
École Polytechnique

Problems and exercises in Operations Research

Leo Liberti1

Last update: December 1, 2009

1Some exercises have been proposed by other authors, as detailed in the text. All the solutions, however, are by the
author, who takes full responsibility for their accuracy (or lack thereof).

Exercises Operations Research L. Liberti

2

Contents

1 Optimization on graphs 9

1.1 Dijkstra’s algorithm . 9

1.2 Bellman-Ford’s algorithm . 9

1.3 Maximum flow . 9

1.4 Minimum cut . 10

1.5 Renewal plan . 10

1.6 Connected subgraphs . 10

1.7 Strong connection . 11

2 Linear programming 13

2.1 Graphical solution . 13

2.2 Geometry of LP . 13

2.3 Simplex method . 14

2.4 Duality . 14

2.5 Geometrical interpretation of the simplex algorithm . 15

2.6 Complementary slackness . 15

2.7 Sensitivity analysis . 15

2.8 Dual simplex method . 16

3 Integer programming 17

3.1 Piecewise linear objective . 17

3.2 Gomory cuts . 17

3.3 Branch and Bound I . 17

3.4 Branch and Bound II . 18

3.5 Knapsack Branch and Bound . 18

3

Exercises Operations Research L. Liberti

4 Easy modelling problems 19

4.1 Compact storage of similar sequences . 19

4.2 Communication of secret messages . 19

4.3 Mixed production . 20

4.4 Production planning . 20

4.5 Transportation . 21

4.6 Project planning with precedences . 21

4.7 Museum guards . 22

4.8 Inheritance . 22

4.9 Carelland . 23

4.10 CPU Scheduling . 23

4.11 Dyeing plant . 24

4.12 Parking . 24

5 Difficult modelling problems 25

5.1 Checksum . 25

5.2 Eight queens . 27

5.3 Production management . 27

5.4 The travelling salesman problem . 27

5.5 Optimal rocket control 1 . 28

5.6 Double monopoly . 28

6 Telecommunication networks 31

6.1 Packet routing . 31

6.2 Network Design . 31

6.3 Network Routing . 32

7 Nonlinear programming 35

7.1 Error correcting codes . 35

7.2 Airplane maintenance . 35

7.3 Pooling problem . 36

7.4 Optimal rocket control 2 . 37

8 Optimization on graphs: Solutions 39

CONTENTS 4

Exercises Operations Research L. Liberti

8.1 Dijkstra’s algorithm: Solution . 39

8.2 Bellman-Ford algorithm: Solution . 40

8.3 Maximum flow: Solution . 40

8.4 Minimum cut: Solution . 42

8.5 Renewal plan: Solution . 43

8.6 Connected subgraphs: Solution . 44

8.7 Strong connection: Solution . 44

9 Linear programming: Solutions 45

9.1 Graphical solution: Solution . 45

9.2 Geometry of LP: Solution . 47

9.3 Simplex method: Solution . 51

9.4 Duality: Solution . 53

9.5 Geometrical interpretation of the simplex algorithm: Solution 54

9.5.1 Iteration 1: Finding the initial vertex . 55

9.5.2 Iteration 2: Finding a better vertex . 56

9.5.3 Iteration 3: Algorithm termination . 56

9.6 Complementary slackness: Solution . 56

9.7 Sensitivity analysis: Solution . 57

9.8 Dual simplex method: Solution . 58

10 Integer programming: Solutions 61

10.1 Piecewise linear objective: Solution . 61

10.2 Gomory Cuts: Solution . 62

10.3 Branch and Bound I: Solution . 65

10.4 Branch and Bound II: Solution . 67

10.5 Knapsack Branch and Bound: Solution . 67

11 Easy modelling problems: solutions 71

11.1 Compact storage of similar sequences: Solution . 71

11.2 Communication of secret messages: Solution . 71

11.3 Mixed production: Solution . 72

11.3.1 Formulation . 72

CONTENTS 5

Exercises Operations Research L. Liberti

11.3.2 AMPL model, data, run . 73

11.3.3 CPLEX solution . 73

11.4 Production planning: Solution . 74

11.4.1 Formulation . 74

11.4.2 AMPL model, data, run . 75

11.4.3 CPLEX solution . 76

11.5 Transportation: Solution . 77

11.5.1 Formulation . 77

11.5.2 AMPL model, data, run . 78

11.5.3 CPLEX solution . 79

11.6 Project planning with precedences: Solution . 79

11.7 Museum guards: Solution . 80

11.7.1 Formulation . 80

11.7.2 AMPL model, data, run . 80

11.7.3 CPLEX solution . 81

11.8 Inheritance: Solution . 82

11.8.1 AMPL model, data, run . 82

11.8.2 CPLEX solution . 83

11.9 Carelland: Solution . 83

11.9.1 Formulation . 84

11.9.2 AMPL model, data, run . 84

11.9.3 CPLEX solution . 85

11.10CPU Scheduling: Solution . 86

11.10.1AMPL model, data, run . 87

11.10.2CPLEX solution . 88

11.11Dyeing plant: Solution . 88

11.11.1AMPL model, data, run . 89

11.11.2CPLEX solution . 90

11.12Parking: Solution . 90

11.12.1AMPL model, data, run . 91

11.12.2CPLEX solution . 92

CONTENTS 6

Exercises Operations Research L. Liberti

12 Difficult modelling problems: Solutions 93

12.1 Checksum: Solution . 93

12.1.1 Formulation . 93

12.1.2 AMPL model, data, run . 94

12.1.3 CPLEX solution . 95

12.2 Eight queens: Solution . 96

12.2.1 Formulation . 96

12.2.2 AMPL model, run . 97

12.2.3 CPLEX solution . 97

12.3 Production management . 98

12.3.1 Formulation . 98

12.3.2 AMPL model, data, run . 99

12.4 The travelling salesman problem: Solution . 101

12.4.1 Formulation . 101

12.4.2 AMPL model, data . 102

12.4.3 Algorithm . 102

12.4.4 CPLEX solution . 104

12.4.5 Heuristic solution . 105

12.5 Optimal rocket control 1: Solution . 108

12.5.1 AMPL: model, run . 110

12.5.2 CPLEX solution . 110

12.6 Double monopoly: Solution . 111

13 Telecommunication networks: Solutions 113

13.1 Packet routing: Solution . 113

13.1.1 Formulation for 2 links . 113

13.1.2 Formulation for m links . 114

13.1.3 AMPL model, data, run . 114

13.1.4 CPLEX solution . 115

13.2 Network Design: Solution . 115

13.2.1 Formulation and linearization . 115

13.2.2 AMPL model, data, run . 116

CONTENTS 7

Exercises Operations Research L. Liberti

13.2.3 CPLEX solution . 118

13.3 Network Routing: Solution . 119

13.3.1 AMPL model, data, run . 121

13.3.2 CPLEX Solution . 124

14 Nonlinear programming: Solutions 125

14.1 Error correcting codes: Solution . 125

14.2 Airplane maintenance: Solution . 125

14.3 Pooling problem: Solution . 126

14.3.1 AMPL: model, data, run . 127

14.3.2 CPLEX solution . 129

14.4 Optimal rocket control 2: Solution . 131

CONTENTS 8

Chapter 1

Optimization on graphs

1.1 Dijkstra’s algorithm

Use Dijkstra’s algorithm to find the shortest path tree in the graph below using vertex 1 as source.

1 2 4

3 5 6

2

4

1

52

0

3

8 3

1.2 Bellman-Ford’s algorithm

Check whether the graph below has negative cycles using Bellman-Ford’s algorithm and 1 as a source
vertex.

1 2 4

3 5 6

2

4

1

52

0

−1

3−1

1.3 Maximum flow

Determine a maximum flow from node 1 to node 7 in the network G = (V,A) below (the values on the
arcs (i, j) are the arc capacities kij). Also find a cut having minimum capacity.

9

Exercises Operations Research L. Liberti

1

2

3

4

5

7

6

6

6

1
3

3

7
5

4
4

1

1

1.4 Minimum cut

Find the mimum cut in the graph below (arc capacities are marked on the arcs). What algorithm did
you use?

s t

1

2

4

3

3

10

7

4

4

3

2

8

8

3

1.5 Renewal plan

A small firm buys a new production machinery costing 12000 euros. In order to decrease maintenance
costs, it is possible to sell the machinery second-hand and buy a new one. The maintenance costs and
possible gains derived from selling the machinery second-hand are given below (for the next 5 years):

age (years) costs (keuro) gain (keuro)
0 2 -
1 4 7
2 5 6
3 9 2
4 12 1

Determine a renewal plan for the machinery which minimizes the total operation cost over a 5-year period.
[E. Amaldi, Politecnico di Milano]

1.6 Connected subgraphs

Consider the complete undirected graph Kn = (V,E) where V = {0, . . . , n− 1} and E = {{u, v} | u, v ∈
V }. Let U = {i mod n | i ≥ 0} and F = {{i mod n, (i+2) mod n} | i ≥ 0}. Show that (a) H = (U,F)
is a subgraph of G and that (b) H is connected if and only if n is odd.

Connected subgraphs 10

Exercises Operations Research L. Liberti

1.7 Strong connection

Consider the complete undirected graph Kn = (V,E) and orient the edges arbitrarily into an arc set
A so that for each vertex v ∈ V , |δ+(v)| ≥ 1 and |δ−(v)| ≥ 1. Show that the resulting directed graph
G = (V,A) is strongly connected.

Strong connection 11

Exercises Operations Research L. Liberti

Strong connection 12

Chapter 2

Linear programming

2.1 Graphical solution

Consider the problem

min
x

cx

Ax ≥ b

x ≥ 0

where x = (x1, x2)
T , c = (16, 25), b = (4, 5, 9)T , and

A =

1 7
1 5
2 3

 .

1. Solve the problem graphically.

2. Write the problem in standard form. Identify B and N for the optimal vertex of the feasible
polyhedron.

[E. Amaldi, Politecnico di Milano]

2.2 Geometry of LP

Consider the following LP problem.

max z∗ = 3x1 + 2x2 (∗)

2x1 + x2 ≤ 4 (2.1)

−2x1 + x2 ≤ 2 (2.2)

x1 − x2 ≤ 1 (2.3)

x1, x2 ≥ 0.

1. Solve the problem graphically, specifying the variable values and z∗ at the optimum.

2. Determine the bases associated to all the vertices of the feasible polyhedron.

13

Exercises Operations Research L. Liberti

3. Specify the sequence of the bases visited by the simplex algorithm to reach the solution (choose x1

as the first variable entering the basis).

4. Determine the value of the reduced costs relative to the basic solutions associated to the following
vertices, expressed as intersections of lines in R2: (a) (Eq. 2.1) ∩ (Eq. 2.2); (b) ((Eq. 2.1) ∩ (Eq. 2.3),
where (Eq. i) is the equation obtained by inequality (i) replacing ≤ with =.

5. Verify geometrically that the objective function gradient can be expressed as a non-negative linear
combination of the active constraint gradients only in the optimal vertex (keep in mind that the
constraints must all be cast in the ≤ form, since the optimization direction is maximization —
e.g. x1 ≥ 0 should be written as −x1 ≤ 0).

6. Say for which values of the RHS coefficient b1 in constraint (2.1) the optimal basis does not change.

7. Say for which values of the objective function coefficients the optimal vertex is ((x1 = 0) ∩ (Eq. 2.2)),
where x1 = 0 is the equation of the ordinate axis in R2.

8. For which values of the RHS coefficient associated to (2.2) the feasible region is (a) empty (b)
contains only one solution?

9. For which values of the objective function coefficient c1 there is more than one optimal solution?

[M. Trubian, Università Statale di Milano]

2.3 Simplex method

Solve the following LP problem using the simplex method:

min z = x1 − 2x2

2x1 + 3x3 = 1

3x1 + 2x2 − x3 = 5

x1, x2, x3 ≥ 0.

Use the two-phase simplex method (the first phase identifies an initial basis) and Bland’s rule (for a
choice of the entering and exiting basis which ensures algorithmic convergence). [E. Amaldi, Politecnico

di Milano]

2.4 Duality

What is the dual of the following LP problems?

1.
minx 3x1 + 5x2 − x3

x1 − x2 + x3 ≤ 3
2x1 − 3x2 ≤ 4

x ≥ 0

(2.4)

2.
minx x1 − x2 − x3

−3x1 − x2 + x3 ≤ 3
2x1 − 3x2 − 2x3 ≥ 4

x1 − x3 = 2
x1 ≥ 0
x2 ≥ 0

(2.5)

Duality 14

Exercises Operations Research L. Liberti

3.
maxx x1 − x2 − 2x3 + 3

−3x1 − x2 + x3 ≤ 3
2x1 − 3x2 ≥ 4x3

x1 − x3 = x2

x1 ≥ 0
x2 ≤ 0

(2.6)

2.5 Geometrical interpretation of the simplex algorithm

Solve the following problem
maxx x1 + x2

−x1 + x2 ≤ 1
2x1 + x2 ≤ 4

x1 ≥ 0
x2 ≤ 0

using the simplex algorithm. Start from the initial point x̄ = (1, 0).

2.6 Complementary slackness

Consider the problem
max 2x1 + x2

x1 + 2x2 ≤ 14
2x1 − x2 ≤ 10
x1 − x2 ≤ 3
x1 , x2 ≥ 0.

1. Write the dual problem.

2. Verify that x̄ = (20
3 , 11

3) is a feasible solution.

3. Show that x̄ is optimal using the complementary slackness theorem, and determine the optimal
solution of the dual problem. [Pietro Belotti, Carnegie Mellon University]

2.7 Sensitivity analysis

Consider the problem:
min x1 − 5x2

−x1 + x2 ≤ 5
x1 + 4x2 ≤ 40
2x1 + x2 ≤ 20

x1, x2 ≥ 0.

1. Check that the feasible solution x∗ = (4, 9) is also optimal.

2. Which among the constraints’ right hand sides should be changed to decrease the optimal objective
function value, supposing this change does not change the optimal basis? Should the change be a
decrease or an increase?

Sensitivity analysis 15

Exercises Operations Research L. Liberti

2.8 Dual simplex method

Solve the following LP problem using the dual simplex method.

min 3x1 + 4x2 + 5x3

2x1 + 2x2 + x3 ≥ 6

x1 + 2x2 + 3x3 ≥ 5

x1, x2, x3 ≥ 0.

What are the advantages with respect to the primal simplex method?

Dual simplex method 16

Chapter 3

Integer programming

3.1 Piecewise linear objective

Reformulate the problem min{f(x) | x ∈ R≥0}, where:

f(x) =

−x + 1 0 ≤ x < 1
x− 1 1 ≤ x < 2
1
2x 2 ≤ x ≤ 3

as a Mixed-Integer Linear Programming problem.

3.2 Gomory cuts

Solve the following problem using Gomory’s cutting plane algorithm.

min x1 − 2x2

−4x1 + 6x2 ≤ 9
x1 + x2 ≤ 4

x ≥ 0 , x ∈ Z2

[Bertsimas & Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, Belmont, 1997.]

3.3 Branch and Bound I

Solve the following problem using the Branch and Bound algorithm.

max 2x1 + 3x2

x1 + 2x2 ≤ 3
6x1 + 8x2 ≤ 15

x1, x2 ∈ Z+

Each LP subproblem may be solved graphically.

17

Exercises Operations Research L. Liberti

3.4 Branch and Bound II

Solve the following problem using the Branch and Bound algorithm.

max z∗ = 3x1 + 4x2

2x1 + x2 ≤ 6

2x1 + 3x2 ≤ 9

x1, x2 ≥ 0, intere

Each LP subproblem may be solved graphically.

3.5 Knapsack Branch and Bound

An investment bank has a total budget of 14 million euros, and can make 4 types of investments (numbered
1,2,3,4). The following tables specifies the amount to be invested and the net revenue for each investment.
Each investment must be made in full if made at all.

Investment 1 2 3 4
Amount 5 7 4 3
Net revenue 16 22 12 8

Formulate an integer linear program to maximize the total net revenue. Suggest a way, beside the simplex
algorithm, to solve the continuous relaxation of the problem, and use it within a Branch-and-Bound
algorithm to solve the problem. [E. Amaldi, Politecnico di Milano]

Knapsack Branch and Bound 18

Chapter 4

Easy modelling problems

4.1 Compact storage of similar sequences

One practical problem encountered during the DNA mapping process is that of compactly storing ex-
tremely long DNA sequences of the same length which do not differ greatly. We consider here a simplified
version of the problem with sequences of 2 symbols only (0 and 1). The Hamming distance between two
sequences a, b ∈ Fn

2 is defined as
∑n

i=1 |ai − bi|, i.e. the number of bits which should be flipped to
transform a into b. For example, on the following set of 6 sequences below, the distance matrix is as
follows:

1. 011100011101

2. 101101011001

3. 110100111001

4. 101001111101

5. 100100111101

6. 010101011100

1 2 3 4 5 6
1 0 4 4 5 4 3
2 - 0 4 3 4 5
3 - - 0 5 2 5
4 - - - 0 3 6
5 - - - - 0 5
6 - - - - - 0

As long as the Hamming distances are not too large, a compact storage scheme can be envisaged where
we only store one complete sequence and all the differences which allow the reconstruction of the other
sequences. Explain how this problem can be formulated to find a spanning tree of minimum cost in a
graph. Solve the problem for the instance given above. [E. Amaldi, Politecnico di Milano]

4.2 Communication of secret messages

Given a communication network the probability that a secret message is intercepted along a link con-
necting node i to j is pij . Explain how you can model the problem of broadcasting the secret message
to every node minimizing the interception probability as a minimum spanning tree problem on a graph.
[E. Amaldi, Politecnico di Milano]

19

Exercises Operations Research L. Liberti

4.3 Mixed production

A firm is planning the production of 3 products A1,A2,A3. In a month production can be active for 22
days. In the following tables are given: maximum demands (units=100kg), price ($/100Kg), production
costs (per 100Kg of product), and production quotas (maximum amount of 100kg units of product that
would be produced in a day if all production lines were dedicated to the product).

Product A1 A2 A3

Maximum demand 5300 4500 5400
Selling price $124 $109 $115

Production cost $73.30 $52.90 $65.40
Production quota 500 450 550

1. Formulate an AMPL model to determine the production plan to maximize the total income.

2. Change the mathematical program and the AMPL model to cater for a fixed activation cost on the
production line, as follows:

Product A1 A2 A3

Activation cost $170000 $150000 $100000

3. Change the mathematical program and the AMPL model to cater for both the fixed activation cost
and for a minimum production batch:

Product A1 A2 A3

Minimum batch 20 20 16

[E. Amaldi, Politecnico di Milano]

4.4 Production planning

A firm is planning the production of 3 products A1, A2, A3 over a time horizon of 4 months (january to
april). Demand for the products over the months is as follows:

Demand January February March April
A1 5300 1200 7400 5300
A2 4500 5400 6500 7200
A3 4400 6700 12500 13200

Prices, production costs, production quotas, activation costs and minimum batches (see Ex. 4.3 for
definitions of these quantities) are:

Product A1 A2 A3

Unit prices $124 $109 $115
Activation costs $150000 $150000 $100000
Production costs $73.30 $52.90 $65.40

Production quotas 500 450 550
Minimum batches 20 20 16

Production planning 20

Exercises Operations Research L. Liberti

There are 23 productive days in january, 20 in february, 23 in march and 22 in april. The activation
status of a production line can be changed every month. Minimum batches are monthly.

Moreover, storage space can be rented at monthly rates of $3.50 for A1, $4.00 for A2 and $3.00 for
A3. Each product takes the same amount of storage space. The total available volume is 800 units.

Write a mathematical program to maximize the income, and solve it with AMPL. [E. Amaldi, Po-

litecnico di Milano]

4.5 Transportation

An Italian transportation firm should carry some empty containers from its 6 stores (in Verona, Perugia,
Rome, Pescara, Taranto and Lamezia) to the main national ports (Genoa, Venice, Ancona, Naples, Bari).
The container stocks at the stores are the following:

Empty containers
Verona 10
Perugia 12
Rome 20

Pescara 24
Taranto 18
Lamezia 40

The demands at the ports are as follows:

Container demand
Genoa 20
Venice 15
Ancona 25
Naples 33
Bari 21

Transportation is carried out by a fleet of lorries. The transportation cost for each container is propor-
tional to the distance travelled by the lorry, and amounts to 30 euro / km. Every lorry can carry at most
2 containers. Distances are as follows:

Genoa Venice Ancona Naples Bari
Verona 290 km 115 km 355 km 715 km 810 km
Perugia 380 km 340 km 165 km 380 km 610 km
Rome 505 km 530 km 285 km 220 km 450 km

Pescara 655 km 450 km 155 km 240 km 315 km
Taranto 1010 km 840 km 550 km 305 km 95 km
Lamezia 1072 km 1097 km 747 km 372 km 333 km

Write a mathematical program to find the minimal cost transportation policy and solve it with AMPL.
[E. Amaldi, Politecnico di Milano]

4.6 Project planning with precedences

A project consists of the following 7 activities, whose length in days is given in brackets: A (4), B (3),
C (5), D (2), E (10), F (10), G (1). The following precedences are also given: A → G,D; E,G → F ;

Project planning with precedences 21

Exercises Operations Research L. Liberti

D,F → C; F → B. Each day of work costs 1000 euros; furthermore a special machinery must be rented
from the beginning of activity A to the end of activity B at a daily cost of 5000 euros. Formulate this as
an LP problem and suggest an algorithm for solving it. [F. Malucelli, Politecnico di Milano]

4.7 Museum guards

A museum director must decide how many guards should be employed to control a new wing. Budget cuts
have forced him to station guards at each door, guarding two rooms at once. Formulate a mathematical
program to minimize the number of guards. Solve the problem on the map below using AMPL.

GH

I J
E

D
F

CB
A

Also solve the problem on the following map.

EU

R Q N
M H

F

CDW

Z

J

P

A
B

G

IO
K

LS

T

X

Y

[P. Belotti, Carnegie Mellon University]

4.8 Inheritance

A rich aristocrat passes away, leaving the following legacy:

• A Caillebotte picture: 25000$

• A bust of Diocletian: 5000$

• A Yuan dinasty chinese vase: 20000$

Inheritance 22

Exercises Operations Research L. Liberti

• A 911 Porsche: 40000$

• Three diamonds: 12000$ each

• A Louis XV sofa: 3000$

• Two very precious Jack Russell race dogs: 3000$ each (the will asserts that they may not be
separated)

• A sculpture dated 200 A.D.: 10000$

• A sailing boat: 15000$

• A Harley Davidson motorbike: 10000$

• A piece of furniture that once belonged to Cavour: 13.000$,

which must be shared between the two sons. What is the partition that minimizes the difference between
the values of the two parts? Formulate a mathematical program and solve it with AMPL. [P. Belotti,

Carnegie Mellon]

4.9 Carelland

The independent state of Carelland mainly exports four goods: steel, engines, electronic components
and plastics. The Chancellor of the Exchequer (a.k.a. the minister of economy) of Carelland wants
to maximize exports and minimize imports. The unit prices on the world markets for steel, engines,
electronics and plastics, expressed in the local currency (the Klunz) are, respectively: 500, 1500, 300,
1200. Producing 1 steel unit requires 0.02 engine units, 0.01 plastics units, 250 Klunz in other imported
goods and 6 man-months of work. Producing 1 engine unit requires 0.8 steel units, 0.15 electronics units,
0.11 plastics units, 300 Klunz in imported goods and 1 man-year. One electronics unit requires: 0.01 steel
units, 0.01 engine units, 0.05 plastics units, 50 Klunz in imported goods and 6 man-months. One plastics
unit requires: 0.03 engine units, 0.2 steel units, 0.05 electronics units, 300 Klunz in imported goods and
2 man-years. Engine production is limited to 650000 units, plastics production to 60000 units. The
total available workforce is 830000 each year. Steel, engines, electronics and plastics cannot be imported.
Write a mathematical program that maximizes the gross internal product and solve the problem with
AMPL. [G. Carello, Politecnico di Milano]

4.10 CPU Scheduling

10 tasks must be run on 3 CPUs at 1.33, 2 and 2.66 GHz (each processor can run only one task at a
time). The number of elementary operations of the tasks (expressed in billions of instructions (BI)) is as
follows:

process 1 2 3 4 5 6 7
BI 1.1 2.1 3 1 0.7 5 3

Schedule tasks to processors so that the completion time of the last task is minimized. Solve the problem
with AMPL.

CPU Scheduling 23

Exercises Operations Research L. Liberti

4.11 Dyeing plant

A fabric dyeing plant has 3 dyeing baths. Each batch of fabric must be dyed in each bath in the order:
first, second, third bath. The plant must colour five batches of fabric of different sizes. Dyeing batch i in
bath j takes a time sij expressed in hours in the matrix below:

3 1 1
2 1.5 1
3 1.2 1.3
2 2 2

2.1 2 3

.

Schedule the dyeing operations in the baths so that the ending time of the last batch is minimized.

4.12 Parking

On Dantzig Street cars can be parked on both sides of the street. Mr. Edmonds, who lives at number 1,
is organizing a party for around 30 people, who will arrive in 15 cars. The length of the i-th car is λi,
expressed in meters as follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
λi 4 4.5 5 4.1 2.4 5.2 3.7 3.5 3.2 4.5 2.3 3.3 3.8 4.6 3

In order to avoid bothering the neighbours, Mr. Edmonds would like to arrange the parking on both sides
of the street so that the length of the street occupied by his friends’ cars should be minimum. Give a
mathematical programming formulation and solve the problem with AMPL.

