by } \forall i \leq m\left(a_{i}^{\top} x-b_{i}-v_{i}=0\right)\right)
\end{aligned}
$$

- Now sum them on the objective

$$
\left.\begin{array}{ll}
\min & \sum_{j \leq n} x_{j}\left(1-x_{j}\right)+\sum_{i \leq m}\left(a_{i}^{\top} x-b_{i}-v_{i}\right)^{2} \\
& 0 \leq x \leq 1, v \geq 0
\end{array}\right\}
$$

- Issue: v not bounded above
- Reduce from 3sAt, get ≤ 3 literals per clause \Rightarrow can consider $0 \leq v \leq 2$

cQKP is NP-hard

- continuous Quadratic Knapsack Problem (cQKP)
- Reduction from subset-sum
given list $a \in \mathbb{Q}^{n}$ and γ, is there $J \subseteq\{1, \ldots, n\}$ s.t. $\sum_{j \in J} a_{j}=\gamma$?
reduce to $f(x)=\sum_{j} x_{j}\left(1-x_{j}\right)$
- σ is a YES instance of SUBSET-SUM
- let $x_{j}^{*}=1$ iff $j \in J, x_{j}^{*}=0$ otherwise
- feasible by construction
- $\quad f$ is non-negative on $[0,1]^{n}$ and $f\left(x^{*}\right)=0$: optimum
- σ is a NO instance of SUBSET-SUM
- suppose opt $(\mathbf{c Q K P})=x^{*}$ s.t. $f\left(x^{*}\right)=0$
- then $x^{*} \in\{0,1\}^{n}$ because $f\left(x^{*}\right)=0$
- feasibility of $x^{*} \rightarrow \operatorname{supp}\left(x^{*}\right)$ solves σ, contradiction, hence $f\left(x^{*}\right)>0$

QP on a simplex is NP-hard

$$
\left.\min \begin{array}{rl}
f(x)=x^{\top} Q x & +c^{\top} x \\
\sum_{j \leq n} x_{j} & =1 \\
\forall j \leq n \quad x_{j} & \geq 0
\end{array}\right\}
$$

- Reduce max cligue to subclass $f(x)=-\sum_{\{i, j\} \in E} x_{i} x_{j}$

Motzkin-Straus formulation (MSF)

- Theorem [Motzkin\& Straus 1964]

Let C be the maximum clique of the instance $G=(V, E)$ of max cligue $\exists x^{*} \in \mathrm{opt}(\mathrm{MSF}) \quad f^{*}=f\left(x^{*}\right)=\frac{1}{2}\left(1-\frac{1}{\omega(G)}\right)$
$\forall j \in V \quad x_{j}^{*}= \begin{cases}\frac{1}{\omega(G)} & \text { if } j \in C \\ 0 & \text { otherwise }\end{cases}$

Proof of the Motzkin-Straus theorem

$$
x^{*}=\operatorname{opt}\left(\max _{\substack{x \in[0,1]^{n} \\ \sum_{j} x_{j}=1}} \sum_{i j \in E} x_{i} x_{j}\right) \text { s.t. }\left|C=\left\{j \in V \mid ; x_{j}^{*}>0\right\}\right| \text { smallest }(\ddagger)
$$

1. C is a clique

- Suppose $1,2 \in C$ but $\{1,2\} \notin E[C]$, then $x_{1}^{*}, x_{2}^{*}>0$, can perturb by small $\epsilon \in\left[-x_{1}^{*}, x_{2}^{*}\right]$, get $x^{\epsilon}=\left(x_{1}^{*}+\epsilon, x_{2}^{*}-\epsilon, \ldots\right)$, feasible w.r.t. simplex and bounds
- $\{1,2\} \notin E \Rightarrow x_{1} x_{2}$ does not appear in $f(x) \Rightarrow f\left(x^{\epsilon}\right)$ depends linearly on ϵ; by optimality of x^{*}, f achieves max for $\epsilon=0$, in interior of its range $\Rightarrow f(\epsilon)$ constant
- set $\epsilon=-x_{1}^{*}$ or $=x_{2}^{*}$ yields global optima with more zero components than x^{*}, against assumption (\ddagger), hence $\{1,2\} \in E[C]$, by relabeling C is a clique

Proof of the Motzkin-Straus theorem

$$
x^{*}=\operatorname{opt}\left(\max _{\substack{x \in[0,1] n \\ \sum_{j} x_{j}=1}} \sum_{i j \in E} x_{i} x_{j}\right) \text { s.t. }\left|C=\left\{j \in V \mid ; x_{j}^{*}>0\right\}\right| \text { smallest }(\ddagger)
$$

2. $|C|=\omega(G)$

- square simplex constraint $\sum_{j} x_{j}=1$, get

$$
\sum_{j \in V} x_{j}^{2}+2 \sum_{i<j \in V} x_{i} x_{j}=1
$$

- by construction $x_{j}^{*}=0$ for $j \notin C \Rightarrow$

$$
\psi\left(x^{*}\right)=\sum_{j \in C}\left(x_{j}^{*}\right)^{2}+2 \sum_{i<j \in C} x_{j}^{*} x_{j}^{*}=\sum_{j \in C}\left(x_{j}^{*}\right)^{2}+2 f\left(x^{*}\right)=1
$$

- $\psi(x)=1$ for all feasible x, so $f(x)$ achieves maximum when $\sum_{j \in C}\left(x_{j}^{*}\right)^{2}$ is minimum, i.e. $x_{j}^{*}=\frac{1}{|C|}$ for all $j \in C$
- again by simplex constraint

$$
f\left(x^{*}\right)=1-\sum_{j \in C}\left(x_{j}^{*}\right)^{2}=1-|C| \frac{1}{|C|^{2}} \leq 1-\frac{1}{\omega(G)}
$$

so $f\left(x^{*}\right)$ attains maximum $1-1 / \omega(G)$ when $|C|=\omega(G)$

Two exercises

- Prove that quartic polynomial optimization is NP-hard; reduce from one of the combinatorial problems given during the course, and make sure that at least one monomial of degree four appears with non-zero coefficient in the MP formulation.
- As above, but for cubic polynomial optimization.

Portfolio optimization

You, a private investment banker, are seeing a customer. She tells you "I have 3,450,000\$ I don't need in the next three years. Invest them in low-risk assets so I get at least 2.5% return per year."

Model the problem of determining the required portfolio. Missing data are part of the fun (and of real life).

Section 4

Systematics

Types of MP

Continuous variables:

- LP (linear functions)
- QP (quadratic obj. over affine sets)
- QCP (linear obj. over quadratically def'd sets)
- QCQP (quadr. obj. over quadr. sets)
- cNLP (convex sets, convex obj. fun.)
- SOCP (LP over 2nd ord. cone)
- SDP (LP over PSD cone)
- COP (LP over copositive cone)
- NLP (nonlinear functions)

Types of MP

Mixed-integer variables:

- IP (integer programming), MIP (mixed-integer programming)
- extensions: MILP, MIQ, MIQCP, MIQCQP, cMINLP, MINLP
- BLP (LP over $\{0,1\}^{n}$)
- BQP (QP over $\{0,1\}^{n}$)

More "exotic" classes:

- MOP (multiple objective functions)
- BLevP (optimization constraints)
- SIP (semi-infinite programming)

Section 5

Linear Programming

Generalities

- Simplex method
- practically fast
- exploration of polyhedron vertices
- exponential-time in the worst-case
- average complexity: polynomial
- smoothed complexity: polynomial
- $\frac{\text { Ellipsoid method }}{\bullet \text { (weakly) polytime }}$
- mostly used for theoretical purposes
- Interior-point method (IPM)
- practically fast
- follows a central path
- (weakly) polytime
- can be used for many convex MPs, nost just linear

Distribution of oil

> An oil distribution company needs to ship a large quantity of crude from the main port to the refining plant, which is unfortunately far from the port, using their pipe networks over the country.

> Model the problem of determining the maximum quantity of oil they can hope to ship.

Subsection 1

Maximum flow

Network flows

Given a digraph $G=(V, A)$ with an arc capacity function $c: A \rightarrow \mathbb{R}_{+}$and two distinct nodes $s, t \in V$, find the flow from s to t having maximum value

- Given $G=(V, A, c, s, t)$ a flow from s to t is a function $f: A \rightarrow \mathbb{R}_{+}$s.t.:

$$
\begin{aligned}
\forall v \in V \backslash\{s, t\} \sum_{u \in N^{-}(v)} f_{u v} & =\sum_{w \in N^{+}(v)} f_{v w} \\
\forall(u, v) \in A \quad f_{u v} & \leq c_{u v}
\end{aligned}
$$

- The value of a flow f is given by $\sum_{v \in N^{+}(s)} f_{s v}$

$$
\text { Defn.: } N^{-}(v)=\{u \in V \mid(u, v) \in A\}, N^{+}(v)=\{w \in V \mid(v, w) \in A\}
$$

The Max Flow problem

$$
\left.\begin{array}{rlll}
\max & \sum_{v \in N^{+}(s)} f_{s v} & & \\
\forall v \in V \backslash\{s, t\} & \sum_{u \in N^{-}(v)} f_{u v} & =\sum_{w \in N^{+}(v)} f_{v w} \\
\forall(u, v) \in A & f_{u v} & \in\left[0, c_{i j}\right]
\end{array}\right\}
$$

- Constraint matrix is totally unimodular
\Rightarrow optima have integer components
- Dual of Max Flow is Min Cut
\Rightarrow optimal value $=0$ iff network disconnected
- for these two important results, see MAP557

Multicommodity flow

- Many different flows on the same network
- Given $N=(V, A, c, s, t)$ where:
- $G=(V, A)$ is a digraph
- $c: A \rightarrow \mathbb{R}_{+}$is an arc capacity function
- $s, t \in V^{r}$ s.t. $\forall k \leq r\left(s_{k} \neq t_{k}\right)$
- Find a set of flows $\left\{f^{k} \mid k \leq r\right\}$ from s_{k} to t_{k}
- having max. total value
- satisfying arc capacity

LP Formulation

- Maximize total value:

$$
\max \sum_{k \leq r} \sum_{v \in N^{+}\left(s_{k}\right)} f_{s_{k} v}^{k}
$$

- Satisfy flow equations:

$$
\forall k \leq r, v \in V \backslash\left\{s_{k}, t_{k}\right\} \quad \sum_{u \in N^{-}(v)} f_{u v}^{k}=\sum_{w \in N^{+}(v)} f_{v w}^{k}
$$

- Satisfy arc capacity:

$$
\forall(u, v) \in A \quad \sum_{k \leq r} f_{u v}^{k} \leq c_{u v}
$$

- They are bounded:

$$
\forall k \leq r,(u, v) \in A \quad f_{u v}^{k} \in\left[0, c_{u v}\right]
$$

Minimum cost flows

- Flow equations define connected subgraphs:

G connected $\Rightarrow \forall u \neq v \in V(G)$ a unit offlow entering u will exit u as long as "demand" $=0$ at intermediate nodes. Conversely: if there is a flow from u to v then G must be connected

- E.g. a SP $s \rightarrow t$ is the connected subgraph of minimum cost containing s, t :

$$
\begin{array}{rr}
\min _{x: A \rightarrow \mathbb{R}} & \sum_{(u, v) \in A} c_{u v} x_{u v} \\
\forall v \in V & \sum_{(u, v) \in A} x_{u v}-\sum_{(v, u) \in A} x_{v u}
\end{array}=\left\{\begin{array}{rl}
-1 & u=s \\
1 & u=t \\
0 & \text { othw. }
\end{array}\right\}[\mathbf{S P}]
$$

Test this with AMPL

Flattening the formulation

- Every MP involving linear forms only can be written in the form

$$
\left.\begin{array}{rlll}
\min _{x} & \gamma^{\top} x & & \\
& A x & \leq & \beta \\
& x & \in X
\end{array}\right\}[P]
$$

- $\gamma, x \in \mathbb{R}^{n}, \beta \in \mathbb{R}^{m}, A$ is $m \times n, X$ is the set where variables range
- For P2PSP on
 with $s=1$ and $t=7$ we have:

```
- \(\gamma=(2,1,1,2,1,1,0,1,5,4,3,2,6)\),
        \(\beta=(1,0,0,0,0,0,-1), X=[0,1]^{13}\)
- \(A=\)
\[
\begin{gathered}
A= \\
\left(\begin{array}{ccccccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & -1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & -1
\end{array}\right)
\end{gathered}
\]
```


Transpose

A dual view

- Let $A^{\top}=\left(\begin{array}{ccccccc}1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1\end{array}\right)$
- Turn rows into columns (constraints into variables)
- ...and columns into rows (variables into constraints)

LP Dual

- For each constraint define a variable $y_{i}(i \leq 7)$
- The LP dual is

$$
\left.\begin{array}{rr}
\max _{y}-y \beta \\
& y A \leq \gamma
\end{array}\right\}[D]
$$

- In the case of the SP formulation, the dual is:

$$
\left.\begin{array}{rl}
\max _{y} & y_{t}-y_{s} \\
\forall(u, v) \in A & y_{v}-y_{u} \leq c_{u v}
\end{array}\right\}\left[D_{\mathbf{S P}}\right]
$$

- For the P2PSP formulation, dual gives same optimal value as the "primal" (test with AMPL)

How the hell is this an SP formulation?

A mechanical algorithm

- Weighted arcs = strings as long as the weights
- Nodes = knots
- Pull nodes s, t as far as you can
- At maximum pull, strings corresponding to arcs (u, v) in SP have horizontal projections whose length is exactly $c_{u v}$

Telecom

An internet provider used historical data to estimate a traffic matrix $T=\left(T_{i j}\right)$, such that $T_{i j}$ is the typical demand between two nodes i, j of its network digraph $G=(V, A)$. It has a contract with the backbone provider that limits the capacity (in Gbs) on each arc $(i, j) \in A$ to $c_{i j}$; the same contract also regulates the cost per Gbs, set to $\gamma_{i j}$

Model the problem offinding the feasible multiflow of minimum cost that satisfies each demand between source and destination.

Logistics

A truck-based transportation company needs to plan the routes for the incoming week. The demands are given as a list $\left(\left(s_{k}, t_{k}, d_{k}\right) \mid k \leq r\right)$ where d_{k} trucks have to be dispatched from node s_{k} to node t_{k}. The capacities $c_{u v}$ on the $\operatorname{arcs}(u, v) \in$ A are estimated using traffic data, and the operations cost are estimated to $100 \$$ per Km.

1. Model the problem, assuming the company has enough trucks to cover every demand
2. Adjust the problem to the situation where the company has sufficient trucks to satisfy halfof the total demand, and has to rent the others: the operations costs for the rented trucks are 200\$ per Km.
3. Suggest a way to efficiently compute a lower bound on the total cost.

Air courier

> The air branch of a shipping company uses a fleet of Boeing 777s and 747s cargo to serve the EMEA demands. A 777 can carry 653 m^{3} in volume and 103 tonnes (t) in weight. A 747 can carry 854.5 m^{3} and $134.2 t$. Each freighter is dedicated to a single segment (origin to destination airport and back once a day: both flights happen within the same 24 hours). The demand matrix is extremely fine-grained, and consists of all order IDs (packages) for the week, with origin and destination airports, weight and volume. The network consists of airports, linked by the segments that are actually flown. The per-mile cost offlying is a linearly increasingfunction of the loaded weight (the two functions are different for 777 and 747). Flights can leave empty (in which case the company subcontracts the flight); company policy states that, ifloaded, the loaded volume has to fill at least half the capacity. Model the corresponding variant of the multicommodity flow problem.

