
Branch-and-Bound for the Travelling Salesman Problem

Leo Liberti

LIX, École Polytechnique, F-91128 Palaiseau, France

Email:liberti@lix.polytechnique.fr

March 15, 2011

Contents

1 The setting 1

1.1 Graphs . 1

1.2 Problems . 3

1.2.1 Decision problems . 3

1.2.2 Optimization problems . 3

2 Branch-and-Bound 4

2.1 A pure branching algorithm . 4

2.1.1 Complexity . 6

2.2 Enters the bound . 6

2.2.1 The relaxed solution . 7

2.3 Feasible nodes . 7

2.4 A good order for processing nodes . 8

2.5 The Branch-and-Bound algorithm for the TSP . 8

1 The setting

These notes complement the lecture on Branch-and-Bound for the Travelling Salesman Problem given in
the course INF431 (edition 2010/2011). The lecture slides are more informal and attempt to convey the
important concepts of the Branch-and-Bound algorithm, whereas these notes provide a formal treatment
of the correctness of the Branch-and-Bound algorithm.

1.1 Graphs

Warning: many of the definitions below are not “standardized”, i.e. you might find slight variations
thereof in different texts by different authors.

1 THE SETTING 2

1. A graph is a pair G = (V,E) where V is a set of vertices and E is a set of subsets of V of cardinality
either 1 or 2, i.e. the elements of E have the form {u, v} where u, v ∈ V (if u = v then {u, v} = {v}
and the edge is called a loop). A simple graph has no loops. Given a graph G, we also denote its
vertex set by V (G) and its edge set by E(G).

2. A digraph, or directed graph, is a pair G = (V,A) where V is a set of nodes and A ⊆ V × V is a set
of arcs. A simple digraph has no directed loops (i.e. elements of the form (v, v) for some v ∈ V).
Given a digraph G, we also denote its node set by V (G) and its arc set by A(G).

3. Given a digraph G = (V,A), the underlying (undirected) graph is a graph G′ = (V,E) where
E = {{u, v} | (u, v) ∈ A}.

4. A graph H = (U,F) is a subgraph of a graph G = (V,E) if U ⊆ V and F ⊆ E. A subgraph H

is induced if B contains all edges {u, v} ∈ E such that u, v ∈ U . Induced subgraphs are uniquely
defined by their vertex set U , and denoted by H = G[U]. An equivalent notion holds for digraphs.

5. A subgraph H is spanning in G if V (H) = V (G).

6. Given a graph G = (V,E) and v ∈ V , the star of v is the vertex set δ(v) = {u ∈ V | {u, v} ∈ E.
The degree of v is deg(v) = |δ(v)|.

7. Given a digraph G = (V,A) and v ∈ V , the incoming star of v (or “instar”) is the node set
δ−(v) = {u ∈ V | (u, v) ∈ A}. The outgoing star of v (or “outstar”) is the node set δ+(v) = {u ∈
V | (v, u) ∈ A}. The indegree of v is deg−(v) = |δ−(v)| and the outdegree of v is deg+(v) = |δ+(v)|.

8. Given a graph G = (V,E), a path in G is a subgraph P of G with an order on V (P) such that for
all u, v ∈ V (P) with unit rank difference in the order {u, v} ∈ E(P). The first vertex in the path
is called the source and the last vertex is called the destination. A path is simple if each vertex has
degree at most two. The length of a path P is |E(P)|. Equivalent notions hold for digraphs.

9. A graph (resp. digraph) G is connected (resp. strongly connected) if for each pair (s, t) ∈ V 2 there
exists a path from s to t in G.

10. Given a graph G = (V,E), a cycle in G is a subgraph C of G where each vertex in V (C) has even
degree. A cycle is simple if it is connected and every vertex has degree two.

11. Given a digraphG = (V,E), a circuit isG is a directed simple path with equal source and destination
nodes.

12. A cycle (resp. circuit) is Hamiltonian if it is spanning. A Hamiltonian circuit is also called a tour.

13. A graph (resp. digraph) is acyclic if it does not have a cycle (resp. circuit).

14. A forest (resp. arborescence) is an acyclic graph (resp. digraph — acyclic digraphs are also called
DAGs, which stands for Directed Acyclic Graphs).

15. A tree is a connected forest in a graph. In the context of digraphs, a tree is a DAG whose underlying
undirected graph is a tree, and which possesses a distinctive root node which is the source node to
paths to all other nodes. All connected DAGs (and therefore all trees) have a unique root.

16. A node of a tree with degree 1 (resp. a node of a DAG with outdegree 0) is called a leaf node.

17. In a DAG, any path from the root to any other node v is a branch to v; any node u on a branch
to v is an ancestor of v. Given two nodes v, w of a DAG, any node u such that there are paths Pv

from u to v and Pw from u to w is called a common ancestor of v, w; the root is a common ancestor
of all nodes in the DAG. If no vertex apart from u is an ancestor of v, w on either Pv or Pw then u

is the nearest common ancestor.