How does the program change if on exactly one of the street sides the cars should not occupy more
than 15m?

Parking 24

Chapter 5

Difficult modelling problems

5.1 Checksum

An expression parser is a program that reads mathematical expressions (input by the user as strings)
and evaluates their values on a set of variable values. This is done by representing the mathematical
expression as a directed binary tree. The leaf nodes represent variables or constants; the other nodes
represent binary (or unary) operators such as arithmetic (+, -, *, /, power) or transcendental (sin, cos,
tan, log, exp) operators. The unary operators are represented by a node with only one arc in its outgoing
star, whereas the binary operators have two arcs. The figure below is the binary expression tree for
(x + 2)ex.

��
��

��
��

��
��

��
��

��
��

��
��

H
H

H
H

H
H

Hj

�
�

�
�

�
�

�* H
H

H
H

H
H

Hj

�
�

�
�

�
�

�*

H
H

H
H

H
HHj

×

x

+

x

2

exp

The expression parser consists of several subroutines.

• main(): the program entry point;

• parse(): reads the string containing the mathematical expression and transforms it into a binary
expression tree;

• gettoken(): returns and deletes the next semantic token (variable, constant, operator, brackets)
from the mathematical expression string buffer;

• ungettoken(): pushes the current semantic token back in the mathematical expression string
buffer;

• readexpr(): reads the operators with precedence 4 (lowest: +,-);

25

Exercises Operations Research L. Liberti

• readterm(): reads the operators with precedence 3 (*, /);

• readpower(): reads the operators with precedence 2 (power);

• readprimitive(): reads the operators of precedence 1 (functions, expressions in brackets);

• sum(term a, term b): make a tree +
ր a
ց b

;

• difference(term a, term b): make a tree −
ր a
ց b

;

• product(term a, term b): make a tree ∗
ր a
ց b

;

• fraction(term a, term b): make a tree /
ր a
ց b

;

• power(term a, term b): make a tree ∧
ր a
ց b

;

• minus(term a): make a tree − → a;

• logarithm(term a): make a tree make a tree log→ a;

• exponential(term a): make a tree make a tree exp→ a;

• sine(term a): make a tree make a tree sin→ a;

• cosine(term a): make a tree make a tree cos→ a;

• tangent(term a): make a tree make a tree tan→ a;

• variable(var x): make a leaf node x;

• number(double d): make a leaf node d;

• readdata(): reads a table of variable values from a file;

• evaluate(): computes the value of the binary tree when substituting each variable with the cor-
responding value;

• printresult(): print the results.

For each function we give the list of called functions and the quantity of data to be passed during the
call.

• main: readdata (64KB), parse (2KB), evaluate (66KB), printresult(64KB)

• evaluate: evaluate (3KB)

• parse: gettoken (0.1KB), readexpr (1KB)

• readprimitive: gettoken (0.1KB), variable (0.5KB), number (0.2KB), logarithm (1KB), exponential
(1KB), sine (1KB), cosine (1KB), tangent (1KB), minus (1KB), readexpr (2KB)

• readpower: power (2KB), readprimitive (1KB)

• readterm: readpower (2KB), product (2KB), fraction (2KB)

• readexpr: readterm (2KB), sum (2KB), difference (2KB)

Checksum 26

Exercises Operations Research L. Liberti

• gettoken: ungettoken (0.1KB)

Each function call requires a bidirectional data exchange between the calling and the called function.
In order to guarantee data integrity during the function call, we require that a checksum operation be
performed on the data exchanged between the pair (calling function, called function). Such pairs are
called checksum pairs. Since the checksum operation is costly in terms of CPU time, we limit these
operations so that no function may be involved in more than one checksum pair. Naturally though, we
would like to maximize the total quantity of data undergoing a checksum.

1. Formulate a mathematical program to solve the problem, and solve the given instance with AMPL.

2. Modify the model to ensure that readprimitive() and readexpr() are a checksum pair. How
does the solution change?

5.2 Eight queens

Formulate an integer linear program to solve the problem of positioning eight queens on the chessboard so
that no queen is under threat by any other queen. Solve this program with AMPL. [P. Belotti, Carnegie

Mellon University]

5.3 Production management

A firm which produces only one type of product has 40 workers. Each one of them produces 20 units per
month. The demand varies during the semester according to the following table:

Month 1 2 3 4 5 6
Demand (units) 700 600 500 800 900 800

In order to increase/decrease production depending on the demand, the firm can offer some (paid) extra
working time (each worker can produce at most 6 additional units per month at unit cost of 5 euros),
use a storage space (10 euros/month per unit of product), employ or dismiss personnel (the number of
employed workers can vary by at most ±5 per month at an additional price of 500 euros per employment
and 700 euros per dismissal).

At the outset, the storage space is empty, and we require that it should be empty at the end of the
semester. Formulate a mathematical program that maximizes the revenues, and solve it with AMPL.
How does the objective function change when all variables are relaxed to be continuous? [E. Amaldi,

Politecnico di Milano]

5.4 The travelling salesman problem

A travelling salesman must visit 7 customers in 7 different locations whose (symmetric) distance matrix
is:

The travelling salesman problem 27

Exercises Operations Research L. Liberti

1 2 3 4 5 6 7
1 - 86 49 57 31 69 50
2 - 68 79 93 24 5
3 - 16 7 72 67
4 - 90 69 1
5 - 86 59
6 - 81

Formulate a mathematical program to determine a visit sequence starting at ending at location 1, which
minimizes the travelled distance, and solve it with AMPL. Knowing that the distances obey a triangular
inequality and are symmetric, propose a suitable heuristic method.

5.5 Optimal rocket control 1

A rocket of mass m is launched at sea level and has to reach an altitude H within time T . Let y(t) be the
altitude of the rocket at time t and u(t) the force acting on the rocket at time t in the vertical direction.
Assume u(t) may not exceed a given value b, that the rocket has constant mass m throughout, and that
the gravity acceleration g is constant in the interval [0,H]. Discretizing time t ∈ [0, T] in n intervals,
propose a linear program to determine, for each k ≤ n, the force u(tk) acting on the rocket so that the
total consumed energy is minimum. Solve the problem with AMPL with the following data: m = 2140kg,
H = 23km, T = 1min, b = 10000N, n = 20.

5.6 Double monopoly

In 2021, all the world assets are held by the AA (Antidemocratic Authorities) bank. In 2022, a heroical
judge manages to apply the ancient (but still existing) anti-trust regulations to the AA bank, right
before being brutally decapitated by its vicious corporate killers. A double monopoly situation is thus
established with the birth of the BB (Bastard Business) bank. In a whirlpool of flagrantly illegal acts that
are approved thanks to the general public being hypnotized by the highly popular television programme
“The International Big Brother 26”, the AA bank manages to insert a codicil in the anti-trust law that
ensures that BB may not draw any customer without the prior approval of AA. However, in an era where
the conflict of interest is not only accepted but even applauded, AA’s lawyers are the same as BB’s,
so the same codicil is inserted in the law in favour of BB. When the law is finally enforced, as usually
happens when two big competitors share the market, AA and BB get together and develop some plans
to make as much money as they can without damaging each other too much. It decided that each bank
must, independently of the codicil, make at least one investment. When operations begin, the following
situation occurs: there are 6 big customers and a myriad of small private individuals with their piddly
savings accounts which are progressively deprived of everything they have and which can, to the end of
this exercise (but let’s face it — to every other end, too), be entirely disregarded. The effect of the codicil
and of the bank agreement brings about a situation where the quantity of money earned by AA in a
given investment is exactly the same as the quantity of money lost by BB for not having made the same
investment (and vice versa). The following 6× 6 matrix A = (aij) represents the revenues and losses of
the two banks:

A =

1 −2 1 3 −5 2
4 1 1 3 2 −1
1 10 −6 3 1 4
2 2 1 3 3 −8
−12 1 3 −4 2 1
3 3 −1 4 2 2

.

Double monopoly 28

Exercises Operations Research L. Liberti

aij represents the revenue of AA and loss of BB if AA invests all of its budget in client i and BB all of its
budget in client j. The banks may naturally decide to get more than one client, but without exceeding
their budgets (which amount to exactly the same amount: 1 fantastillion dollars). Even to the bank
managers it appears evident that AA’s optimal strategy is to maximize the expected revenues and BB’s
to minimize the expected loss. Write two linear programs: one to model the expected revenues of AA
and the other to model the losses of BB. Comment on the relations between the models.

Double monopoly 29

Exercises Operations Research L. Liberti

Double monopoly 30

Chapter 6

Telecommunication networks

6.1 Packet routing

There are n data flows that must be routed from a source node s to a destination node t following one
of two possible links, with capacity u1 = 1 and u2 = 2 respectively.

s t

link 1

link 2

The company handling link 2 is 30% more expensive than the company handling link 1. The table below
specifies the demands to be routed and the cost on link 1.

Demand Required capacity (Mbps) Cost on link 1
1 0.3 200
2 0.2 200
3 0.4 250
4 0.1 150
5 0.2 200
6 0.2 200
7 0.5 700
8 0.1 150
9 0.1 150
10 0.6 900

Formulate a mathematical program to minimize the routing cost of all the demands. How would you
change the model to generalize to a situation with m possible parallel links between s and t?

6.2 Network Design

Orange is the unique owner and handler of the telecom network in the figure below.

31

Exercises Operations Research L. Liberti

1

2

3 4

5

6

7

8

9 10 11

12 13

1

2

2.1

22
1.7

1.8

5.4
3

2
7

6.5
5

2

2.5

1

1.5

1

1

1.10.7

The costs on the links are proportional to the distances d(i, j) between the nodes, expressed in units of
10km. Because of anti-trust regulations, Orange must delegate to SFR and Bouygtel two subnetworks
each having at least two nodes (with Orange handling the third part). Orange therefore needs to design
a backbone network to connect the three subnetworks. Transforming an existing link into a backbone
link costs c = 25 euros/km. Formulate a mathematical program to minimize the cost of implementing a
backbone connecting the three subnetworks, and solve it with AMPL. How does the solution change if
Orange decides to partition its network in 4 subnetworks instead of 3?

6.3 Network Routing

The main telephone network backbone connecting the different campuses of the Politecnico di Milano
(at Milano, Como, Lecco, Piacenza, Cremona) has grown over the years to its present state without a
clear organized plan. Politecnico asked its main network provider to optimize the routing of all the traffic
demands to see whether the installed capacity is excessive. The network topology is as depicted below.

For each link there is a pair (u, c) where u is the link capacity (Mb/s) and c the link length (km).

1. Como, Lecco: (200, 30)

2. Como, Milano: (260, 50)

3. Como, Piacenza: (200, 110)

4. Lecco, Milano: (260, 55)

Network Routing 32

Exercises Operations Research L. Liberti

5. Lecco, Cremona: (200, 150)

6. Milano, Piacenza: (260, 72)

7. Milano, Cremona: (260, 90)

8. Piacenza, Cremona: (200, 100)

The traffic demands to be routed (in Mb/s) are as follows.

1. Como, Lecco: 20

2. Como, Piacenza: 30

3. Milano, Como: 50

4. Milano, Lecco: 40

5. Milano, Piacenza: 60

6. Milano, Cremona: 25

7. Cremona, Lecco: 35

8. Cremona, Piacenza: 30

The current routing is as given below.

1. Como → Lecco

2. Como → Milano → Piacenza

3. Milano → Lecco → Como

4. Milano → Como → Lecco

5. Milano → Piacenza

6. Milano → Piacenza → Cremona

7. Cremona → Milano → Piacenza → Como → Lecco

8. Cremona → Milano → Como → Lecco → Milano → Piacenza

Formulate a mathematical program to find an optimal network routing. [with P. Belotti, Carnegie Mellon

University]

Network Routing 33

Exercises Operations Research L. Liberti

Network Routing 34

Chapter 7

Nonlinear programming

7.1 Error correcting codes

A message sent by A to B is represented by a vector z = (z1, . . . , zm) ∈ Rm. An Error Correcting Code

(ECC) is a finite set C (with |C| = n) of messages with an associated function ρ : C → R, such that for
each pair of distinct messages x, y ∈ C the inequality ||x− y|| ≥ ρ(x) + ρ(y) holds. The correction radius

of code C is given by

RC = min
x∈C

ρ(x),

and represents the maximum error that can be corrected by the code. Assume both A and B know the
code C and that their communication line is faulty. A message xA ∈ C sent by A gets to B as xB 6∈ C
because of the faults. Supposing the error in xB is strictly less than RC , B is able to reconstruct the
original message xA looking for the message x ∈ C closest to xB as in the figure below.

transmission

yy

≥ ρ(x) + ρ(y)

A B
x = xA

x = xA

xB

C = {x, y}
ρ(y)

ρ(x)

nearest message

Formulate a (nonlinear) mathematical program to build an ECC C of 10 messages in R12 (where all
message components are in [0, 1]) so that the correction radius is maximized.

7.2 Airplane maintenance

Boeing needs to build 5 maintenance centers for the Euro-Asian area. The construction cost for each
center is 300 million euros in the European area (between 20◦W and 40◦E) and 150 million euros in the
Asian area (between 40◦E and 160◦E), as shown below.

35

Exercises Operations Research L. Liberti

Each center can service up to 60 airplanes each year. The centers should service the airports with
the highest number of Boeing customers, as detailed in the table below (airport name, geographical
coordinates, expected number of airplanes/year needing maintenance).

Airport Coordinates N. of planes

London Heathrow 51◦N 0◦W 30
Frankfurt 51◦N 8◦E 35
Lisboa 38◦N 9◦W 12
Zürich 47◦N 8◦E 18
Roma Fiumicino 41◦N 12◦E 13
Abu Dhabi 24◦N 54◦E 8
Moskva Sheremetyevo 55◦N 37◦E 15
Vladivostok 43◦N 132◦E 7
Sydney 33◦S 151◦E 32
Tokyo 35◦N 139◦E 40
Johannesburg 26◦S 28◦E 11
New Dehli 28◦N 77◦E 20

The total cost is given by the construction cost plus the expected servicing cost, which depends linearly
on the distance an airplane needs to travel to reach the maintenance center (weighted by 50 euro/km).
We assume earth is a perfect sphere, so that the shortest distance between two points with geographical
coordinates (δ1, ϕ1) and (δ2, ϕ2) is given by:

d(δ1, ϕ1, δ2, ϕ2) = 2r asin

√

sin2

(

δ1 − δ2

2

)

+ cos δ1 cos δ2 sin2

(

ϕ1 − ϕ2

2

)

,

where r, the earth radius, is 6371km.

Formulate a (nonlinear) mathematical program to minimize the operation costs.

7.3 Pooling problem

The blending plant in a refinery is composed by a pool and two mixers as shown in the picture below.

Pooling problem 36

Exercises Operations Research L. Liberti

A
3% sulphur

6$

B
1% sulphur

16$

C
2% sulphur

10$

Pool

Blender 1

Blender 2

≤ 2.5% sulphur

9$
≤ 100

≤ 1.5% sulphur

15$
≤ 200

Two types of crude A, B whose unitary cost and sulphur percentage are 6$, 16$ and 3%, 1% respectively
enter the pool through two input valves. The output of the pool is then carried to the mixers, together
with some crude of type C (unit cost 10%, sulphur percentage 2%) which enters the plant through a
third input valve. Mixer 1 must produce petrol containing at most 2.5% sulphur, which will be sold at a
unitary price of 9$. Mixer 2 must produce a more refined petrol containing at most 1.5% sulphur, sold
at a unitary price of 15$. The maximum market demand for the refined petrol 1 is of 100 units, and
of 200 units for refined petrol 2. Formulate a (nonlinear) mathematical program to maximize revenues.
Does your program describe a convex programming problem? Propose and implement (with AMPL and
CPLEX) a heuristic algorithm to find a feasible, and hopefully good, solution to the problem.

[Haverly, Studies of the behaviour of recursion for the pooling problem, ACM SIGMAP Bulletin 25:19-
28, 1978]

7.4 Optimal rocket control 2

A rocket of mass m is launched at sea level and has to reach an altitude H within time T . Let y(t)
be the altitude of the rocket at time t and u(t) the force acting on the rocket at time t in the vertical
direction. Assume: (a) u(t) may not exceed a given value b; (b) the rocket has initial mass m = m0 + c
(where c is the mass of the fuel) and loses αu(t) kg of mass (burnt fuel) each second; (c) the gravity
acceleration g is constant in the interval [0,H]. Discretizing time t ∈ [0, T] in n intervals, propose a
(nonlinear) mathematical program to determine, for each k ≤ n, the force u(tk) acting on the rocket so
that the total consumed energy is minimum.

Optimal rocket control 2 37

Solutions

Chapter 8

Optimization on graphs: Solutions

8.1 Dijkstra’s algorithm: Solution

Dijkstra’s algorithm is used for computing shortest paths from one root node to every other node of
a directed or undirected graph without cycles of negative cost. To each node v ∈ V in the graph we
associated a label ζ(v) (initially set at ∞). For each node v we store the node π(v) which precedes it
in the shortest path. Graphically, we indicate labels and predecessors at each iteration directly on the
graph as follows:

iv ζ π

In the above picture, v is the vertex, i the iteration of the algorithm, ζ the label and π the cost. We
initialize the set of reached vertices S = {r} (a vertex v is reached if it is a candidate for being chosen
as a settled vertex at the next iteration; a vertex v is settled if a shortest path to from r to v has been
found). At each iteration, we settle the node h in S with minimum label ζ(h). For each node w ∈ δ+(h),
if ζ(h)+ chw < ζ(w) we update ζ(w)→ ζ(h)+ chw and π(w)→ h, where chw is the cost of the arc (h,w).
We remove h from S and add w to S if it is not already in S.

1 2 4

3 5 6

2

4

52

0

3

8 3

1

1 0 0 1 0 1 0

1 0
1 0

1 0

M M

M
M

M

M :∞
S = {1}

39

Solutions Operations Research L. Liberti

1 2 4

3 5 6

2

4

52

0

3

8 3

1

0 0 0

0
0

2 M

M
M4 1

12 2 2

2
2

2

M :∞
S = {2, 3}

1 2 4

3 5 6

2

4

52

0

3

8 3

1

0 0

0
0

2

M
M4 1

1 5 23 3 3

3
3

3

M :∞
S = {3, 4}

1 2 4

3 5 6

2

4

52

0

3

8 3

1

0 0 2

4 1

1 5 24 4

4
4

4
6 3

5 3

4

M :∞
S = {4, 5, 6}

1 2 4

3 5 6

2

4

52

0

3

8 3

1

0 0 2

4 1

1 5 2

5 3

5 5 5

5
5

5
5 4

M :∞
S = {5, 6}

1 2 4

3 5 6

2

4

52

0

3

8 3

1

0 0 2

4 1

1 5 2

5 3
5 4

6 6 6

6
6

6

M :∞
S = {6}

1 2 4

3 5 6

2

4

52

0

3

8 3

1

0 0 2

4 1

1 5 2

5 3
5 4

7 7 7

7
7

7

M :∞
S = ∅

8.2 Bellman-Ford algorithm: Solution

The Bellman-Ford algorithm also works in presence of negative cost cycles (it works in the sense that
if there is a negative cycle it is detected and the algorithm terminates). We solve the problem with the
same notation as Ex. 8.1, save that we indicate the reached vertices by Q as a reminder that Q is not
simply a set but a FIFO (first in, first out) queue. At each iteration we choose the oldest node h ∈ Q
and we explore its outgoing star as in Dijkstra’s algorithm. Since each node may not be visited more
than n − 1 times if there are no cycles of negative cost, it suffices to keep track of the number of times
each node is visited. Should a node be visited n times, then there is a cycle of negative cost in the graph.
More precisely, Q turns out to be:

1, 2, 3, 4, 5, 6, 2, 4, 5, 2, 4, 5, 2, 4, 5, 2, 4, 5, 2.

Since vertex 2 was visited 6 times and n = 6, the cycle (2, 4, 5, 2) has negative cycle and the algorithm
terminates.

8.3 Maximum flow: Solution

A network is a weighted directed graph with a source node s ∈ V and a destination node t ∈ V ; we
associate a capacity kij ≥ 0 to each arc (i, j) ∈ A. A flow from s to t is a function x : A→ R such that
0 ≤ x(i, j) ≤ kij for each (i, j) ∈ A (we also denote x(i, j) as xij). A flow is feasible if for each vertex
i ∈ V r {s, t} we have

∑

j∈δ−(i)

xji =
∑

j∈δ+(i)

xij . (8.1)

The value ϕ of the flow x is the sum of the flows on the arcs coming out of s, i.e. ϕ =
∑

i∈δ+(s) xsi.
Each non-empty node subset S (V induces a partition of V in S, V r S. Given a non-empty proper

Maximum flow: Solution 40

Solutions Operations Research L. Liberti

node subset S (V containing s and not t, the cut induced by S (denoted by δ(S)) is the subset of all
arcs in A having an adjacent vertex in S and the other in V r S (we say that the cut δ(S) separates s
from t). The directed cut from S (denoted by δ+(S)) is defined as {(i, j) ∈ δ(S) | i ∈ S ∧ j ∈ V r S}.
The directed cut into S (denoted by δ−(S)) is defined as {(i, j) ∈ δ(S) | j ∈ S ∧ i ∈ V r S}. The capacity

of the cut δ(S) is k(S) =
∑

(i,j)∈δ(S) kij . Similar definitions are applied to directed cuts, with notations

k+(S), k−(S). A minimum cut in a network is a directed cut δ+(S∗) such that for all other non-empty
node subsets S such that s ∈ S and t 6∈ S we have k+(S∗) ≤ k+(S). The flow through the cut δ(S) is
ϕ(S) =

∑

(i,j)∈δ+(S) xij −
∑

(i,j)∈δ−(S) xij .

The Maximum Flow / Minimum Cut theorem asserts that the maximum value a feasible flow can
take is the same as the capacity of a minimum cut in the network. Let ϕ∗ be the maximum value over
all feasible flows and δ+(S∗) be a minimum cut in the network. The proof is sketched below.

• By Eq. (8.1), the flow through any cut δ(S) must have a value equal to the flow on the arcs of the
cut δ+({s}). This also holds for the minimum cut, hence ϕ∗ = ϕ(S∗).

• By definition, ϕ(S∗) =
∑

(i,j)∈δ+(S∗) xij −
∑

(i,j)∈δ−(S∗) xij . We remark that this quantity is maxi-
mum when the first sum attains maximum value and the second has minimum value.

• Since the flow ϕ∗ is maximum and0 ≤ xij ≤ kij for each (i, j) ∈ A, ϕ(S∗) is maximum when
xij = kij for each (i, j) ∈ δ+(S∗) and xij = 0 for each (i, j) ∈ δ−(S∗).

• We can infer that ϕ(S∗) =
∑

(i,j)∈δ+(S∗) kij , which by definition is the capacity of the minimum

cut. Hence ϕ∗ = k+(S∗) as required.

We can now solve the exercise with the Ford-Fulkerson algorithm. We start from the feasible flow
having value 0. The incremental network Ḡ0 associated to the initial feasible flow x0 represents all
potential flow variations with respect to the current feasible flow. More precisely, the incremental network
Ḡ = (V, Ā) of G with respect to the flow x is a network such that: (a) for each arc (i, j) ∈ A such that
xij = 0 there is an arc (i, j) ∈ Ā weighted by wij = kij ; (b) for each arc (i, j) ∈ A such that xij = kij

there is an arc (j, i) ∈ Ā weighted by wji = kij ; (c) for each arc (i, j) ∈ A such that 0 < xij < kij there is
an arc (i, j) ∈ Ā weighted by wij = kij −xij and an arc (j, i) ∈ Ā weighted by wji = xij . An augmenting

s− t-path in an incremental network is a path p ⊆ Ā in Ḡ from s to t such that β(p) = min(i,j)∈p wij > 0

Since xij = 0 for all (i, j) ∈ A, Ḡ0 is the same as G. At iteration h, we need to find an augmenting
s − t-path in the incremental network Ḡh with respect to the current feasible flow xh. If such a path
exists we define xh+1 as follows: (a) for all (i, j) ∈ p such that (i, j) ∈ A let xh+1

ij = xh
ij + wij ; (b) for

all (i, j) ∈ p such that (j, i) ∈ A let xh+1
ji ← xh

ji − wij . The value ϕ of the flow is updated to ϕ + β(p).

If no such path exists, the algorithm terminates: xh is the maximum flow. The pictures below show the
network G on the left and the incremental network Ḡ on the right.

1

2

3

4

5

7

6

6

6

1
3

3

7
5

4
4

1

1

1

2

3

4

5

7

6

6

6

1
3

3

7
5

4
4

1

1

The augmenting path p in Ḡ0 is {(1, 3), (3, 5), (5, 6), (6, 7)} with β(p) = 4. The new feasible flow has
value ϕ = 0 + 4 = 4. The incremental network Ḡ1 is shown on the right, below.

Maximum flow: Solution 41

Solutions Operations Research L. Liberti

1

2

3

4

5

7

6

6

1
3

3

4

1

1

4,7

4,4

4,6

4,5

1

2 4

5

7

6

6

1
3

3

4

1

1

2

3
1

4

4
4

4

3

The next augmenting path is {(1, 2), (2, 5), (5, 7)} with β = 3. The next flow has value ϕ = 4 + 3 = 7.
The incremental network Ḡ2 is shown on the right below.