Air courier: .mod file

```
## airports
set Airports;
param Dist{Airports, Airports} >= 0, default Uniform(100,2000);
## aircrafts
set AircraftTypes;
# max volume per aircraft type
param AV{AircraftTypes} >= 0;
# max weight per aircraft type
param AW{AircraftTypes} >= 0;
# cost per mile per aircraft type
param ACpM{AircraftTypes} >= 0;
# number of flights on the time horizon
param DaysMax := 7;
set Days := 1..DaysMax;
```


Air courier: .mod file

```
## flight segment network
set Segments within {Airports, Airports};
param Aircraft{Segments} symbolic;
param VolumeCap{(u,v) in Segments} >= 0, default DaysMax*AV[Aircraft[u,v]];
param WeightCap{(u,v) in Segments} >= 0, default DaysMax*AW[Aircraft[u,v]];
param ArcCost{(u,v) in Segments} default ACpM[Aircraft[u,v]]*Dist[u,v];
## fine-grained demand
param Dmax;
set Demand;
param Volume{Demand} >= 0;
param Weight{Demand} >= 0;
param Orig{Demand} symbolic;
param Dest{Demand} symbolic;
## aggregated demand
set D within {Airports,Airports};
param dV{D} >= 0, default 0;
param dW{D} >= 0, default 0;
```


Air courier: .mod file

\#\# decision variables
\# volume (unsplittable) flow
var V\{Segments,D\} binary;
\# weight (unsplittable) flow
var W\{Segments,D\} binary;
\# whether a flight leaves empty
var E\{Segments,Days\} binary;
\#\# objective function
minimize cost:
$\operatorname{sum}\{(\mathrm{h}, \mathrm{k})$ in D , (u,v) in Segments\} ArcCost $[\mathrm{u}, \mathrm{v}] * \mathrm{~W}[\mathrm{u}, \mathrm{v}, \mathrm{h}, \mathrm{k}]$;

Air courier: .mod file

\#\# constraints
\# volume multiflow
subject to volumeFlow\{(h,k) in D, v in Airports $\}:$
sum\{w in Airports: (v,w) in Segments\} V[v,w,h,k] -
sum\{u in Airports: (u,v) in Segments\} V[u,v,h,k] =
if ($v==h$) then 1 else if ($v==k$) then -1 else $0 ;$
subject to volumeCapacity\{(u,v) in Segments\}:
$\operatorname{sum}\{(\mathrm{h}, \mathrm{k})$ in D$\} \mathrm{dV}[\mathrm{h}, \mathrm{k}] * \mathrm{~V}[\mathrm{u}, \mathrm{v}, \mathrm{h}, \mathrm{k}]<=\mathrm{VolumeCap}[\mathrm{u}, \mathrm{v}]$;
\# weight multiflow
subject to weightFlow\{(h,k) in D, v in Airports $\}:$
sum\{w in Airports: (v,w) in Segments\} W[v,w,h,k] sum\{u in Airports: (u,v) in Segments\} W[u,v,h,k] = if ($v==h$) then 1 else if ($v==k$) then -1 else $0 ;$ subject to weightCapacity\{(u,v) in Segments\}: $\operatorname{sum}\{(\mathrm{h}, \mathrm{k})$ in D$\} \mathrm{dW}[\mathrm{h}, \mathrm{k}] * \mathrm{~W}[\mathrm{u}, \mathrm{v}, \mathrm{h}, \mathrm{k}]$ <= WeightCap[u,v];

Air courier: .mod file

\# consistency: can't spread the aggregated flow! subject to consistent $\{(h, k)$ in $D,(u, v)$ in Segments $\}:$
$\mathrm{V}[\mathrm{u}, \mathrm{v}, \mathrm{h}, \mathrm{k}]=\mathrm{W}[\mathrm{u}, \mathrm{v}, \mathrm{h}, \mathrm{k}]$;
\# company policy on non-empty flights (at least half volume) subject to companypolicy1\{(u,v) in Segments\}:
sum\{(h,k) in D\} dV[h,k]*V[u,v,h,k] >=
(0.5*VolumeCap[u,v]/DaysMax)*sum\{t in Days\} E[u,v,t];
subject to companypolicy2\{(u,v) in Segments\}:
$\operatorname{sum}\{(\mathrm{h}, \mathrm{k})$ in D$\} \mathrm{dV}[\mathrm{h}, \mathrm{k}] * \mathrm{~V}[\mathrm{u}, \mathrm{v}, \mathrm{h}, \mathrm{k}]<=$
(VolumeCap[u,v]/DaysMax)*sum\{t in Days\} E[u,v,t];

Air courier: .run file

```
param eps := 1e-6;
model air_courier.mod;
data airports.dat;
data aircrafts.dat;
data segments.dat;
data demands.dat;
# aggregate the fine-grained demand
let D := {};
param orig symbolic;
param dest symbolic;
for {d in Demand} {
    let orig := Orig[d];
    let dest := Dest[d];
    let D := D union {(orig,dest)};
    let dV[orig,dest] := dV[orig,dest] + Volume[d];
    let dW[orig,dest] := dW[orig,dest] + Weight[d];
}
option solver cplex;
solve;
```