1 THE SETTING 3

1.2 Problems

1.2.1 Decision problems

Informally speaking, a decision problem is a question which only admits the answers “yes” or “no”. More
formally, it can be considered a function f (called the decision function) defined over the language {0, 1}∗

and mapping into {0, 1}: formal questions (which, in practice, are often about graphs) are encoded into
a string in {0, 1}∗, and the answers are either 0 (for “no”) or 1 (for “yes”).

For example, the Hamiltonian cycle problem is as follows.

Hamiltonian Cycle

Given a graph G = (V,E), does it admit a Hamiltonian cycle?

Each time a different graph G is given, the answer may vary. For example, for all disconnected graphs the
answer is “no”. For all complete graphs the answer is “yes”. In other words, the problem itself cannot
be solved before a concrete graph is provided: we can see a problem as a sentence which is parametrized
on G. Any assignment of consistent values to the parameters of a problem is called an instance of the
problem (which can therefore also be seen as a collection of instances). Formally, an instance is an element
of the domain of the decision function.

A simple answer “yes” or “no” is relatively useful: we are usually also interested in a proof of validity
of the provided answer. Such a proof is also called certificate. For example, the complete graph K4 =
({1, 2, 3, 4}, {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}) on four vertices is an instance of Hamiltonian
Cycle, and the Hamiltonian cycle P = ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}, {1, 4}}) is a certificate for the
answer “yes” (the instance is also termed a “yes” instance).

1.2.2 Optimization problems

An optimization problem asks instead for some kind of a “structure” of “optimum cost”: a structure is
usually a set of “elements”, each of which is assigned a numerical cost. Such elements can be combined
in different ways to generate a set of structures, and the problem asks for the cost-wise best structure
in the set. Here, “best” might mean minimum or maximum according to specification. Formally, an
optimization problem is a pair of functions f, g where f : {0, 1}∗ → {0, 1} is the decision function and
g : {0, 1}∗ → Q is the cost function, together with an optimization direction in {min,max}. An instance
is an element of the domain of f, g. As for decision problems, we are not just interested in the answer
(“yes”/“no” and the cost) but in the certificate too, i.e. the proof that the answer holds.

For example, the travelling salesman problem is as follows.

Travelling Salesman Problem (TSP)

Given a complete digraph G = (V,A) with arc cost function d : A → Q+, find the tour of
minimum cost.

Since a complete digraph is uniquely identified by the number of nodes |V |, the instance is here a pair
(n,D) where n = |V | and D = (dij) is an n× n matrix with entries in Q+ ∪ {∞}: duv = d((u, v)) for all
(u, v) ∈ A and dvv = ∞ for all v ∈ V .

Since a tour is a spanning subgraph of G, it is uniquely identified by its arc set S. The “elements”
here are the arcs of the digraph, and the “structures” are tours. In the TSP setting, we shall define a
solution any set of arcs. A solution is feasible if it is a tour and infeasible otherwise. A solution is optimal
for the TSP if it is feasible and has minimum cost amongst all feasible solutions.

2 BRANCH-AND-BOUND 4

2 Branch-and-Bound

The Branch-and-Bound algorithm explicitly explores a large search space by recursively branching on
disjunctions of possible values assigned to various decisions. Some of the recursions can be avoided if it
can established that no subsequent recursive call contains a good solution. Typically, with optimization
problems, recursions are avoided by employing a bound to the optimal value: if a good solution was
already identified and the current bound is worse, there is no point in further recursion.

In the rest of the section we shall discuss a pure branching algorithm first, and add the bounding part
as a modification yielding better performance.

2.1 A pure branching algorithm

Extend the arc cost function d : A → Q+ to act on solutions S as follows:

d(S) =
∑

(u,v)∈S

duv. (1)

Let P(A) be the set of all subsets of A. Define the following functions:

• τ : P(A) → {0, 1} which maps a solution S to 1 if S is a tour, and to 0 otherwise;

• φ : P(A)2 → {0, 1} which maps an arc set pair (Y,N) to 1 if Y can be extended to a tour without
using the arcs in N , and 0 otherwise; specifically:

φ(Y,N) = 0 if (|Y ∩N | ≥ 1) ∨ (Y ∪N = A) ∨ (Y contains a circuit of length < n).

We claim that Alg. 1 can solve the TSP when called as treeSearch(∅,∅,∅).

Algorithm 1 treeSearch(Y,N, S)

1: if τ(Y) = 1 then

2: if d(Y) < d(S) then
3: S = Y

4: end if

5: else

6: if φ(Y,N) = 1 then

7: choose a ∈ Ar (Y ∪N)
8: treeSearch(Y ∪ {a}, N, S)
9: treeSearch(Y,N ∪ {a}, S)

10: end if

11: end if

2.1 Lemma

During the execution of Alg. 1, Y,N, S are always subsets of A.