1

2

3

4

5

7

6

1

3

1

1

4,7

4,4

4,6

4,5

3,3

3,4

3,6

1

2 4

5

7

6

1

3

1

1

2

3
1

4

4
4

4

3

3
3

3 3

1

Next augmenting path: {(1, 2), (2, 4), (4, 7)} with β = 1; ϕ = 8.

1

2

3

4

5

7

6

1 1

4,7

4,4

4,6

4,5

3,3

3,4

4,6

1,3
1,1

1

2 4

5

7

6

1 1

2

3
1

4

4
4

4

3

3 3

1

4

2

1
12

Next and final augmenting path: {(1, 2), (2, 4), (4, 5), (5, 7)} with β = 1; ϕ = 9.

1

2

3

4

5

7

6

1

4,7

4,4

4,6

4,5

3,3

1,1

5,6

2,3

4,4

1,1 1

2 4

5

7

6

1

2

3
1

4

4
4

4

3

3

11
5

1

2

1 4

There are no more augmenting paths from 1 to 7 in the incremental network above, so the maximum
flow has value 9.

A minimum cut in the network can be found as follows: on the incremental network Ḡ4 of the last
iteration, from node 1 we can only reach nodes 2,3,4,5,6. The subset of nodes S = {1, 2, 3, 4, 5, 6}
determines a minimum cut {(4, 7), (5, 7), (6, 7)} with capacity 4 + 4 + 1 = 9.

8.4 Minimum cut: Solution

We employ Ford-Fulkerson’s algorithm to find the maximum flow. We then apply the graph exploration
algorithm to the residual network found at the last iteration of the Ford-Fulkerson algorithm, starting

Minimum cut: Solution 42

Solutions Operations Research L. Liberti

from the source node s. The subset S of the nodes visited by the graph exploration algorithm generates
the minimum cut δ+(S). More precisely, the last iteration of the Ford-Fulkerson algorithm identifies a
flow having value 10 through the paths s− 1− 4− t, s− 2− 3− t, s− 2− 1− 3− t, s− 2− 1− 4− 3− t.
The residual network at the last iteration is:

s t

1

2

4

3

3
4

3

2

3

3

7

5 2

4

1 7

3

5

The graph exploration algorithm starting from s applied to the above graph finds S = {s, 2, 1}, so the
cut with minimum capacity is given by arcs (i, j) with i ∈ S and j ∈ V \S:

(1, 4), (1, 3), (2, 3)

with capacity 4+4+2=10.

8.5 Renewal plan: Solution

Consider a directed graph with 6 nodes. Nodes 1 to 5 are associated to the start of each year. The
sixth node represents the end of the planning period. For each i < 6 and j > i, arc (i, j) represents the
occurrence that a production machinery bought at the beginning of the i-th year has been sold at the
beginning of the j-th year. The cost cij associated to the arc (i, j) is given by:

cij = ai +

j−1
∑

k=i

mk − rj ,

where ai is the price of a new machinery (equal to 12000 euros), mk is the maintenance cost in the k-th
year and rj is the gain from the sale of the old machinery. We obtain the following graph:

7 7 7 7 7

12

12

12

12

21

21

21

31

31

44

1 2 3 5 64

Any path from 1 to 6 represents a renewal plan; the cost of the path is the cost of the plan. We have
to find a shortest path from node 1 to node 6. To this end we may either apply Dijkstra’s algorithm

Renewal plan: Solution 43

Solutions Operations Research L. Liberti

stopping as soon as node 6 has been settled, or we may notice that the graph is acyclic. This allows us
to solve the problem using a dynamic programming technique. We obtain the following values:

1. ζ(1) = 0;

2. ζ(2) = 7, π(2) = 1;

3. ζ(3) = 12, π(3) = 1;

4. ζ(4) = 19, π(4) = 3;

5. ζ(5) = 24, π(5) = 3;

6. ζ(6) = 31, π(6) = 5.

The shortest path (having cost 31) is 1→ 3→ 5→ 6. In other words, the firm should buy new machinery
every two years. Note that this solution is not unique.

8.6 Connected subgraphs: Solution

(a) For each integer i ≥ 0, i mod n and (i + 2) mod n are strictly smaller than n, hence in V . Since
E includes all possible pairs {i, j} ∈ V , F ⊆ E. (b) (⇒) Assume first that H is connected; then
there must be a path between vertices 0 and 1, i.e. there must be an integer k and a sequence of pairs
{0, 2}, {2, 4}, . . . , {2k−2, 2k} such that 2k mod n = 1: this means 2k = qn+1 for some integer q, which
implies n = 2k−1

q , which is odd for all values of k, q. (⇐) Suppose now n is odd: then for all integers j

we can always find an integer q such that qn + j is divisible by 2 (choose q odd if j is odd, and q even if
j is even), therefore if we let k = qn+j

2 then k is an integer, hence ∀j ∃k (2k mod n) = j, which implies
that 0 is connected with every other vertex j ∈ V , which proves that H is connected.

8.7 Strong connection: Solution

Suppose, to get a contradiction, that there exist vertices u, v ∈ V such that no directed path can be found
in G from u to v. Since the undirected graph Kn is complete, the set Puv of all (undirected) paths from u
to v in Kn is non-empty. Let P̄uv the set of arc sequences in G corresponding to each (undirected) path
in Puv. Since u, v are disconnected in G, this means in each sequence p ∈ Puv there is either (a) at least
an arc (t, z) such that z has no outgoing arc in G, which implies |δ+(z)| = 0 against the hypothesis, or
(b) v is such that |δ−(v)| = 0, again against the hypothesis.

Strong connection: Solution 44

Chapter 9

Linear programming: Solutions

9.1 Graphical solution: Solution

1. Equations associated to system Ax = b:

x1 + 7x2 = 4 (9.1)

x1 + 5x2 = 5 (9.2)

2x1 + 3x2 = 9 (9.3)

Draw the corresponding lines on the Cartesian plane (see Fig. 9.1). The objective function is

-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8

0

(−x1 + 4)/7 (2.1)

(−x1 + 5)/5 (2.2)

(−2x1 + 9)/3 (2.3)

Figure 9.1: The feasible polyhedron is unbounded.

16x1 +25x2. If we set 16x1 +25x2 = q we obtain the parametric line equation x2 = − 16
25x1 + q

25 . It

45

Solutions Operations Research L. Liberti

is evident from Fig. 9.2 that the optimal solution is at vertex R of the feasible polyhedron. Vertex

valori decrescenti
funzione obiettivo

P

Q

R

S

T

U

x = 0 2 3 4 65

eq. (9.1)

eq. (9.2)

eq. (9.3)

Figure 9.2: Graphical solution of the problem.

R is the intersection of (9.2) and (9.3). We can obtain its coordinates by solving the system

x1 + 5x2 = 5

2x1 + 3x2 = 9

which implies x1 = 5(1− x2) and hence x2 = 1
7 and x1 = 30

7 .

2. By writing the problem in standard form we must introduce three slack variables s1, s2, s3 associated
to each of the constraints. Let then x′ = (x1, x2, s1, s2, s3)

⊤
, c′ = (16, 25, 0, 0, 0) and

A′ =

1 7 −1 0 0
1 5 0 −1 0
2 3 0 0 −1

 = (A| − I).

The problem in standard form is given by

min
x′

c′x′

A′x′ = b

x′ ≥ 0

Graphical solution: Solution 46

Solutions Operations Research L. Liberti

Since vertex R is the intersection of lines (9.1) and (9.2), the corresponding constraints have the
relative slack variables s2, s3 equal to zero in R. If we set the basic variables to xB = (x1, x2, s1)
and the nonbasics to xN = (s2, s3) we obtain a partition x′ = (xB |xN) of the variables to which
there corresponds a partition of the matrix columns

A′ =

1 7 −1 0 0
1 5 0 −1 0
2 3 0 0 −1

 = (B|N).

The value of the basic variables xB in R is given by B−1b. We obtain

B−1 =
1

7

0 −3 5
0 2 −1
−7 11 −2

and hence B−1b = (30
7 , 1

7 , 9
7). Note that the values for x1 and x2 correspond to those computed

above.

9.2 Geometry of LP: Solution

1. The equations associated to the constraints (2.1), (2.2), (2.3) are:

2x1 + x2 = 4 (Eq. 2.1)

−2x1 + x2 = 2 (Eq. 2.2)

x1 − x2 = 1, (Eq. 2.3)

that is,

x2 = −2x1 + 4

x2 = 2x1 + 2

x2 = x1 − 1,

which can easily be drawn as lines in the Cartesian plane x1, x2. The objective function (∗) may
be represented by the parametric line family x2 = − 3

2 + q. The feasible polyhedron is PQROS,
represented in Fig. 9.3. The optimal solution is in vertex P = (1

2 , 3), and the value of the objective
in that point is z∗ = 15

2 .

2. We write the problem in standard form introducing 3 slack variables s1, s2, s3 associated with each
of the constraints. Let x′ = (x1, x2, s1, s2, s3)

T , c′ = (−3,−2, 0, 0, 0), b = (b1, b2, b3)
T = (4, 2, 1)T

and

A′ =

2 1 1 0 0
−2 1 0 1 0
1 −1 0 0 1

 = (A|I).

The problem in standard form is:

min
x′

c′x′

A′x′ = b

x′ ≥ 0.

(a) Vertex P : s1 = 0, s2 = 0, hence xB = (x1, x2, s3), xN = (s1, s2),

B =

2 1 0
−2 1 0
1 −1 1

 , N =

1 0
0 1
0 0

 .

Geometry of LP: Solution 47

Solutions Operations Research L. Liberti

P

Q

R

S

O

max z*

eq. (2.1)
eq. (2.2)

eq. (2.3)

Figure 9.3: The feasible polyhedron.

(b) Vertex Q: s1 = 0, s3 = 0, hence xB = (x1, x2, s2), xN = (s1, s3),

B =

2 1 0
−2 1 1
1 −1 0

 , N =

1 0
0 0
0 1

 .

(c) Vertex R: x2 = 0, s3 = 0, hence xB = (x1, s1, s2), xN = (x2, s3),

B =

2 1 0
−2 0 1
1 0 0

 , N =

1 0
1 0
−1 1

 .

(d) Vertex O: x1 = 0, x2 = 0, hence xB = (s1, s2, s3), xN = (x1, x2),

B =

1 0 0
0 1 0
0 0 1

 , N =

2 1
−2 1
1 −1

 .

Geometry of LP: Solution 48

Solutions Operations Research L. Liberti

(e) Vertex S: x1 = 0, s2 = 0, hence xB = (x2, s1, s3), xN = (x1, s2),

B =

1 1 0
1 0 0
−1 0 1

 , N =

2 0
−2 1
1 0

 .

3. We can take the vector of slack variables as the initial feasible basic variables (variables x1, x2 are
nonbasics and take the value 0, which is consistent with the fact that the vertex corresponding
to the initial feasible basis is vertex O). Let xh be the variables which enters the basis. In order

to find the exiting variable, we compute θ = min{ b̄i

āih
| i ≤ 3 ∧ āih > 0}, where āih is the i-th

element of the h-th column in the matrix B−1N , and b̄i is the i-th element of B−1b. The text of
the problem tells us to use h = 1. Since θ = min{ 4

2 , 1
1} = 1 (because 2

−2 < 0 the element b̄2
ā21

is not

taken into account) and 1 = θ = b̄3
ā31

, the index of the exiting basis is 3, i.e. the third variable of
the current basis, which is s3. The first visited vertex is R, corresponding to the basis (x1, s1, s2).
The subsequent vertices visited by the simplex algorithm are Q and then P .

4. The vertex in (Eq. (2.1) ∩ Eq. (2.2)) is P and the vertex in (Eq. (2.1) ∩ Eq. (2.3)) is Q. The
reduced costs are given by the equation c̄ = c⊤ − c⊤BB−1A′, where the reduced costs for the basic
variables are equal to 0 and those for the nonbasic variables may be nonzero: we want to determine
c̄N = c⊤N − c⊤BB−1N . In P , B and N are as in point (2a) above, hence

B−1N =
1

4

1 −1
1 1
1 3

 .

Since c′B = (−3,−2, 0) and c′N = (0, 0), we have c̄N = (7
4 , 1

4). Since both values are greater than 0,
the basis in P is optimal. In Q, B,N are as in point (2b) above, hence

B−1N =
1

3

1 1
1 −2
1 4

Since c′B = (−3,−2, 0), we have c̄N = (5
3 ,− 1

3). This tells us that Q is not an optimal solution.

5. The objective function gradient is a conic combination of the active constraint gradients only in
an optimal point. In other words, this condition asserts that if the only improving directions are
infeasible, then the vertex is optimum. In this instance, the optimal vertex is P = (1

2 , 3). The
objective gradient is ∇f = (3, 2) (constant for each x1, x2). The constraints which are active in P
are (2.1) and (2.2), with gradients (2, 1) and (−2, 1). We solve the system

λ1

(

2
1

)

+ λ2

(

−2
1

)

=

(

3
2

)

and verify that λ1 ≥ 0 and λ2 ≥ 0. The solution of the system is λ1 = 7
4 and λ2 = 1

4 . Since both
are strictly positive, the condition is verified for the optimal vertex P (see Fig. 9.4). We now check
that the objective function gradient is not a conic combination of the active constraint gradients in
the non-optimal vertices Q,R,O, S.

• Vertex Q. Active constraints (2.1), (2.3) with gradients (2, 1) and (1,−1). We get λ1 = 5
3 ,

λ2 = − 1
3 < 0.

• Vertice R. Active constraints (2.3), −x2 ≤ 0 with gradients (1,−1) and (0,−1). We get
λ1 = 3, λ2 = −5 < 0.

• Vertex O. Active constraints −x1 ≤ 0, −x2 ≤ 0 with gradients (−1, 0) and (0,−1). We get
λ1 = −3 < 0, λ2 = −2 < 0.

• Vertex S. Active constraints −x1 ≤ 0, (2.2) with gradients (−1, 0) and (−2, 1). We get
λ1 = −7 < 0, λ2 = 2.

Geometry of LP: Solution 49

Solutions Operations Research L. Liberti

P

Q

R

S

O

(eq.1)
eq. (2.2)

∇f

∇g1

∇g2

Figure 9.4: Optimality at P : the vector ∇f is in the cone generated by ∇g1 and ∇g2, where g1(x) ≤ 4
is (2.1) and g2(x) ≤ 2 is (2.2).

6. By inspection, for b1 →∞ and b1 → Sy = 2 the optimal basis does not change. The case b1 = Sy is
degenerate. For 0 < b1 < Sy we get x1 = 0, which therefore exits the basis (s2 enters it, since (2.2)
ceases to be active). For b1 = 0 there is only one feasible point (0, 0) and for b1 < 0 the feasible
region is empty.

7. Consider the family of lines x2 = mx1 + q where m > 2, shown in Fig. 9.5. By inspection, every
objective function of the form max−mx1 + x2 where m > 2 has optimum S on the polyhedron
PQROS.

8. Let Q = (Qx, Qy), and x2(x1) = 2x1 + b2 the family of lines parallel to that of Eq. (2.2). For
x2(Qx) < Qy the feasible region is empty. Since Q is the intersection of Eq. (2.1) and Eq. (2.3),
we get Q = (5

3 , 2
3). We therefore require x2(

5
3) < 2

3 , i.e. 10
3 + b2 < 2

3 , that is b2 < − 8
3 . If the three

lines defined by the constraints meet in Q then the feasible region only has one single point. This
happens if b2 = − 8

3 .

9. If the family of lines given by the objective, namely c1x1 + 2x2 = q, is parallel to one of the sides
of the polyhedron, and its optimization direction is towards the outside of the polyhedron (relative
to the side to which it is parallel) then there are multiple optimal solutions. For c1 = 4 we get

Geometry of LP: Solution 50

Solutions Operations Research L. Liberti

P

Q

R

S

Omax z*

eq. (2.1)
eq. (2.2)

eq. (2.3)

Figure 9.5: Objective function such that S is optimum.

x2 = −2x1 + q
2 , which is parallel to Eq. (2.1). For c1 = −4 we get x2 = 2x1 + q

2 , which is parallel
to (2.2). For c1 = 0 we get x2 = q

2 , which is parallel to lato x1 = 0: this choice is not acceptable,
however, because for increasing q, x2 decreases, so the maximization direction is towards the semi-
space x1 ≥ 0 which contains the polyhedron. For c1 = −2 we have x2 = x1 + q

2 , which is parallel

to the QR side (but again has maximization direction towards the polyhedron).

9.3 Simplex method: Solution

The problem is already in standard form as there are no inequality constraints and all variables are
constrained to be non-negative. Constraints (2.1)-(2.3) can be written as the system Ax = b where
x = (x1, x2, x3), b = (1, 5) and

A =

(

2 0 3
3 2 −1

)

.

No initial feasible basic solution is immediately evident. We therefore need a two-phase simplex method
(the first phase is used to locate an initial feasible basis).

Simplex method: Solution 51

Solutions Operations Research L. Liberti

First phase. We use the simplex method to solve an auxiliary problem designed to find an initial
feasible basis for the original problem. We add an auxiliary variable yi ≥ 0 for each equation con-
straint in the standard form problem. The problem constraints are reformulated to A′x̄ = b where
x̄ = (x1, x2, x3, y1, y2) and

A′ =

(

2 0 3 1 0
3 2 −1 0 1

)

Intuitively, yi are a measure of the distance of the current basis from the feasible region of the original
problem. If the auxiliary problem has a solution such that yi = 0 for all i, that solution is also feasible
in the original problem. Since yi are constrained to be non-negative, it suffices to ask that

∑

i yi = 0
to enforce yi = 0 for all i. We can therefore choose v =

∑

i yi as the objective function of the auxiliary
problem:

min v = y1 + y2

2x1 + 3x3 + y1 = 1

3x1 + 2x2 − x3 + y2 = 5

x1, x2, x3, y1, y2 ≥ 0.

If the feasible region of the original problem is non-empty, we will necessarily find v = 0 and yi = 0 for
all i. The auxiliary problem for the present instance is min{y1 + y2 | Āx̄ = b, x ≥ 0, y ≥ 0}. We shall
solve it using the simplex algorithm.

The initial feasible basis for the auxiliary problem is x̄B = (y1, y2). We express the basic variables in
function of the nonbasics:

y1 = 1− 2x1 − 3x3

y2 = 5− 3x1 − 2x2 + x3.

The objective is therefore v = y1 + y2 = 6− 5x1− 2x2− 2x3. We write these information in tableau form
as:

-6 -5 -2 -2 0 0
1 2 0 3 1 0
5 3 2 -1 0 1

The reduced costs of the nonbasic variables x̄N = (x1, x2, x3) are all negative; since we are minimizing,
each nonbasic might enter the basis. By Bland’s anti-cycling rule, we choose the variable with least index,
that is x1. There are two limits to the growth of x1, given by y1 = 1− 2x1 and y2 = 5− 3x1; the growth
should be bounded by min{ 1

2 , 5
3} = 1

2 , which corresponds to the basic variable y1: the variable y1 exits
the basis. We pivot on the coefficient 2 in position (1,1) in the tableau:

1. divide row 1 by 2;

2. add 5 times row 1 to row 0;

3. subtract 3 times row 1 from row 2.

We obtain the following tableau:

− 7
2 0 -2 11

2
5
2 0

1
2 1 0 3

2
1
2 0

7
2 0 2 − 11

2 − 3
2 1

The only negative reduced cost is that of x2, so x2 enters the basis. The only bound to the growth of x2

is given by y2 = 7
2 −2x2, hence x2 ≤

7
4 , and y2 exits the basis. We pivot on coefficient 2 in position (2,2):

Simplex method: Solution 52

Solutions Operations Research L. Liberti

1. add row 2 to row 0;

2. divide row 2 by 2.

We get the tableau:

0 0 0 0 1 1
1
2 1 0 3

2
1
2 0

7
4 0 1 − 11

4 − 3
4

1
2

All the reduced costs of the nonbasics (x3, y1, y2) are non-negative, hence the first phase of the algorithm
terminates. We showed that the feasible region of the original problem is non-empty; the initial feasible
basis of the original problem is xB = (x1, x2).

Second phase. Objective function: x1 − 2x2. Initial feasible basis: (x1, x2). Nonbasic variable: x3.
We express x1, x2 in function of x3:

x1 =
1

2
−

3

2
x3

x2 =
7

4
+

11

4
x3

The objective, expressed in function of x3, is −3−7x3. We eliminate from our tableau all columns relative
to the auxiliary variables:

3 0 0 -7
1
2 1 0 3

2
7
4 0 1 − 11

4

Since we are minimizing the objective, x3 enters the basis as it has a negative reduced cost. Since the
only bound to the growth of x3 is given by x1 = 1

2 −
3
2x3, x1 exits the basis. We pivot on the coefficient

3
2 in position (3,1):

1. divide row 1 by 3
2 ;

2. add 7 times row 1 to row 0;

3. add − 11
4 times row 1 to row 3.

The new tableau is:

16
3

14
3 0 0

1
3

2
3 0 1

8
3

11
6 1 0

All the reduced costs being non-negative, the algorithm terminates with optimal solution (0, 8
3 , 1

3) and
optimal objective function value − 16

3 .

9.4 Duality: Solution

The dual problem can be obtained mechanically from the primal problem as follows. We associate a dual
variable to each primal constraint and reformulate the primal problem following the rules below:

Duality: Solution 53

Solutions Operations Research L. Liberti

Primal Dual

min max
variables x constraints
constraints variables y

objective coefficients c constraint right hand sides c
constraint right hand sides b objective coefficients b

Aix ≥ bi yi ≥ 0
Aix ≤ bi yi ≤ 0
Aix = bi yi unconstrained
xj ≥ 0 yAj ≤ cj

xj ≤ 0 yAj ≥ cj

xj unconstrained yAj = cj

In the above table, Ai is the i-th row of A and Aj is the j-th column.

1.
maxy 3y1 + 4y2

y1 + 2y2 ≤ 3
−y1 − 3y2 ≤ 5

y1 ≤ −1
y1, y2 ≤ 0

(9.4)

2.
maxy 3y1 + 4y2 + 2y3

−3y1 + 2y2 + y3 ≤ 1
−y1 − 3y2 ≤ −1

y1 − 2y2 − y3 = −1
y1 ≤ 0
y2 ≥ 0
y3 unconstrained

(9.5)

3.
miny −3y1 + 3

−3y1 + 2y2 + y3 ≤ −1
−y1 − 3y2 − y3 ≥ 1

y1 − 4y2 − y3 = 2
y1 ≤ 0
y2 ≥ 0
y3 unconstrained

(9.6)

9.5 Geometrical interpretation of the simplex algorithm: Solu-

tion

We give here a lengthy solution where every step is inferred from first principles and geometrical consid-
erations. We remark that it is not required of the student to proceed as below. The usual solution in
tableau form will suffice. We believe, however, that reading this solution will help the student to identify
the geometrical reasons for the “mechanical” steps in the simplex algorithm in tableau form.

Let M = {1, 2, 3, 4} be the set of indices of the problem constraints: −x1 + x2 ≤ 1, 2x1 + x2 ≤ 4,
−x1 ≤ 0, −x2 ≤ 0. The simplex algorithm, schematized geometrically, is as follows:

1. From the feasible solution x̄ move to another feasible solution x(1) corresponding to a vertex of the
feasible polyhedron. Let k = 1.

Geometrical interpretation of the simplex algorithm: Solution 54

Solutions Operations Research L. Liberti

2. Is there a feasible direction from x(k) which increases the objective function value (recall we are
maximizing the objective)? If not, the algorithm terminates with optimal solution x(k).

3. From x(k) move to an adjacent polyhedron vertex x(k+1) with lower objective function value. If
no such vertex can be found, the algorithm terminates and the problem is unbounded. Otherwise,
repeat from 2.

The operation of finding the next vertex x(k+1) (adjacent to the current vertex x(k) can be described
as follows:

1. find a feasible increasing direction vector ξ

2. find a feasible step value λ

3. compute x(k+1) = x(k) + λξ.

The given problem is max{cx | Ax ≤ b}, where

A =

−1 1
2 1
−1 0
0 −1

,

b = (1, 4, 0, 0)
⊤

and c = (1, 1).

Notation. Let I(x) be the set of indices of the constraints which are active in x (i.e. the problem
constraints which are satisfied at equality by x). Let Ī(x) be M\I(x). Let AI be the submatrix of A
consisting of the rows indexed by the set I. Likewise, let bI be the subvector of b indexed by the set I.
Let Ai be the i-th row of A.

9.5.1 Iteration 1: Finding the initial vertex

Since the initial solution x̄ = (1, 0) is feasible in the problem constraints but it does not identify a vertex
of the feasible polyhedron (why?), it is necessary to find an initial vertex.

Feasible direction. In x̄ = (1, 0) the set of active constraint index is I(x̄) = {4}. We can therefore
“move” the solution along the constraint x2 = 0 until we reach the first basic feasible solution (corre-
sponding to a feasible vertex). In order to to that, we solve the system AIξ = 0, cξ = 1 with AI = (0,−1)

to find −ξ2 = 0 and ξ1 = 1, and hence ξ = (1, 0)
⊤

. This procedure works because the rank of the system
AIξ = 0 (that is, 1) is strictly smaller than the number of components of ξ (that is, 2). Should x̄ already
be a vertex this condition would not be verified and this procedure would not work. See the discussion
for iteration 2 (Seection 9.5.2).