Air courier: .run file

```
param curra symbolic;
param nexta symbolic;
param nnext integer, default 0;
if solve_result == "infeasible" then {
    printf "instance is infeasible\n";
} else {
    for {(h,k) in D} {
        printf "demand [%s,%s]: %s", h,k,h;
        let curra := h;
        repeat while(curra != k) {
            let nnext :=
card({v in Airports: (curra,v) in Segments and abs(V[curra,v,h,k]-1)<eps});
            if (nnext != 1) then {
                printf "ERROR: %d next vtx after %d (check absmipgap)\n",curra,nnext;
                break;
            }
            for {v in Airports:(curra,v) in Segments and abs(V[curra,v,h,k]-1)<eps}{
                let nexta := v;
            }
            printf " -(%d)-> %s", sum{t in Days} E[curra,nexta,t], nexta;
            let curra := nexta;
        }
        printf "\n";
    }
}

\section*{Subsection 2}

\section*{Sparsity and \(\ell_{1}\) minimization}

\section*{Coding problem 1}
- Need to send sparse vector \(y \in \mathbb{R}^{n}\) with \(n \gg 1\)
1. Sample full rank \(k \times n\) matrix \(A\) with \(k \ll n\) preliminary: both parties know \(A\)
2. Encode \(b=A y \in \mathbb{R}^{k}\)
3. Send \(b\)
- Decode by finding sparsest \(x\) s.t. \(A x=b\)

\section*{Coding problem 2}
- Need to send a sequence \(w \in \mathbb{R}^{k}\)
- Encoding \(n \times k\) matrix \(Q\), with \(n \gg k\), send \(z=Q w \in \mathbb{R}^{n}\) preliminary: both parties know \(Q\)
- (Low) prob. e of error: e \(n\) comp. of \(z\) sent wrong they can be totally off
- Receive (wrong) vector \(\bar{z}=z+x\) where \(x\) is sparse
- Can we recover \(z\) ?
- Choose \(k \times n\) matrix \(A\) s.t. \(A Q=0\)
- Let \(b=A \bar{z}=A(z+x)=A(Q w+x)=A Q w+A x=A x\)
- Suppose we can find sparsest \(x^{\prime}\) s.t. \(A x^{\prime}=b\)
- \(\Rightarrow\) we can recover \(z^{\prime}=\bar{z}-x^{\prime}\)
- Recover \(w^{\prime}=\left(Q^{\top} Q\right)^{-1} Q^{\top} z^{\prime}\)

Likelihood of getting small \(\left\|w-w^{\prime}\right\|\) ?

\section*{Sparsest solution of a linear system}
- Problem min \(\left\{\|x\|_{0} \mid A x=b\right\}\) is NP-hard

Reduction from Ехact Cover by 3-Sets [Garey\&Johnson 1979, A6[MP5]]
- Relax to \(\min \left\{\|x\|_{1} \mid A x=b\right\}\)
- Reformulate to LP:
\[
\left.\begin{array}{rrll}
\min & \sum_{j \leq n} & s_{j} & \\
\forall j \leq n & -s_{j} \leq & x_{j} & \leq s_{j} \\
& A x & = & b
\end{array}\right\}
\]
- Empirical observation: can often find optimum

Too often for this to be a coincidence
- Theoretical justification by Candès, Tao, Donoho "Mathematics of sparsity", "Compressed sensing"

\section*{Graphical intuition 1}

- Wouldn't work with \(\ell_{2}, \ell_{\infty}\) norms
\[
A x=b \text { flat at poles -"zero probability of sparse solution" }
\]

\section*{Graphical intuition 2}

\[
p=1
\]

\(p=2\)

\(p=\infty\)

\(p=\frac{1}{2}\)
- \(\hat{x}\) such that \(A \hat{x}=b\) approximates \(x\) in \(\ell_{p}\) norms
- \(p=1\) only convex case zeroing some components

\section*{Not for the faint-hearted}
1. Hand, Voroninski:
arxiv.org/pdf/1611.03935v1.pdf
2. Candès and Tao:
statweb.stanford.edu/~candes/papers/DecodingLP.pdf
3. Candès:
statweb.stanford.edu/~candes/papers/ICM2014.pdf
4. Davenport et al.:
statweb.stanford.edu/~markad/publications/ ddek-chapter1-2011.pdf
5. Lustig et al.:
people.eecs.berkeley.edu/~\({ }^{\sim}\) mlustig/CS/CSMRI.pdf
6. and many more (look for "compressed sensing")

\section*{Subsection 3}

\section*{Random projections}

\section*{The gist}
- Let \(A, b\) be very large, consider LP
\[
\min \left\{c^{\top} x \mid A x=b \wedge x \geq 0\right\}
\]
- T short \& fat normally sampled
- Then
\[
A x=b \wedge x \geq 0 \Leftrightarrow T A x=T b \wedge x \geq 0
\]
with high probability

\section*{Linear feasibility with constrained multipliers}

Restricted Linear Membership ( RLM \(_{X}\) )
Given \(A_{1}, \ldots, A_{n}, b \in \mathbb{R}^{m}\) and \(X \subseteq \mathbb{R}^{n}, \exists\) ? \(x \in X\) s.t.
\[
b=\sum_{i \leq n} x_{i} A_{i}
\]
- Linear Feasibility Problem (LFP) with \(X=\mathbb{R}_{+}^{n}\)
- Integer Feasibility Problem (IFP) with \(X=\mathbb{Z}_{+}^{n}\)

\section*{The shape of a set of points}
- Lose dimensions but not too much accuracy Given \(A_{1}, \ldots, A_{n} \in \mathbb{R}^{m}\) find \(k \ll m\) and points \(A_{1}^{\prime}, \ldots, A_{n}^{\prime} \in \mathbb{R}^{k}\) s.t. \(A\) and \(A^{\prime}\) "have almost the same shape"
-What is the shape of a set of points?

congruent sets have the same shape
- Approximate congruence \(\Leftrightarrow\) distortion: \(A, A^{\prime}\) have almost the same shape if
\(\forall i<j \leq n \quad(1-\varepsilon)\left\|A_{i}-A_{j}\right\| \leq\left\|A_{i}^{\prime}-A_{j}^{\prime}\right\| \leq(1+\varepsilon)\left\|A_{i}-A_{j}\right\|\)
for some small \(\varepsilon>0\)

\section*{Losing dimensions in the RLM}

Given \(X \subseteq \mathbb{R}^{n}\) and \(b, A_{1}, \ldots, A_{n} \in \mathbb{R}^{m}\), find \(k \ll m\), \(b^{\prime}, A_{1}^{\prime}, \ldots, A_{n}^{\prime} \in \mathbb{R}^{k}\) such that:
\[
\underbrace{\exists x \in X b=\sum_{i \leq n} x_{i} A_{i}}_{\text {highd dimensional }} \quad \text { iff } \quad \underbrace{\exists x \in X b^{\prime}=\sum_{i \leq n} x_{i} A_{i}^{\prime}}_{\text {low dimensional }}
\]
with high probability

\section*{Losing dimensions \(=\) "projection"}

\author{
In the plane, hopeless
}


In 3D: no better

\section*{Johnson-Lindenstrauss Lemma}

Thm.
Given \(A \subseteq \mathbb{R}^{m}\) with \(|A|=n\) and \(\varepsilon>0\) there is \(k \sim O\left(\frac{1}{\varepsilon^{2}} \ln n\right)\) and a \(k \times m\) matrix \(T\) s.t.
\(\forall x, y \in A \quad(1-\varepsilon)\|x-y\| \leq\|T x-T y\| \leq(1+\varepsilon)\|x-y\|\)

If \(k \times m\) matrix \(T\) is sampled componentwise from \(N\left(0, \frac{1}{\sqrt{k}}\right)\), then \(A\) and \(T A\) have almost the same shape

\section*{Sketch of a JLL proof by pictures}


\section*{Sampling to desired accuracy}
- Distortion has low probability:
\[
\begin{array}{ll}
\forall x, y \in A & \mathbf{P}(\|T x-T y\| \leq(1-\varepsilon)\|x-y\|) \leq \frac{1}{n^{2}} \\
\forall x, y \in A & \mathbf{P}(\|T x-T y\| \geq(1+\varepsilon)\|x-y\|) \leq \frac{1}{n^{2}}
\end{array}
\]
- Probability \(\exists\) pair \(x, y \in A\) distorting Euclidean distance: union bound over \(\binom{n}{2}\) pairs
\[
\begin{aligned}
\mathbf{P}(\neg(A \text { and } T A \text { have almost the same shape })) & \leq\binom{ n}{2} \frac{2}{n^{2}}=1-\frac{1}{n} \\
\mathbf{P}(A \text { and } T A \text { have almost the same shape }) & \geq \frac{1}{n}
\end{aligned}
\]
\(\Rightarrow\) re-sampling \(T\) gives JLL with arbitrarily high probability

\section*{In practice}
- Empirically, sample \(T\) very few times (e.g. once will do!'
on average \(\|T x-T y\| \approx\|x-y\|\), and distortion decreases exponentially with \(n\)

We only need a logarithmic number of dimensions in function of the number of points

Surprising fact:
\(k\) is independent of the original number of dimensions \(m\)

\section*{Projecting feasibility}

\section*{Projecting infeasibility (easy cases)}

Thm.
\(T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}\) a JLL random projection, \(b, A_{1}, \ldots, A_{n} \in \mathbb{R}^{m}\) a RLM \(_{X}\) instance. For any given vector \(x \in X\), we have:
(i) If \(b=\sum_{i=1}^{n} x_{i} A_{i}\) then \(T b=\sum_{i=1}^{n} x_{i} T A_{i}\)
(ii) If \(b \neq \sum_{i=1}^{n} x_{i} A_{i}\) then \(\mathbf{P}\left(T b \neq \sum_{i=1}^{n} x_{i} T A_{i}\right) \geq 1-2 e^{-\mathcal{C} k}\)
(iii) If \(b \neq \sum_{i=1}^{n} y_{i} A_{i}\) for all \(y \in X \subseteq \mathbb{R}^{n}\), where \(|X|\) is finite, then
\[
\mathbf{P}\left(\forall y \in X T b \neq \sum_{i=1}^{n} y_{i} T A_{i}\right) \geq 1-2|X| e^{-\mathcal{C} k}
\]
for some constant \(\mathcal{C}>0\) (independent of \(n, k\) ).

\section*{Separating hyperplanes}

When \(|X|\) is large, project separating hyperplanes instead
- Convex \(C \subseteq \mathbb{R}^{m}, x \notin C\) : then \(\exists\) hyperplane \(c\) separating \(x, C\)
- In particular, true if \(C=\operatorname{cone}\left(A_{1}, \ldots, A_{n}\right)\) for \(A \subseteq \mathbb{R}^{m}\)
- We can show \(x \in C \Leftrightarrow T x \in T C\) with high probability
- As above, if \(x \in C\) then \(T x \in T C\) by linearity of \(T\) Difficult part is proving the converse

We can also project point-to-cone distances

\section*{Projecting the separation}

Thm.
Given \(c, b, A_{1}, \ldots, A_{n} \in \mathbb{R}^{m}\) of unit norm s.t. \(b \notin \operatorname{cone}\left\{A_{1}, \ldots, A_{n}\right\}\) pointed, \(\varepsilon>0\), \(c \in \mathbb{R}^{m}\) s.t. \(c^{\top} b<-\varepsilon, c^{\top} A_{i} \geq \varepsilon(i \leq n)\), and \(T\) a random projector:
\[
\mathbf{P}\left[T b \notin \operatorname{cone}\left\{T A_{1}, \ldots, T A_{n}\right\}\right] \geq 1-4(n+1) e^{-\mathcal{C}\left(\varepsilon^{2}-\varepsilon^{3}\right) k}
\]
for some constant \(\mathcal{C}\).

\section*{Proof}

Let \(\mathscr{A}\) be the event that \(T\) approximately preserves \(\|c-\chi\|^{2}\) and \(\|c+\chi\|^{2}\) for all \(\chi \in\) \(\left\{b, A_{1}, \ldots, A_{n}\right\}\). Since \(\mathscr{A}\) consists of \(2(n+1)\) events, by the JLL Corollary (squared version) and the union bound, we get
\[
\mathbf{P}(\mathscr{A}) \geq 1-4(n+1) e^{-\mathcal{C}\left(\varepsilon^{2}-\varepsilon^{3}\right) k}
\]

Now consider \(\chi=b\)
\[
\begin{aligned}
\langle T c, T b\rangle & =\frac{1}{4}\left(\|T(c+b)\|^{2}-\|T(c-b)\|^{2}\right) \\
\text { by JLL } & \leq \frac{1}{4}\left(\|c+b\|^{2}-\|c-b\|^{2}\right)+\frac{\varepsilon}{4}\left(\|c+b\|^{2}+\|c-b\|^{2}\right) \\
& =c^{\top} b+\varepsilon<0
\end{aligned}
\]
and similarly \(\left\langle T c, T A_{i}\right\rangle \geq 0\)

\section*{The feasibility projection theorem}

Thm.
Given \(\delta>0, \exists\) sufficiently large \(m \leq n\) such that:
for any LFP input \(A, b\) where \(A\) is \(m \times n\)
we can sample a random \(k \times m\) matrix \(T\) with \(k \ll m\) and
\(\mathbf{P}(\) orig. LFP feasible \(\Longleftrightarrow\) proj. LFP feasible \() \geq 1-\delta\)

\section*{Projecting optimality}

\section*{Notation}
- \(P \equiv \min \{c x \mid A x=b \wedge x \geq 0\}\) (original problem)
- \(T P \equiv \min \{c x \mid T A x=T b \wedge x \geq 0\}\) (projected problem)
- \(v(P)=\) optimal objective function value of \(P\)
- \(v(T P)=\) optimal objective function value of \(T P\)

\section*{The optimality projection theorem}
- Assume feas \((P)\) is bounded
- Assume all optima of \(P\) satisfy \(\sum_{j} x_{j} \leq \theta\) for some given \(\theta>0\)
(prevents cones from being "too flat")
Thm.
Given \(\delta>0\),
\[
v(P)-\delta \leq v(T P) \leq v(P)
\]
holds with arbitrarily high probability (w.a.h.p.)
in fact (*) holds with prob. \(1-4 n e^{-\mathcal{C}\left(\varepsilon^{2}-\varepsilon^{3}\right) k}\) where \(\varepsilon=\delta /(2(\theta+1) \eta)\) and \(\eta=O\left(\|y\|_{2}\right)\) where \(y\) is a dual optimal solution of \(P\) having minimum norm

\section*{The easy part}

Show \(v(T P) \leq v(P)\) :
- Constraints of \(P: A x=b \wedge x \geq 0\)
- Constraints of \(T P: T A x=T b \wedge x \geq 0\)
- \(\Rightarrow\) constraints of \(T P\) are lin. comb. of constraints of \(P\)
- \(\Rightarrow\) any solution of \(P\) is feasible in \(T P\)
(btw, the converse holds almost never)
- \(P\) and \(T P\) have the same objective function
- \(\Rightarrow T P\) is a relaxation of \(P \Rightarrow v(T P) \leq v(P)\)

\section*{The hard part (sketch)}
- Eq. (4) equivalent to \(P\) for \(\delta=0\)
\[
\left.\begin{array}{rl}
c x & =v(P)-\delta  \tag{4}\\
A x & =b \\
x & \geq 0
\end{array}\right\}
\]

Note: for \(\delta>0\), Eq. (4) is infeasible
- By feasibility projection theorem,
\[
\left.\begin{array}{rl}
c x & =v(P)-\delta \\
T A x & =T b \\
x & \geq 0
\end{array}\right\}
\]
is infeasible w.a.h.p. for \(\delta>0\)
- Hence \(c x<v(P)-\delta \wedge T A x=T b \wedge x \geq 0\) infeasible w.a.h.p.
- \(\Rightarrow c x \geq v(P)-\delta\) holds w.a.h.p. for \(x \in\) feas \((T P)\)
- \(\Rightarrow v(P)-\delta \leq v(T P)\)

\section*{Solution retrieval}

\section*{Projected solutions are infeasible in \(P\)}
- \(A x=b \Rightarrow T A x=T b\) by linearity
- However, Thm.
For \(x \geq 0\) s.t. \(T A x=T b, A x=b\) with probability zero
- Can't get solution for original LFP using projected LFP!

\section*{Solution retrieval from optimal basis}
- Primal \(\min \left\{c^{\top} x \mid A x=b \wedge x \geq 0\right\} \Rightarrow\) \(\underline{\text { dual }} \max \left\{b^{\top} y \mid A^{\top} y \leq c\right\}\)
- Let \(x^{\prime}=\operatorname{sol}(T P)\) and \(y^{\prime}=\operatorname{sol}(\operatorname{dual}(T P))\)
- \(\Rightarrow(T A)^{\top} y^{\prime}=\left(A^{\top} T^{\top}\right) y^{\prime}=A^{\top}\left(T^{\top} y^{\prime}\right) \leq c\)
- \(\Rightarrow T^{\top} y^{\prime}\) is a solution of dual \((P)\)
- \(\Rightarrow\) we can compute an optimal basis \(J\) for \(P\)
- Solve \(A_{J} x_{J}=b\), get \(x_{J}\), obtain a solution \(x^{*}\) of \(P\)

\section*{Solving large quantile regression LPs}

\section*{Regression}