Feasible step. In order to “move” to a basic solution, we have to compute the step λ so that x̄ + λξ is
feasible. The only constraints are those that are inactive at x̄ (the active ones being already satified by
definition):

AĪ(x̄ + λξ) ≤ bĪ . (9.7)

If Aiξ ≤ 0, then Eq. (9.7) is verified: we only need consider the indices i such that Aiξ > 0. Choose λ as
follows:

λ = min

{

bi −Aix̄

Aiξ
| i ∈ Ī(x), Aiξ > 0

}

. (9.8)

This way, for the inequalities in (9.7) with Aiξ > 0 we have:

Aix̄ + λAiξ ≤ Aix̄ +
bi −Aix̄

Aiξ
Aiξ = bi.

Geometrical interpretation of the simplex algorithm: Solution 55

Solutions Operations Research L. Liberti

Notice that (9.7) is satisfied. In the particular instance given in this problem, we have Ī(x) = {1, 2, 3},
ξ = (1, 0) as above and hence A1ξ = −1 < 0, A2ξ = 2 > 0, A3ξ = −1 < 0 and λ = b2−A2x̄

A2ξ = 4−2
2 = 1.

Finally we obtain x(1) = x̄ + λξ = (2, 0)
⊤

.

9.5.2 Iteration 2: Finding a better vertex

Feasible direction. The parameters of this iteration are the following: I(x(1)) = {2, 4}, AI =
(

2 1
0 −1

)

, A−1
I =

(

1
2

1
2

0 −1

)

. The system AIξ = 0 has rank equal to the number of components of

ξ (that is, 2) so its solution would yield ξ = 0, which is not an increasing direction.

The optimality conditions in a point x are that there should be no increasing feasible directions in x.
Therefore the system

cξ > 0, AIξ ≤ 0 (9.9)

should have no solutions (recall we want to actually find an increasing feasible direction, so we are looking
for a solution of (9.9)). We can reformulate (9.9) to the restricted problem1 max{cξ | AIξ ≤ 0}. The dual
of the restricted problem is min{η0 |; ηAI = c, η ≥ 0}, which is the equivalent to determining whether
the system ηAI = c, η ≥ 0 is feasible, since the objective function is 0. If we find a feasible η then the
restricted problem should be such that max cξ = min η0 = 0, which shows that system (9.9) is not feasible,
and hence that x is optimal. On the other hand, if we find η such that ηAI = c but η 6≥ 0 we can derive
a feasible direction. We shall therefore suppose that there is an index h such that ηh < 0. Let uh be the
vector with 1 in the h-st component and 0 on everywhere else. We have ηh = cA−1

I uh < 0. The feasible
increasing direction is ξ = −A−1

I uh: we obtain cξ = −cA−1
I uh > 0 and AIξ = −AIA

−1
I uh = −uh < 0,

which means that ξ is a feasible solution for the restricted problem equivalent to (9.9).

Applied to the current instance, we obtain: η̄AI = c, whence η̄ = cA−1
I = (1

2 ,− 1
2). Since −1/2 < 0,

we define h = 2, uh = (0, 1) and hence ξ = −A−1
I uh = (− 1

2 , 1)
⊤

.

Feasible step. As in iteration 1: Ī(x(1)) = {1, 3}, AĪ =

(

−1 1
−1 0

)

, and hence A1ξ = 3
2 > 0 e

A2ξ = 1
2 > 0. Furthermore A1x

(1) = −2 and A2x
(2) = −2, so that λ = min

{

1−(−2)
3/2 , 0−(−2)

1/2

}

=

min{2, 4} = 2. Therefore x(2) = x(1) + λξ = (2, 0)
⊤

+ 2(−1/2, 1)
⊤

= (1, 2)
⊤

.

9.5.3 Iteration 3: Algorithm termination

Feasible direction. Current parameters: I(x(1)) = {1, 2}, AI =

(

−1 1
2 1

)

, A−1
I =

(

− 1
3

1
3

2
3

1
3

)

. We

follow the same procedure as in iteration 2. To find an increasing direction we have η̄AI = c, whence
η̄ = cA−1

I = (1
3 , 2

3). Since η̄ > 0, the algorithm terminates with optimal solution x(2) = (1, 2)
⊤

.

9.6 Complementary slackness: Solution

1. The dual of the given problem is:

min 14y1 + 10y2 + 3y3

y1 + 2y2 + y3 ≥ 2
2y1 − y2 − y3 ≥ 1
y1 , y2 , y3 ≥ 0

1If we obtain ξ such that cξ > 0 the problem is unbounded, for if ξ is feasible, αξ is feasible for each α > 0, whence the
objective function cξ can increase without bounds as α increases.

Complementary slackness: Solution 56

Solutions Operations Research L. Liberti

2. x̄ = (20
3 , 11

3) satisfies the constraints of the primal problem, so it is a feasible solution.

3. By complementary slackness, if x̄ = (x1, x2) is feasible in the primal, ȳ = (y1, y2, y3) is feasible in
the dual, and both satisfy the equations:

yi(a
T
i x− bi) = 0 ∀i

(cj − yT Aj)xj = 0 ∀j

then x̄ is optimal in the primal and ȳ in the dual. We get:

y1(x1 + 2x2 − 14) = 0

y2(2x1 − x2 − 10) = 0

y3(x1 − x2 − 3) = 0

x1(2− y1 − 2y2 − y3) = 0

x2(1− 2y1 + y2 + y3) = 0.

Since x̄ = (20
3 , 11

3) satisfies the 1st and 3rd constraints in the primal but not the second, y2 = 0.
Since x1 6= 0 and x2 6= 0, we also have:

y1 + 2y2 + y3 = 2

2y1 − y2 − y3 = 1.

Therefore, since y2 = 0, we obtain y1 = 1 and y3 = 1. Since ȳ = (1, 0, 1) is a dual feasible solution
(satisfies the dual constraints), and the primal/dual solution pair (x̄, ȳ) satisfies the complementary
slackness conditions, x̄ is the optimal solution to the primal problem. Again by complementary
slackness, we also have that ȳ = (1, 0, 1) is the optimal solution of the dual problem.

9.7 Sensitivity analysis: Solution

1. The dual of the given problem is:

min 5y1 + 40y2 + 20y3

−y1 + y2 + 2y3 ≤ 1
y1 + 4y2 + y3 ≤ −5

y1, y2, y3 ≤ 0.

The solution x∗ = (4, 9) satisfies the 1st and 2nd constraints as equalities, and the 3rd constraint
as a proper inequality; it is therefore a feasible solution. Since the problem has 3 constraints, we
introduce 3 dual variables y1, y2, y3. The complementary slackness conditions are:

y1(−x1 + x2 − 5) = 0

y2(x1 + 4x2 − 40) = 0

y3(2x1 + x2 − 20) = 0

x1(1 + y1 − y2 − 2y3) = 0

x2(−5− y1 − 4y2 − y3) = 0.

Since the 3rd constraint is not satisfied at equality by x∗, we have y3 = 0. The last two equations
become:

y1 − y2 = −1

−y1 − 4y2 = 5,

yielding a solution y1 = − 9
5 and y2 = − 4

5 . The primal solution x∗ = (4, 9) and the dual solution
y∗ = (− 9

5 ,− 4
5 , 0) are both feasible in the respective proiblems and satisfy the complementary

slackness conditions, and are therefore optimal.

Sensitivity analysis: Solution 57

Solutions Operations Research L. Liberti

2. The objective function of the dual is yb. If we perturb the b coefficients to take the values b + ε for
some “small” ε vector, we obtain y(b + ε) = yb + yε. Since we have c⊤x∗ = y∗b at the optimum,
the perturbed optimum is c⊤x∗ + y∗ε. In other words the dual optimal solution y∗ represents the
variation of the objective function with respect to the unit variation in the constraints right hand
side coefficients. In the present case a unit variation to b1 yields a difference of 9

5 in objective
function cost, whilst for constraint 2 we get 4

5 and for 3 we get zero. It is therefore convenient to
increase b1. Notice also that y∗ is a bound to the amount of money that may be invested to increase
b1 by one unit.

9.8 Dual simplex method: Solution

The primal simplex method works by visiting a sequence of feasible bases converging to the optimal
basis; in other words, it maintains feasibility while aiming to optimality. The dual simplex method,
on the other hand, maintains optimality whilst working towards feasibility: it visits a sequence of dual
feasible bases (corresponding to primal infeasible bases whose objective function value is “super-optimal”)
whilst working towards primal feasibility. Typically, we start with an infeasible initial basis where all
the reduced costs of the nonbasic variables are non-negative (for minimization). I.e. the initial basis is
already optimal (with respect to its nonbasic reduced costs) but it is infeasible.

x1 x2 x3 x4 x5

−z 0 3 4 5 0 0

x4 -6 -2 -2 -1 1 0
x5 -5 -1 -2 -3 0 1

Observe that b̄4 = −6 < 0 and hence the value of x4 is not primal feasible; therefore xr (with r = 4) exits
the basis and is set to 0. We now wish to find an index s ≤ n such that xs can enter the basis taking the
place of xr. The pivot element ārs is determined by finding the minimum value c̄s

|ārs|
in

{
c̄j

|ārj |
| ārj < 0, 1 ≤ j ≤ n}.

We briefly explain why. Should ārj ≥ 0 for every j ≤ n, a pivot in ārj would not change the sign of b̄r:
this would mean that the primal is infeasible (no change of basis would yield xr ≥ 0). Should there be a
j such that ārj < 0, however, a pivot operation in ārj would make xr primal feasible by setting it to 0
and making it exit the basis. This is why we only consider negative coefficients. Let us now see how the
choice of s changes the coefficients of the objective function. The pivoting operations on the objective
row will update it so that c̄j ← c̄j −

c̄s

ārs
ārj for each j ≤ n. To maintain dual feasibility it is necessary

that c̄j ≥ 0 for each j ≤ n, and hence that c̄j −
c̄s

ārs
ārj ≥ 0: so we need

∀ j ≤ n such that ārj < 0,
c̄s

|ārs|
≤

c̄j

|ārj |
.

In this instance we have
c̄1

|ā11|
=

3

2
;

c̄2

|ā12|
= 2;

c̄2

|ā13|
= 5.

The pivot element is ā11 (as shown in the tableau) and the entering variable x1. The pivot operation
yields the new tableau:

x1 x2 x3 x4 x5

−z -9 0 1 7/2 3/2 0
x1 3 1 1 1/2 -1/2 0

x5 -2 0 -1 -5/2 -1/2 1

Dual simplex method: Solution 58

Solutions Operations Research L. Liberti

The variable x5 exits the basis (row 2) and x2 enters (column 2). We get a tableau which is primal
feasible (and hence optimal):

x1 x2 x3 x4 x5

−z -11 0 0 1 1 1
x1 1 1 0 -2 -1 1
x2 2 0 1 5/2 1/2 -1

The optimal objective function value went from 0 to 9 to 11.

Dual simplex method: Solution 59

Solutions Operations Research L. Liberti

Dual simplex method: Solution 60

Chapter 10

Integer programming: Solutions

10.1 Piecewise linear objective: Solution

Let a0 = 0, a1 = 1, a2 = 2, a3 = 3. We get f(a0) = 1, f(a1) = 0, f(a2) = 1, f(a3) = 3/2. Since f is
piecewise linear, for x ∈ [ai, ai+1) and i ∈ {0, 1, 2}, f can be written as f(x) = λif(ai) + λi+1f(ai+1)
with λi + λi+1 = 1 eand λi, λi+1 ≥ 0, where λ are real variables expressing the affince dependence of f
on the interval [f(ai), f(ai+1)]. We can therefore write

f(x) =

3
∑

i=0

λif(ai)

and impose that at most 2 variables λ (having consecutive indices) should be strictly positive. In order
to formalize this condition we employ binary variables signalling which interval is active. Let z1 = 1 if
0 ≤ x < 1 and 0 otherwise, z2 = 1 if 1 ≤ x < 2 and 0 otherwise, and z3 = 1 if x ≥ 0 and 0 otherwise. In
order to express that exactly one interval is active, we use the constraint:

3
∑

i=1

zi = 1.

In order to express the condition on the positivity of at most 2 λ variables (having consecutive indices)
we use the following constraints:

λ0 ≤ z1

λ1 ≤ z1 + z2

λ2 ≤ z2 + z3

λ3 ≤ z3.

We obtain:
min λ0 + λ2 + 3

2λ3

λ0 ≤ z1

λ1 ≤ z1 + z2

λ2 ≤ z2 + z3

λ3 ≤ z3

z1 + z2 + z3 = 1
λ0, λ1, λ2, λ3 ≥ 0

z1, z2, z3 ∈ {0, 1}.

61

Solutions Operations Research L. Liberti

10.2 Gomory Cuts: Solution

First of all, we reformulate the problem from canonical to standard form:

min x1 − 2x2

t.c. −4x1 + 6x2 + x3 = 9
x1 + x2 + x4 = 4

x ≥ 0 , x1, x2 ∈ Z

where x3, x4 are slack variables.

Using the simplex method applied to the feasible basis xB = (x3, x4), we obtain the following tableaux
sequence (the pivot element is emphasized as p):

x1 x2 x3 x4

0 1 -2 0 0

9 -4 6 1 0
4 1 1 0 1

x1 x2 x3 x4

3 − 1
3 0 1

3 0
3
2 − 2

3 1 1
6 0

5
2

5
3 0 − 1

6 1

x1 x2 x3 x4
7
2 0 0 3

10
1
5

5
2 0 1 1

10
2
5

3
2 1 0 − 1

10
3
5

Therefore the optimal solution of the relaxation is x̄ = (3
2 , 5

2), with slack variables x3 = x4 = 0 (also see
the figure below).

(1)

(2)

x̄

From the optimal tableau, we derive a Gomory cut from the first row x2 + 1
10x3 + 2

5x4 = 5
2 . The Gomory

cut is expressed as

xi +
∑

j∈N

⌊āij⌋xj ≤ ⌊b̄i⌋, (10.1)

where N is the set of indices of the nonbasic variables and i is the index of the chosen row. In this case,
we obtain x2 ≤ 2.

We now have to add the Gomory cut x2 ≤ 2 in the current (optimal) simplex tableau. By definition,
a valid cut “cuts off” the current optimal relaxed solution from the feasible region, the currently optimal

Gomory Cuts: Solution 62

Solutions Operations Research L. Liberti

basis ceases to be feasible after the Gomory cut is inserted. The primal simplex algorithm relies on having
a feasible basis at all times, so it cannot be used. The dual simplex algorithm, on the other hand, relies
on having a basis which is always optimal (or super-optimal) and works towards reaching feasibility. The
currently optimal basis becomes “super-optimal” after the insertion of the Gomory cut in the sense that
the new optimal solution will surely have a higher objective function value (recall we are minimizing the
objective) since it is constrained by one more inequality.

In order to insert the constraint x2 ≤ 2 in the tableau it is necessary to express it in function of the
nonbasic variables x3, x4. If from (10.1) we subtract the i-th row of the optimal tableau

xi +
∑

j∈N

āijxj ≤ b̄i

we obtain the Gomory cut in fractional form:

∑

j∈N

(⌊āij⌋ − āij)xj ≤ (⌊b̄i⌋ − b̄i).

Applied to our instance this is:

−
1

10
x3 −

2

5
x4 ≤ −

1

2
.

Since the simplex algorithm in tableau form requires all inequalities to be in equation form, we need to
add a slack variable x5 ≥ 0 to the problem:

−
1

10
x3 −

2

5
x4 + x5 = −

1

2
.

In this form, the equation can be added to the currently optimal tableau, which gains a new row and
column (corresponding respectively to the new cut and the new slack variable, which is inserted in the
basis):

x1 x2 x3 x4 x5
7
2 0 0 3

10
1
5 0

5
2 0 1 1

10
2
5 0

3
2 1 0 − 1

10
3
5 0

− 1
2 0 0 − 1

10 − 2
5 1

The new row corresponds to the Gomory cut x2 ≤ 2, depicted in the figure below as constraint (3).

Gomory Cuts: Solution 63

Solutions Operations Research L. Liberti

(1)

(2)

(3)

x̄

x̃

We carry out an iteration of the dual simplex algorithm using the new tableau. The reduced costs are
all non-negative, but b̄3 = − 1

2 < 0 implies that x5 = b̄3 has nagative value and so is not primal feasible
(recall x5 ≥ 0 is a constraint in the problem). We pick x5 to exit the basis. The entering variable is given
by the index j such that

j = argmin{
c̄j

|āij |
| j ≤ n ∧ āij < 0},

which in this case is the minimum index in {3, 1
2}, i.e. j = 4. Therefore x4 enters the basis instead of x5,

and the pivot element is that indicated in the tableau above. We get the new tableau

x1 x2 x3 x4 x5
13
4 0 0 1

4 0 1
2

2 0 1 0 0 1
3
4 1 0 − 1

4 0 3
2

5
4 0 0 1

4 1 − 5
2

with optimal solution x̃ = (3
4 , 2). The solution is not yet integer, so we choose the second row:

x1 −
1

4
x3 +

3

2
x5 =

3

4
,

whence we obtain the Gomory cut

x1 − x3 + x5 ≤ 0,

which expressed in the original problem variable is

−3x1 + 5x2 ≤ 7.

The fractional form of this Gomory cut is

−
3

4
x3 −

1

2
x5 ≤ −

3

4
.

We insert it in the tableau as before and we obtain:

Gomory Cuts: Solution 64

Solutions Operations Research L. Liberti

x1 x2 x3 x4 x5 x6
13
4 0 0 1

4 0 1
2 0

2 0 1 0 0 1 0
3
4 1 0 − 1

4 0 3
2 0

5
4 0 0 1

4 1 − 5
2 0

− 3
4 0 0 − 3

4 0 − 1
2 1

where the pivot element is emphasized (row 4 was selected because b̄4 < 0, column 5 because c̄3

|ā43|
= 1

3 <

1 = c̄5

|ā45|
). Pivoting yields

x1 x2 x3 x4 x5 x6

3 0 0 0 0 1
3

1
3

2 0 1 0 0 1 0
1 1 0 0 0 5

3 − 1
3

1 0 0 0 1 − 8
3

1
3

1 0 0 1 0 2
3 − 4

3

which corresponds to the optimal integer solution x∗ = (1, 2) depicted below.

(1)

(2)

(3)

(4)

x̄

x̃

x∗

10.3 Branch and Bound I: Solution

Branch-and-Bound is a tree-like search which relies on recursively partitioning the solution space and
examining the subproblem (also called the Branch-and-Bound node) consisting of the original problem
restricted to each partition set. A lower bound (upper bound if considering a maximization problem, as in
this instance) is computed for each subproblem by solving its linear relaxation using linear programming
techniques. A node is fathomed (i.e. no more recursive partitioning is carried out on that node) if one of
the three following conditions occurs: (a) the relaxation solution is integer; (b) the problem is infeasible;
(c) the relaxed objective function value is worse than the objective function value of the best integral
solution found so far. Should any subproblem be unbounded, the original problem is also unbounded.

Branch and Bound I: Solution 65

Solutions Operations Research L. Liberti

Partitioning is carried out in a number of ways. One of the simplest way is to choose the variable xi

whose non-integral solution value x̄i is closest to midpoint of the interval [⌊x̄i⌋, ⌈x̄i⌉] and to enforce the
constraints xi ≤ ⌊x̄i⌋ and respectively xi ≥ ⌈x̄i⌉ in the two new created subproblems. This is a partition
of the solution space because it excludes no integral value. At any particular iteration, the subproblem
to be chosen for examination is that whose parent in the tree has the best relaxed objective value. The
algorithm terminates when there are no more subproblems to be solved.

Let x∗ = (∞,∞) be the best solution so far (the incumbent) and f∗ = −∞ its objective function
value. At the first node N1 we solve the following subproblem:

max 2x1 + 3x2

x1 + 2x2 ≤ 3
6x1 + 8x2 ≤ 15

x1, x2 ∈ R+.

The drawing below shows that the solution is the intersection P of the line (1) defined by x1 + 2x2 = 3
and the line (2) defined by 6x1 + 8x2 = 15.

1

1

3/2

15/8

3/2 5/2 32

3/8

(2)
(1)

(3)

(4)

∇f

Q

P

R

We obtain an upper bound f = 21
4 with fractional solution x = P = (3

2 , 3
4). We choose x1 for branching

because its fractional part is closest to 1
2 . We form two subnodes N2, N3; in N2 we add the constraint

x1 ≤ 1 (line (3) x1 = 1) and in N3 the constraint x1 ≥ 2 (line (4) x1 = 2).

In N2 the solution is at the intersection Q of the lines (1) and (3): we therefore obtain x = Q = (1, 1)
and f = 5; since the solution is integer, the node is fathomed and no further branching occurs. Since
x ∈ Z+2 e f > f∗, we update x∗ = x and f∗ = f .

In N3 the solution is at the intersection R of lines (2) and (4): we get x = R = (2, 3
8) and f = 41

8 .
Since the upper bound is 41/8 and ⌊ 418 ⌋ = 5, every integer solution in this node or its recursive partitions
would have objective function value necessary worst than f∗. Hence the node is fathomed and no further
branching occurs in this node.

Since there are no more nodes to be examined, the algorithm terminates with solution x∗ = (1, 1).
The picture below represents the Branch-and-Bound tree.

Branch and Bound I: Solution 66

Solutions Operations Research L. Liberti

N1

N2 N3

x1 ≤ 1 x1 ≥ 2

10.4 Branch and Bound II: Solution

At each node we solve the relaxed LP problem graphically: by inspection we identify which among the
vertices of the feasible polyhedron is optimal, and the two lines at whose intersection it lies. To find the
coordinates of the optimal vertex, we solve a small sytem of equations. The solution is given in Fig. 10.4.
The tree nodes are visited in the following order: P1, P2, P3, P4, P5, P6, P7. After having solved P7,
node P6 is fathomed because its integer solution is worse than P7’s; node P2 is equally fathomed because
its upper bound (we are maximizing) is worse than the best integer solution (in P7): x∗ = (0, 3), z∗ = 12.
Notice that whenever the optimal relaxed objective value is fractional, the node upper bound is given by
⌊z̄⌋. For example, in P1 the upper bound is ⌊ 514 ⌋ = 12.

10.5 Knapsack Branch and Bound: Solution

The formulation of the problem is as follows:

max 16x1 + 22x2 + 12x3 + 8x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 14

x1, x2, x3, x4 ∈ {0, 1}.

In order to solve the continuous relaxation of this integer programming problem, we order the ratios
between revenue and cost of each investment:

(16/5, 22/7, 12/4, 8/3) = (3.2, 3.14, 3, 2.66).

It follows that 1,2,3,4 is the preference order given by revenue per unit investment cost. We now take
fractions of the various investments in the given preference order (recall we are solving the continuous
relaxation now, so fractions are allowed) so that (a) the fractions grow to be at most 1 and (b) the
knapsack constraint 5x1 +7x2 +4x3 +3x4 ≤ 14 is satisfied. For example, at node 1 we have x1 = 1 (total
invested amount: 5 million euros), x2 = 1 (total invested amount: 5+7=12 million euros), x3 = 1

2 (total
invested amount: 12+2=14 million euros). We can use this solution method within a Branch and Bound
algorithm. The latter adds constraints of the type xi ≤ 0 or xi ≥ 1 at each relaxed subproblem, which
must be easily taken into account by forcing either the zero or the total investment of particular type.

The Branch and Bound tree is given in Fig. 10.2.

• Index t specifies the order of subproblem solution.

• Upper bound computation (recall we are maximizing). At each node we solve the linear program
associated to the subproblem with the method described above. If its solution z̄ is fractional, since
the coefficients and solution of the problem are integer, we can consider ⌊z̄⌋ as the upper bound.

• Lower bound computation. The lower bound (LB in Fig. 10.2) is used to fathom those nodes where
z̄ ≤ LB (which may not possibly contain an optimal solution). Whilst the upper bound is computed
at each node, the lower bound is initialized at −∞ and updated during the algorithm. Each time

Knapsack Branch and Bound: Solution 67

Solutions Operations Research L. Liberti

(1) (2)

P1: x̄ = (1) ∩ (2)
{

x̄2 = −2x̄1 + 6
x̄2 = − 2

3 x̄1 + 3

x̄ =
(

9
4 , 3

2

)

, z̄ = 51
4 .

(1) (2)
(3)

P2: x̄ = (1) ∩ (3)
{

x̄2 = −2x̄1 + 6
x̄2 = 1

x̄ =
(

5
2 , 1

)

, z̄ = 23
2 .

(1) (2)

(3)

P3: x̄ = (2) ∩ (3)
{

x̄2 = − 2
3 x̄1 + 3

x̄2 = 2

x̄ =
(

3
2 , 2

)

, z̄ = 25
2 .

(1) (2)

(3)

(4)

P4: x̄ = (2) ∩ (4)
{

x̄2 = − 2
3 x̄1 + 3

x̄1 = 1

x̄ =
(

1, 7
3

)

, z̄ = 37
3 .

(1) (2)

(3)

(4)

P5: infeasible

(1) (2)

(3)

(4)

P6: x̄ = (3) ∩ (4)
x̄ = (1, 2), z̄ = 11.

(1) (2)

(4)

(3)

P7: x̄ = (2) ∩ (3)
x̄ = (0, 3), z̄ = 12.

x2 ≤ 1 x2 ≥ 2

x1 ≤ 1 x1 ≥ 2

x2 ≤ 2 x2 ≥ 3

11.5 < 12: stop

Figure 10.1: Branch-and-Bound tree for Exercise 3.4.

a subproblem generates an integral solution with (integer) value z̄, if z̄ > LB then LB is updated
to z̄. For example, in subproblem 4 we find an integer solution with z̄ = 36. Since LB = −∞ and

Knapsack Branch and Bound: Solution 68

Solutions Operations Research L. Liberti

z̄ > −∞, LB is updated to 36.