- multivariate random var. \(X\)
function \(y=f(X)\)
sample \(\left\{\left(a_{i}, b_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R} \mid i \leq m\right\}\)
- sample mean:
\[
\hat{\mu}=\underset{\mu \in \mathbb{R}}{\arg \min } \sum_{i \leq m}\left(b_{i}-\mu\right)^{2}
\]
- sample mean conditional to \(X=A=\left(a_{i j}\right)\) :
\[
\hat{\nu}=\underset{\nu \in \mathbb{R}^{p}}{\arg \min } \sum_{i \leq m}\left(b_{i}-\nu a_{i}\right)^{2}
\]

\section*{Quantile regression}
- sample median:
\[
\begin{aligned}
\hat{\xi} & =\underset{\xi \in \mathbb{R}}{\arg \min } \sum_{i \leq m}\left|b_{i}-\xi\right| \\
& =\underset{\xi \in \mathbb{R}}{\arg \min } \sum_{i \leq m}\left(\frac{1}{2} \max \left(b_{i}-\xi, 0\right)-\frac{1}{2} \min \left(b_{i}-\xi, 0\right)\right)
\end{aligned}
\]
- sample \(\tau\)-quantile:
\[
\hat{\xi}=\underset{\xi \in \mathbb{R}}{\arg \min } \sum_{i \leq m}\left(\tau \max \left(b_{i}-\xi, 0\right)-(1-\tau) \min \left(b_{i}-\xi, 0\right)\right)
\]
- sample \(\tau\)-quantile conditional to \(X=A=\left(a_{i j}\right)\) :
\[
\hat{\beta}=\underset{\beta \in \mathbb{R}^{p}}{\arg \min } \sum_{i \leq m}\left(\tau \boldsymbol{\operatorname { m a x }}\left(b_{i}-\beta a_{i}, 0\right)-(1-\tau) \min \left(b_{i}-\beta a_{i}, 0\right)\right)
\]

\section*{Usefulness}


\section*{Linear Programming formulation}
\[
\left.\min \begin{array}{rl}
\tau u^{+}+(1-\tau) u^{-} & \\
& A\left(\beta^{+}-\beta^{-}\right)+u^{+}-u^{-} \\
& =b \\
\beta, u & \geq 0
\end{array}\right\}
\]
- parameters: \(A\) is \(m \times p, b \in \mathbb{R}^{m}, \tau \in \mathbb{R}\)
- decision variables: \(\beta^{+}, \beta^{-} \in \mathbb{R}^{p}, u^{+}, u^{-} \in \mathbb{R}^{m}\)
- LP constraint matrix is \(m \times(2 p+2 m)\) density: \(p /(p+m)\) - can be high

\section*{Large datasets}
- Russia Longitudinal Monitoring Survey, household data (hh1995f)
- \(m=3783, p=855\)
- \(A=\operatorname{hf1995f}, b=\log \operatorname{avg}(A)\)
- \(18.5 \%\) dense
- poorly scaled data, CPLEX yields infeasible (!!!) after around 70s CPU
- quantreg in R fails
- 14596 RGB photos on my HD, scaled to \(90 \times 90\) pixels
- \(m=14596, p=24300\)
- each row of \(A\) is an image vector, \(b=\sum A\)
- \(62.4 \%\) dense
- CPLEX killed by OS after \(\approx 30 \mathrm{~min}\) (presumably for lack of RAM) on 16GB

\section*{Results on laroe datasets}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Instance} & \multicolumn{4}{|c|}{Projection} & \multicolumn{3}{|c|}{Original} \\
\hline \(\tau\) & \(m\) & \(p\) & \(k\) & opt & CPU & feas & opt & CPU & qut err \\
\hline \multicolumn{10}{|c|}{hh1995f} \\
\hline 0.25 & 3783 & 856 & 411 & 0.00 & 8.53 & 0.038\% & 71.34 & 17.05 & 0.16 \\
\hline 0.50 & & & & 0.00 & 8.44 & 0.035\% & 89.17 & 15.25 & 0.05 \\
\hline 0.75 & & & & 0.00 & 8.46 & 0.041\% & 65.37 & 31.67 & 3.91 \\
\hline \multicolumn{10}{|c|}{jpegs} \\
\hline 0.25 & 14596 & 24300 & 506 & 0.00 & 231.83 & 0.51\% & 0.00 & \(3.69 \mathrm{E}+5\) & 0.04 \\
\hline 0.50 & & & & 0.00 & 227.54 & 0.51\% & 0.00 & \(3.67 \mathrm{E}+5\) & 0.05 \\
\hline 0.75 & & & & 0.00 & 228.57 & 0.51\% & 0.00 & \(3.68 \mathrm{E}+5\) & 0.05 \\
\hline & \multicolumn{9}{|c|}{random} \\
\hline 0.25 & 1500 & 100 & 363 & 0.25 & 2.38 & 0.01\% & 1.06 & 6.00 & 0.00 \\
\hline 0.50 & & & & 0.40 & 2.51 & 0.01\% & 1.34 & 6.01 & 0.00 \\
\hline 0.75 & & & & 0.25 & 2.57 & 0.01\% & 1.05 & 5.64 & 0.00 \\
\hline 0.25 & 2000 & 200 & 377 & 0.35 & 4.29 & 0.01\% & 2.37 & 21.40 & 0.00 \\
\hline 0.50 & & & & 0.55 & 4.37 & 0.01\% & 3.10 & 23.02 & 0.00 \\
\hline 0.75 & & & & 0.35 & 4.24 & 0.01\% & 2.42 & 21.99 & 0.00 \\
\hline
\end{tabular}
\[
\begin{aligned}
\text { feas } & =100 \frac{\|A x-b\|_{2}}{\|b\|_{1} / m} \\
\text { qnterr } & =\frac{\| \text { qnt }- \text { proj. qnt } \|_{2}}{\# \text { cols }}
\end{aligned}
\]

IPM with no simplex crossover: solution w/o opt. guarantee cannot trust results
simplex method won't work due to ill-scaling and size

\section*{Section 6}

\section*{Interlude: Clustering in Natural \\ Language}

\section*{\(\mathrm{C} * \mathrm{Os}\)}

What you hear
- We optimized our strategy (CEO)
- We optimized our revenues (CFO)
- We optimized our processes (CTO)
- We optimized our operation (COO)

\section*{\(\mathrm{C} * \mathrm{Os}_{s}\)}

What you hear
- We optimized our strategy (CEO)
- We optimized our revenues (CFO)
- We optimized our processes (CTO)
- We optimized our operation (COO)
- Oh yes we can do big data (CIO)

\section*{\(\mathrm{C} * \mathrm{Os}\)}

What you hear
- We optimized our strategy (CEO)
- We optimized our revenues (CFO)
- We optimized our processes (CTO)
- We optimized our operation (COO)

- Oh yes we can do big data (CIO)

\section*{What they mean}

We keep changing everything so that investors will mistake our wasteful dynamism for growth

\section*{Something else they mean}
- Departments are compartimentalized
- Every division is a separate legal entity
- Customers must pay to contact the firm
- The firm heavily invests in IBM Watson Technologies


\section*{And their reasons}
- Departments are compartimentalized so they can blame each other when they fuck up
- Every division is a separate legal entity so complaining customers must address divisions separately
- Customers must pay to contact the firm so no-one will complain
- The firm heavily invests in IBM Watson Technologies so insistent customers will only ever talk to a computer


\section*{I may be overly optimistic}
- Departments are compartimentalized as a result of internal fights
- Every division is a separate legal entity because of a recent merge
- Customers must pay to contact the firm as the firm has no other revenue
- The firm heavily invests in IBM Watson Technologies because the CIO heard it's fashionable


\section*{Job offers}

Optimisation / Operations Senior Manager
VINCI Airports
Rueil-Malmaison, île-de-France, France
...for the delivery of the various optimization projects... to the success of each optimization project...

Pricing Data Scientist/Actuary - Price Optimization Specialist(H-F)
AXA Global Direct
Région de Paris, France
...optimization. The senior price optimization... Optimization and Innovation team, and will be part...

Growth Data scientist - Product Features Team
Deezer
Paris, FR
OverviewPress play on your next adventure! Music... to join the Product Performance \& Optimization team... www.deezer.com

Analystes et Consultants - Banque -Optimisation des opérations financières... Accenture
Région de Paris, France
Nous recherchons des analystes jeunes diplômés et des consultants \(\mathrm{H} / \mathrm{F}\) désireux de travailler sur des problématiques d'optimisation des opérations bancaires (optimisation des modèles opérationnels et des processus) en France et au Benelux. Les postes sont à pourvoir en CDI, sur base d'un rattachement...

\section*{Electronic Health Record (EHR) Coordinator (Remote)}

Aledade, Inc. - Bethesda, MD
Must have previous implementation or optimization experience with ambulatory EHRs and practice management software, preferably with expertise in Greenway,...

\section*{Operations Research Scientist}

Strong knowledge of optimization techniques (e.g. Develop optimization frameworks to support models related to mobility solution, routing problem, pricing and...

\section*{IS\&T Controller}

ALSTOM
Alstom
Saint-Ouen, FR
The Railway industry today is characterized... reviews, software deployment optimization, running....jobsearch.alstom.com

Fares Specialist / Spécialiste Optimisation des Tarifs Aériens
Egencia, an Expedia company
Courbevoie -FR
EgenciaChaque année, Egencia accompagne des milliers de sociétés réparties dans plus de 60 pays à mieux gérer leurs programmes de voyage. Nous proposons des solutions modernes et des services d'exception à des millions de voyageurs, de la planification à la finalisation de leur voyage. Nous répondons...


Automotive HMI Software Experts or Software Engineers
Elektrobit (EB)
Paris Area, France
Elektrobit Automotive offers in Paris interesting.... performances and optimization area, and/or software...

Deployment Engineer, Professional Services, Google Cloud
Google
Paris, France
Note: By applying to this position your... migration, network optimization, security best...

\section*{Operations Research Scientist}

Marriott International, Inc Analyzes data and builds optimization,. Programming models and familiarity with optimization software (CPLEX, Gurobi)....

\section*{Research Scientist - AWS New Artificial Intelligence Team!}
/Research Scientist - AWS New Artificial Intelligence Team! əviews - Palo Alto, CA
We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center...

\section*{An exanne}

Under the responsibility of the Commercial Director, the Optimisation / Operations Senior Manager will have the responsibility to optimise and develop operational aspects for VINCI Airports current and future portfolio of airports. They will also be responsible for driving forward and managing key optimisation projects that assist the Commercial Director in delivering the objectives of the Technical Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial Director in the development and implementation of plans, strategies and reporting processes. As part of the exercise of its function, the Optimisation Manager will undertake the following: Identification and development of cross asset synergies with a specific focus on the operations and processing functions of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives of the various technical services agreements, the strategy of the individual airports and the Group. This function will include: Participation in the definition of airport strategy. Definition of this airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various technical services agreements with our airports by developing specific technical competences from the Head Office level. Oversee the management and definition of all optimisation projects. Identification, overview and management of the project managers responsible for the delivery of the various optimization projects at each asset. Construction of good relationships with the key stakeholders, in order to contribute to the success of each optimization project. Development and implementation of the Group optimisation plan. Definition of economic and quality of service criteria, in order to define performance goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the strategies, trends and best practices of the airport industry and other reference industries in terms of the applicability to the optimization plan. Study of the needs and preferences of the passengers, through a continuous process of marketing research at all of the airports within the VINCI Airports portfolio. Development of benchmarking studies in order to evaluate the trends, in international airports or in the local market. Development and participation in the expansion or refurbishment projects of the airports, to assure a correct configuration and positioning of the operational and commercial area that can allow the optimization of the revenues and operational efficiency. Support the Director Business Development through the analysis and opportunity assessment of areas of optimization for all target assets in all bids and the preparation and implementation of the strategic plan once the assets are acquired. Maintain up to date knowledge of market trends and key initiatives related to the operational and commercial aspects of international airports [...]

\section*{Try Natural Language Processing}
- Automated summary
- Relation Extraction
- Named Entity Recognition (NER)
- Keywords

\section*{Automated summary}
./summarize.py job01.txt
They will also be responsible for driving forward and managing key optimisation projects that assist the Commercial Director in delivering the objectives of the Technical Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial Director in the development and implementation of plans, strategies and reporting processes. Identification and development of cross asset synergies with a specific focus on the operations and processing functions of the airport. Construction of good relationships with the key stakeholders, in order to contribute to the success of each optimization project. Definition of economic and quality of service criteria, in order to define performance goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service levels, passenger convenience and harmonization of the non-aeronautical activities. Development of benchmarking studies in order to evaluate the trends, in international airports or in the local market. Maintain up to date knowledge of market trends and key initiatives related to the operational and commercial aspects of international airports. You have a diverse range of experiences working at or with airports across various disciplines such as operations, ground handling, commercial, etc. Demonstrated high level conceptual thinking, creativity and analytical skills.

\section*{Does it help? hard to say}

\section*{Relation Extraction}
```