• In subproblem 6 we find an integral solution with z̄ = 42, so LB = 42. Therefore fathoms node 4.

• Subproblem 7 is infeasible because if x̄1 = x̄2 = x̄3 = 1, then the required invested amount is 16
(more than the budget).

• Subproblem 8 is fathomed because z̄ = 38 is smaller than the current LB (which is 42), so node 8
cannot contain an optimal solution.

• At node 9 we have z̄ = 42 6
7 , which makes the upper bound ⌊z̄⌋ = 42. Again, this means that node

9 may not contain a solution better than what we already found at node 6. Therefore node 9 is
fathomed. As there are no more open subproblems, the algorithm terminates with optimal solution
x∗ = (0, 1, 1, 1) with value 42.

5

6 7

98

2 3

1

4

PSfrag

z̄ = 44

x̄1 = x̄2 = 1

x̄3 = 1/2

LB= +∞

z̄ = 43 1

3

x̄1 = x̄2 = 1

x̄3 = 0, x̄4 = 2

3

LB = 42

z̄ = 43 5

7

x̄1 = x̄3 = 1

x̄2 = 5

7
, x̄4 = 0

LB= +∞

z̄ = 36

x̄1 = x̄3 = 1

x̄2 = 0, x̄4 = 1

LB = 36

z̄ = 43 3

5

x̄1 = 3

5
, x̄4 = 0

x̄2 = x̄3 = 1

LB=36

z̄ = 42

x̄1 = 0

x̄2 = x̄3 = x̄4 = 1

LB=42, Optimum

Infeasible

z̄ = 38

x̄1 = x̄2 = 1

x̄3 = x̄4 = 0

LB = 42

z̄ = 42 6

7

x̄1 = x̄4 = 1

x̄2 = 6

7
, x̄3 = 0

LB = 42

t = 1

t = 2

t = 3 t = 4

t = 5 t = 6

t = 7

t = 8 t = 9

x3 = 0 x3 = 1

x4 = 0 x4 = 1 x2 = 0 x2 = 1

x1 = 0 x1 = 1

Figure 10.2: Branch and Bound tree for Exercise 3.5.

Knapsack Branch and Bound: Solution 69

Solutions Operations Research L. Liberti

Knapsack Branch and Bound: Solution 70

Chapter 11

Easy modelling problems: solutions

11.1 Compact storage of similar sequences: Solution

Consider a complete undirected graph G = (V,E) where each vertex is a sequence and the weight of an
edge {i, j} ∈ E is given by the Hamming distance between sequence i and sequence j. To each edge
{i, j} ∈ E we also associate the sequence of bit flips necessary to transform sequence i into sequence j.
A minimum cost spanning tree in G provides the most economical way to recover all possible sequences
starting from only one of these sequences.

The instance in the exercise yields a minimum spanning tree having cost 15.

1

2

4

3

4

4

5

5

4

6

3

4

3

4

5

5
2

5

3

6

5

11.2 Communication of secret messages: Solution

The communication network is represented by a directed graph G = (V,A). Each arc (i, j) is weighted
by its probability 1 − pij that the the message is not intercepted along the arc. In order to broadcast
the message to all nodes we want to find a subset of arcs which is connected, reaches all nodes, and has
no cycle (otherwise the interception probability might increase). In other words, a spanning tree. The
spanning tree T should maximize the chances that the message arrives at each node without interception,

71

Solutions Operations Research L. Liberti

i.e.:
max
all T
{

∏

{i,j}∈T

(1− pij) | T spanning tree}. (11.1)

Since the Prim (and Kruskal) algorithms for finding optimum spanning trees deal with the case when the
cost of the tree is the sum of the costs of the edges, we cannot use those algorithms to solve the problem.

However, we can reformulate the problem by requiring the spanning tree T which maximizes the
modified objective function log

∏

{i,j}∈T (1 − pij). This will change the value of the objective function
associated to the solution but not the solution itself, since the log function is monotonic increasing.

log max
all T
{

∏

{i,j}∈T

(1− pij) | T spanning tree} =

= max
all T
{log

∏

{i,j}∈T

(1− pij) | T spanning tree} =

= max
all T
{

∑

{i,j}∈T

log(1− pij) | T spanning tree}.

The latter is a “proper” minimum spanning tree problem on the graph G where each arc (i, j) ∈ A is
weighted by log(1− pij), and can be solved using either Prim’s algorithm.

11.3 Mixed production: Solution

11.3.1 Formulation

• Indicex: Let i be an index on the set {1, 2, 3}.

• Parameters:

– P : number of production days in a month;

– di: maximum market demand for product i;

– vi: selling price for product i;

– ci: production cost for product i;

– qi: maximum production quota for product i;

– ai: activation cost for the plant producing i;

– li: minimum batch of product i.

• Variables:

– xi: quantity of product i to produce (xi ≥ 0);

– yi: activation status of product i (1 if active, 0 otherwise).

• Objective function:

max
∑

i

((vi − ci)xi − aiyi)

• Constraints:

1. (demand): for each i, xi ≤ di;

2. (production):
∑

i
xi

qi
≤ P ;

3. (activation): for each i, xi ≤ Pqiyi;

4. (minimum batch): for each i, xi ≥ liyi;

Mixed production: Solution 72

Solutions Operations Research L. Liberti

11.3.2 AMPL model, data, run

mixedproduction.mod

set PRODUCTS;

param days >= 0;

param demand { PRODUCTS } >= 0;

param price { PRODUCTS } >= 0;

param cost { PRODUCTS } >= 0;

param quota { PRODUCTS } >= 0;

param activ_cost { PRODUCTS } >= 0; # activation costs

param min_batch { PRODUCTS } >= 0; # minimum batches

var x { PRODUCTS } >= 0; # quantity of product

var y { PRODUCTS } >= 0, binary; # activation of production lines

maximize revenue: sum {i in PRODUCTS}

((price[i] - cost[i]) * x[i] - activ_cost[i] * y[i]);

subject to requirement {i in PRODUCTS}:

x[i] <= demand[i];

subject to production:

sum {i in PRODUCTS} (x[i] / quota[i]) <= days;

subject to activation {i in PRODUCTS}:

x[i] <= days * quota[i] * y[i];

subject to batches {i in PRODUCTS}:

x[i] >= min_batch[i] * y[i];

mixedproduction.dat

set PRODUCTS := A1 A2 A3 ;

param days := 22;

param : demand price cost quota activ_cost min_batch :=

A1 5300 124 73.30 500 170000 20

A2 4500 109 52.90 450 150000 20

A3 5400 115 65.40 550 100000 16 ;

mixedproduction.run

model mixedproduction.mod;

data mixedproduction.dat;

option solver cplexstudent;

solve;

display x;

display y;

11.3.3 CPLEX solution

.

CPLEX 7.1.0: optimal integer solution; objective 220690

Mixed production: Solution 73

Solutions Operations Research L. Liberti

5 MIP simplex iterations

0 branch-and-bound nodes

ampl: display x;

x [*] :=

A1 0

A2 4500

A3 5400

;

ampl: display y;

y [*] :=

A1 0

A2 1

A3 1

;

11.4 Production planning: Solution

11.4.1 Formulation

• Indices:

– i: an index on the set π = {A1, A2, A3};

– j: an index on the set µ = {1, 2, 3, 4}.

• Parameters:

– Pj : number of production days in month j;

– dij : maximum demand for product i in month j;

– vi: selling price for product i;

– ci: production cost of product i;

– qi: maximum production quota of product i;

– ai: activation cost for production i;

– li: minimum batch for production i;

– mi: storage cost for product i;

– C: storage capacity in number of units.

• Variables:

– xij : quantity of product i produced during month j;

– wij : quantity of product i sold during month j;

– zij : quantity of product i stocked during month j;

– yij : activation status for production i: (1=active, 0=inactive).

All variables are constrained to be non-negative. yij are binary variables.

• Objective function:

max
3

∑

i=1

vi

4
∑

j=1

wij − ci

4
∑

j=1

xij −mi

4
∑

j=1

zij − ai

4
∑

j=1

yij

 .

Production planning: Solution 74

Solutions Operations Research L. Liberti

• Constraints:

1. (requirement): for each i, j: wij ≤ dij ;

2. (production): per each j:
∑3

i=1
xij

qi
≤ Pj ;

3. (balance): for each i, j: zi,j−1 + xij = zij + wij ;

4. (capacity): for each j:
∑3

i=1 zij ≤ C;

5. (activation): for each i, j: xij ≤ Pjqiyij ;

6. (minimum batch): for each i, j: xij ≥ liyij ;

7. (december): for each i: zi0 = 0.

11.4.2 AMPL model, data, run

productionplan.mod

set PRODUCTS;

param Months;

set MONTHS := 1..Months;

set MONTHS0 := MONTHS union {0};

param days{MONTHS} >= 0;

param demand { PRODUCTS, MONTHS } >= 0;

param price { PRODUCTS } >= 0;

param cost { PRODUCTS } >= 0;

param quota { PRODUCTS } >= 0;

param activation { PRODUCTS } >= 0;

param batch { PRODUCTS } >= 0;

param storage { PRODUCTS } >= 0;

param capacity >= 0;

var x { PRODUCTS, MONTHS } >= 0;

var w { PRODUCTS, MONTHS } >= 0;

var z { PRODUCTS, MONTHS0 } >= 0;

var y { PRODUCTS, MONTHS } >= 0, binary;

maximize revenue:

sum {i in PRODUCTS}

(price[i] * sum {j in MONTHS} w[i,j] -

cost[i] * sum {j in MONTHS} x[i,j] -

storage[i] * sum {j in MONTHS} z[i,j] -

activation[i] * sum {j in MONTHS} y[i,j]) ;

subject to requirement {i in PRODUCTS, j in MONTHS}:

w[i,j] <= demand[i,j];

subject to production {j in MONTHS}:

sum {i in PRODUCTS} (x[i,j] / quota[i]) <= days[j];

subject to bilance {i in PRODUCTS, j in MONTHS}:

z[i,j-1] + x[i,j] = z[i,j] + w[i,j];

subject to capacitymag {j in MONTHS}:

sum {i in PRODUCTS} z[i,j] <= capacity;

Production planning: Solution 75

Solutions Operations Research L. Liberti

subject to active {i in PRODUCTS, j in MONTHS}:

x[i,j] <= days[j]*quota[i]*y[i,j];

subject to minbatch {i in PRODUCTS, j in MONTHS}:

x[i,j] >= batch[i]*y[i,j];

productionplan.dat

set PRODUCTS := A1 A2 A3 ;

param Months := 4 ;

param days :=

1 23

2 20

3 23

4 22 ;

param demand: 1 2 3 4 :=

A1 5300 1200 7400 5300

A2 4500 5400 6500 7200

A3 4400 6700 12500 13200 ;

param : price cost quota activation batch storage :=

A1 124 73.30 500 150000 20 3.5

A2 109 52.90 450 150000 20 4

A3 115 65.40 550 100000 16 3 ;

param capacity := 800 ;

let {i in PRODUCTS} z[i,0] := 0;

fix {i in PRODUCTS} z[i,0];

productionplan.run

model productionplan.mod;

data productionplan.dat;

option solver cplexstudent;

solve;

option display_round 4;

display revenue;

display x;

display y;

quit;

11.4.3 CPLEX solution

CPLEX 7.1.0: optimal integer solution; objective 1581550

47 MIP simplex iterations

0 branch-and-bound nodes

guadagno = 1581550.0000

x :=

A1 1 6100.0000

A1 2 0.0000

A1 3 0.0000

Production planning: Solution 76

Solutions Operations Research L. Liberti

A1 4 0.0000

A2 1 0.0000

A2 2 3518.1818

A2 3 0.0000

A2 4 0.0000

A3 1 4400.0000

A3 2 6700.0000

A3 3 12650.0000

A3 4 12100.0000 ;

y :=

A1 1 1.0000

A1 2 0.0000

A1 3 0.0000

A1 4 0.0000

A2 1 0.0000

A2 2 1.0000

A2 3 0.0000

A2 4 0.0000

A3 1 1.0000

A3 2 1.0000

A3 3 1.0000

A3 4 1.0000 ;

11.5 Transportation: Solution

11.5.1 Formulation

• Indices:

– i: index on the set {1, . . . ,M} (stores);

– j: index on the set {1, . . . , P} (ports);

• Parameters:

– mi: availability (in number of containers) at i-th store;

– rj : demand at j-th port;

– dij : distance between store i and port j;

– C: unit transportation cost (per km).

• Variables:

– xij : number of containers sent from store i to port j;

– yij : number of lorries travelling from store i to port j;

All variables are constrained to be non-negative.

• Objective function:

min

M
∑

i=1

P
∑

j=1

Cdijyij

• Constraints:

1. (store availability) for each i ≤M :
∑P

j=1 xij ≤ mi;

2. (port demand) for each j ≤ P :
∑M

i=1 xij ≥ rj ;

3. (lorry capacity) for each i ≤M , j ≤ P , 2yij ≥ xij .

Transportation: Solution 77

Solutions Operations Research L. Liberti

11.5.2 AMPL model, data, run

transportation.mod

set STORES;

set PORTS;

param availability { STORES } >= 0;

param demand { PORTS } >= 0;

param distance { STORES, PORTS } >= 0;

param costkm >= 0;

var x { STORES, PORTS } >= 0;

var y { STORES, PORTS } >= 0, integer;

minimize cost:

sum {i in STORES, j in PORTS} costkm * distance[i,j] * y[i,j];

subject to avail {i in STORES}:

sum {j in PORTS} x[i,j] <= availability[i];

subject to request {j in PORTS}:

sum {i in STORES} x[i,j] >= demand[j];

subject to lorrycap {i in STORES, j in PORTS}:

2*y[i,j] >= x[i,j];

transportation.dat

set STORES := Verona Perugia Rome Pescara Taranto Lamezia;

set PORTS := Genoa Venice Ancona Naples Bari;

param availability :=

Verona 10

Perugia 12

Rome 20

Pescara 24

Taranto 18

Lamezia 40 ;

param demand :=

Genoa 20

Venice 15

Ancona 25

Naples 33

Bari 21 ;

param distance :

Genoa Venice Ancona Naples Bari :=

Verona 290 115 355 715 810

Perugia 380 340 165 380 610

Rome 505 530 285 220 450

Pescara 655 450 155 240 315

Taranto 1010 840 550 305 95

Lamezia 1072 1097 747 372 333 ;

param costkm := 300;

Transportation: Solution 78

Solutions Operations Research L. Liberti

transportation.run

model transportation.mod;

data transportation.dat;

option solver cplexstudent;

solve;

option display_round 4;

display cost;

display x;

display y;

11.5.3 CPLEX solution

CPLEX 7.1.0: optimal integer solution; objective 4685100

70 MIP simplex iterations

0 branch-and-bound nodes

costo = 4685100.0000

x [*,*]

: Ancona Bari Genova Napoli Venezia :=

Lamezia 0.0000 4.0000 0.0000 26.0000 0.0000

Perugia 1.0000 0.0000 6.0000 0.0000 5.0000

Pescara 24.0000 0.0000 0.0000 0.0000 0.0000

Roma 0.0000 0.0000 14.0000 6.0000 0.0000

Taranto 0.0000 17.0000 0.0000 1.0000 0.0000

Verona 0.0000 0.0000 0.0000 0.0000 10.0000

;

y [*,*]

: Ancona Bari Genova Napoli Venezia :=

Lamezia 0.0000 2.0000 0.0000 13.0000 0.0000

Perugia 1.0000 0.0000 3.0000 0.0000 3.0000

Pescara 12.0000 0.0000 0.0000 0.0000 0.0000

Roma 0.0000 0.0000 7.0000 3.0000 0.0000

Taranto 0.0000 9.0000 0.0000 1.0000 0.0000

Verona 0.0000 0.0000 0.0000 0.0000 5.0000

;

11.6 Project planning with precedences: Solution

The precedence graph G = (V,A) (which associates to each arc an activity) is as follows.

1

3

2

4 6

5

7

A

E F

D

B

C

5

3
10

14

10
0 0

Project planning with precedences: Solution 79

Solutions Operations Research L. Liberti

To each vertex i ∈ V we associate a variable ti (the starting time of the activities represented by arcs in
δ̄+(i). The mathematical programming formulation of the problem is:

min t7 − t1 + 5000(t4 − t2)

ti + dij ≤ tj ∀ (i, j) ∈ A,

where dij is the cost of the arc (i, j).

11.7 Museum guards: Solution

The problem can be formalized by representing each museum room by a vertex v ∈ V of an undirected
graph G = (V,E). There is an edge between two vertices if there is a door leading from one room to
the other; this way, edges represent the possibility of there being a guard on a door. We want to choose
the smallest subset F ⊆ E of edges covering all vertices, i.e. such that for all v ∈ V there is w ∈ V with
{v, w} ∈ F .

GH

I J
E

D
F

CB
A

A

G

B

H

I J E

D

C

F

To each {i, j} ∈ E we associated a binary variable xij is assigned the value 1 if there is a guard on the
door represented by edge {i, j} and 0 otherwise.

11.7.1 Formulation

• Parameters. G = (V,A): graph description of the museum topology.

• Variables. xij : 1 if edge {i, j} ∈ E is to be included in F , 0 otherwise.

• Objective function

min
∑

{i,j}∈E

xij

• Constraints. (Vertex cover):
∑

j∈V :{i,j}∈E

xij ≥ 1 ∀i ∈ V .

11.7.2 AMPL model, data, run

museum.mod

param n >= 0, integer;

set V := 1..n;

set E within {V,V};

var x{E} binary;

Museum guards: Solution 80

Solutions Operations Research L. Liberti

minimize cost : sum{(i,j) in E} x[i,j];

subject to vertexcover {i in V} :

sum{j in V : (i,j) in E} x[i,j] + sum{j in V : (j,i) in E} x[j,i] >= 1;

museum.dat

param n := 10;

set E :=

1 2

1 3

1 6

1 7

2 8

3 4

4 5

7 9

8 9

9 10 ;

museum.run

model museum.mod;

data museum.dat;

option solver cplexstudent;

solve;

display cost;

display x;

11.7.3 CPLEX solution

CPLEX 7.1.0: optimal integer solution; objective 6

2 MIP simplex iterations

0 branch-and-bound nodes

cost = 6

x :=

1 2 0

1 3 1

1 6 1

1 7 1

2 8 1

3 4 0

4 5 1

7 9 0

8 9 0

9 10 1

;

Museum guards: Solution 81

Solutions Operations Research L. Liberti

11.8 Inheritance: Solution

The problem may be formalized as follows: given a set A of n elements each with an evaluation function
v : A→ R, we want to find a partition of A in A1, A2 such that

|v(A1)− v(A2)| = |
∑

a∈A1

v(a)−
∑

a∈A2

v(a)|

is minimum. This is known as the Subset-Sum problem.

It can be modelled using mathematical programming by introducing binary variables xa, ya for each
a ∈ A, such that xa = 1 and ya = 0 if object a is assigned to brother x, and xa = 0 and ya = 1 if a is
assigned to y. We naturally need the constraint

∀a ∈ A (xa + ya = 1).

The objective function to be minimized is:

min |
∑

a∈A1

vaxa −
∑

a∈A2

vaya|,

which ensures that the inheritance is split between the two brothers as fairly as possible. Because of the
absolute value, this formulation is nonlinear.

Let V =
∑

a∈A v(a) be the total value of the inheritance. The Subset-Sum can also be described as
follows:

• maximize the inheritance assigned to one of the brothers with the constraint that it should not
exceed V/2;

• minimize the inheritance assigned to one of the brothers with the constraint that it should not be
less than V/2.

This interpretation gives us two integer linear programming formulations:

max
∑

a∈A

vaxa

s.t.
∑

a∈A

vaxa ≤ V
2

∑

a∈A

va

∀a ∈ A xa ∈ {0, 1}

min
∑

a∈A

vaxa

s.t.
∑

a∈A

vaxa ≥ V
2

∑

a∈A

va

∀a ∈ A xa ∈ {0, 1}

11.8.1 AMPL model, data, run

subsetsum.mod

param n;

param v {1..n};

param V := sum {i in 1..n} v [i];

var x {1..n} binary;

minimize cost: sum {i in 1..n} v[i] * x[i];

subject to limit: sum {i in 1..n} v [i]* x[i] >= 0.5 * V;

Inheritance: Solution 82

Solutions Operations Research L. Liberti

subsetsum.dat

param n := 13;

param: v :=

1 25000

2 5000

3 20000

4 40000

5 12000

6 12000

7 12000

8 3000

9 6000

10 10000

11 15000

12 10000

13 13000;

subsetsum.run

model subsetsum.mod;

data subsetsum.dat;

option solver cplexstudent;

solve;

display cost;

display x;

11.8.2 CPLEX solution

CPLEX 8.1.0: optimal integer solution; objective 92000

7 MIP simplex iterations

0 branch-and-bound nodes

cost = 92000

x [*] :=

1 1

2 0

3 1

4 0

5 0

6 0

7 0

8 1

9 1

10 0

11 1

12 1

13 1

;

11.9 Carelland: Solution

Miximize the profits (exported quantities - produced quantities) subject to the constraints on production,
amount of work and balance between produced and exported products.

Carelland: Solution 83

Solutions Operations Research L. Liberti

11.9.1 Formulation

Parameters:

• P : set of products;

• H: total available amount of work (man-years);

• Mi maximum possible production for product i ∈ P ;

• pi market price for product i ∈ P ;

• mi amount of raw materials necessary to manufacture a unit of product i ∈ P ;

• hi amount of work required to manufacture a unit of product i ∈ P ;

Variabili:

• xa, xm, xp, xe: produced units of steel, engines, plastics and electronics

• ya, ym, yp, ye: exported units of steel, engines, plastics and electronics.

Model:

max
∑

i∈P

piyi −
∑

i∈P

mixi

∑

i∈P

hixi ≤ H

xi ≤Mi ∀i ∈ P

ya + 0.8xm + 0.01xe + 0.2xp = xa

ym + 0.02xa + 0.01xe + 0.03xp = xm

ye + 0.15xm + 0.05xp = xe

yp + 0.01xa + 0.11xm + 0.05xe = xp

xi, yi ≥ 0 ∀i ∈ P

11.9.2 AMPL model, data, run

carelland.mod

set PRODUCTS;

param p {PRODUCTS} >= 0;

param HMan >=0;

param Max {PRODUCTS} >=0;

param m {PRODUCTS} >= 0;

param h {PRODUCTS} >= 0;

param a {PRODUCTS, PRODUCTS} >=0;

var x { PRODUCTS } >= 0;

var y { PRODUCTS } >= 0;

Carelland: Solution 84

Solutions Operations Research L. Liberti

maximize klunz:

sum {i in PRODUCTS} (p[i]*y[i] - m[i]*x[i]);

subject to limit{i in PRODUCTS}:

x[i] <= Max[i];

subject to work:

sum {i in PRODUCTS} h[i]*x[i]<=HMan;

subject to balance{i in PRODUCTS} :

y[i] + sum{j in PRODUCTS}(a[j,i]*x[j]) = x[i];

carelland.dat

set PRODUCTS := steel plastics electronics engines;

param HMan:= 830000;

param : p m h Max :=

steel 500 250 0.5 2000000

plastics 1200 300 2 60000

electronics 300 50 0.5 650000

engines 1500 300 1 2000000 ;

param a: steel plastics electronics engines :=

steel 0 0.01 0 0.02

plastics 0.2 0 0.05 0.03

electronics 0.01 0.05 0 0.01

engines 0.8 0.11 0.15 0 ;

carelland.run

model carelland.mod;

data carelland.dat;

option solver cplexstudent;

solve;

display profit;

display x;

display y;

11.9.3 CPLEX solution

CPLEX 8.1.0: optimal solution; objective 435431250

9 dual simplex iterations (6 in phase I)

klunz = 435431000

x [*] :=

electronics 74375

engines 475833

plastics 60000

steel 393958

;

Carelland: Solution 85

Solutions Operations Research L. Liberti

y [*] :=

electronics 0

engines 465410

plastics 0

steel 547.917

;

11.10 CPU Scheduling: Solution

• Indices:

– i, j: indices on a set P of tasks;

– k: index on a set C of CPUs.

• Parameters:

– bi: number of BI (billion instructions) in task i;

– sk: speed of CPU k in GHz;

– Wmax: upper bound for completion time of all tasks.

• Variables:

– xi ≥ 0: starting time of task i;

– yi ∈ Z+: CPU ID to which task i is assigned;

– zik = 1 if task i is assigned to CPU k, 0 otherwise;

– σij = 1 if task i ends before task j starts, 0 otherwise;

– εij = 1 if task i is executed on a CPU having lower ID than task j;

– Li ≥ 0: length of task i;

– W ≥ 0: completion time of all tasks.