./relextr-mitie.py job01.txt
======= RELATIONS =======
Optimisation Strategy [INCLUDES_EVENT] VINCI Airports
Self [INCLUDES_EVENT] Head Office
Head Office [INFLUENCED_BY] Self
Head Office [INTERRED_HERE] Self
VINCI Airports [INTERRED_HERE] Optimisation Strategy
Head Office [INVENTIONS] Self
Optimisation Strategy [LOCATIONS] VINCI Airports
Self [LOCATIONS] Head Office
Self [ORGANIZATIONS_WITH_THIS_SCOPE] Head Office
Self [PEOPLE_INVOLVED] Head Office
Self [PLACE_OF_DEATH] Head Office
Head Office [RELIGION] Self
VINCI Airports [RELIGION] Optimisation Strategy
Does it help? hardly

```

\section*{Named Entity Recognition}
./ner-mitie.py job01.txt
==== NAMED ENTITIES =====
English MISC
French MISC
Head Office ORGANIZATION
Optimisation / Operations ORGANIZATION
Optimisation Strategy ORGANIZATION
Self PERSON
Technical Services Agreements MISC
VINCI Airports ORGANIZATION
Does it help? ... maybe
For a document \(D\), let \(\operatorname{NER}(D)=\) named entity words

\section*{Idea}
1. Recognize named entities from all documents
2. Use them to compute distances among documents
3. Use modularity clustering

\section*{The named entities}
1. Operations Head Airports Office VINCI Technical Self French / Strategy Agreements English Services Optimisation
2. Europe and P\&C Work Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA Innovation Coordinate International English
3. Scientist Product Analyze Java Features \& Statistics Science PHP Pig/Hive/Spark Optimization Crunch/analyze Team Press Performance Deezer Data Computer
4. Lean6Sigma Lean-type Office Banking Paris CDI France RPA Middle Accenture English Front Benelux
5. Partners Management Monitor BC Provide Support Sites Regions Mtiers Program Performance market develop Finance \& IS\&T Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector and Alstom Tax Directors Strategic Committee
6. Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia English Fares with Company Inc
7. Paris Integration France Automation Automotive French. Linux/Genivi HMI UI Software EB Architecture Elektrobit technologies GUIDE Engineers German Technology SW well-structured Experts Tools
8. Product Google Managers Python JavaScript AWS JSON BigQuery Java Platform Engineering HTML MySQL Services Professional Googles Ruby Cloud OAuth
9. EHR Aledades Provide Wellness Perform ACO Visits EHR-system-specific Coordinator Aledade Medicare Greenway Allscripts
10. Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata \& Python Company GDIA Ford Visa SPARK Data Applied Science Work C++ R Unix/Linux Physics Microsoft Operations Monte JAVA Mobility Insight Analytics Engineering Computer Motor SQL Operation Carlo PowerPoint
11. Management Java CANDIDATE Application Statistics Gurobi Provides Provider Mathematics Service Maintains Deliver SM\&G SAS/HPF SAS Data Science Economics Marriott PROFILE Providers OR Engineering Computer SQL Education
12. Alto Statistics Java Sunnyvale Research ML Learning Science Operational Machine Amazon Computer C++ Palo Internet R Seattle
13. LLamasoft Work Fortune Chain Supply C\# Top Guru What Impactful Team LLamasofts Makes Gartner Gain
14. Worldwide Customer Java Mosel Service Python Energy Familiarity CPLEX Research Partnering Amazon R SQL CS Operations
15. Operations Science Research Engineering Computer Systems or Build
16. Statistics Italy Broad Coins France Australia Python Amazon Germany SAS Appstore Spain Economics Experience R Research US Scientist UK SQL Japan Economist
17. Competency Statistics Knowledge Employer communication Research Machine EEO United ORMA Way OFCCP Corporation Mining \& C\# Python Visual Studio Opportunity Excellent Modeling Data Jacksonville Arena Talent Skills Science Florida Life Equal AnyLogic Facebook CSX Oracle The Strategy Vision Operations Industrial Stream of States Analytics Engineering Computer Framework Technology
18. Java Asia Research Safety in Europe Activities North Company WestRocks Sustainability America Masters WRK C++ Norcross Optimization GA ILOG South NYSE Operations AMPL CPLEX Identify Participate OPL WestRock
19. Management Federal Administration System NAS Development JMP Traffic Aviation FAA Advanced McLean Center CAASD Flow Air Tableau Oracle MITRE TFM Airspace National SQL Campus
20. Abilities \& Skills 9001-Quality S Management ISO GED
21. Statistics Group RDBMS Research Mathematics Teradata ORSA Greenplum Java SAS U.S. Solution Time Oracle Military Strategy Physics Linear/Non-Linear Operations both Industrial Series Econometrics Engineering Clarity Regression

127/246

\section*{Word similarity: WordNet}


\section*{WordNet: hyponyms of "boat"}


\section*{Wu-Palmer word similarity}

Semantic WordNet distance between words \(w_{1}, w_{2}\)
\[
\operatorname{wup}\left(w_{1}, w_{2}\right)=\frac{2 \operatorname{depth}\left(\operatorname{lcs}\left(w_{1}, w_{2}\right)\right)}{\operatorname{len}\left(\operatorname{shortest} \_\operatorname{path}\left(w_{1}, w_{2}\right)\right)+2 \operatorname{depth}\left(\operatorname{lcs}\left(w_{1}, w_{2}\right)\right)}
\]
- lcs: lowest common subsumer
earliest common word in paths from both words to WordNet root
- depth: length of path from root to word

\section*{Example: wup(dog, boat)?}
depth ( whole ) \(=4\)
18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate
-> chordate -> animal -> organism -> living_thing -> whole -> artifact
-> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat
13 -> dog -> domestic_animal -> animal -> organism -> living_thing
-> whole -> artifact -> instrumentality -> conveyance -> vehicle
-> craft -> vessel -> boat
\[
\operatorname{wup}(\operatorname{dog}, \text { boat })=8 / 21=0.380952380952
\]

\section*{Extensions of Wu-Palmer similarity}
- to lists of words \(H, L\) :
\[
\operatorname{wup}(H, L)=\frac{1}{|H||L|} \sum_{v \in H} \sum_{w \in L} \operatorname{wup}(v, w)
\]
- to pairs of documents \(D_{1}, D_{2}\) :
\[
\operatorname{wup}\left(D_{1}, D_{2}\right)=\operatorname{wup}\left(\operatorname{NER}\left(D_{1}\right), \operatorname{NER}\left(D_{2}\right)\right)
\]
- wup and its extensions are always in \([0,1]\)

\section*{The similarity matrix}


\section*{The similarity matrix}

Too uniform! Try zeroing values below median
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ( 1.00 & 0.63 & 0.5 & 0.51 & 0.66 & 0.45 & 0.46 & 0.47 & 0.72 & 0.58 & 0.54 & 0.50 & 0.72 & 0.49 & 0.47 & & 0.44 & 0.54 & & 0.44 \\
\hline 0.63 & 1.00 & 0.45 & 0.45 & 0.54 & & & & 0.57 & 0.49 & 0.46 & 0.45 & 0.59 & & & & & 0.47 & & \\
\hline 0.51 & 0.45 & 1.00 & & 0.53 & & & & 0.58 & 0.47 & & & 0.59 & & & & & & & \\
\hline 0.51 & 0.45 & & 1.00 & 0.63 & 0.45 & 0.46 & 0.46 & 0.67 & 0.56 & 0.52 & 0.49 & 0.68 & 0.48 & 0.47 & 0.47 & 0.45 & 0.53 & & 0.44 \\
\hline 0.66 & 0.54 & 0.53 & 0.63 & 1.00 & & & & 0.49 & & & & 0.50 & & & & & & & \\
\hline 0.45 & & & 0.45 & & 1.00 & & & 0.66 & 0.54 & 0.49 & 0.45 & 0.67 & 0.44 & & & & 0.49 & & \\
\hline 0.46 & & & 0.46 & & & 1.00 & 0.44 & 0.66 & 0.54 & 0.49 & 0.47 & 0.67 & 0.45 & 0.45 & 0.44 & & 0.50 & & \\
\hline 0.47 & & & 0.46 & & & 0.44 & 1.00 & 0.67 & 0.55 & 0.51 & 0.48 & 0.68 & 0.47 & 0.45 & 0.45 & & 0.51 & & \\
\hline 0.72 & 0.57 & 0.58 & 0.67 & 0.49 & 0.66 & 0.66 & 0.67 & 1.00 & & & & & & & & & & & \\
\hline 0.58 & 0.49 & 0.47 & 0.56 & & 0.54 & 0.54 & 0.55 & & 1.00 & 0.46 & 0.43 & 0.59 & & & & & 0.46 & & \\
\hline 0.54 & 0.46 & & 0.52 & & 0.49 & 0.49 & 0.51 & & 0.46 & 1.00 & & 0.56 & & & & & & & \\
\hline 0.50 & 0.45 & & 0.49 & & 0.45 & 0.47 & 0.48 & & 0.43 & & 1.00 & 0.70 & 0.50 & 0.49 & 0.48 & 0.46 & 0.54 & & 0.46 \\
\hline 0.72 & 0.59 & 0.59 & 0.68 & 0.50 & 0.67 & 0.67 & 0.68 & & 0.59 & 0.56 & 0.70 & 1.00 & & & & & & & \\
\hline & & & & & & & & & & & & 1.00 & 0.48 & 0.45 & 0.46 & & 0.52 & & 0.43 \\
\hline 0.49 & & & 0.48 & & 0.44 & 0.45 & 0.47 & & & & 0.50 & 0.48 & 1.00 & & & & 0.45 & & \\
\hline 0.47 & & & 0.47 & & & 0.45 & 0.45 & & & & 0.49 & - 0.45 & & 1.00 & 0.48 & 0.46 & 0.54 & & 0.44 \\
\hline 0.47 & & & 0.47 & & & 0.44 & 0.45 & & & & 0.48 & -10.0.46 & & 0.48 & 1.00 & & 0.51 & & \\
\hline 0.44 & & & 0.45 & & & & & & & & 0.46 & & & 0.46 & & 1.00 & 0.53 & & \\
\hline 0.54 & 0.47 & & 0.53 & & 0.49 & 0.50 & 0.51 & & 0.46 & & 0.54 & 0.52 & 0.45 & 0.54 & 0.51 & 0.53 & 1.00 & & 0.46 \\
\hline & & & O. & & & & & & & & & & & & & & & 1.00 & 0.47 \\
\hline 0.44 & & & 0.44 & & & & & & & & 0.46 & -100.43 & & 0.44 & & & 0.46 & 60.47 & 1.00 ) \\
\hline
\end{tabular}

\section*{The graph}

\(G=(V, E)\), weighted adjacency matrix \(A\)
\(A\) is like \(B\) with zeroed low components

\section*{Modularity clustering}
"Modularity is the fraction of the edges that fall within a cluster minus the expected fraction if edges were distributed at random."
- "at random" = random graphs over same degree sequence
- degree sequence \(=\left(k_{1}, \ldots, k_{n}\right)\) where \(k_{i}=|N(i)|\)
- "expected" = all possible "half-edge" recombinations

- expected edges between \(u, v: k_{u} k_{v} /(2 m)\) where \(m=|E|\)
- \(\bmod (u, v)=\left(A_{u v}-k_{u} k_{v} /(2 m)\right)\)
- \(\bmod (G)=\sum_{\{u, v\} \in E} \bmod (u, v) x_{u v}\)
\(x_{u v}=1\) if \(u, v\) in the same cluster and 0 otherwise
- "Natural extension" to weighted graphs: \(k_{u}=\sum_{v} A_{u v}, m=\sum_{u v} A_{u v}\)

\section*{Use modularity to define clustering}
- What is the "best clustering"?
- Maximize discrepancy between actual and expected "as far away as possible from average"
\[
\left.\begin{array}{rl}
\max & \sum_{\{u, v\} \in E} \bmod (u, v) x_{u v} \\
\forall u \in V, v \in V & x_{u v} \in\{0,1\}
\end{array}\right\}
\]
- Issue: trivial solution \(x=1\) "one big cluster"
- Idea: treat clusters as cliques (even if zero weight) then clique partitioning constraints for transitivity
\[
\begin{aligned}
& \forall i<j<k \quad x_{i j}+x_{j k}-x_{i k} \leq 1 \\
& \forall i<j<k \quad x_{i j}-x_{j k}+x_{i k} \leq 1 \\
& \forall i<j<k \quad-x_{i j}+x_{j k}+x_{i k} \leq 1 \\
& \forall\{i, j\} \notin E \quad x_{i j}=0
\end{aligned}
\]
if \(i, j \in C\) and \(j, k \in C\) then \(i, k \in C\)

\section*{The resulting clustering}

cluster 1: job01, job02, job03, job05, job10
cluster 2: job04, job06, job22
cluster 3: job07, job08, jobl1, job12, job20
job27.txt

\section*{Is it good?}
\begin{tabular}{l|l|l|l} 
Vinci & Accenture & Elektrobit & Amazon 1-3 \\
Axa & Expedia & Google & CSX \\
Deezer & fragmentl & Ford & Westrock \\
Alstom & & Marriott & Mitre \\
Aledade & & Llamasoft & \begin{tabular}{l} 
Clarity \\
fragment2
\end{tabular}
\end{tabular}
-? - named entities rarely appear in WordNet
- Desirable property: chooses number of clusters

\section*{Keywords}

Most frequent words \(w\) over collection \(C\) of documents \({ }^{d}\) ./keywords.py
global environment customers strategic processes teams sql job industry use java developing project process engineering field models opportunity drive results statistical based operational performance using mathematical computer new technical highly market company science role dynamic background products level methods design looking modeling manage learning service customer effectively technology requirements build mathematics problems plan services time scientist implementation large analytical techniques lead available plus technologies sas provide machine product functions organization algorithms position model order identify activities innovation key appropriate different complex best decision simulation strategy meet client assist quantitative finance commercial language mining travel chain amazon pricing practices cloud supply
\[
\begin{aligned}
\operatorname{tfidf}_{C}(w, d) & =\frac{|\{t \in d \mid t=w\}||C|}{|\{d \in C \mid w \in d\}|} \\
\operatorname{keyword}_{C}(i, d) & =\text { wordwhaving } i^{\text {th }} \text { best } \operatorname{tfidf}_{C}(w, d) \text { value } \\
\operatorname{vec}_{C}^{m}(d) & =\left(\operatorname{tfidf}_{C}\left(\text { keyword }_{C}(i, d), d\right) \mid i \leq m\right)
\end{aligned}
\]

\section*{Transforms documents to vectors}

\section*{Minimum sum-of-squares clustering}
- MSSC, a.k.a. the \(k\)-means problem
- Given points \(p_{1}, \ldots, p_{n} \in \mathbb{R}^{m}\), find clusters \(C_{1}, \ldots, C_{k}\)
\[
\min \sum_{j \leq k} \sum_{i \in C_{j}}\left\|p_{i}-\operatorname{centroid}\left(C_{j}\right)\right\|_{2}^{2}
\]
where centroid \(\left(C_{j}\right)=\frac{1}{\left|C_{j}\right|} \sum_{i \in C_{j}} p_{i}\)
- \(k\)-means alg. given initial clustering \(C_{1}, \ldots, C_{k}\)

1: \(\forall j \leq k\) compute \(y_{j}=\operatorname{centroid}\left(C_{j}\right)\)
2: \(\forall i \leq n, j \leq k\) if \(y_{j}\) is the closest centr. to \(p_{i}\) let \(x_{i j}=1\) else 0
3: \(\forall j \leq k\) update \(C_{j} \leftarrow\left\{p_{i} \mid x_{i j}=1 \wedge i \leq n\right\}\)
4: repeat until stability

\section*{\(k\)-means with \(k=2\)}
\begin{tabular}{l|r} 
Vinci & AXA \\
Deezer & Alstom \\
Accenture & Elektrobit \\
Expedia & Ford \\
Google & Marriott \\
Aledade & Amazon 1-3 \\
Llamasoft & CSX \\
& WestRock \\
& MITRE \\
& Clarity \\
& fragments 1-2
\end{tabular}

\section*{\(k\)-means with \(k=2:\) another run}
\begin{tabular}{l|r} 
Deezer & Vinci \\
Elektrobit & AXA \\
Google & Accenture \\
Aledade & Alstom \\
& Expedia \\
& Ford \\
& Marriott \\
& Llamasoft \\
& Amazon 1-3 \\
& CSX \\
& WestRock \\
& MITRE \\
& Clarity
\end{tabular}

\section*{\(k\)-means with \(k=2\) : third run!}


A fickle algorithm

\section*{We can't trust \(k\)-means}










\section*{Let's find MSSC's global optimum!}
\[
\left.\begin{array}{rll}
\min _{x, y, s} & \sum_{i \leq n} \sum_{j \leq k}\left\|p_{i}-y_{j}\right\|_{2}^{2} x_{i j} & \\
\forall j \leq k & \frac{1}{s_{j}} \sum_{i \leq n} p_{i} x_{i j} & =y_{j} \\
\forall i \leq n & \sum_{j \leq k} x_{i j} & =1 \\
\forall j \leq k & \sum_{i \leq n} x_{i j} & =s_{j} \\
\forall j \leq k & y_{j} & \in \mathbb{R}^{d} \\
x & \in\{0,1\}^{n k} \\
s & \in \mathbb{N}^{k}
\end{array}\right\} \quad \text { (NSC) }
\]

Nonconvex terms; continuous, binary and integer variables: sounds very difficult!

\section*{Reformulations}

The (MSSC) formulation has the same optima as:
\[
\begin{array}{rlrl}
\min _{x, y, P} & \sum_{i \leq n} \sum_{j \leq k} P_{i j} x_{i j} & \\
\forall i \leq n, j \leq k & \left\|p_{i}-y_{j}\right\|_{2}^{2} & \leq P_{i j} \\
\forall j \leq k & \sum_{i \leq n} p_{i} x_{i j} & =\sum_{i \leq n} y_{j} x_{i j} \\
\forall i \leq n & \sum_{j \leq k} x_{i j} & =1 \\
\forall j \leq k & y_{j} & \in\left[\min _{i \leq n} p_{i a}, \max _{i \leq n} p_{i a} \mid a \leq d\right] \\
x & \in\{0,1\}^{n k} \\
& P & \in\left[0, P^{U}\right]^{n k}
\end{array}
\]
- Only nonconvexities: products of bounded by binary variables
- Caveat: cannot have empty clusters

\section*{Products of binary and continuous vars.}
- Suppose term \(x y\) appears in a formulation
- Assume \(x \in\{0,1\}\) and \(y \in[0,1]\) is bounded
- means "either \(z=0\) or \(z=y\) "
- Replace xy by a new variable z
- Adjoin the following constraints:
\[
\begin{aligned}
z & \in[0,1] \\
y-(1-x) \leq & z \leq y+(1-x) \\
-x \leq & z \leq x
\end{aligned}
\]
- \(\Rightarrow\) Everything's linear now!

\section*{Products of binary and continuous vars.}
- Suppose term \(x y\) appears in a formulation
- Assume \(x \in\{0,1\}\) and \(y \in\left[y^{L}, y^{U}\right]\) is bounded
- means "either \(z=0\) or \(z=y\) "
- Replace xy by a new variable z
- Adjoin the following constraints:
\[
\begin{aligned}
& z \in\left[\min \left(y^{L}, 0\right), \max \left(y^{U}, 0\right)\right] \\
& y-(1-x) \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \leq z \leq y+(1-x) \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \\
&-x \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \leq z \leq x \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \\
& \bullet \Rightarrow \text { Everything's linear now! }
\end{aligned}
\]

\section*{MSSC is a convex MINLP}
\[
\begin{aligned}
& \min _{x, y, P, \chi, \xi} \sum_{i \leq n} \sum_{j \leq k} \chi_{i j} \\
& \forall i \leq n, j \leq k \quad 0 \leq \quad \chi_{i j} \quad \leq P_{i j} \\
& \forall i \leq n, j \leq k \quad P_{i j}-\left(1-x_{i j}\right) P^{U} \leq \quad \chi_{i j} \quad \leq x_{i j} P^{U} \\
& \forall i \leq n, j \leq k \quad\left\|p_{i}-y_{j}\right\|_{2}^{2} \quad \leq \quad P_{i j} \\
& \forall j \leq k \quad \sum_{i \leq n} p_{i} x_{i j} \quad=\quad \sum_{i \leq n} \xi_{i j} \\
& \forall i \leq n, j \leq k \quad y_{j}-\left(1-x_{i j}\right) \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \leq \quad \xi_{i j} \quad \leq y_{j}+\left(1-x_{i j}\right) \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \\
& \forall i \leq n, j \leq k \quad-x_{i j} \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \leq \quad \xi_{i j} \quad \leq x_{i j} \max \left(\left|y^{L}\right|,\left|y^{U}\right|\right) \\
& \forall i \leq n \quad \sum_{j \leq k} x_{i j}=1 \\
& \forall j \leq k \quad y_{j} \quad \in \quad\left[y^{L}, y^{U}\right] \\
& x \in\{0,1\}^{n k} \\
& P \in\left[0, P^{U}\right]^{n k} \\
& \chi \in\left[0, P^{U}\right]^{n k} \\
& \forall i \leq n, j \leq k \quad \xi_{i j} \quad \in \quad\left[\min \left(y^{L}, 0\right), \max \left(y^{U}, 0\right)\right]
\end{aligned}
\]
\(y_{j}, \xi_{i j}, y^{L}, y^{U}\) are vectors in \(\mathbb{R}^{d}\)

\section*{How to solve it}
- Encoding the problem: AMPL
- cMINLP is NP-hard, no efficient algorithm
- Technologically advanced: Branch-and-Bound
- Best (open source) solver: Bonmin
- With \(k=2\), unfortunately... Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution, best possible 6.1855969 ( 32142.17 seconds)
- Interesting feature: the bound guarantees we can't to better than bound all BB algorithms provide it

\section*{Bonmin's first solution}
\begin{tabular}{l|r} 
Alstom & Vinci \\
Elektrobit & AXA \\
Ford & Deezer \\
Llamasoft & Accenture \\
Amazon 2 & Expedia \\
CSX & Google \\
MITRE & Aledade \\
Clarity & Marriott \\
fragment 2 & Amazon 1\&3 \\
& WestRock \\
& fragment 1
\end{tabular}

\section*{Couple of things left to try}
- Approximate \(\ell_{2}\) by \(\ell_{1}\) norm
\(\ell_{1}\) is a linearizable norm
- Randomly project the data
lose dimensions but keep approximate shape

\section*{Linearizing convexity}
- Replace \(\left\|p_{i}-y_{j}\right\|_{2}^{2}\) by \(\left\|p_{i}-y_{j}\right\|_{1}\)
- Warning: optima will change but still within "clustering by distance" principle
\[
\forall i \leq n, j \leq k \quad\left\|p_{i}-y_{j}\right\|_{1}=\sum_{a \leq d}\left|p_{i a}-y_{j a}\right|
\]
- Replace each \(|\cdot|\) term by new vars. \(Q_{i j a} \in\left[0, P^{U}\right]\) Adjust \(P^{U}\) in terms of \(\|\cdot\|_{1}\)
- Adjoin constraints
\[
\begin{aligned}
\forall i \leq n, j \leq k \quad \sum_{a \leq d} Q_{i j a} & \leq P_{i j} \\
\forall i \leq n, j \leq k, a \leq d \quad-Q_{i j a} & \leq p_{i a}-y_{j a} \leq Q_{i j a}
\end{aligned}
\]
- Obtain a MLLP

Most advanced MILP solver: CPLEX

\section*{CPLEX's first solution}
objective 112.24, bound 39.92, in 44.74 s


Interrupted after 281s with bound 59.68

\section*{The magic of random projections}
- Very advanced theoretical framework
- Truly a piece of"mathematics of big data"
- In a nutshell

- Clustering on \(q\) rather than \(p\) yields approx. same results with high probability

\section*{The magic of random projections}
- Very advanced theoretical framework
- Truly a piece of"mathematics of big data"
- In a nutshell
1. Given points \(p_{i}, \ldots, p_{n} \in \mathbb{R}^{d}\) with \(d\) large and \(\varepsilon \in(0,1)\)
2. Pick "appropriate" \(k \approx O\left(\frac{1}{\varepsilon^{2}} \log n\right)\)
3. Sample \(k \times d\) matrix \(A\left(\right.\) each comp. i.i.d. \(\left.\mathcal{N}\left(0, \frac{1}{\sqrt{k}}\right)\right)\)
4. Consider projected points \(q_{i}=A p_{i} \in \mathbb{R}^{k}\) for \(i \leq n\)
5. With prob \(\rightarrow 1\) exponentially fast as \(k \rightarrow \infty\)
\[
\forall i, j \leq n \quad(1-\varepsilon)\left\|p_{i}-p_{j}\right\|_{2} \leq\left\|q_{i}-q_{j}\right\|_{2} \leq(1+\varepsilon)\left\|p_{i}-p_{j}\right\|_{2}
\]

\section*{Bonmin on randomly proj. data} objective 5.07 , bound 0.48 , stopped at 180 s
\begin{tabular}{l|r} 
Deezer & Vinci \\
Ford & AXA \\
Amazon 1-3 & Accenture \\
CSX & Alstom \\
MITRE & Expedia \\
fragment 1 & Elektrobit \\
& Google \\
& Aledade \\
& Marriott \\
& Llamasoft \\
& WestRock \\
& Clarity \\
& fragment 2
\end{tabular}

\section*{CPLEX on randomly proj. data}
objective 53.19, bound 20.68, stopped at 180s
\begin{tabular}{l|r} 
Vinci & AXA \\
Deezer & Accenture \\
Expedia & Alstom \\
Google & Elektrobit \\
Aledade & Marriott \\
Ford & Llamasoft \\
Amazon 1-3 & WestRock \\
CSX & MITRE \\
Clarity & fragment 1-2
\end{tabular}

\section*{Many clusterings}

This ain't finished...
- We obtained many different clusterings
- Is there any common sense?
- How do we compare them?
- Can we extract useful information from the comparison?
- How many clusters should we look for? Is \(k=2\) OK?
- Did we just turn the issue of "I have too many data" into "I have too many solutions"?

\section*{Section 7}

\section*{Kissing Number Problem}

\section*{Definition}

Given \(n, K \in \mathbb{N}\), determine whether \(n\) unit spheres can be placed adjacent to a central unit sphere so that their interiors do not overlap

Funny story: Newton and Gregory went down the pub...

\section*{Some examples}

\(n=12, K=3\)
more dimensions
\begin{tabular}{rrl}
\(n\) & \(\tau\) (lattice) & \(\tau\) (nonlattice) \\
0 & 0 & \\
1 & 2 & \\
2 & 6 & \\
3 & 12 & \\
4 & 24 & \\
5 & 40 & \\
6 & 72 & \\
7 & 126 & \\
8 & 240 & \\
9 & 272 & \((306)^{*}\) \\
10 & 336 & \((500)^{*}\) \\
11 & 438 & \((582)^{*}\) \\
12 & 756 & \((840)^{*}\) \\
13 & 918 & \((1130)^{*}\) \\
14 & 1422 & \((1582)^{*}\) \\
15 & 2340 & \\
16 & 4320 & \\
17 & 5346 & \\
18 & 7398 & \\
19 & 10668 & \\
20 & 17400 & \\
21 & 27720 & \\
22 & 49896 &
\end{tabular}

\section*{Equivalent formulation}

Given \(n, K \in \mathbb{N}\), determine whether there exist \(n\) vectors \(x_{1}, \ldots, x_{n} \in \mathbb{R}^{K}\) such that:
\[
\begin{aligned}
\forall i \leq n \quad\left\|x_{i}\right\|_{2}^{2} & =1 \\
\forall i<j \leq n \quad\left\|x_{i}-x_{j}\right\|_{2}^{2} & \geq 1
\end{aligned}
\]

\section*{Spherical codes}
- \(\mathbb{S}^{K-1} \subset \mathbb{R}^{K}\) unit sphere centered at origin
- K-dimensional spherical \(z\)-code:
- (finite) subset \(\mathcal{C} \subset \mathbb{S}^{K-1}\)
- \(\forall x \neq y \in \mathcal{C} \quad x \cdot y \leq z\)
- non-overlapping interiors:
\[
\forall i<j \quad\left\|x_{i}-x_{j}\right\| \geq 2 \quad \Longleftrightarrow x_{i} \cdot x_{j} \geq \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}
\]

...can use norm-1 projections on \(\mathbb{S}^{K-1}\) instead

\section*{Lower bounds}
- Construct spherical \(\frac{1}{2}\)-code \(\mathcal{C}\) with \(|\mathcal{C}|\) large
- Nonconvex NLP formulations
- SDP relaxations
- Combination of the two techniques

\section*{MINLP formulation}

Maculan, Michelon, Smith 1995

\section*{Parameters:}
- \(K\) : space dimension
- \(n\) : upper bound to \(\mathrm{kn}(K)\)

Variables:
- \(x_{i} \in \mathbb{R}^{K}:\) center of \(i\)-th vector
- \(\alpha_{i}=1\) iff vector \(i\) in configuration
\(\left.\begin{array}{rrll}\max & \sum_{i=1}^{n} \alpha_{i} & & \\ \forall i \leq n & \left\|x_{i}\right\|^{2} & = & \alpha_{i} \\ \forall i<j \leq n & \left\|x_{i}-x_{j}\right\|^{2} & \geq & \alpha_{i} \alpha_{j} \\ \forall i \leq n & x_{i} & \in & {[-1,1]^{K}} \\ \forall i \leq n & \alpha_{i} & \in\{0,1\}\end{array}\right\}\)

\section*{Reformulating the binary products}
- Additional variables: \(\beta_{i j}=1\) iff vectors \(i, j\) in configuration
- Linearize \(\alpha_{i} \alpha_{j}\) by \(\beta_{i j}\)
- Add constraints:
\[
\begin{array}{ll}
\forall i<j \leq n & \beta_{i j} \leq \alpha_{i} \\
\forall i<j \leq n & \beta_{i j} \leq \alpha_{j} \\
\forall i<j \leq n & \beta_{i j} \geq \alpha_{i}+\alpha_{j}-1
\end{array}
\]

\section*{AMPL and Baron}
- Certifying YES
- \(n=6, K=2\) : OK, 0.60 s
- \(n=12, K=3\) : OK, 0.07s
- \(n=24, K=4\) : FAIL, CPU time limit (100s)
- CertifyingNO
- \(n=7, K=2\) : FAIL, CPU time limit (100s)
- \(n=13, K=3\) : FAIL, CPU time limit (100s)
- \(n=25, K=4\) : FAIL, CPU time limit (100s)

Almost useless

\section*{Modelling the decision problem}
\[
\left.\begin{array}{rll}
\max _{x, \alpha} & \alpha & \\
\forall i \leq n & \left\|x_{i}\right\|^{2} & =1 \\
\forall i<j \leq n & \left\|x_{i}-x_{j}\right\|^{2} & \geq \alpha \\
\forall i \leq n & x_{i} & \in[-1,1]^{K} \\
& \alpha & \geq 0
\end{array}\right\}
\]
- Feasible solution \(\left(x^{*}, \alpha^{*}\right)\)
- KNP instance is YES iff \(\alpha^{*} \geq 1\)
[Kucherenko, Belotti, Liberti, Maculan, Discr.Appl. Math. 2007]

\section*{AMPL and Baron}
- Certifying YES
- \(n=6, K=2\) : FAIL, CPU time limit (100s)
- \(n=12, K=3\) : FAIL, CPU time limit (100s)
- \(n=24, K=4\) : FAIL, CPU time limit (100s)
- Certifying NO
- \(n=7, K=2\) : FA川, CPU time limit (100s)
- \(n=13, K=3\) : FAIL, CPU time limit (100s)
- \(n=25, K=4\) : FAL, CPU time limit (100s)

Apparently even more useless
But more informative (arccos \(\alpha=\) min. angular sep)
Certifying YES by \(\alpha \geq 1\)
- \(n=6, K=2\) : OK, 0.06s
- \(n=12, K=3:\) OK, 0.05 s
- \(n=24, K=4:\) OK, 1.48s
- \(n=40, K=5\) : FAIL, CPU time limit (100s)

\section*{What about polar coordinates?}
\[
\begin{aligned}
y=\left(y_{1}, \ldots, y_{K}\right) & \rightarrow\left(\rho, \vartheta_{1}, \ldots, \vartheta_{K-1}\right) \\
\rho & =\|y\| \\
\forall k \leq K \quad y_{k} & =\rho \sin \vartheta_{k-1} \prod_{h=k}^{K-1} \cos \vartheta_{h}
\end{aligned}
\]
- Only need to decide \(s_{k}=\sin \vartheta_{k}\) and \(c_{k}=\cos \vartheta_{k}\)
- Get polynomial program in \(s, c\)
- Numerically more challenging to solve
- But maybe useful for bounds?

\section*{SDP relaxation of Euclidean distances}
- Linearization of scalar products
\[
\forall i, j \leq n \quad x_{i} \cdot x_{j} \longrightarrow X_{i j}
\]
where \(X\) is an \(n \times n\) symmetric matrix
- \(\left\|x_{i}\right\|_{2}^{2}=x_{i} \cdot x_{i}=X_{i i}\)
- \(\left\|x_{i}-x_{j}\right\|_{2}^{2}=\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2 x_{i} \cdot x_{j}=X_{i i}+X_{j j}-2 X_{i j}\)
- \(X=x x^{\top} \Rightarrow X-x x^{\top}=0\) makes linearization exact
- Relaxation:
\[
X-x x^{\top} \succeq 0 \Rightarrow \operatorname{Schur}(X, x)=\left(\begin{array}{cc}
I_{K} & x^{\top} \\
x & X
\end{array}\right) \succeq 0
\]

\section*{SDP relaxation of binary constraints}
- \(\forall i \leq n \quad \alpha_{i} \in\{0,1\} \Leftrightarrow \alpha_{i}^{2}=\alpha_{i}\)
- Let \(A\) be an \(n \times n\) symmetric matrix
- Linearize \(\alpha_{i} \alpha_{j}\) by \(A_{i j}\left(\right.\) hence \(\alpha_{i}^{2}\) by \(\left.A_{i i}\right)\)
- \(A=\alpha \alpha^{\top}\) makes linearization exact
- Relaxation: \(\operatorname{Schur}(A, \alpha) \succeq 0\)

\section*{SDP relaxation of [MMS95]}
\[
\begin{aligned}
& \sum_{i=1}^{n} \alpha_{i} \\
& X_{i i}=\alpha_{i} \\
& \forall i<j \leq n \quad X_{i i}+X_{j j}-2 X_{i j} \geq A_{i j} \\
& \forall i \leq n \quad A_{i i}=\alpha_{i} \\
& \forall i<j \leq n \\
& \forall i<j \leq n \\
& \forall i<j \leq n \\
& A_{i j} \leq \alpha_{j} \\
& A_{i j} \leq \alpha_{i} \\
& A_{i j} \geq \alpha_{i}+\alpha_{j}-1 \\
& \operatorname{Schur}(X, x) \succeq 0 \\
& \operatorname{Schur}(A, \alpha) \succeq 0 \\
& \forall i \leq n \\
& x_{i} \in[-1,1]^{K} \\
& \alpha \in[0,1]^{n} \\
& X \in[-1,1]^{n^{2}} \\
& A \in[0,1]^{n^{2}}
\end{aligned}
\]

\section*{Python, PICOS and Mosek}
- bound always equal to \(n\)
- prominent failure :-(
- Why?
- can combine inequalities to remove A from SDP