• Objective function:

min W

• Constraints:

– (lengths) ∀i ∈ P (Li =
∑

k∈C

bi

sk
zik);

– (times) ∀i ∈ P (ti + Li ≤W)

– (assignment) ∀i ∈ P (
∑

k∈C

zik = 1);

– (cpudef) ∀i ∈ P (yi =
∑

k∈C

kzik)

– (horizontal non-overlapping) ∀i 6= j ∈ P (xj − xi − Li − (σij − 1)Wmax ≥ 0)

– (vertical non-overlapping) ∀i 6= j ∈ P (yj − yi − 1− (εij − 1)|P | ≥ 0)

– (at least one position) ∀i 6= j ∈ P (σij + σji + εij + εji ≥ 1)

– (horizontal: at most one) ∀i 6= j ∈ P (σij + σji ≤ 1)

– (vertical: at most one) ∀i 6= j ∈ P (εij + εji ≤ 1)

CPU Scheduling: Solution 86

Solutions Operations Research L. Liberti

11.10.1 AMPL model, data, run

cpuscheduling.mod

param p > 0, integer;

param c > 0, integer;

set P := 1..p;

set C := 1..c;

param b{P} >= 0;

param s{C} >= 0;

param Wmax default sum{i in P} b[i] / (min{k in C} s[k]);

var x{P} >= 0;

var y{P} >= 0;

var z{P,C} binary;

var sigma{P,P} binary;

var epsilon{P,P} binary;

var L{P} >= 0;

var W >= 0;

minimize makespan: W;

subject to lengths{i in P} : L[i] = sum{k in C} (b[i] / s[k]) * z[i,k];

subject to times{i in P} : x[i] + L[i] <= W;

subject to assignment{i in P} : sum{k in C} z[i,k] = 1;

subject to cpudef{i in P} : y[i] = sum{k in C} k * z[i,k];

subject to hnonoverlapping{i in P, j in P : i != j} :

x[j] - x[i] - L[i] - (sigma[i,j] - 1) * Wmax >= 0;

subject to vnonoverlapping{i in P, j in P : i != j} :

y[j] - y[i] - 1 - (epsilon[i,j] - 1) * p >= 0;

subject to atleastone{i in P, j in P : i != j} :

sigma[i,j] + sigma[j,i] + epsilon[i,j] + epsilon[j,i] >= 1;

subject to hatmostone{i in P, j in P : i != j} :

sigma[i,j] + sigma[j,i] <= 1;

subject to vatmostone{i in P, j in P : i != j} :

epsilon[i,j] + epsilon[j,i] <= 1;

cpuscheduling.dat

param p := 7;

param c := 3;

param : b :=

1 1.1

2 2.1

3 3.0

4 1.0

5 0.7

6 5.0

CPU Scheduling: Solution 87

Solutions Operations Research L. Liberti

7 3.0 ;

param : s :=

1 1.33

2 2.00

3 2.66 ;

cpuscheduling.run

model cpuscheduling.mod;

data cpuscheduling.dat;

option solver cplexstudent;

solve;

display makespan;

for{k in C} {

printf "CPU %d : ", k;

for{i in P : z[i,k] = 1} {

printf "[%d:%f] ", i, x[i];

}

printf "\n";

}

11.10.2 CPLEX solution

CPLEX 8.1.0: optimal integer solution; objective 2.781954887

40175 MIP simplex iterations

8463 branch-and-bound nodes

makespan = 2.78195

CPU 1 : [5:0.000000] [7:0.526316]

CPU 2 : [1:1.731955] [3:0.000000] [4:2.281955]

CPU 3 : [2:0.000000] [6:0.789474]

11.11 Dyeing plant: Solution

• Indices:

– i, j: index on the set L of fabric batches;

– k: index on the set V = {1, . . . , v} of dyeing baths;

• Parameters:

– sik: time necessary to dye batch i in bath k;

– M : upper bound to completion time of last bath.

• Variables:

– tik ≥ 0: starting time for dyeing batch i in bath k;

– T ≥ 0: completion time for last batch;

– yijk = 1 if batch i is to be dyed before batch j in bath k, 0 otherwise.

• Objective function:
min T

• Constraints:

Dyeing plant: Solution 88

Solutions Operations Research L. Liberti

– (sequential) ∀i ∈ L, k ∈ V r {v} (tik + sik ≤ ti(k+1));

– (last bath) ∀i ∈ L (tiv + siv ≤ T);

– (non overlapping) ∀i, j ∈ L, k ∈ V, i 6= j (tik + sik ≤ tjk + M(1− yijk));

– (disjunction) ∀i, j ∈ L, k ∈ V, i 6= j (yijk + yjik = 1).

11.11.1 AMPL model, data, run

dyeing.mod

param l >= 1;

param v >= 1;

set L := 1..l;

set V := 1..v;

set V0 := 1..v-1;

param s{L,V} >= 0;

param M default sum{i in L, k in V} s[i,k] ;

var t{L,V} >= 0;

var T >= 0;

var y{L,L,V} binary;

minimize makespan : T;

subject to sequential{i in L, k in V0} : t[i,k] + s[i,k] <= t[i,k+1];

subject to lastbath{i in L} : t[i,v] + s[i,v] <= T;

subject to nonoverlap{i in L, j in L, k in V : i != j} :

t[i,k] + s[i,k] <= t[j,k] + M * (1 - y[i,j,k]);

subject to disjunction{i in L, j in L, k in V : i != j} :

y[i,j,k] + y[j,i,k] = 1;

dyeing.dat

param l := 5;

param v := 3;

param s : 1 2 3 :=

1 3.0 1.0 1.0

2 2.0 1.5 1.0

3 3.0 1.2 1.3

4 2.0 2.0 2.0

5 2.1 2.0 3.0 ;

dyeing.run

model dyeing.mod;

data dyeing.dat;

option solver cplexstudent;

solve;

display makespan;

for {i in L} {

Dyeing plant: Solution 89

Solutions Operations Research L. Liberti

printf "batch %d : ", i;

for {k in V} {

printf "[%f] ", t[i,k];

}

printf "\n";

}

11.11.2 CPLEX solution

CPLEX 8.1.0: optimal integer solution; objective 14.1

1618 MIP simplex iterations

362 branch-and-bound nodes

makespan = 14.1

batch 1 : [9.100000] [12.100000] [13.100000]

batch 2 : [7.100000] [9.100000] [12.100000]

batch 3 : [4.100000] [7.100000] [8.300000]

batch 4 : [2.100000] [4.100000] [9.600000]

batch 5 : [0.000000] [2.100000] [4.100000]

11.12 Parking: Solution

• Indices:

– i: index on the set N = {1, . . . , n} of cars;

– j: index on the set M = {1, 2} of car lines (one per street side).

• Parameters:

– λi: length of car i;

– L: upper bound on the car line length;

– µ: upper bound for the sum of car lengths.

• Variables:

– xij = 1 if i is parked on line j and 0 otherwise;

– tj ≥ 0: length of car line j;

– yj = 1 if tj ≤ L and 0 otherwise.

• Objective function:

min max
j∈M

tj .

• Constraints:

– (car line length definition) ∀j ∈M (tj =
∑

i∈N

λixij);

– (assignment of cars to lines) ∀i ∈ N (
∑

j∈M

xij = 1);

– (constraint disjunction) ∀j ∈M (tj − L ≤ µ(1− yj));

– (constraint on one line only) (
∑

j∈M

yj = 1).

Parking: Solution 90

Solutions Operations Research L. Liberti

11.12.1 AMPL model, data, run

parking.mod

param n > 0;

param m > 0;

set N := 1..n;

set M := 1..m;

param lambda{N} >= 0;

param mu := sum{i in N} lambda[i];

param L >= 0;

var x{N,M} binary;

var t{N} >= 0;

var y{M} binary;

var T >= 0;

minimize minmaxobj: T;

subject to minmax {j in M} : T >= t[j];

subject to carlinedef {j in M} :

t[j] = sum{i in N} lambda[i] * x[i,j];

subject to assignment {i in N} : sum{j in M} x[i,j] = 1;

subject to disjunction {j in M} : t[j] - L <= mu * (1 - y[j]);

subject to onelineonly : sum{j in M} y[j] = 1;

parking.dat

param n := 15;

param m := 2;

param L := 15;

param : lambda :=

1 4.0

2 4.5

3 5.0

4 4.1

5 2.4

6 5.2

7 3.7

8 3.5

9 3.2

10 4.5

11 2.3

12 3.3

13 3.8

14 4.6

15 3.0 ;

Parking: Solution 91

Solutions Operations Research L. Liberti

parking.run

model parking.mod;

data parking.dat;

option solver cplexstudent;

solve;

display minmaxobj;

for {j in M} {

printf "line %d (length = %f) : ", j, sum{i in N : x[i,j] = 1} lambda[i];

for {i in N : x[i,j] = 1} {

printf "%d ", i;

}

printf "\n";

}

11.12.2 CPLEX solution

CPLEX 8.1.0: optimal integer solution; objective 42.1

56 MIP simplex iterations

50 branch-and-bound nodes

minmaxobj = 42.1

line 1 (length = 42.100000) : 2 3 4 5 6 7 8 11 13 14 15

line 2 (length = 15.000000) : 1 9 10 12

Parking: Solution 92

Chapter 12

Difficult modelling problems:

Solutions

12.1 Checksum: Solution

We represent each subroutine with a vertex in an undirected graph G = (V,E). For each u, v ∈ V ,
{u, v} ∈ E if subroutine u calls subroutine v (or vice versa). Each edge {i, j} ∈ E is weighted by the
quantity pij of data exchanged between the subroutines. We want to choose a subset L ⊆ E such that for
each u ∈ V there is v ∈ V with {u, v} ∈ L (i.e. L covers V), such that each vertex v ∈ V is adjacent to
exactly 1 edge in L and such that the total weight p(L) =

∑

{i,j}∈L pij is maximum. G is shown below.

main

readdata

64

parse
2

evaluate

66

printresult

64

gettoken

0.1

readexpr

1
3

ungettoken
0.1

readterm
2

sum

2

difference

2

readprimitive

0.1

2

variable

0.5

number
0.2

logarithm1

exponential

1

sine

1

cosine

1

tangent

1

minus

1

readpower
1

power

2
2

product

2

fraction

2

12.1.1 Formulation

• Parameters: for each {i, j} ∈ E, pij is the weight on the edge.

• Variables: for each {i, j} ∈ E, xij = 1 if {i, j} ∈ L and 0 otherwise.

93

Solutions Operations Research L. Liberti

• Objective function:

max
∑

e={i,j}∈E

pijxij

• Constraints:

∀i ∈ V
∑

j∈V |{i,j}∈E

xij = 1; (12.1)

∀{i, j} ∈ E xij ∈ {0, 1}. (12.2)

12.1.2 AMPL model, data, run

checksum.mod

set V;

set E within {V,V};

param p{E};

var x{E} binary;

maximize data : sum{(i,j) in E} p[i,j] * x[i,j];

subject to assignment {i in V} :

sum{j in V : (i,j) in E} x[i,j] + sum{j in V : (j,i) in E} x[j,i] <= 1;

checksum.dat

set V := main readdata parse evaluate printresult gettoken readexpr

readprimitive variable number logarithm exponential sine cosine

tangent minus power readpower readterm product fraction sum ;

set E :=

main readdata

main parse

main evaluate

main printresult

evaluate evaluate

parse gettoken

parse readexpr

readprimitive gettoken

readprimitive variable

readprimitive number

readprimitive logarithm

readprimitive exponential

readprimitive sine

readprimitive cosine

readprimitive tangent

readprimitive minus

readprimitive readexpr

readpower power

readpower readprimitive

readterm readpower

readterm product

readterm fraction

readexpr readterm

readexpr sum ;

param p :=

main readdata 64

main parse 2

main evaluate 66

Checksum: Solution 94

Solutions Operations Research L. Liberti

main printresult 64

evaluate evaluate 3

parse gettoken 0.1

parse readexpr 1

readprimitive gettoken 0.1

readprimitive variable 0.5

readprimitive number 0.2

readprimitive logarithm 1

readprimitive exponential 1

readprimitive sine 1

readprimitive cosine 1

readprimitive tangent 1

readprimitive minus 1

readprimitive readexpr 2

readpower power 2

readpower readprimitive 1

readterm readpower 2

readterm product 2

readterm fraction 2

readexpr readterm 2

readexpr sum 2 ;

checksum.run

model checksum.mod;

data checksum.dat;

option solver cplexstudent;

solve;

display data;

printf "L = {\n";

for {(i,j) in E : x[i,j] = 1} {

printf " (%s,%s)\n", i, j;

}

printf " }\n";

12.1.3 CPLEX solution

CPLEX 8.1.0: optimal integer solution; objective 73.1

3 MIP simplex iterations

0 branch-and-bound nodes

data = 73.1

L = {

(main,evaluate)

(parse,gettoken)

(readprimitive,cosine)

(readpower,power)

(readterm,product)

(readexpr,sum)

}

The picture below is the solution represented on the graph.

Checksum: Solution 95

Solutions Operations Research L. Liberti

main

readdata

64

parse
2

evaluate

66

printresult

64

gettoken

0.1

readexpr

1
3

ungettoken
0.1

readterm
2

sum

2

difference

2

readprimitive

0.1

2

variable

0.5

number
0.2

logarithm1

exponential

1

sine

1

cosine

1

tangent

1

minus

1

readpower
1

power

2
2

product

2

fraction

2

12.2 Eight queens: Solution

Each queen commands a row, a column and two diagonals on the chessboard. The problem is to position
the queens so that no row, column or diagonal should be assigned to more than one queen. We associate
a binary variable xij to each cell (i, j) on the chessboard, such that xij = 1 if there is a queen at (i, j)
and 0 otherwise. The (1, 1) cell is at the north-west corner. We maximize the number of queens on the
chessboard subject to the assignment and cardinality constraints.

12.2.1 Formulation

• Parameters. n: number of cells on one side of the (square) chessboard.

• Variables. xij = 1 if there is a queen in (i, j), and 0 otherwise.

• Objective function.
∑

i,j≤n

xij

• Constraints.

1. (at most one queen per row):

∀i ≤ n (
∑

j≤n

xij ≤ 1);

2. (at most one queen per column):

∀j ≤ n (
∑

i≤n

xij ≤ 1);

3. (at most one queen per NW-SE diagonal):

∀i, j ≤ n (
∑

h≤n:h<i,h<j

x(i−h)(j−h) +
∑

h≤n:h+i≤n,h+j≤n

x(i+h)(j+h) ≤ 1);

Eight queens: Solution 96

Solutions Operations Research L. Liberti

4. (at most one queen per SW-NE diagonal):

∀i, j ≤ n (
∑

h≤n:h<i,h+j≤n

x(i−h)(j+h) +
∑

h≤n:h+i≤n,h<j

x(i+h)(j−h) ≤ 1);

5. (at most 8 queens on the chessboard):

∑

i,j≤n

xij ≤ 8;

Notice that for n ≤ 8 the cardinality constraint (≤ 8 queens) is redundant, as it is a consequence of
the assignment constraints.

12.2.2 AMPL model, run

eightqueens.mod

param n >= 0, default 8;

set N := 1..n;

var x{N,N} binary;

maximize queens : sum{i in N, j in N} x[i,j];

subject to rows {i in N} : sum{j in N} x[i,j] <= 1;

subject to cols {j in N} : sum{i in N} x[i,j] <= 1;

subject to diagNW {i in N, j in N} :

sum{h in N : h < i and h < j} x[i-h,j-h] +

sum{h in N : h+i<=n and h+j<=n} x[i+h,j+h] <= 1;

subject to diagSW {i in N, j in N} :

sum{h in N : h < i and h+j<=n} x[i-h,j+h] +

sum{h in N : h+i<=n and h < j} x[i+h,j-h] <= 1;

eightqueens.run

model eightqueens.mod;

option solver cplexstudent;

solve;

display queens;

display x;

12.2.3 CPLEX solution

CPLEX 7.1.0: optimal integer solution; objective 8

122 MIP simplex iterations

0 branch-and-bound nodes

queens = 8

x [*,*]

: 1 2 3 4 5 6 7 8 :=

1 0 0 0 1 0 0 0 0

2 0 0 0 0 0 1 0 0

3 1 0 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0

5 0 1 0 0 0 0 0 0

6 0 0 0 0 0 0 0 1

Eight queens: Solution 97

Solutions Operations Research L. Liberti

7 0 0 1 0 0 0 0 0

8 0 0 0 0 0 0 1 0

;

12.3 Production management

12.3.1 Formulation

• Index: i: index on set {1, . . . , N} of the months of the planning horizon.

• Parameters:

– F : initial number of employees (F = 40);

– P : product units produced by each employee with normal work (P = 20);

– ri: demand at i-th month;

– Us: maximum number of additional units that can be produced per employee (Us = 6);

– Cs: cost of each additional unit (Cs = 5);

– Cm: unit stocking cost (Cm = 10);

– V : maximum workforce variation because of hiring and firing (V = 5);

– Ca: fixed costs when hiring an employee (Ca = 500);

– Cl: fixed costs when firing an employee (Cl = 700);

• Variables:

– xi: number of employees at i-th month;

– yi: additional units produced in the i-th month;

– zi: stocked units at the i-th month;

– wi: money spent on hiring / firing people at the i-th month.

• Objective function:

min

N
∑

i=1

(Csyi + Cmzi + wi)

• Constraints:

1. (production) for each i ≤ N : yi ≤ Usxi;

2. (hiring) for each i ≤ N : xi − xi−1 ≤ V ;

3. (firing) for each i ≤ N : xi−1 − xi ≤ V ;

4. (stock balance) for each i ≤ N : Pxi + zi−1 + yi = ri + zi;

5. (hiring policy) for each i ≤ N : wi ≥ Ca(xi − xi−1);

6. (firing policy) for each i ≤ N : wi ≥ Cl(xi−1 − xi).

Production management 98

Solutions Operations Research L. Liberti

12.3.2 AMPL model, data, run

productionmgt.mod

set MONTHS;

param demand {MONTHS};

param employee_start;

param employee_production;

param max_extra;

param cost_extra;

param storagecost;

param max_hired;

param max_fired;

param hiringcost;

param firingcost;

var workers {{0} union MONTHS} >= 0, integer;

var additionalprod {MONTHS} >= 0 ;

var stocking {{0} union MONTHS} >= 0;

var policy {MONTHS} >= 0;

minimize cost : sum {i in MONTHS} (cost_extra * additionalprod[i] +

storagecost * stocking[i] + policy[i]);

subject to production {i in MONTHS} :

additionalprod[i] <= max_extra * workers[i];

subject to hiring {i in MONTHS} :

workers[i] - workers[i - 1] <= max_hired;

subject to firing {i in MONTHS} :

workers[i - 1] - workers[i] <= max_fired;

subject to storagebalance {i in MONTHS} :

employee_production * workers[i] + stocking[i - 1] +

additionalprod[i] = demand[i] + stocking[i];

subject to hiringpolicy {i in MONTHS} :

policy[i] >= hiringcost * (workers[i] - workers[i - 1]);

subject to firingpolicy {i in MONTHS} :

policy[i] >= firingcost * (workers[i - 1] - workers[i]);

gestioneimpresa.dat - dati AMPL per il problema di gestione impresa

set MONTHS := 1 2 3 4 5 6 ;

param demand :=

1 700

2 600

3 500

4 800

5 900

6 800 ;

param employee_start := 40;

param employee_production := 20;

param max_extra := 6;

Production management 99

Solutions Operations Research L. Liberti

param cost_extra := 5;

param storagecost := 10;

param max_hired := 5;

param max_fired := 5;

param hiringcost := 500;

param firingcost := 700;

let stocking[0] := 0;

let workers[0] := employee_start;

fix stocking[0];

fix workers[0];

productionmgt.dat

model productionmgt.mod;

data productionmgt.dat;

option solver cplex;

solve;

display cost;

display workers;

display additionalprod;

display stocking;

display policy;

quit;

CPLEX Solution

CPLEX 8.1.0: optimal integer solution; objective 10000

9 MIP simplex iterations

0 branch-and-bound nodes

costo = 10000

operai [*] :=

0 40

1 35

2 33

3 33

4 33

5 33

6 33

;

prod_straord [*] :=

1 0

2 0

3 0

4 0

5 160

6 140

;

magazzino [*] :=

0 0

1 0

2 60

3 220

4 80

5 0

Production management 100

Solutions Operations Research L. Liberti

6 0

;

politica [*] :=

1 3500

2 1400

3 0

4 0

5 0

6 0

;

12.4 The travelling salesman problem: Solution

The Travelling Salesman Problem (TSP) can be formalized as the search for a Hamiltonian tour (i.e. a
tour that passes through every vertex at most once) of minimum cost in a complete directed graph
G = (V,A) where V is the set of customers and A the set of distances between customer sites.

12.4.1 Formulation

• Parameters:

1. i, j: indices on set V of customers;

2. dij : distance between customers i and j.

• Variables: for each i 6= j ∈ V , xij = 1 if the salesman travels directly from i to j and 0 otherwise.

• Objective function:

min
∑

i6=j∈V

dijxij .

• Constraints:

1. (one successor) ∀i ∈ V
∑

j∈V,j 6=i

xij = 1;

2. (one predecessor) ∀j ∈ V
∑

i∈V,i6=j

xij = 1;

3. (subtour elimination) ∀S (V
∑

i∈S,j∈V \S

xij ≥ 1.

The last constraints ensures that for each (nontrivial) partition of V = S∪̇(V r S) with 1 ≤ |S| < |V |,
the salesman must travel out of S. This prevents the solution from consisting of a set of disconnected
tours (which would be feasible with the first two constraints). Since the number of proper subsets S of
V is exponential in |V |, the instance size is also exponential in |V |, which is not an acceptable feature.
We must therefore devise a solution method that circumvents the problem.

Initially, we solve the problem with the subtour elimination constraints relaxed (thus, the instance
size becomes polynomial in |V |), which is called the master problem. We then test the obtained solution
to see if the tour γ passing through 1 passes through every vertex in V . If so, the solution satisfies
the subtour elimination constraints, is optimal and the algorithm terminates. Otherwise we set S to be
the set of vertices incident in γ, generate one subtour elimination constraint for S, add it to the master
problem, and solve it again iteratively until no more subtours are present in the solution.

The travelling salesman problem: Solution 101

Solutions Operations Research L. Liberti

12.4.2 AMPL model, data

tsp.mod

param n > 0, integer;

set V := 1..n;

param d{V,V} >= 0;

param subtours >= 0, integer, default 0;

set S{1..subtours};

var x{V,V} binary;

minimize distance : sum{i in V, j in V : i != j} d[i,j] * x[i,j];

subject to successor {i in V} : sum{j in V : i != j} x[i,j] = 1;

subject to predecessor {j in V} : sum{i in V : i != j} x[i,j] = 1;

subject to subtour_elim {k in 1..subtours} :

sum{i in S[k], j in V diff S[k]} x[i,j] >= 1;

tsp.dat

param n := 7;

param d : 1 2 3 4 5 6 7 :=

1 0 86 49 57 31 69 50

2 0 0 68 79 93 24 5

3 0 0 0 16 7 72 67

4 0 0 0 0 90 69 1

5 0 0 0 0 0 86 59

6 0 0 0 0 0 0 81

7 0 0 0 0 0 0 0 ;

12.4.3 Algorithm

We first solve the model with subtours (the number of subtour elimination inequalities) at its default
value 0 — this is the initial master problem.

model tsp.mod;

data tsp.dat;

for {i in V, j in V : i > j} {

let d[i,j] := d[j,i];

}

option solver cplexstudent;

solve;

display distance;

display x;

We obtain the following CPLEX solution, corresponding to three distinct subtours : (1, 3, 5, 1), (2, 6, 2)
e (4, 7, 4).

distance = 137

x [*,*]

: 1 2 3 4 5 6 7 :=

1 0 0 1 0 0 0 0

2 0 0 0 0 0 1 0

3 0 0 0 0 1 0 0

The travelling salesman problem: Solution 102

Solutions Operations Research L. Liberti

4 0 0 0 0 0 0 1

5 1 0 0 0 0 0 0

6 0 1 0 0 0 0 0

7 0 0 0 1 0 0 0 ;

This solution is as in the picture below.

1

3 5

2

6

4

7

We add a subtour elimination constraint with S = {1, 3, 5}. In practice, it suffices to add the following
instructions before the solve; command:

let subtours := 1;

let S[1] := { 1, 3, 5 };

We get the following solution:

distance = 153

x [*,*]

: 1 2 3 4 5 6 7 :=

1 0 0 0 0 0 1 0

2 0 0 0 0 0 0 1

3 0 0 0 0 1 0 0

4 0 0 1 0 0 0 0

5 1 0 0 0 0 0 0

6 0 1 0 0 0 0 0

7 0 0 0 1 0 0 0 ;

Since this corresponds to a Hamiltonian tour, it is an optimal solution (pictured below).

1

3 5

2

6

4

7

We now implement this in an AMPL run file.

tsp.run

option solver cplex;

don’t print CPLEX messages

option solver_msg 0;

model tsp.mod;

data tsp.dat;

The travelling salesman problem: Solution 103

Solutions Operations Research L. Liberti

distance matrix must be symmetric

for {i in V, j in V : i > j} {

let d[i,j] := d[j,i];

}

data structures required for the algorithm

let subtours := 0;

param successorvertex{V} >= 0, integer;

param currentvertex >= 0, integer;

param termination binary;

let termination := 0;

iterative part

repeat while (termination = 0) {

solve the problem

solve > /dev/null;

let subtours := subtours + 1;

if (subtours > 1) then {

printf " breaking the subtour...\n";

}

find the successors of each vertex

for {i in V} {

let successorvertex[i] := sum{j in V : j != i} j * x[i,j];

}

find a subtour

let currentvertex := 1;

let S[subtours] := {};

repeat {

let S[subtours] := S[subtours] union {currentvertex};

let currentvertex := successorvertex[currentvertex];

} until (currentvertex = 1);

print the subtour we wish to eliminate

printf "(sub)tour: (";

for {i in S[subtours]} {

printf "%d -> ", i ;

}

printf "1)\n";

termination condition

if (card(S[subtours]) >= n) then {

Hamiltonian tour, terminate

let termination := 1;

}

}

printf "tour cost: %g\n", distance;

12.4.4 CPLEX solution

(sub)tour: (1 -> 3 -> 5 -> 1)

breaking the subtour...