- integrality of \(\alpha\) completely lost

\section*{SDP relaxation of [KBLM07]}
\[
\begin{aligned}
& \max \alpha \\
& \\
& \forall i \leq n X_{i i}
\end{aligned}=1
\]

\section*{Python, PICOS and Mosek}

With \(K=2\)
\begin{tabular}{r|r}
\(n\) & \(\alpha^{*}\) \\
\hline 2 & 4.00 \\
3 & 3.00 \\
4 & 2.66 \\
5 & 2.50 \\
6 & 2.40 \\
7 & 2.33 \\
8 & 2.28 \\
9 & 2.25 \\
10 & 2.22 \\
11 & 2.20 \\
12 & 2.18 \\
13 & 2.16 \\
14 & 2.15 \\
15 & 2.14
\end{tabular}


\section*{Python, PICOS and Mosek}

With \(K=3\)


Enforces some separation between "relaxed vectors"

\section*{An SDP-based heuristic}
1. \(X^{*} \in \mathbb{R}^{n^{2}}\) : SDP relaxation solution of [KBLM07]
2. Perform Principal Component Analysis (PCA), get \(\bar{x} \in \mathbb{R}^{n K}\)
- concatenate \(K\) eigenvectors \(\in \mathbb{R}^{n}\) corresponding to \(K\) largest eigenvalues
3. Use \(\bar{x}\) as starting point for local NLP solver on [KBLM07]

\section*{Python, PICOS, Mosek + AMPL, IPOPT}
- \(n=6, K=2\) : OK, \(\mathbf{0 . 0 2 s}\)
- \(n=12, K=3: O K, 0.02 \mathrm{~s}\)
- \(n=24, K=4: 4 \%\) error, 0.32 s
- \(n=40, K=5: 5 \%\) error, 1.57 s
- \(n=72, K=6: 7 \%\) error, 12.26 s

\section*{Surface upper bound}

\section*{Szpiro 2003, Gregory 1694}

Consider a kn(3) configuration inscribed into a super-sphere of radius 3. Imagine a lamp at the centre of the central sphere that casts shadows of the surrounding balls onto the inside surface of the super-sphere. Each shadow has a surface area of 7.6; the total surface of the superball is 113.1. So \(\frac{113.1}{7.6}=14.9\) is an upper bound to \(\mathrm{kn}(3)\).

At end of XVII century, yielded Newton/Gregory dispute

\section*{Another upper bound}

\section*{Thm.}
\[
\begin{aligned}
& \text { Let: } \mathcal{C}_{z}=\left\{x_{i} \in \mathbb{S}^{K-1} \mid i \leq n \wedge \forall j \neq i\left(x_{i} \cdot x_{j} \leq z\right)\right\} ; c_{0}>0 ; f:[-1,1] \rightarrow \mathbb{R} \text { s.t.: } \\
& \text { (i) } \sum_{i, j \leq n} f\left(x_{i} \cdot x_{j}\right) \geq 0 \quad \text { (ii) } f(t)+c_{0} \leq 0 \text { for } t \in[-1, z] \quad \text { (iii) } f(1)+c_{0} \leq 1 \\
& \text { Then } n \leq \frac{1}{c_{0}} \\
& \text { ([Delsarte 1977]; [Pfender 2006]) } \\
& \text { Let } g(t)=f(t)+c_{0} \\
& n^{2} c_{0} \leq n^{2} c_{0}+\sum_{i, j \leq n} f\left(x_{i} \cdot x_{j}\right) \quad \text { by (i) } \\
& =\sum_{i, j \leq n}\left(f\left(x_{i} \cdot x_{j}\right)+c_{0}\right)=\sum_{i, j \leq n} g\left(x_{i} \cdot x_{j}\right) \\
& \leq \sum_{i \leq n} g\left(x_{i} \cdot x_{i}\right) \quad \text { since } g(t) \leq 0 \text { for } t \leq z \text { and } x_{i} \in \mathcal{C}_{z} \text { for } i \leq n \\
& =n g(1) \quad \text { since }\left\|x_{i}\right\|_{2}=1 \text { for } i \leq n \\
& \leq n \quad \text { since } g(1) \leq 1 \text {. }
\end{aligned}
\]

\section*{The Linear Programming Bound}
- Condition (i) of Theorem valid for conic combinations of suitable functions \(\mathcal{F}=\left\{f_{1}, \ldots, f_{H}\right\}\) :
\[
f(t)=\sum_{h \leq H} c_{h} f_{h}(t) \quad \text { for some } c_{h} \geq 0
\]
- Let \(T=\left\{t_{i} \mid i \leq s \wedge t_{1}=-1 \wedge t_{s}=z \wedge \forall i<j\left(t_{i}<t_{j}\right)\right\}\), get LP:
\[
\left.\begin{array}{rll}
\max _{c \in \mathbb{R}^{K+1}} & c_{0} & n=1 / c_{0} \text { smallest } \\
\forall t \in T & \sum_{1 \leq h \leq H} c_{h} f_{h}(t)+c_{0} \leq 0 & \text { (ii) } \\
& \sum_{1 \leq h} c_{h} f_{h}(1)+c_{0} \leq 1 & \text { (iii) } \\
\leq h \leq H
\end{array} \begin{array}{c}
1 \leq h \leq H
\end{array}\right\}
\]
- E.g. \(\mathcal{F}=\) Gegenbauer polynomials [Delsarte 1977]
- \(T \subseteq[-1, z]\), don't know how to solve infinite LPs so we discretize it

\section*{Some results}
- Gegenbauer polynomials \(G_{h}^{\gamma}\) (recursive definition):
\[
\begin{aligned}
G_{0}^{\gamma}(t) & =1, \quad G_{1}^{\gamma}(t)=2 \gamma t, \\
\forall h>1 h G_{h}^{\gamma}(t) & =2 t(h+\gamma-1) G_{h-1}^{\gamma}(t)-(h-2 \gamma-2) G_{h-2}^{\gamma}(t)
\end{aligned}
\]
(all normalized so \(G_{h}^{\gamma}(1)=1\) )
- Special case \(G_{h}^{\gamma}=P_{h}^{\gamma, \gamma}\) of Jacobi polynomials:
\[
P_{h}^{\alpha, \beta}=\frac{1}{2^{h}} \sum_{i=0}^{h}\binom{h+\alpha}{i}\binom{h+\beta}{h-1}(t+1)^{i}(t-1)^{h-i}
\]
- [Delsarte 1977, Odlyzko \& Sloane 1998] \(\mathrm{kn}(3) \leq 12, \mathrm{kn}(4) \leq 25, \mathrm{kn}(5) \leq 46, \mathrm{kn}(8) \leq 240, \mathrm{kn}(24) \leq 196560\)
- Used to prove the "Twelve spheres theorem" \((\mathrm{kn}(3)=12)\)
- My test: works for \(K>4\), couldn't make it work for \(K=3\)

\section*{Where does \(K\) appear in the LP bound?}
- \(\mathcal{F}\) containing Gegenbauer polynomials
- \(\operatorname{In} G_{h}^{\gamma}(t), \gamma=\frac{K-3}{2}\)
- \(K\) determined by lowest \(\gamma\) appearing in \(\mathcal{F}\)
- E.g. \(\mathcal{F}=\left\{G_{h}^{1}(t), G_{h}^{1.5}(t) \mid h \leq 10\right\}\) yields bound \(25.5581 \geq \mathrm{kn}(4)=24\)

\section*{Section 8}

\section*{Distance Geometry}

\section*{A gem in Distance Geometry}
- Heron's theorem
- Heron lived around year 0
- Hang out at Alexandria's library

\[
A=\sqrt{s(s-a)(s-b)(s-c)}
\]
- \(A=\) area of triangle
- \(s=\frac{1}{2}(a+b+c)\)

Useful to measure areas of agricultural land

\section*{Heron's theorem: Proof}
\[
\text { A. } 2 \alpha+2 \beta+2 \gamma=2 \pi \Rightarrow \alpha+\beta+\gamma=\pi
\]

B. \(s=\frac{1}{2}(a+b+c)=x+y+z\)
\[
\begin{gathered}
r+i x=u e^{i \alpha} \\
r+i y=v e^{i \beta} \\
r+i z=w e^{i \gamma} \\
\Rightarrow(r+i x)(r+i y)(r+i z)=(u v w) e^{i(\alpha+\beta+\gamma)}= \\
u v w e^{i \pi}=-u v w \in \mathbb{R} \\
\Rightarrow \operatorname{Im}((r+i x)(r+i y)(r+i z))=0 \\
\Rightarrow r^{2}(x+y+z)=x y z \Rightarrow r=\sqrt{\frac{x y z}{x+y+z}}
\end{gathered}
\]
\[
\begin{aligned}
s-a & =x+y+z-y-z=x \\
s-b & =x+y+z-x-z=y \\
s-c & =x+y+z-x-y=z \\
\mathcal{A}=\frac{1}{2}(r a+r b+r c)= & r \frac{a+b+c}{2}=r s=\sqrt{s(s-a)(s-b)(s-c)}
\end{aligned}
\]

\section*{Heron's gifted disciple}
- This proof by Miles Edwards as a high school student in 2007 lhsblogs.typepad.com/files/ a-proof-of-heron-formula-miles-edwards.pdf (tried to contact him, never got an answer)
- Beats all other proofs for compactness and elegance
...Other people think so too!
jwilson.coe.uga.edu/emt725/Heron/HeronComplex.html
- He was ranked l6th in the Putnam Competition 2010 newsinfo.iu.edu/news/page/normal/13885.html
- Want to see what kind of exercises he was able to solve? kskedlaya.org/putnam-archive/2010.pdf
- An example:

Given that \(A, B, C\) are noncollinear points in the plane with integer coordinates such that the distances \(A B\), \(A C\) and \(B C\) are integers, what is the smallest possible value of \(A B\) ?

\section*{Another gem in DG}
- [I. Schoenberg, Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe d'espaces distanciés vectoriellement applicable sur l'espace de Hilbert", Ann. Math., 1935]
- Question: Given \(n \times n\) symmetric matrix \(D\), what are necessary and sufficient conditions s.t. \(D\) is a EDM \({ }^{1}\) corresponding to \(n\) points \(x_{1}, \ldots, x_{n} \in \mathbb{R}^{K}\) with \(K\) minimum?
- Main theorem:

Thm.
\(D=\left(d_{i j}\right)\) is an EDM iff \(\frac{1}{2}\left(d_{1 i}^{2}+d_{1 j}^{2}-d_{i j}^{2} \mid 2 \leq i, j \leq n\right)\) is PSD of rank \(K\)
- Gave rise to one of the most important results in data science: Classic Multidimensional Scaling

\footnotetext{
\({ }^{1}\) Euclidean Distance Matrix
}

\section*{Gram in function of EDM}
- \(x=\left(x_{1}, \ldots, x_{n}\right) \subseteq \mathbb{R}^{K}\), written as \(n \times K\) matrix
- matrix \(G=x x^{\top}=\left(x_{i} \cdot x_{j}\right)\) is the Gram matrix of \(x\)
- Schoenberg's theorem: relation between EDMs and Gram matrices
\[
G=-\frac{1}{2} J D^{2} J
\]
- \(D^{2}=\left(d_{i j}^{2}\right), J=I_{n}-\frac{1}{n} \mathbf{1 1}^{\top}\)

\section*{Multidimensional scaling (MDS)}
- Often get approximate EDMs \(\tilde{D}\) from raw data (dissimilarities, discrepancies, differences)
- \(\tilde{G}=-\frac{1}{2} J \tilde{D}^{2} J\) is an approximate Gram matrix
- Approximate Gram \(\Rightarrow\) spectral decomposition \(P \tilde{\Lambda} P^{\top}\) has \(\tilde{\Lambda} \nsupseteq 0\)
- Let \(\Lambda\) closest PSD diagonal matrix to \(\tilde{\Lambda}\) :
zero the negative components of \(\tilde{\Lambda}\)
- \(x=P \sqrt{\Lambda}\) is an "approximate realization" of \(\tilde{D}\)

\section*{Classic MDS: Main result}
1. Prove \(G=-\frac{1}{2} J \tilde{D}^{2} J\)
2. Prove matrix is Gram iff it is PSD

\section*{Classic MDS: Proof I/3}
- Assume zero centroid WLOG (can translate \(x\) as needed)
- Expand: \(d_{i j}^{2}=\left\|x_{i}-x_{j}\right\|_{2}^{2}=\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)=x_{i} x_{i}+x_{j} x_{j}-2 x_{i} x_{j}\)
- Aim at "inverting" (*) to express \(x_{i} x_{j}\) in function of \(d_{i j}^{2}\)
- Sum (*) over \(i\) : \(\sum_{i} d_{i j}^{2}=\sum_{i} x_{i} x_{i}+n x_{j} x_{j}-2 x_{j} \sum_{i} \overrightarrow{x i}^{0}\) by zero centroid
- Similarly for \(j\) and divide by \(n\), get:
\[
\begin{align*}
\frac{1}{n} \sum_{i \leq n} d_{i j}^{2} & =\frac{1}{n} \sum_{i \leq n} x_{i} x_{i}+x_{j} x_{j} \\
\frac{1}{n} \sum_{j \leq n} d_{i j}^{2} & =x_{i} x_{i}+\frac{1}{n} \sum_{j \leq n} x_{j} x_{j}
\end{align*}
\]
- Sum ( \(\dagger\) ) over \(j\), get:
\[
\frac{1}{n} \sum_{i, j} d_{i j}^{2}=n \frac{1}{n} \sum_{i} x_{i} x_{i}+\sum_{j} x_{j} x_{j}=2 \sum_{i} x_{i} x_{i}
\]
- Divide by \(n\), get:
\[
\frac{1}{n^{2}} \sum_{i, j} d_{i j}^{2}=\frac{2}{n} \sum_{i} x_{i} x_{i}
\]

\section*{Classic MDS: Proof 2/3}
- Rearrange \((*),(\dagger),(\ddagger)\) as follows:
\[
\begin{align*}
2 x_{i} x_{j} & =x_{i} x_{i}+x_{j} x_{j}-d_{i j}^{2}  \tag{5}\\
x_{i} x_{i} & =\frac{1}{n} \sum_{j} d_{i j}^{2}-\frac{1}{n} \sum_{j} x_{j} x_{j}  \tag{6}\\
x_{j} x_{j} & =\frac{1}{n} \sum_{i} d_{i j}^{2}-\frac{1}{n} \sum_{i} x_{i} x_{i} \tag{7}
\end{align*}
\]
- Replace LHS of Eq. (6)-(7) in Eq. (5), get
\[
2 x_{i} x_{j}=\frac{1}{n} \sum_{k} d_{i k}^{2}+\frac{1}{n} d_{k j}^{2}-d_{i j}^{2}-\frac{2}{n} \sum_{k} x_{k} x_{k}
\]
\(-\mathrm{By}(* *)\) replace \(\frac{2}{n} \sum_{i} x_{i} x_{i}\) with \(\frac{1}{n^{2}} \sum_{i, j} d_{i j}^{2}\), get
\[
\begin{equation*}
2 x_{i} x_{j}=\frac{1}{n} \sum_{k}\left(d_{i k}^{2}+d_{k j}^{2}\right)-d_{i j}^{2}-\frac{1}{n^{2}} \sum_{h, k} d_{h k}^{2} \tag{§}
\end{equation*}
\]
which expresses \(x_{i} x_{j}\) in function of \(D\)

\section*{Classic MDS: Proof 3/3}
- \(\operatorname{Gram} \subseteq P S D\)
- \(x\) is an \(n \times K\) real matrix
- \(G=x x^{\top}\) its Gram matrix
- For each \(y \in \mathbb{R}^{n}\) we have
\[
y G y^{\top}=y\left(x x^{\top}\right) y^{\top}=(y x)\left(x^{\top} y^{\top}\right)=(y x)(y x)^{\top}=\|y x\|_{2}^{2} \geq 0
\]
- \(\Rightarrow G \succeq 0\)
- PSD \(\subseteq\) Gram
- Let \(G \succeq 0\) be \(n \times n\)
- Spectral decomposition: \(G=P \Lambda P^{\top}\)
(P orthogonal, \(\Lambda \geq 0\) diagonal)
- \(\Lambda \geq 0 \Rightarrow \sqrt{\Lambda}\) exists
- \(G=P \Lambda P^{\top}=(P \sqrt{\Lambda})\left(\sqrt{\Lambda}^{\top} P^{\top}\right)=(P \sqrt{\Lambda})(P \sqrt{\Lambda})^{\top}\)
- Let \(x=P \sqrt{\Lambda}\), then \(G\) is the Gram matrix of \(x\)

\section*{Principal Component Analysis (PCA)}
- You want to draw \(x=P \sqrt{\Lambda}\) in 2D or 3D
but \(\operatorname{rank}(\Lambda)=K>3\)
- Only keep 2 or 3 largest components of \(\Lambda\)
zero the rest
- Get realization in desired space

\section*{Example 1/3}

\section*{Mathematical genealogy skeleton}


\section*{Example 2/3}

\section*{Apartial view}
\begin{tabular}{c|ccccccccc} 
& Euler & Thibaut & Pfaff & Lagrange & Laplace & Möbius & Gudermann & Dirksen & Gauss \\
\hline Kästner & 10 & 1 & 1 & 9 & 8 & 2 & 2 & 2 & 2 \\
Euler & & 11 & 9 & 1 & 3 & 10 & 12 & 12 & 8 \\
Thibaut & & & 2 & 10 & 10 & 3 & 1 & 1 & 3 \\
Pfaff & & & & 8 & 8 & 1 & 3 & 3 & 1 \\
Lagrange & & & & & 2 & 9 & 11 & 11 & 7 \\
Laplace & & & & & & 9 & 11 & 11 & 7 \\
Möbius & & & & & & 4 & 4 & 2 \\
Gudermann & & & & & & & 2 & 4 \\
Dirksen & & & & & & & & 4
\end{tabular}
\[
D=\left(\begin{array}{cccccccccc}
0 & 10 & 1 & 1 & 9 & 8 & 2 & 2 & 2 & 2 \\
10 & 0 & 11 & 9 & 1 & 3 & 10 & 12 & 12 & 8 \\
1 & 11 & 0 & 2 & 10 & 10 & 3 & 1 & 1 & 3 \\
1 & 9 & 2 & 0 & 8 & 8 & 1 & 3 & 3 & 1 \\
9 & 1 & 10 & 8 & 0 & 2 & 9 & 11 & 11 & 7 \\
8 & 3 & 10 & 8 & 2 & 0 & 9 & 11 & 11 & 7 \\
2 & 10 & 3 & 1 & 9 & 9 & 0 & 4 & 4 & 2 \\
2 & 12 & 1 & 3 & 11 & 11 & 4 & 0 & 2 & 4 \\
2 & 12 & 1 & 3 & 11 & 11 & 4 & 2 & 0 & 4 \\
2 & 8 & 3 & 1 & 7 & 7 & 2 & 4 & 4 & 0
\end{array}\right)
\]

\section*{Example 3/3}


\section*{The Distance Geometry Problem (DGP)}

Given \(K \in \mathbb{N}\) and \(G=(V, E, d)\) with \(d: E \rightarrow \mathbb{R}_{+}\), find \(x: V \rightarrow \mathbb{R}^{K}\) s.t.
\[
\forall\{i, j\} \in E \quad\left\|x_{i}-x_{j}\right\|_{2}^{2}=d_{i j}^{2}
\]


\section*{Some applications}
- clock synchronization ( \(K=1\) )
- sensor network localization \((K=2)\)
- molecular structure from distance data \((K=3)\)
- autonomous underwater vehicles \((K=3)\)
- distance matrix completion (whatever \(K\) )

\section*{Clock synchronization}

\section*{From [Singer, Appl. Comput. Harmon. Anal. 2011]}

Determine a set of unknown timestamps from a partial measurements of their time differences
- \(K=1\)
- V: timestamps
- \(\{u, v\} \in E\) if known time difference between \(u, v\)
- \(d\) : values of the time differences

Used in time synchronization of distributed networks

\section*{Clock synchronization}


\section*{Sensor network localization}

\section*{From [Yemini, Proc. CDSN, 1978]}

The positioning problem arises when it is necessary to locate a set of geographically distributed objects using measurements of the distances between some object pairs
- \(K=2\)
- \(V\) : (mobile) sensors
- \(\{u, v\} \in E\) iff distance between \(u, v\) is measured
- d: distance values
```

Used whenever GPS not viable (e.g. underwater)
duv}\propto\propto\mathrm{ battery consumption in P2P communication betw. u,v

```

\section*{Sensor network localization}


\section*{Molecular structure from distance data}

\section*{From [Liberti et al., SLAM Rev., 2014]}

- \(K=3\)
- \(V\) :atoms
- \(\{u, v\} \in E\) iff distance between \(u, v\) is known
- \(d\) : distance values
```

Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely
Distances § 5.5 measured approximately by NMR

```

\section*{Complexity}
- DGP \(_{1}\) with \(d: E \rightarrow \mathbb{Q}_{+}\)is in NP
- if instance YES \(\exists\) realization \(x \in \mathbb{R}^{n \times 1}\)
- if some component \(x_{i} \notin \mathbb{Q}\) translate \(x\) so \(x_{i} \in \mathbb{Q}\)
- consider some other \(x_{j}\)
- let \(\ell=\) (length sh. path \(p: i \rightarrow j)=\sum_{\{u, v\} \in p} d_{u v} \in \mathbb{Q}\)
- then \(x_{j}=x_{i} \pm \ell \rightarrow x_{j} \in \mathbb{Q}\)
- \(\Rightarrow\) verification of
\[
\forall\{i, j\} \in E \quad\left|x_{i}-x_{j}\right|=d_{i j}
\]
in polytime
- DGP \(_{K}\) may not be in NP for \(K>1\) don't know how to verify \(\left\|x_{i}-x_{j}\right\|_{2}=d_{i j}\) for \(x \notin \mathbb{Q}^{n K}\)

\section*{Hardness}

Partition is NP-hard
Given \(a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}, \exists I \subseteq\{1, \ldots, n\}\) s.t. \(\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}\) ?
- Reduce Partition to DGP \({ }_{1}\)
- \(a \longrightarrow\) cycle \(C\)
\[
V(C)=\{1, \ldots, n\}, E(C)=\{\{1,2\}, \ldots,\{n, 1\}\}
\]
- For \(i<n\) let \(d_{i, i+1}=a_{i}\)
\[
d_{n, n+1}=d_{n 1}=a_{n}
\]
- E.g. for \(a=(1,4,1,3,3)\), get cycle graph:


\section*{Partition is YES \(\Rightarrow \mathrm{DGP}_{1}\) is YES}
- Given: \(I \subset\{1, \ldots, n\}\) s.t. \(\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}\)
- Construct: realization \(x\) of \(C\) in \(\mathbb{R}\)
\[
\text { 1. } x_{1}=0 \quad / / \text { start }
\]
2. induction step: suppose \(x_{i}\) known
if \(i \in I\)
let \(x_{i+1}=x_{i}+d_{i, i+1} \quad / /\) go right
else
\[
\text { let } x_{i+1}=x_{i}-d_{i, i+1} \quad / / \text { go left }
\]
- Correctness proof: by the same induction but careful when \(i=n\) : have to show \(x_{n+1}=x_{1}\)

\section*{Partition is YES \(\Rightarrow\) DGP \(_{1}\) is YES}
\[
\begin{gathered}
(1)=\sum_{i \in I}\left(x_{i+1}-x_{i}\right)=\sum_{i \in I} d_{i, i+1}= \\
=\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}= \\
=\sum_{i \neq I} d_{i, i+1}=\sum_{i \notin I}\left(x_{i}-x_{i+1}\right)=(2) \\
(1)=(2) \Rightarrow \sum_{i \in I}\left(x_{i+1}-x_{i}\right)=\sum_{i \neq I}\left(x_{i}-x_{i+1}\right) \Rightarrow \sum_{i \leq n}\left(x_{i+1}-x_{i}\right)=0 \\
\Rightarrow\left(x_{n+1}-x_{n}\right)+\left(x_{n}-x_{n-1}\right)+\cdots+\left(x_{3}-x_{2}\right)+\left(x_{2}-x_{1}\right)=0 \\
\Rightarrow x_{n+1}=x_{1}
\end{gathered}
\]

\section*{Partition is \(\mathrm{NO} \Rightarrow \mathrm{DGP}_{1}\) is NO}
- By contradiction: suppose DGP \(_{1}\) is \(\mathrm{YES}, x\) realization of \(C\)
- \(F=\left\{\{u, v\} \in E(C) \mid x_{u} \leq x_{v}\right\}\),
\(E(C) \backslash F=\left\{\{u, v\} \in E(C) \mid x_{u}>x_{v}\right\}\)
- Trace \(x_{1}, \ldots, x_{n}\) : follow edges in \(F(\rightarrow)\) and in \(E(C) \backslash F(\leftarrow)\)

- Let \(J=\{i<n \mid\{i, i+1\} \in F\} \cup\{n \mid\{n, 1\} \in F\}\)
\[
\Rightarrow \quad \sum_{i \in J} a_{i}=\sum_{i \notin J} a_{i}
\]
- So \(J\) solves Partition instance, contradiction
\(\Rightarrow \Rightarrow\) DGP is NP-hard, DGP \({ }_{1}\) is NP-complete

\section*{Number of solutions: with congruences}
- \((G, K)\) : DGP instance
- \(\tilde{X} \subseteq \mathbb{R}^{K n}\) : set of solutions
- Congruence: composition of translations, rotations, reflections
- \(C=\) set of congruences in \(\mathbb{R}^{K}\)
- \(x \sim y\) means \(\exists \rho \in C(y=\rho x):\) distances in \(x\) are preserved in \(y\) through \(\rho\)
\(\Rightarrow \Rightarrow\) if \(|\tilde{X}|>0,|\tilde{X}|=2^{\aleph_{0}}\)

\section*{Number of solutions: without congruences}
- Congruence is an equivalence relation \(\sim\) on \(\tilde{X}\) (reflexive, symmetric, transitive)

- Partitions \(\tilde{X}\) into equivalence classes
- \(X=\tilde{X} / \sim\) : sets of representatives of equivalence classes
- Focus on \(|X|\) rather than \(|\tilde{X}|\)

\section*{Rigidity, flexibility and \(|X|\)}
- infeasible \(\Leftrightarrow|X|=0\)
- rigid graph \(\Leftrightarrow|X|<\aleph_{0}\)
- globally rigid graph \(\Leftrightarrow|X|=1\)
- flexible graph \(\Leftrightarrow|X|=2^{\aleph_{0}}\)
- \(|X|=\aleph_{0}\) : impossible by Milnor's theorem

\section*{Milnor's theorem implies \(|X| \neq \aleph_{0}\)}
- System \(S\) of polynomial equations of degree 2
\[
\forall i \leq m \quad p_{i}\left(x_{1}, \ldots, x_{n K}\right)=0
\]
- Let \(X\) be the set of \(x \in \mathbb{R}^{n K}\) satisfying \(S\)
- Number of connected components of \(X\) is \(O\left(3^{n K}\right)\) [Milnor 1964]
- If \(|X|\) is countably \(\infty\) then \(G\) cannot be flexible \(\Rightarrow\) incongruent elts of \(X\) are separate connected components \(\Rightarrow\) by Milnor's theorem, there's finitely many of them

\section*{Examples}
\[
\begin{aligned}
& V^{1}=\{1,2,3\} \\
& E^{1}=\{\{u, v\} \mid u<v\} \\
& d^{1}=1 \\
& V^{2}=V^{1} \cup\{4\} \\
& E^{2}=E^{1} \cup\{\{1,4\},\{2,4\}\} \\
& d^{2}=1 \wedge d_{14}=\sqrt{2} \\
& V^{3}=V^{2} \\
& E^{3}=\{\{u, u+1\} \mid u \leq 3\} \cup\{1,4\} \\
& d^{1}=1
\end{aligned}
\]

\(\rho\) congruence in \(\mathbb{R}^{2}\)
\(\Rightarrow \rho x\) valid realization \(|X|=1\)
\(\rho\) reflects \(x_{4}\) wrt \(\overline{x_{1}, x_{2}}\)
\(\Rightarrow \rho x\) valid realization \(|X|=2(\triangle, \diamond)\)
\(\rho\) rotates \(\overline{x_{2} x_{3}}, \overline{x_{1} x_{4}}\) by \(\theta\)
\(\Rightarrow \rho x\) valid realization
\(|X|\) is uncountable
\((\square, \square, \square, \square, \ldots\) )

\section*{DGP formulations and methods}
- System of equations
- Unconstrained global optimization (GO)
- Constrained global optimization
- SDP relaxations and their properties
- Diagonal dominance
- Concentration of measure in SDP
- Isomap for DGP

\section*{System of quadratic equations}
\[
\begin{equation*}
\forall\{u, v\} \in E \quad\left\|x_{u}-x_{v}\right\|^{2}=d_{u v}^{2} \tag{8}
\end{equation*}
\]

Computationally: useless
(less than 10 vertices with \(K=3\) using Octave)

\section*{Unconstrained Global Optimization}
\[
\begin{equation*}
\min _{x} \sum_{\{u, v\} \in E}\left(\left\|x_{u}-x_{v}\right\|^{2}-d_{u v}^{2}\right)^{2} \tag{9}
\end{equation*}
\]

\section*{Globally optimal obj. fun. value of (9) is 0 iff \(x\) solves (8)}

\section*{Computational experiments in [Liberti et al., 2006]:}
- GO solvers from 10 years ago
- randomly generated protein data: \(\leq 50\) atoms
- cubic crystallographic grids: \(\leq 64\) atoms

\section*{Constrained global optimization}
- \(\min _{x} \sum_{\{u, v\} \in E}\left|\left\|x_{u}-x_{v}\right\|^{2}-d_{u v}^{2}\right|\) exactly reformulates (8)
- Relax objective \(f\) to concave part, remove constant term, rewrite \(\min -f\) as max \(f\)
- Reformulate convex part of obj. fun. to convex constraints
- Exact reformulation
\[
\left.\begin{array}{rc}
\max _{x} & \sum_{\{u, v\} \in E}\left\|x_{u}-x_{v}\right\|^{2}  \tag{10}\\
v\} \in E & \left\|x_{u}-x_{v}\right\|^{2} \leq d_{u v}^{2}
\end{array}\right\}
\]

Theorem (Activity)
At a glob. opt. \(x^{*}\) of a YES instance, all constraints of (10) are active

\section*{Linearization}
\[
\begin{array}{r}
\Rightarrow \quad \forall\{i, j\} \in E \quad\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2 x_{i} \cdot x_{j}=d_{i j}^{2} \\
\Rightarrow\left\{\begin{aligned}
\forall\{i, j\} \in E \quad X_{i i}+X_{j j}-2 X_{i j} & =d_{i j}^{2} \\
X & =x x^{\top}
\end{aligned}\right.
\end{array}
\]

\section*{Relaxation}
\[
\begin{aligned}
X & =x x^{\top} \\
\Rightarrow \quad X-x x^{\top} & =0
\end{aligned}
\]
\[
(\text { relax }) \quad \Rightarrow \quad X-x x^{\top} \succeq 0
\]
\[
\operatorname{Schur}(X, x)=\left(\begin{array}{cc}
I_{K} & x^{\top} \\
x & X
\end{array}\right) \succeq 0
\]

If \(x\) does not appear elsewhere \(\Rightarrow\) get rid of it (e.g. choose \(x=0\) ):
\[
\text { replace } \operatorname{Schur}(X, x) \succeq 0 \text { by } X \succeq 0
\]

\section*{SDP relaxation}
\[
\begin{array}{rlrl} 
& \min F \bullet X \\
\forall\{i, j\} \in E & X_{i i}+X_{j j}-2 X_{i j} & =d_{i j}^{2} \\
X & \succeq 0
\end{array}
\]

How do we choose \(F\) ?

\section*{Some possible objective functions}
- For protein conformation:
\[
\max \sum_{\{i, j\} \in E}\left(X_{i i}+X_{j j}-2 X_{i j}\right)
\]
with \(=\) changed to \(\leq\) in constraints \((\) or min and \(\geq)\)
"push-and-pull" the realization
- [Ye, 2003], application to wireless sensors localization
\[
\min \operatorname{Tr}(X)
\]
improve covariance estimator accuracy
- How about "just random"?

\section*{How do you choose?}
for want of some better criterion...

\section*{TEST!}
- Download protein files from Protein Data Bank (PDB)
they contain atom realizations
- Mimick a Nuclear Magnetic Resonance experiment

Keep only pairwise distances < 5.5
- Try and reconstruct the protein shape from those weighted graphs
- Quality evaluation of results:
- \(\operatorname{LDE}(x)=\max _{\{i, j\} \in E}\left|\left\|x_{i}-x_{j}\right\|-d_{i j}\right|\)
- \(\operatorname{MDE}(x)=\frac{1}{|E|} \sum_{\{i, j\} \in E}\left|\left\|x_{i}-x_{j}\right\|-d_{i j}\right|\)

\section*{Objective function tests}

\section*{SDP solved with Mosek}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Instance}} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\(\underset{\mathrm{LDE}}{\mathrm{SD}} \mathrm{DP}+\underset{\mathrm{PC}}{ } \mathrm{C}^{\text {MDE }}\)}} & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{CPU}} \\
\hline & & & & & & & & & & & \\
\hline Name & \(|V|\) & \(|E|\) & PP & Ye & Rnd & PP & Ye & Rnd & PP & Ye & Rnd \\
\hline C0700odd. 1 & 15 & 39 & 3.31 & 4.57 & 4.44 & 1.92 & 2.52 & 2.50 & 0.13 & 0.07 & 0.08 \\
\hline c0700odd. C & 36 & 242 & 10.61 & 4.85 & 4.85 & 3.02 & 3.02 & 3.02 & 0.69 & 0.43 & 0.44 \\
\hline C0700.odd.G & 36 & 308 & 4.57 & 4.77 & 4.77 & 2.41 & 2.84 & 2.84 & 0.86 & 0.54 & 0.54 \\
\hline C0150alter. 1 & 37 & 335 & 4.66 & 4.88 & 4.86 & 2.52 & 3.00 & 3.00 & 0.97 & 0.59 & 0.58 \\
\hline C0080create. 1 & 60 & 681 & 7.17 & 4.86 & 4.86 & 3.08 & 3.19 & 3.19 & 2.48 & 1.46 & 1.46 \\
\hline tiny & 37 & 335 & 4.66 & 4.88 & 4.88 & 2.52 & 3.00 & 3.00 & 0.97 & 0.60 & 0.60 \\
\hline 1 guu-1 & 150 & 959 & 10.20 & 4.93 & 4.93 & 3.43 & 3.43 & 3.43 & 9.23 & 5.68 & 5.70 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Instance}} & \multicolumn{9}{|c|}{\(S D P+P C A+N L P\)} \\
\hline & & & & LDE & & & MDE & & & CPU & \\
\hline Name & \(|V|\) & \(|E|\) & PP & Ye & Rnd & PP & Ye & Rnd & PP & Ye & Rnd \\
\hline 1 b 03 & 89 & 456 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 8.69 & 6.28 & 9.91 \\
\hline 1 crn & 138 & 846 & 0.81 & 0.81 & 0.81 & 0.07 & 0.07 & 0.07 & 33.33 & 31.32 & 44.48 \\
\hline \(1 \mathrm{guu}-1\) & 150 & 959 & 0.97 & 4.93 & 0.92 & 0.10 & 3.43 & 0.08 & 56.45 & 7.89 & 65.33 \\
\hline
\end{tabular}

\section*{Choice}
- Ye very fast but often imprecise
- Random good but nondeterministic
- Push-and-Pull relaxes \(X_{i i}+X_{j j}-2 X_{i j}=d_{i j}^{2}\) to \(X_{i i}+X_{j j}-2 X_{i j} \geq d_{i j}^{2}\), feasibility easier to satisfy
... will be useful later on

Focus on Push-and-Pull objective

\section*{When SDP solvers hit their size limit}
- SDP solver: technological bottleneck
- How can we best use an LP solver?
- Diagonally Dominant (DD) matrices are PSD
- Not vice versa: inner approximate PSD cone \(Y \succeq 0\)
- Idea by A.A. Ahmadi [Ahmadi \& Hall 2015]

\section*{Diagonally dominant matrices}
\(n \times n\) matrix \(X\) is DD if
\[
\begin{aligned}
& \qquad \forall i \leq n \quad X_{i i} \geq \sum_{j \neq i}\left|X_{i j}\right| . \\
& \text { E.g. } \quad\left(\begin{array}{cccccc}
1 & 0.1 & -0.2 & 0 & 0.04 & 0 \\
0.1 & 1 & -0.05 & 0.1 & 0 & 0 \\
-0.2 & -0.05 & 1 & 0.1 & 0.01 & 0 \\
0 & 0.1 & 0.1 & 1 & 0.2 & 0.3 \\
0.04 & 0 & 0.01 & 0.2 & 1 & -0.3 \\
0 & 0 & 0 & 0.3 & -0.3 & 1
\end{array}\right)
\end{aligned}
\]


\section*{DD Linearization}
\[
\begin{equation*}
\forall i \leq n \quad X_{i i} \geq \sum_{j \neq i}\left|X_{i j}\right| \tag{*}
\end{equation*}
\]
- introduce "sandwiching" variable \(T\)
- write \(|X|\) as \(T\)
- add constraints \(-T \leq X \leq T\)
- by \(\geq\) constraint sense, write (*) as
\[
X_{i i} \geq \sum_{j \neq i} T_{i j}
\]

\section*{DD Programming (DDP)}
\[
\left.\begin{array}{c}
\forall\{i, j\} \in E \quad X_{i i}+X_{j j}-2 X_{i j}= \\
X \text { is } \\
\hline \text { DD }
\end{array}\right\}
\]

\section*{DDP formulation for the DGP}
\[
\left.\begin{array}{rrl}
\min & \sum_{\{i, j\} \in E}\left(X_{i i}+X_{j j}-2 X_{i j}\right) & \\
\forall\{i, j\} \in E & X_{i i}+X_{j j}-2 X_{i j} & \geq d_{i j}^{2} \\
\forall i \leq n+K & \sum_{\substack{j \leq n+K \\
j \neq K}} T_{i j} & \leq X_{i i} \\
& -T \leq X & \leq T \\
T & \geq 0
\end{array}\right\}
\]

\section*{SDP vs. DDP: tests}

\section*{Using "push-and-pull" objective in SDP SDP solved with Mosek, DDP with CPLEX}
\begin{tabular}{l|rrr|rrr}
\multicolumn{5}{c}{ SDP + PCA } \\
& \multicolumn{4}{c}{ SDP } & \multicolumn{3}{c}{ DDP } \\
Instance & \(L D E\) & \(M D E\) & CPU modl/soln & \(L D E\) & \(M D E\) & CPU modl/soln \\
\hline C0700odd.1 & 0.79 & 0.34 & \(0.06 / 0.12\) & \(\mathbf{0 . 3 8}\) & \(\mathbf{0 . 3 0}\) & \(0.15 / 0.15\) \\
C0700.odd.G & 2.38 & \(\mathbf{0 . 8 9}\) & \(0.57 / .16\) & \(\mathbf{1 . 8 6}\) & \(\mathbf{0 . 5 8}\) & \(1.11 / \mathbf{0 . 9 5}\) \\
C0150alter.1 & \(\mathbf{1 . 4 8}\) & \(\mathbf{0 . 4 5}\) & \(0.73 / .33\) & 1.54 & \(\mathbf{0 . 5 5}\) & \(1.23 / 1.04\) \\
C0080create.1 & 2.49 & \(\mathbf{0 . 8 2}\) & \(1.63 / 7.86\) & \(\mathbf{0 . 9 8}\) & \(\mathbf{0 . 6 7}\) & \(3.39 / 4.07\) \\
1guu-1 & \(\mathbf{0 . 5 0}\) & \(\mathbf{0 . 1 5}\) & \(\mathbf{6 . 6 7 / 6 8 4 . 8 9}\) & 1.00 & \(\mathbf{0 . 8 5}\) & \(37.74 / 153.17\)
\end{tabular}

\section*{Concentration of measure}

\section*{From [Barvinok, 1997]}

The value of a "well behaved" function at a random point of a "big" probability space \(X\) is "very close" to the mean value of the function.
and
In a sense, measure concentration can be considered as an extension of the law of large numbers.

\section*{Concentration of measure}

Given Lipschitz function \(f: X \rightarrow \mathbb{R}\) s.t.
\[
\forall x, y \in X \quad|f(x)-f(y)| \leq L\|x-y\|_{2}
\]
for some \(L \geq 0\), there is concentration of measure if \(\exists\) constants \(c, C\) s.t.
\[
\forall \varepsilon>0 \quad \mathrm{P}_{x}(|f(x)-\mathrm{E}(f)|>\varepsilon) \leq c e^{-C \varepsilon^{2} / L^{2}}
\]

三 "discrepancy from mean is unlikely"

\section*{Barvinok's theorem}

Consider:
- for each \(k \leq m\), manifolds \(\mathcal{X}_{k}=\left\{x \in \mathbb{R}^{n} \mid x^{\top} Q^{k} x=a_{k}\right\}\)
- a feasibility problem \(x \in \bigcap_{k \leq m} \mathcal{X}_{k}\)
- its SDP relaxation \(\forall x \leq m\left(Q^{k} \bullet X=a_{k}\right)\) with soln. \(\bar{X}\)

Let \(T=\) factor \((\bar{X}), y \sim \mathcal{N}^{n}(0,1)\) and \(x^{\prime}=T y\)

Then \(\exists c\) and \(n_{0} \in \mathbb{N}\) s.t. if \(n \geq n_{0}\),
\[
\operatorname{Prob}\left(\forall k \leq m \operatorname{dist}\left(x^{\prime}, \mathcal{X}_{k}\right) \leq c \sqrt{\|\bar{X}\|_{2} \ln n}\right) \geq 0.9
\]

IDEA: since \(x^{\prime}\) is "close" to each \(\mathcal{X}_{k}\), try local descent!

\section*{Application to the DGP}
- \(\forall\{i, j\} \in E \quad \mathcal{X}_{i j}=\left\{x \mid\left\|x_{i}-x_{j}\right\|_{2}^{2}=d_{i j}^{2}\right\}\)
- DGP can be written as \(\bigcap_{\{i, j\} \in E} \mathcal{X}_{i j}\)
- SDP relaxation \(X_{i i}+X_{j j}-2 X_{i j}=d_{i j}^{2} \wedge X \succeq 0\) with soln. \(\bar{X}\)
- Difference with Barvinok: \(x \in \mathbb{R}^{K n}, \operatorname{rk}(\bar{X}) \leq K\)
- IDEA: sample \(y \sim \mathcal{N}^{n K}\left(0, \frac{1}{\sqrt{K}}\right)\)
- Thm. Barvinok's theorem works in rank \(K\)

\section*{The heuristic}
1. Solve SDP relaxation of DGP, get soln. \(\bar{X}\) use \(D D P+L P\) if \(S D P+I P M\) too slow
2. a. \(T=\operatorname{factor}(\bar{X})\)
b. \(y \sim \mathcal{N}^{n K}\left(0, \frac{1}{\sqrt{K}}\right)\)
c. \(x^{\prime}=T y\)
3. Use \(x^{\prime}\) as starting point for a local NLP solver on formulation
\[
\min _{x} \sum_{\{i, j\} \in E}\left(\left\|x_{i}-x_{j}\right\|^{2}-d_{i j}^{2}\right)^{2}
\]
and return improved solution \(x\)

\section*{SDP+Barvinok vs. \(\mathrm{DDP}+\) Barvinok}
\begin{tabular}{l|rrr|rrr} 
& \multicolumn{3}{|c|}{ SDP } & \multicolumn{3}{c}{ DDP } \\
Instance & \(L D E\) & \(M D E\) & \(C P U\) & \(L D E\) & \(M D E\) & \(C P U\) \\
\hline C0700odd.1 & \(\mathbf{0 . 0 0}\) & \(\mathbf{0 . 0 0}\) & \(\mathbf{0 . 6 3}\) & \(\mathbf{0 . 0 0}\) & \(\mathbf{0 . 0 0}\) & 1.49 \\
C0700.odd.G & \(\mathbf{0 . 0 0}\) & \(\mathbf{0 . 0 0}\) & \(\mathbf{2 1 . 6 7}\) & \(\mathbf{0 . 4 2}\) & \(\mathbf{0 . 0 1}\) & 30.51 \\
C0150alter.1 & \(\mathbf{0 . 0 0}\) & \(\mathbf{0 . 0 0}\) & \(\mathbf{2 9 . 3 0}\) & \(\mathbf{0 . 0 0}\) & \(\mathbf{0 . 0 0}\) & 34.13 \\
C0080create.1 & \(\mathbf{0 . 0 0}\) & \(\mathbf{0 . 0 0}\) & \(\mathbf{1 3 9 . 5 2}\) & \(\mathbf{0 . 0 0}\) & \(\mathbf{0 . 0 0}\) & \(\mathbf{1 4 1 . 4 9}\) \\
\hline 1b03 & \(\mathbf{0 . 1 8}\) & \(\mathbf{0 . 0 1}\) & \(\mathbf{1 3 2 . 1 6}\) & \(\mathbf{0 . 3 8}\) & \(\mathbf{0 . 0 5}\) & \(\mathbf{1 0 1 . 0 4}\) \\
1crn & \(\mathbf{0 . 7 8}\) & \(\mathbf{0 . 0 2}\) & \(\mathbf{8 0 0 . 6 7}\) & \(\mathbf{0 . 7 6}\) & \(\mathbf{0 . 0 4}\) & \(\mathbf{5 2 2 . 6 0}\) \\
1guu-1 & \(\mathbf{0 . 7 9}\) & \(\mathbf{0 . 0 1}\) & 1900.48 & \(\mathbf{0 . 9 0}\) & \(\mathbf{0 . 0 4}\) & \(\mathbf{6 6 7 . 0 3}\)
\end{tabular}

Most of the CPU time taken by local NLP solver

\section*{Isomap for DG}
1. Let \(D^{\prime}\) be the (square) weighted adjacency matrix of \(G\)
2. Complete \(D^{\prime}\) to approximate sqEDM \(\tilde{D}\)
3. Let \(\tilde{B}=-(1 / 2) J \tilde{D} J\), where \(J=I-(1 / n) 11^{\top}\)
4. Find eigenval/vects \(\Lambda, P\) so \(\tilde{B}=P^{\top} \Lambda P\)
5. Keep \(\leq K\) largest nonneg. eigenv. of \(\Lambda\) to get \(\tilde{\Lambda}\) (MDS/PCA)
6. Let \(\tilde{x}=P^{\top} \sqrt{\tilde{\Lambda}}\)


Vary Step 2 to generate Isomap heuristics

\section*{Why it works}
- \(G\) represented by weighted adjacency matrix \(D^{\prime}\)
- do not know \(D\), approximate to \(\tilde{D}\) not sqEDM
- \(\Rightarrow\) get \(\tilde{B}\), not generally Gram
- \(\leq K\) largest nonnegative eigenvalues \(\Rightarrow\) "closest PSD matrix" \(B^{\prime}\) to \(\tilde{B}\) having rank \(\leq K\)
- Factor it to get \(\tilde{x} \in \mathbb{R}^{K n}\)

\section*{Variants for Step 2}
A. Floyd-Warshall all-shortest-paths algorithm on \(G\)
(classic Isomap)
B. Find a spanning tree (SPT) of \(G\) and compute a random realization in \(\bar{x} \in \mathbb{R}^{K}\), use its sqEDM
C. Solve a push-and-pull SDP relaxation to find a realization \(\bar{x} \in \mathbb{R}^{n}\), use its sqEDM
D. Solve an SDP relaxation with Barvinok objective to find \(\bar{x} \in \mathbb{R}^{r}\) (with \(r \leq\lfloor(\sqrt{8|E|+1}-1) / 2\rfloor\) ), use its sqEDM haven't really talked about this, sorry

Post-processing: \(\tilde{x}\) as starting point for NLP descent in GO formulation

\section*{Results}

\section*{Comparison with dgsol [Moré, Wu 1997]}


\section*{Large instances}
\begin{tabular}{|lcc|rr|rr|rr|}
\hline \multicolumn{3}{|c|}{ Instance } & \multicolumn{2}{c|}{ mde } & \multicolumn{2}{c|}{ Ide } & \multicolumn{2}{c|}{ CPU } \\
Name & \(|V|\) & \(|E|\) & IsoNLP & dgsol & IsoNLP & dgsol & IsoNLP & dgsol \\
\hline water & \(\mathbf{6 4 8}\) & 11939 & \(\mathbf{0 . 0 0 5}\) & \(\mathbf{0 . 1 5}\) & \(\mathbf{0 . 5 5 7}\) & 0.81 & 26.98 & \(\mathbf{1 5 . 1 6}\) \\
3al1 & 678 & 17417 & \(\mathbf{0 . 0 3 6}\) & \(\mathbf{0 . 0 0 7}\) & \(\mathbf{0 . 8 8 4}\) & \(\mathbf{0 . 8 1 0}\) & \(\mathbf{1 7 0 . 9 1}\) & 210.25 \\
1hpv & 1629 & 18512 & \(\mathbf{0 . 0 7 4}\) & \(\mathbf{0 . 0 7 8}\) & \(\mathbf{0 . 9 3 6}\) & \(\mathbf{0 . 9 3 2}\) & 374.01 & \(\mathbf{6 0 . 2 8}\) \\
il2 & 2084 & 45251 & \(\mathbf{0 . 0 1 2}\) & \(\mathbf{0 . 0 3 5}\) & \(\mathbf{0 . 9 1 0}\) & \(\mathbf{0 . 9 3 2}\) & 465.10 & \(\mathbf{1 3 9 . 7 7}\) \\
1tii & 5684 & \(\mathbf{6 9 8 0 0}\) & \(\mathbf{0 . 0 7 8}\) & \(\mathbf{0 . 0 7 7}\) & \(\mathbf{0 . 9 5 0}\) & \(\mathbf{0 . 8 9 7}\) & 7400.48 & \(\mathbf{4 5 4 . 3 7 5}\) \\
\hline
\end{tabular}


\section*{THE END}```