(sub)tour: (1 -> 6 -> 2 -> 7 -> 4 -> 3 -> 5 -> 1)

The travelling salesman problem: Solution 104

Solutions Operations Research L. Liberti

tour cost: 153

12.4.5 Heuristic solution

A solution algorithm for a minimization problem is a k-approximation algorithm if the yielded solution
has objective function value f̄ such that f̄ ≤ kf∗, where f∗ is the value of an optimal solution. There
exists a well-known 3

2 -approximation heuristic for the metric symmetric TSP (i.e. where distances are
symmetric and obey a triangular inequality) described by Christofides. It works as follows:

1. Find a minimum cost spanning tree (MST) T = (V,E(T)) in the (undirected, as distances are
symmetric) graph G = (V,E). The z-solution of the following formulation:

min
y≥0,z∈{0,1}

∑

{i,j}∈E

dijzij

∀u 6= v ∈ V, i ∈ V r {u, v}
∑

j∈V
{i,j}∈E

(yuv
ij − yuv

ji) = 0

∀u 6= v ∈ V
∑

i∈V
i6=u

(yuv
iu − yuv

ui) = 1

∀u 6= v ∈ V, {i, j} ∈ E yuv
ij ≤ zij

∀u 6= v ∈ V, {i, j} ∈ E yuv
ji ≤ zji

∀{i, j} ∈ V zij = zji
∑

{i,j}∈E

zij = n− 1

(12.3)

defines the set of edges in an MST.

2. Let M = (V (M), E(M)) be a minimum cost complete matching between the vertices V (M) ⊆ V
such that their star degree in T is odd (i.e. such that |δ̄(v)∩E(T)| mod 2 = 1 for v ∈ V (M), where
δ̄(v) is the set of edges adjacent to v). The solution of the following formulation:

min
w∈{0,1}

∑

{i,j}∈E

dijwij

∀u ∈ V : |δT (u)| mod 2 = 1
∑

v∈V :v 6=u
|δT (v)| mod 2=1

wuv = 1

(12.4)

defines the set of edges of a complete matching in T .

3. Consider the subgraph L = T∪M = (V,E(T)∪E(M)): it is a Eulerian cycle because by construction
every vertex has even star degree.

4. For each v ∈ V with more than two incident edges (i.e. such that |δ(v)∩ (T ∪M)| > 2) we contract
all pairs of edges adjacent to v but one. The contraction operation on v consists in replacing a
pair of adjacent edges {u, v}, {v, w} ∈ T ∪M by the edge {u,w}. This operation is always possible
because the graph is complete. At the end of this operation each node in V has one predecessor
and one successor only, and L is a Hamiltonian cycle.

Thm. Let f̄ be the cost of L and f∗ be the cost of an optimal Hamiltonian cycle L∗. Then f̄ ≤ 3
2f∗.

Proof. For a set of edges S ⊆ E, let f(S) =
∑

{i,j}∈S dij . Every Hamiltonian cycle (including L∗) can be

seen as a spanning tree union an edge. Since T is of minimum cost, f(E(T)) ≤ f∗. Let (v1, . . . , v2m) be the
vertices in V (M) ordered as in L∗. Then M1 = {{v1, v2}, {v3, v4}, . . .} and M2 = {{v2, v3}, {v4, v5}, . . .}
are two matchings in V (M) such that M1∪M2 is a Hamiltonian cycle in V (M) with f(M1∪M2) ≤ f∗ by
the triangular inequality (why? — exercise 3). Furthermore, since M is an optimal matching in V (M),
f(M1 ∪M2) ≥ 2f(E(M)). Therefore f̄ = f(F) + f(H) ≤ f∗ + 1

2f∗ = 3
2f∗. �

Applying Christofides’ algorithm to the instance of the exercise, we find a Hamiltonian cycle with
total travelled distance 153 (i.e. we find an optimal solution), as shown in Fig. 12.1, 12.2.

The travelling salesman problem: Solution 105

Solutions Operations Research L. Liberti

sptree cost = 84

0

1

0 / 86

2

1 / 49

3

2 / 57

4

3 / 31

5

4 / 69

6

5 / 50

6 / 68

7 / 79

8 / 93

9 / 24

10 / 5

11 / 16

12 / 7

13 / 72

14 / 67

15 / 90

16 / 69

17 / 1

18 / 86
19 / 59

20 / 81

matching cost: 69

0

1

0 / 86

2

1 / 49

3

2 / 57

4

3 / 31

5

4 / 69

6

5 / 50

6 / 68

7 / 79

8 / 93

9 / 24

10 / 5

11 / 16

12 / 7

13 / 72

14 / 67

15 / 90

16 / 69

17 / 1

18 / 86
19 / 59

20 / 81

Figure 12.1: The minimum cost spanning tree T and the minimum matching M .

tour cost: 153

0

1

0 / 86

2

1 / 49

3

2 / 57

4

3 / 31

5

4 / 69

6

5 / 50

6 / 68

7 / 79

8 / 93

9 / 24

10 / 5

11 / 16

12 / 7

13 / 72

14 / 67

15 / 90

16 / 69

17 / 1

18 / 86
19 / 59

20 / 81

optimal tour cost: 153

0

1

0 / 86

2

1 / 49

3

2 / 57

4

3 / 31

5

4 / 69

6

5 / 50

6 / 68

7 / 79

8 / 93

9 / 24

10 / 5

11 / 16

12 / 7

13 / 72

14 / 67

15 / 90

16 / 69

17 / 1

18 / 86
19 / 59

20 / 81

Figure 12.2: The heuristic and optimal solutions.

The heuristic is implemented as an AMPL run file as follows.

Christofides’ heuristic

don’t print solver messages

option solver_msg 0;

vertices

param n integer, > 0;

set V := 1..n;

edge weights

param d{V,V} >= 0;

choose solver

option solver cplex;

spanning tree subproblem

model christofides-sptree.mod;

problem T : x, z, mst,

The travelling salesman problem: Solution 106

Solutions Operations Research L. Liberti

flow0, flow1, flow_on_tree1, flow_on_tree2,

spanning_tree, symm_sptree;

data tsp.dat;

symmetric weights

for {i in V, j in V : i > j} {

let d[i,j] := d[j,i];

}

solve > /dev/null;

matching subproblem

param odd{v in V};

compute vertices with odd degree in the spanning tree

let {v in V} odd[v] := (sum{u in V : u != v and z[v,u] = 1} 1) mod 2;

model christofides-matching.mod;

problem M : w, odd_matching, matching;

solve > /dev/null;

contract edges around vertices with degree > 2 in sptree union matching

param tour{u in V, v in V : u != v} binary;

let {u in V, v in V : u != v} tour[u,v] := max(0, z[u,v] + w[u,v]);

param contract{v in V};

let {v in V} contract[v] := card({u in V : u != v and tour[u,v] = 1});

param contract_pairs integer, default 0;

for {u in V, v in V, i in V : u != v and v != i and u != i and

tour[u,v] = 1 and tour[v,i] = 1 and contract[v] > 2} {

if (contract_pairs >= 2) then {

let tour[u,v] := 0;

let tour[v,i] := 0;

let tour[u,i] := 1;

}

let contract_pairs := contract_pairs + 1;

}

print tour

param v1 integer, default 1;

param v2 integer, default 1;

printf "tour: %d", v1;

set T_set default {v1};

param h_cost default 0;

repeat while(card(T_set) < n) {

let v2 := min {v in V : v1 != v and (v not in T_set) and tour[v1,v] = 1} v;

let h_cost := h_cost + d[v1,v2];

printf ",%d", v2;

let v1 := v2;

let T_set := T_set union {v1};

}

let h_cost := h_cost + d[1,v2];

printf "; cost = %g\n", h_cost;

It rests on two model files for finding a spanning tree and a matching. The AMPL mod file for
spanning tree is the following.

Christofides’ heuristic: spanning tree

flow variables

var x{V,V,V,V} >= 0;

tree variables

var z{V,V} binary;

The travelling salesman problem: Solution 107

Solutions Operations Research L. Liberti

MST objective

minimize mst: sum{u in V, v in V : u != v} d[u,v]*z[u,v];

subject to flow0 {u in V, v in V, i in V : u != v and i != u and i != v} :

sum {j in V : i != j} (x[i,j,u,v] - x[j,i,u,v]) = 0;

subject to flow1 {u in V, v in V : u != v} :

sum {i in V : i != u} (x[u,i,u,v] - x[i,u,u,v]) = 1;

subject to flow_on_tree1 {u in V, v in V, i in V, j in V : u != v and i != j} :

x[i,j,u,v] <= z[i,j];

subject to flow_on_tree2 {u in V, v in V, i in V, j in V : u != v and i != j} :

x[j,i,u,v] <= z[j,i];

subject to spanning_tree : sum {u in V, v in V : u < v} z[u,v] = n - 1;

subject to symm_sptree {u in V, v in V : u < v} : z[v,u] = z[u,v];

The AMPL mod file for matchings is the following.

Christofides’ heuristic: matching

matching variables

var w{V,V} binary;

matching objective

minimize odd_matching : sum{u in V, v in V : u != v} d[u,v]*w[u,v];

subject to matching {u in V : odd[u]} :

sum{v in V : u != v and odd[v]} w[u,v] = 1;

The output on tsp.dat is:

tour: 1,5,3,4,7,2,6; cost = 153

i.e. the heuristic solution is optimal in this case.

12.5 Optimal rocket control 1: Solution

The equation of motion of the rocket is:

∀t ∈ [0, T] m
∂2y(t)

∂t2
+ mg = u(t).

At time 0 (resp. T), the rocket must be at height 0 (resp. H); velocity at time 0 is 0, so y(0) = v(0) =
0,y(T) = H. The force acting on the rocket must not exceed b, so |u(t)| ≤ b for each t ∈ [0, T]. We

must determine u(t) so that the energy is minimum. Our objective function is thus E =
∫ T

0
|u(t)|dt. We

Optimal rocket control 1: Solution 108

Solutions Operations Research L. Liberti

obtain a nonlinear problem with time dependency:

min

∫ T

0

|u(t)|dt

∀t ∈ [0, T] |u(t)| ≤ b

∀t ∈ [0, T] m
∂2y(t)

∂t2
+ mg = u(t)

y(0) = 0

y(T) = H

v(0) = 0.

First we remove the time dependency. We consider a discretization of the interval [0, T] in n sub-
intervals, with t1 = 0, ∆t = T

n , tn+1 = tn +∆t = T and tk = t1 +k∆t for each k ≤ n. Let yk = y(tk) and

vk = ∂y(t)
∂y

∣

∣

tk
for each k ≤ n + 1. For k ≤ n, the time derivative of y at tk is approximated by yk+1−yk

∆t ,

so we set vk = yk+1−yk

∆t for each k ≤ n. The second time derivative of y at tk is similarly approximated

by vk+1−vk

∆t , hence vk+1−vk

∆t = uk

m − g, where uk = u(tk) for k ≤ n. We obtain the following nonlinear
program:

min

n
∑

k=1

|uk|

∀k ≤ n yk+1 − yk = vk∆t

∀k ≤ n vk+1 − vk = (
uk

m
− g)∆t

∀k ≤ n + 1 |uk| ≤ b

y1 = 0

yn+1 = H

v1 = 0

∀k ≤ n + 1 0 ≤ yk ≤ H

∀k ≤ n + 1 vk ≥ 0

∀k ≤ n + 1 uk ∈ R.

We reformulate it to a linear program by introducing variables wk for k ≤ n + 1, which replace each
nonlinear term |uk|. We introduce the constraints uk ≤ wk, uk ≥ −wk, wk ≥ 0 and obtain the following
LP:

min

n
∑

k=1

wk

∀k ≤ n yk+1 − yk = vk∆t

∀k ≤ n vk+1 − vk = (
uk

m
− g)∆t

∀k ≤ n wk ≤ b

y1 = 0

yn+1 = H

v1 = 0

∀k ≤ n + 1 −wk ≤ uk ≤ wk

∀k ≤ n + 1 0 ≤ yk ≤ H

∀k ≤ n + 1 vk, wk ≥ 0

∀k ≤ n + 1 uk ∈ R.

Optimal rocket control 1: Solution 109

Solutions Operations Research L. Liberti

12.5.1 AMPL: model, run

rocket.mod

time horizon

param T >= 0, default 60;

height to reach

param H >= 0, default 23000;

mass of rocket

param m >= 0, default 2140;

limit on force

param b >= 0, default 10000;

number of time intervals

param n >= 0, default 20;

gravity acceleration

param g default -9.8;

Delta t

param Dt := T / n;

set N := 1..n+1;

set N1 := 1..n;

height

var y{N} >= 0, <= H;

velocity

var v{N} >= 0;

force

var u{N};

linearization

var w{N} >= 0;

minimize energy : sum{k in N1} w[k];

subject to velocity {k in N1} : y[k+1] - y[k] = Dt*v[k];

subject to force {k in N1} : v[k+1] - v[k] = Dt*(u[k]/m - g);

subject to forcelimit {k in N1} : w[k] <= b;

subject to sealevel: y[1] = 0;

subject to height : y[n+1] = H;

subject to still: v[1] = 0;

subject to linearization1 {k in N}: u[k] + w[k] >= 0;

subject to linearization2 {k in N}: u[k] - w[k] <= 0;

rocket.run

model rocket.mod;

option solver cplex;

solve;

display energy;

for {i in N} {

printf "%d %f %f %f\n", i, y[i], v[i], u[i];

}

12.5.2 CPLEX solution

CPLEX 8.1.0: optimal solution; objective 103800.9877

33 dual simplex iterations (0 in phase I)

Optimal rocket control 1: Solution 110

Solutions Operations Research L. Liberti

energy = 103801

1 0.000000 0.000000 10000.000000

2 0.000000 43.418692 10000.000000

3 130.256075 86.837383 10000.000000

4 390.768224 130.256075 10000.000000

5 781.536449 173.674766 10000.000000

6 1302.560748 217.093458 10000.000000

7 1953.841121 260.512150 10000.000000

8 2735.377570 303.930841 10000.000000

9 3647.170093 347.349533 10000.000000

10 4689.218692 390.768224 10000.000000

11 5861.523364 434.186916 3800.987654

12 7164.084112 468.915403 0.000000

13 8570.830322 498.315403 0.000000

14 10065.776532 527.715403 0.000000

15 11648.922741 557.115403 0.000000

16 13320.268951 586.515403 0.000000

17 15079.815161 615.915403 0.000000

18 16927.561371 645.315403 0.000000

19 18863.507580 674.715403 0.000000

20 20887.653790 704.115403 0.000000

21 23000.000000 733.515403 0.000000

The picture below shows height, velocity and force in function of the time interval index. Velocity
and force were scaled to be visible on the same graph as height.

0

5000

10000

15000

20000

25000

0 5 10 15 20

y
30 v
2 u

12.6 Double monopoly: Solution

The model to maximize the minimum expected return for AA is as follows: for i ≤ n, let xi be the fraction
of the budget invested in customer i. Suppose we know that BB will choose investment j ≤ n: then the
expected return is gj(x) =

∑n
i=1 aijxi. Minimizing this value on j we get fA(x) = min{gj(x) | j ≤ n}.

Since xi are non-negative budget fractions, we have
∑n

i=1 xi = 1 e xi ≥ 0 for each i ≤ n.

maxx fA(x)
∑n

i=1 xi = 1
x ≥ 0.

Double monopoly: Solution 111

Solutions Operations Research L. Liberti

This is equivalent to:
maxx v

∑n
i=1 aijxi ≥ v ∀ j ≤ n
∑n

i=1 xi = 1
x ≥ 0.

We now apply the transformation Xi = xi/v for each i ≤ n, obtaining
∑n

i=1 xi/v
∑n

i=1 Xi = 1/v. Since
max v = min 1/v for each v > 0, we can re-write the model as:

minX

∑n
i=1 Xi

∑n
i=1 aijXi ≥ 1 ∀ j ≤ n

X ≥ 0.

(12.5)

The model to minimize the maximum expected loss for BB is as follows. For j ≤ n, let yj be the
non-negative budget fraction of BB invested in customer j. As above, fB(x) = max{

∑n
j=1 yjaij | i ≤ n},

∑n
j=1 yj = 1 and yj ≥ 0 for each j ≤ n.

miny fB(x)
∑n

j=1 yj = 1

y ≥ 0,

which is equivalent to:
miny z

∑n
j=1 yjaij ≤ z ∀ j ≤ n
∑n

j=1 yj = 1

y ≥ 0.

We transform Yj = yj/z for each j ≤ n:

maxY

∑n
j=1 Yj

∑n
j=1 Yjaij ≤ 1 ∀ j ≤ n

Y ≥ 0.

(12.6)

It is straightforward to verify that (12.6) is the dual of (12.5).

Double monopoly: Solution 112

Chapter 13

Telecommunication networks:

Solutions

13.1 Packet routing: Solution

13.1.1 Formulation for 2 links

• Indices:
i: index on the set of demands F = {1, . . . , n}.

• Parameters:

– ai: capacity used by demand i (∀i ∈ F);

– ci: routing cost for demand i on link 1 (∀i ∈ F);

– p: cost percentage difference between routing on link 2 and link 1;

– u1: capacity installed on link 1;

– u2: capacity installed on link 2.

• Variables:

– xi1 = 1 if packet i is routed on link 1, 0 otherwise (∀i ∈ F)

– xi2 = 1 if packet i is routed on link 2, 0 otherwise (∀i ∈ F)

• Objective function:
min

∑n
i=1(cixi1 + (p + 1)cixi2)

• Constraints:

– ∀i ∈ F (xi1 + xi2 = 1);

–
n
∑

i=1

aixi1 ≤ u1;

–
n
∑

i=1

aixi2 ≤ u2.

113

Solutions Operations Research L. Liberti

13.1.2 Formulation for m links

• Indices:

1. i: index on the set of demands F = {1, . . . , n};

2. j: index on the set of links L = {1, . . . ,m}.

• Parameters:

– ai: capacity used by demand i (∀i ∈ F);

– ci: routing cost for demand i on link 1 (∀i ∈ F);

– pj : cost percentage difference between routing on link j and link 1 (∀j ∈ L);

– uj : capacity installed on link j (∀j ∈ L).

• Variables:
xij = 1 if packet i is routed on link j, 0 otherwise (∀i ∈ F, j ∈ L).

• Objective function:
min

∑m
j=1

∑n
i=1(pj + 1)cixij .

• Constraints:

– ∀i ∈ F (
m
∑

j=1

xij = 1);

– ∀j ∈ L (
n
∑

i=1

aixij ≤ uj).

13.1.3 AMPL model, data, run

packetrouting.mod

param n > 0;

set F := 1..n;

param a{F} >= 0;

param c{F} >= 0;

param p default 0.3;

param u1 >= 0;

param u2 >= 0;

var x1{F} binary;

var x2{F} binary;

minimize objfun :

sum{i in F} (c[i]*x1[i] + (p+1)*c[i]*x2[i]);

subject to knapsack1 : sum{i in F} a[i]*x1[i] <= u1;

subject to knapsack2 : sum{i in F} a[i]*x2[i] <= u2;

subject to assignment {i in F} : x1[i] + x2[i] = 1;

packetrouting.dat

param n := 10;

param : a c :=

1 0.3 200

2 0.2 200

Packet routing: Solution 114

Solutions Operations Research L. Liberti

3 0.4 250

4 0.1 150

5 0.2 200

6 0.2 200

7 0.5 700

8 0.1 150

9 0.1 150

10 0.6 900 ;

param u1 := 1;

param u2 := 2;

packetrouting.run

model packetrouting.mod;

data packetrouting.dat;

option solver cplex;

solve;

display objfun;

for {i in F} {

printf "packet %d on link %d\n", i, if (x1[i] = 1) then 1 else 2;

}

13.1.4 CPLEX solution

.

CPLEX 8.1.0: optimal integer solution; objective 3610

2 MIP simplex iterations

0 branch-and-bound nodes

objfun = 3610

packet 1 on link 2

packet 2 on link 1

packet 3 on link 2

packet 4 on link 1

packet 5 on link 2

packet 6 on link 2

packet 7 on link 2

packet 8 on link 2

packet 9 on link 1

packet 10 on link 1

13.2 Network Design: Solution

Let G = (V,E) be the graph of the network. The problem can be formalized as looking for the partition
of V in three disjoint subsets V1, V2, V3 such that the sum of the backbone update cost are minimum on
the edges having one adjacent vertex in a set of the partition, and the other adjacent vertex in another
set of the partition. This problem is often called Graph Partitioning or Min-k-Cut problem.

13.2.1 Formulation and linearization

• Indices: i, j ∈ V and h, k ∈ K = {1, 2, 3}.

Network Design: Solution 115

Solutions Operations Research L. Liberti

• Parameters:

– for each {i, j} ∈ E, dij is the edge weight (distance between i and j);

– c: backbone updating cost;

– m: minimum cardinality of the subnetworks.

• Variables: for each i ∈ V , h ∈ K, let xih = 1 if vertex i is in Vh, and 0 otherwise.

• Objective function:

min
1

2

∑

h6=k∈K

∑

{i,j}∈E

cdijxihxjk

• Constraints:

∀i ∈ V
∑

k∈K

xik = 1; (assignment) (13.1)

∀h ∈ K
∑

i∈V

xik ≥ m; (subnetwork cardinality). (13.2)

This formulation involves products between binary variables, and can therefore be classified as a
Binary Quadratic Program (BQP). Its feasible region is nonconvex (due to the integrality constraints
and the quadratic terms), and the continuous relaxation of its feasible region is also nonconvex (due
to the quadratic terms). This poses additional problems to the calculation of the lower bound within
Branch-and-Bound (BB) type solution algorithms. However, the formulation can be linearized exactly,
which means that there exists a Mixed-Integer Linear Programming (MILP) formulation of the problem
whose projection in the x-space of the BQP yields exactly the same feasible region. The above program
can be reformulated as follows:

1. replace each quadratic product xihxjk by a continuous linearization variable whk
ij constrained by

0 ≤ whk
ij ≤ 1;

2. add the following constraints to the formulation:

∀{i, j} ∈ E, h 6= k ∈ K whk
ij ≥ xih + xjk − 1 (if xih = xjk = 1, whk

ij = 1) (13.3)

∀{i, j} ∈ E, h 6= k ∈ K whk
ij ≤ xih (if xih = 0, whk

ij = 0) (13.4)

∀{i, j} ∈ E, h 6= k ∈ K whk
ij ≤ xjk (if xjk = 0, whk

ij = 0). (13.5)

Constraints (13.3)-(13.5) are a way to express the equation whk
ij = xihxjk (i.e. the condition vertex i

assigned to subnetwork h and vertex j assigned to subnetwork k) without introducing quadratic prod-
ucts in the formulation. The resulting formulation is a MILP whose continuous relaxation is a Linear
Programming problem (hence it is convex, which implies that each local optimum is also global — so it
can be safely used to compute lower bounds in BB algorithms such as that implemented in CPLEX).

13.2.2 AMPL model, data, run

network design

param n >= 0, integer;

param k >= 1, integer;

set V := 1..n;

set K := 1..k;

param c >= 0;

param m >= 0, integer;

param d{V,V} >= 0 default 0;

Network Design: Solution 116

Solutions Operations Research L. Liberti

var x{V,K} binary;

var w{V,V,K,K} >= 0, <= 1;

minimize cost : sum{h in K, l in K, i in V, j in V :

h != l and i < j and d[i,j] > 0} c*d[i,j]*w[i,j,h,l];

subject to assignment {i in V} : sum{h in K} x[i,h] = 1;

subject to cardinality {h in K} : sum{i in V} x[i,h] >= m;

subject to linearization {h in K, l in K, i in V, j in V :

h != l and i < j and d[i,j] > 0} :

w[i,j,h,l] >= x[i,h] + x[j,l] - 1;

netdes.dat

param n := 13;

param k := 3;

param c := 25;

param m := 2;

param d :=

1 2 1.8

1 7 1

2 3 1.7

2 5 7

2 7 2

2 12 3

3 4 2

3 10 6.5

4 5 1

4 6 2

5 8 5

5 10 1

5 11 1.5

6 11 2.1

7 12 2

8 9 2

8 13 0.7

9 10 1.1

10 11 1

12 13 2.5 ;

netdes.run

model netdes.mod;

data netdes.dat;

for {i in V, j in V : i < j} {

let d[j,i] := d[i,j];

}

option solver cplexstudent;

solve;

display cost;

for {h in K} {

printf "subnetwork %d:", h;

for {i in V} {

if (x[i,h] == 1) then {

printf " %d", i;

}

}

printf "\n";

}

Network Design: Solution 117

Solutions Operations Research L. Liberti

13.2.3 CPLEX solution

For k = 3:

CPLEX 8.1.0: optimal integer solution; objective 232.5

1779 MIP simplex iterations

267 branch-and-bound nodes

cost = 232.5

subnetwork 1: 6 11

subnetwork 2: 3 4 10

subnetwork 3: 1 2 5 7 8 9 12 13

The solution is in the picture below.

1

2

3 4

5

6

7

8

9 10 11

12 13

1

2

2.1

22
1.7

1.8

5.4
3

2
7

6.5
5

2

2.5

1

1.5

1

1

1.10.7

V1

V2

For k = 4:

CPLEX 8.1.0: optimal integer solution; objective 332.5

18620 MIP simplex iterations

1403 branch-and-bound nodes

cost = 332.5

subnetwork 1: 1 2 5 7 8 12 13

subnetwork 2: 4 9

subnetwork 3: 3 10

subnetwork 4: 6 11

The solution is in the picture below.

1

2

3 4

5

6

7

8

9 10 11

12 13

1

2

2.1

22
1.7

1.8

5.4
3

2
7

6.5
5

2

2.5

1

1.5

1

1

1.10.7

V1 V3 V4

Network Design: Solution 118

Solutions Operations Research L. Liberti

13.3 Network Routing: Solution

We use a path formulation where each variable represents a possible path. Of course the number of
paths in a graph is exponential in the size of the graph; so, in order to deal with polynomially-sized
formulations only, we need to employ an iterative solution algorithm where a master problem and an
auxiliary problem (both smaller in size than the complete exponential-sized formulation) are solved
iteratively until convergence. This approach is similar to the one used to solve the Travelling Salesman
Problem (TSP) exercise (Eg. 5.4, solution in Section 12.4); whereas in the TSP we generated one new
(violated) constraint at each iteration from an exponentially-sized set of subtour elimination constraints,
in this case we are going to generate one new path variable to be inserted in the model at each iteration,
making sure that said variable has a negative reduced cost (cf. the simplex algorithm), so that it has a
chance to decrease the objective function value. Such an approach is called a column generation algorithm,
whereas the approach used to solve the TSP is a constraint generation algorithm.

The network topology is described by an undirected graph G = (V,E) where V is the set of campuses
and E is the set of inter-campus links. Let P be the set of possible paths in G, Pst ⊆ P the subset of
possible paths between campus s and campus t, and P ij ⊆ P the subset of possible paths travelling on
link {i, j} ∈ E.

• Indices:

1. i, j, s, t: indices in V ;

2. p: index on P , the set of paths of G.

• Parameters:

1. dst: traffic demands for s 6= t;

2. uij : capacity installed on link {i, j}.

3. cij : length of link {i, j}; the path length cp is given by the sum cp =
∑

{i,j}∈p cij of the lengths
of the links in p.

• Variables. xp: quantity of traffic on path p.

• Objective function:

min
x

∑

p∈P

cpxp

• Constraints:

1. (demand satisfaction) for each s, t ∈ V such that dst > 0

∑

p∈Pst

xp = dst;

2. (link capacities) for each link {i, j} ∈ E:

∑

p∈P ij

xp ≤ uij .

At the outset, the master problem is defined starting from an initial set P0 ⊆ P of paths yielding
a feasible routing. Of course the routing is optimal with respect to all the paths in P0 but not to all
possible paths in P . We now have to find a new path that is likely to reduce the objective function cost,
or prove that no such path exists. Consider that in a dual LP formulation all variables are reformulated
to constraints and vice versa. Thus, optimality within the master problem can be interpreted as follows:
all the dual constraints in the dual of the master problem are satisfied. Non optimality with respect to

Network Routing: Solution 119

Solutions Operations Research L. Liberti

P , in terms of the primal master problem, means: there may be a path variable in P rP0 whose reduced
cost is negative. In terms of the dual of the master problem, this means: there may be a dual constraint
which is not satisfied by the current solution. We thus have to find an unsatisfied dual constraint from
the set of dual constraints corresponding to the paths in P r P0. The dual of the master problem is:

max
∑

s,t:s 6=t

dstyst +
∑

{i,j}∈E

uijzij (13.6)

s.t. yst +
∑

{i,j}∈p

zij ≤ cp ∀{s, t} : s 6= t∀p ∈ Pst (13.7)

zij ≤ 0, (13.8)

where yst are the dual variables corresponding to the primal constraints (1) and zij are those corresponding
to the primal constraints (2). We remark that the value of these dual variables is known after the solution
of the master problem. The reduced cost πp corresponding to a primal variable xp is the slack of the
corresponding dual constraint, which is

πp = cp − yst +
∑

{i,j}∈p

zij .

Since we are interested in primal variables xp with negative reduced cost πp < 0 (i.e. those with violated
dual constraint), we must find a path p such that cp +

∑

{i,j}∈p zij =
∑

{i,j}∈p(cij + zij) < yst. The

auxiliary problem (also called the pricing problem) is a point-to-point shortest path problem from s to t
on G where the edges are weighted by cij + zij .

Once the auxiliary problem is solved with solution p having cost πp < yst, we insert a new variable
(column) xp in the master problem. The process is iterated until for each pair of campuses s, t no more
shortest paths having cost < yst are found. The master solution is optimal.

Thus, we need to solve two separate LP problems: the master problem (given above) and the auxiliary
problem (which we solve using a network flow mathematical programming formulation):

• Parameters:

1. G = (V,A) where (i, j) ∈ A se {i, j} ∈ E;

2. source node s, destination node t;

3. for each (i, j) ∈ A, cij is the arc weight;

4. for each (i, j) ∈ A, zij is the value of the dual variable corresponding to the primal demand
constraint having indices i, j in the primal problem.

• Variables: for each (i, j) ∈ A, fij is the flow on the arc.

• Objective function:

min
∑

{i,j}∈E

(zij + cij)fij

• Constraints:

1. (flow conservation at source):

∑

j∈δ+(s)

fsj −
∑

j∈δ−(s)

fjs = 1;

2. (flow conservation at other nodes):

∀i ∈ V \{s, t}
∑

j∈δ+(i)

fij =
∑

j∈δ−(i)

fji.

Network Routing: Solution 120

Solutions Operations Research L. Liberti

The overall iterative algorithm is as follows. The master problem is solved within a main loop. After
each master solution, and for each s, t with dst > 0, we solve the auxiliary problem to find a shortest
s− t-path having cost < yst. If no such paths are found, the main loop terminates. Otherwise, the set of
variables xp corresponding to all paths p found by the auxiliary problems is added to the master problem.

In practice, we record Pst using two vectors origin[p] and destination[p] indexed on the paths
p; P ij is represented by a path-edge incidence matrix incid[p,i,j] whose value is 1 if {i, j} ∈ p and 0
otherwise.

13.3.1 AMPL model, data, run

colgen.mod

nodes

set V;

edge lengths

param c{V,V} >= 0, default 0;

link capacities

param u{V,V} >= 0;

traffic demands

param d{V,V} >= 0, default 0;

current number of paths in the master problem

param paths >= 0, integer;

set of paths

set P := 1..paths;

path origins

param origin{P} symbolic;

path destinations

param destination{P} symbolic;

path-edge incidence matrix

param incid{P,V,V} binary, default 0;

source node used in the auxiliary problem

param sour symbolic;

destination node used in the auxiliary problem

param dest symbolic;

quantity of traffic along a path (master problem)

var x{P} >= 0;

flow along an edge (auxiliary problem)

var f{i in V, j in V : c[i,j] > 0 or c[j,i] > 0} >= 0;

master problem formulation

minimize cost : sum{p in P, i in V, j in V :

c[i,j] > 0 and incid[p,i,j] == 1} c[i,j] * x[p];

subject to demand {s in V, t in V : d[s,t] > 0} :

sum{p in P : origin[p] == s and destination[p] == t} x[p] >= d[s,t];

subject to capacity {i in V, j in V : c[i,j] > 0} :

sum{p in P : incid[p,i,j] == 1} x[p] <= u[i,j];

auxiliary problem formulation

param cbar{V,V};

minimize flow :

sum{i in V, j in V : c[i,j] > 0} cbar[i,j] * f[i,j];

subject to source :

sum{j in V : c[sour,j] > 0} f[sour,j] -

sum{j in V : c[j,sour] > 0} f[j,sour] = 1;

Network Routing: Solution 121

Solutions Operations Research L. Liberti

subject to conservation {i in V : i != sour and i != dest} :

sum{j in V : c[i,j] > 0} (f[i,j] - f[j,i]) = 0;

colgen.dat

set V := como cremona lecco milan piacenza ;

param : c u :=

como lecco 30 200

como milan 50 260

como piacenza 110 200

lecco milan 55 260

lecco cremona 150 200

milan piacenza 72 260

milan cremona 90 260

piacenza cremona 100 200 ;

param d :=

como lecco 20

como piacenza 30

milan como 50

milan lecco 40

milan piacenza 60

milan cremona 25

cremona lecco 35

cremona piacenza 30 ;

param incid :=

1 como lecco 1

2 como milan 1

2 milan piacenza 1

3 milan lecco 1

3 lecco como 1

4 milan como 1

4 como lecco 1

5 milan piacenza 1

6 milan piacenza 1

6 piacenza cremona 1

7 cremona milan 1

7 milan piacenza 1

7 piacenza como 1

7 como lecco 1

8 cremona milan 1

8 milan como 1

8 como lecco 1

8 lecco milan 1

8 milan piacenza 1 ;

param origin :=

1 como

2 como

3 milan

4 milan

5 milan

6 milan

7 cremona

8 cremona ;

Network Routing: Solution 122

Solutions Operations Research L. Liberti

param destination :=

1 lecco

2 piacenza

3 como

4 lecco

5 piacenza

6 cremona

7 lecco

8 piacenza ;

param paths := 8;

colgen.run

model colgen.mod;

data colgen.dat;

option solver_msg 0;

option solver cplex;

option cplex_options "lpdisplay=0";

c, u are symmetric matrices: complete data

for {i in V, j in V : c[i,j] > 0} {

let c[j,i] := c[i,j];

let u[j,i] := u[i,j];

}

param termination binary, default 0;

problem master : x, cost, demand, capacity;

problem auxiliary : f, flow, source, conservation;

repeat while (termination == 0) {

problem master; solve master;

let termination := 1;

for {s in V, t in V : d[s,t] > 0} {

let sour := s;

let dest := t;

for {i in V, j in V : c[i,j] > 0} {

let cbar[i,j] := (capacity[i,j] + c[i,j]);

}

problem auxiliary; solve auxiliary;

if (flow < demand[s,t]) then {

let paths := paths + 1;

for {i in V, j in V : c[i,j] > 0 and f[i,j] > 0.5} {

let incid[paths, i, j] := 1;

}

let origin[paths] := s;

let destination[paths] := t;

let termination := 0;

}

}

Network Routing: Solution 123

Solutions Operations Research L. Liberti

};

printf "Routing cost %.1f\n", cost;

for {p in P : x[p] > 0} {

printf " path %d, traffic %.1f:", p, x[p];

for {i in V, j in V : c[i,j] > 0 and incid[p,i,j] == 1} {

printf " (%s,%s)", i, j;

}

printf "\n";

}

13.3.2 CPLEX Solution

Routing cost 23245.0

path 1, traffic 20.0: (como,lecco)

path 5, traffic 60.0: (milan,piacenza)

path 9, traffic 30.0: (como,piacenza)

path 10, traffic 35.0: (cremona,milan) (milan,lecco)

path 11, traffic 30.0: (cremona,piacenza)

path 12, traffic 50.0: (milan,como)

path 13, traffic 25.0: (milan,cremona)

path 14, traffic 40.0: (milan,lecco)

Network Routing: Solution 124

Chapter 14

Nonlinear programming: Solutions

14.1 Error correcting codes: Solution

1. Indices: j ≤ m, i ≤ n.

2. Variables:

• xi ∈ Rm: position of i-th message;

• ρi ∈ R+: value of ρ on xi

3. Objective function:
max min

i≤n
ρi

4. Constraints:

• (coordinates limits)
0 ≤ xi

j ≤ 1 ∀ i ≤ n, j ≤ m

• (distances)
||xi − xk|| ≥ ρi + ρk ∀ i, k ≤ n

14.2 Airplane maintenance: Solution

1. Indices:

• i ≤ n = number of maintenance centers;

• j ≤ m = number of airports.

2. Parameters:

• δj : latitude of airport j;

• ϕj : longitude of airport j;

• Aj : expected number of airplanes/year leaving from airport j;

• r: earth radius;

• P : capacity of centers (number of airplanes);

• C1: construction cost between 20◦W e 40◦E

125

Solutions Operations Research L. Liberti

• C2: construction cost between 40◦E e 160◦E

• α: proportionality between distance and cost;

3. Variables:

• xi: latitude of center i (90◦S ≤ xi ≤ 90◦N)

• yi: longitude of center i (20◦W ≤ yi ≤ 160◦E)

• dij : geodesic distance between center i and airport j (dij ≥ 0)

• wij : number of airplanes going to center i and coming from airport j (0 ≤ wij ≤ Aj)

• zi = 1 if center i is built between 20◦W e 40◦E, 0 otherwise

4. Objective function:

min
∑

i≤n

C1zi + C2(1− zi) + α
∑

j≤m

wijdij

5. Constraints:

• Distances:

dij = 2r asin

√

sin2

(

xi − δj

2

)

+ cos xi cos δj sin2

(

yi − ϕj

2

)

∀i ≤ n, j ≤ m;

• (maintenance)
∑

i≤n

wij = Aj ∀j ≤ m;

• (capacity)
∑

j≤m

wij ≤ P ∀i ≤ n;

• (z definition)

yi − 40◦ ≤ 360◦zi ∀ i ≤ n

yi − 40◦ ≥ −360◦(1− zi) ∀ i ≤ n

• (variables domains)

xi, yi, dij ∈ R+ ∀ i ≤ n, j ≤ m

wij ∈ Z+ ∀ i ≤ n, j ≤ m

zi ∈ {0, 1} ∀ i ≤ n.

14.3 Pooling problem: Solution

Variables:

• xA, xB , xC : crude in input valves A,B,C;

• y11: petrol between pool and mixer 1;

• y12: petrol between pool and mixer 2;

• y21: petrol between input valve C and mixer 1;

Pooling problem: Solution 126

Solutions Operations Research L. Liberti

• y22: petrol between input valve C and mixer 2;

• p: sulphur percentage in petrol out of pool.

Formulation:
max
x,y,p

9(y11 + y21) + 15(y12 + y22) revenue

−(6xA + 16xB + 10xC) cost
t.c. xA + xB − y11 − y12 = 0 mass balance in pool

xC − y21 − y22 = 0 mass balance in C
y11 + y21 ≤ 100 market demand 1
y12 + y22 ≤ 200 market demand 2
3xA + xB = p(y11 + y12) sulphur balance in pool
py11 + 2y21 ≤ 2.5(y11 + y21) quality petrol 1
py12 + 2y22 ≤ 1.5(y12 + y22) quality petrol 2

This problem is nonconvex due to the bilinear terms in p, y in the constraints, for an equation constraint
is convex only if it is linear.

Notice this problem has a bilinear structure (i.e. we can define two sets of variables P and Y such
that all product terms in the problem have the form py where p ∈ P and y ∈ Y — in other words there
are no squares). This suggests that by fixing all variables in either set, the resulting subproblem is simply
a Linear Programming (LP) problem that can be solved by CPLEX. Let P (p, y) denote the full problem.
For fixed values p′ and y′, let P (y) = P (p, y|p = p′) and P (p) = P (p, y|y = y′) (thus, P (y) and P (p) are
LPs). The algorithm is as follows.

1. Let k = 1, f0 = −∞, ε > 0 and choose p′ randomly.

2. Let y′ be the optimal solution of P (y).

3. Let p′ be the optimal solution of P (p) and fk be its objective function value.

4. If |fk − fk−1| > ε go to Step 2, otherwise terminate with solution (p′, y′) and objective function
value fk.

This algorithm is known as the Haverly Recursion Algorithm (HRA) and is a particular example of the
Successive Linear Programming (SLP) technique for solving Nonlinear Programming (NLP) problems.

14.3.1 AMPL: model, data, run

haverly.mod - Haverly’s pooling problem

set X default 1..3;

set D default 1..2;

param d{D};

param q{D};

param r{D};

param c{X};

param pL := 0;

param pU := 5;

var x{X} >= 0, <= 300;

var y{D,D} >= 0, <= 200;

var p >= pL, <= pU;

maximize profit : sum{j in D} r[j] * (sum{i in D} y[i,j]) -

Pooling problem: Solution 127

Solutions Operations Research L. Liberti

sum{k in X} c[k] * x[k];

subject to mass_balance_pool : x[1] + x[2] = sum{j in D} y[1,j];

subject to mass_balance_C : x[3] = sum{j in D} y[2,j];

subject to demand{j in D} : sum{i in D} y[i,j] <= d[j];

subject to sulphur_balance : 3*x[1] + x[2] = p * (sum{j in D} y[1,j]);

subject to quality{j in D} :

p * y[1,j] + 2 * y[2,j] <= q[j] * sum{i in D} y[i,j];

haverly.dat

param d :=

1 100

2 200;

param q :=

1 2.5

2 1.5;

param r :=

1 9

2 15;

param c :=

1 6

2 16

3 10;

HRA (SLP) algorithm for Haverly’s pooling problem

model haverly.mod;

data haverly.dat;

option solver cplex;

option solver_msg 0;

let p := Uniform(pL, pU);

param infinity := 100000;

param epsilon := 0.1;

param f0 default -infinity;

param f default infinity;

repeat while (abs(f - f0) > epsilon) {

create and solve P(y)

fix p;

unfix {j in D} y[1,j];

solve;

printf "current profit from P(y) is %f\n", profit;

create and solve P(p)

unfix p;

fix {j in D} y[1,j];

solve;

let f0 := f;

let f := profit;

printf "current profit from P(p) is %f\n", profit;

Pooling problem: Solution 128

Solutions Operations Research L. Liberti

}

printf "maximal profit = %f, optimal percentage of sulphur = %f\n", f, p;

14.3.2 CPLEX solution

current profit from P(y) is 0.000000

current profit from P(p) is 0.000000

current profit from P(y) is 400.000000

current profit from P(p) is 400.000000

current profit from P(y) is 400.000000

current profit from P(p) is 400.000000

maximal profit = 400.000000, optimal percentage of sulphur = 1.000000

We remark that the HRA is very sensitive to the performance of the underlying LP solver (CPLEX in
this case). So much so that with different versions of CPLEX we obtain different solutions — this is due
to the fact that floating point errors in the LP solver may influence the next HRA iteration significantly.
The above results were obtained with CPLEX v.9 in the “student” variant (downloaded as an AMPL
solver). With CPLEX v.10.1 the performance is remarkably different: in order to obtain convergence to
a profit > 398 it was necessary to insert another external loop where in case of failure p was fixed to a
random value before restarting. Termination was obtained via a threshold value set at 380. The code is
shown below.

HRA (SLP) algorithm for Haverly’s pooling problem

model haverly.mod;

data haverly.dat;

option presolve 0;

option solver cplex;

option solver_msg 0;

let p := Uniform(pL, pU);

param threshold := 380;

param infinity := 100000;

param epsilon := 0.001;

param f0 default -infinity;

param f default infinity;

param itn default 1;

param termination binary, default 0;

repeat while (!termination) {

let p := Uniform(pL, pU);

let f := infinity;

let f0 := -infinity;

repeat while (abs(f - f0) > epsilon) {

create and solve P(y)

fix p;

unfix {j in D} y[1,j];

solve;

Pooling problem: Solution 129

Solutions Operations Research L. Liberti

create and solve P(p)

unfix p;

fix {j in D} y[1,j];

solve;

end iteration

let f0 := f;

let f := profit;

printf "itn %d: profit(P(y),P(p))=(%g,%g), p=%g\n", itn, f0, f, p;

let itn := itn + 1;

}

if (f >= threshold) then {

let termination := 1;

}

}

printf "maximal profit = %f, optimal percentage of sulphur = %f\n", f, p;

The solution (with CPLEX 10.1) is as follows.

itn 1: profit(P(y),P(p))=(100000,0), p=0.949365

itn 2: profit(P(y),P(p))=(0,0), p=0.949365

itn 3: profit(P(y),P(p))=(100000,0), p=4.60946

itn 4: profit(P(y),P(p))=(0,0), p=4.60946

itn 5: profit(P(y),P(p))=(100000,0), p=4.78578

itn 6: profit(P(y),P(p))=(0,0), p=4.78578

itn 7: profit(P(y),P(p))=(100000,0), p=0.528629

itn 8: profit(P(y),P(p))=(0,0), p=0.528629

itn 9: profit(P(y),P(p))=(100000,0), p=3.57053

itn 10: profit(P(y),P(p))=(0,0), p=3.57053

itn 11: profit(P(y),P(p))=(100000,84.0074), p=2.75766

itn 12: profit(P(y),P(p))=(84.0074,84.0074), p=2.75766

itn 13: profit(P(y),P(p))=(100000,353.871), p=1.31568

itn 14: profit(P(y),P(p))=(353.871,353.871), p=1.31568

itn 15: profit(P(y),P(p))=(100000,0), p=1.74802

itn 16: profit(P(y),P(p))=(0,0), p=1.74802

itn 17: profit(P(y),P(p))=(100000,0), p=2.03623

itn 18: profit(P(y),P(p))=(0,0), p=2.03623

itn 19: profit(P(y),P(p))=(100000,0), p=3.32606

itn 20: profit(P(y),P(p))=(0,0), p=3.32606

itn 21: profit(P(y),P(p))=(100000,93.1195), p=2.87904

itn 22: profit(P(y),P(p))=(93.1195,93.1195), p=2.87904

itn 23: profit(P(y),P(p))=(100000,0), p=4.71011

itn 24: profit(P(y),P(p))=(0,0), p=4.71011

itn 25: profit(P(y),P(p))=(100000,0), p=1.81762

itn 26: profit(P(y),P(p))=(0,0), p=1.81762

itn 27: profit(P(y),P(p))=(100000,0), p=0.0154438

itn 28: profit(P(y),P(p))=(0,0), p=0.0154438

itn 29: profit(P(y),P(p))=(100000,0), p=3.77799

itn 30: profit(P(y),P(p))=(0,0), p=3.77799

itn 31: profit(P(y),P(p))=(100000,0), p=2.25051

itn 32: profit(P(y),P(p))=(0,0), p=2.25051

itn 33: profit(P(y),P(p))=(100000,0), p=0.850609

itn 34: profit(P(y),P(p))=(0,0), p=0.850609

itn 35: profit(P(y),P(p))=(100000,0), p=3.93874

itn 36: profit(P(y),P(p))=(0,0), p=3.93874

itn 37: profit(P(y),P(p))=(100000,0), p=4.18904

Pooling problem: Solution 130

Solutions Operations Research L. Liberti

itn 38: profit(P(y),P(p))=(0,0), p=4.18904

itn 39: profit(P(y),P(p))=(100000,97.4144), p=2.95083

itn 40: profit(P(y),P(p))=(97.4144,97.4144), p=2.95083

itn 41: profit(P(y),P(p))=(100000,398.429), p=1.01546

itn 42: profit(P(y),P(p))=(398.429,398.429), p=1.01546

maximal profit = 398.429299, optimal percentage of sulphur = 1.015464

14.4 Optimal rocket control 2: Solution

If the rocket leaves with a mass c of fuel burning as αu(t) kg s−1, its equation of motion is:

∀t ∈ [0, T] m(t)

(

∂2y(t)

∂t2
+ g

)

= u(t),

where m(t) = m0 + c−
∫ t

0
αu(t′)dt′ and m0 ≤ m(t) ≤ m0 + c for t ∈ [0, T].

At time 0 (resp. T), the rocket must be at height 0 (resp. H); velocity at time 0 is 0, so y(0) = v(0) =
0,y(T) = H. The force acting on the rocket must not exceed b, so |u(t)| ≤ b for each t ∈ [0, T]. We

must determine u(t) so that the energy is minimum. Our objective function is thus E =
∫ T

0
|u(t)|dt. We

obtain a nonlinear problem with time dependency:

min

∫ T

0

|u(t)|dt

∀t ∈ [0, T] |u(t)| ≤ b

∀t ∈ [0, T] m(t)(
∂2y(t)

∂t2
+ g) = u(t)

y(0) = 0

y(T) = H

v(0) = 0.

First we remove the time dependency. We consider a discretization of the interval [0, T] in n sub-
intervals, with t1 = 0, ∆t = T

n , tn+1 = tn + ∆t = T e tk = t1 + k∆t for each k ≤ n. Let yk = y(tk)

and vk = ∂y(t)
∂y

∣

∣

tk
for each k ≤ n + 1. We introduce variables mk (rocket mass at time tk) and γk

(approximation of
∫ tk

0
u(t)dt) for k ≤ n + 1; we require γk+1−γk

∆t = uk for k ≤ n. We obtain the following

Optimal rocket control 2: Solution 131

Solutions Operations Research L. Liberti

model:

min

n
∑

k=1

|uk|

∀k ≤ n yk+1 − yk = vk∆t

∀k ≤ n mkvk+1 −mkvk = (uk −mkg)∆t

∀k ≤ n mk = m0 + c− αγk

∀k ≤ n γk+1 − γk = uk∆t

∀k ≤ n + 1 |uk| ≤ b

y1 = 0

yn+1 = H

v1 = 0

m1 = m0 + c

∀k ≤ n + 1 0 ≤ yk ≤ H

∀k ≤ n + 1 vk ≥ 0

∀k ≤ n + 1 mk ≥ m0

∀k ≤ n + 1 uk ∈ R.

The bilinear terms in mk and vk make the problem nonconvex.

Optimal rocket control 2: Solution 132