Proof. Alg. 1 calls itself only if it reaches Lines 8-9, in which case it also reaches Line 7. Since a is an
arc in Ar (Y ∪N), and since Y,N are updated in the recursive calls, both are always subsets of A. 2

Let G = (V,A) be the following digraph, generated by the execution of Alg. 1: each node of V is the
triplet (Y,N, S) in memory at Line 11, and there is an arc ((Y,N, S), (Y ′, N ′, S′)) whenever Y ′, N ′, S′

are the arguments of a recursive call from treeSearch(Y,N, S). For a node α = (Y,N, S) of V we write
Y = Yα, N = Nα, S = Sα. Because G is the representation of a recursion structure, we sometimes refer
to nodes in an outgoing star as subnodes.

2 BRANCH-AND-BOUND 5

Remark

From now on, we deal with two separate digraphs: the complete digraph G = (V,A) where
we look for an minimum cost circuit, and the digraph G = (V,A) representing the recursive
calls in the execution of treeSearch(∅,∅,∅). Particular care must be paid not to confuse
the two digraphs, for we shall discuss nodes and circuits in both G and G.

2.2 Lemma

If ν is an ancestor of µ in G then Yµ ⊃ Yν and Nµ ⊃ Nν .

Proof. Directly by Lines 8-9. 2

2.3 Lemma

G has no circuits.

Proof. By Lines 7-9, each non-leaf node (Y,N, S) ∈ V has two subnodes (Y ∪ {a}, N, S) and (Y,N ∪
{a}, S), where a 6∈ (Y ∪N). In particular, by Lines 6-7, each arc ((Y,N, S), (Y ′, N ′, S′)) ∈ A is such that
|Y ′ ∪ N ′| = |Y ∪ N | + 1. Now suppose there is a circuit in G with ordered node set ((Y0, N0, S0), . . . ,
(Yk−1, Nk−1, Sk−1)): then |Yi ∪ Ni| < |Yi+1 (mod k) ∪ Ni+1 (mod k)| + 1 for all i ∈ {0, . . . , k − 1}, which
implies |Y0 ∪N0| < |Y0 ∪N0|, a contradiction. 2

2.4 Lemma

In any node ω ∈ V, we have that Yω, Nω uniquely determine Sω.

Proof. Consider nodes α, β ∈ V with Yα = Yβ ∧Nα = Nβ (∗). Let γ be their nearest common ancestor,
and consider the paths Pα and Pβ from γ to α and β. Since each node in the paths (apart perhaps from
α, β) have subnodes, τ is always 0 at Line 1, so S is never updated at Line 3. Thus Sα′ = Sβ′ = Sγ

for α′ the parent node of α and β′ the parent node of β. Now, since Yα = Yβ and Nα = Nβ , if α has
subnodes, β also has subnodes; in this case τ(Yα) = τ(Yβ) = 0 and Sα = Sα′ = Sβ′ = Sβ . Otherwise
τ(Yα) = τ(Yβ) = 1 which implies Sα = Yα = Yβ = Sβ . 2

By Lemma 2.4, we can also refer to nodes of G simply as pairs (Y,N).

2.5 Lemma

At termination of a call treeSearch(∅,∅,∅) to Alg. 1, the set {Yα | α ∈ V ∧α is leaf} contains all tours

of the given instance.

Proof. Let S̄ ⊂ A be a tour and let < be the order on A used to choose a in Line 7. Consider the branch
from the root of G obtained by taking left subnodes (Line 8) whenever a ∈ S̄ at Line 7 and right subnodes
(Line 9) whenever a 6∈ S̄ at Line 7. The branch exists in G since any proper subset Y of S̄ is not a tour
and does not contain circuits of length < n, so τ(Y) = 0 and φ(Y,N) = 0; furthermore, by construction
it contains a node α where Yα = S̄ and Nα = {a ∈ A | a 6∈ S̄ ∧ ∃b ∈ S̄ (a < b)}. Since τ(Yα) = 1, by Line
1 this is the last node of the branch, i.e. a leaf node. 2

2.6 Theorem

A call treeSearch(∅,∅,∅) to Alg. 1 solves the TSP.

Proof. By Lemma 2.1, Y,N are always subsets of A; by Lemma 2.3, G is a DAG, each node of which is
determined by Y,N by Lemma 2.4. Since the number of subsets of A is finite, the algorithm terminates.
By Lemma 2.5, the leaves of G contain all the tours, so by Lines 2-3, S contains the tour of minimum
cost at termination. 2

2 BRANCH-AND-BOUND 6

2.1.1 Complexity

2.7 Lemma

All nodes of G with indegree greater than 1 are leaves.

Proof. Let α ∈ V with indegree > 1: this means that A contains two arcs (β, α), (γ, α) with β 6= γ. By
Lemma 2.2, Yα ⊃ Yβ , Nα ⊃ Nβ , Yα ⊃ Yγ and Nα ⊃ Nγ . Now let θ be the nearest common ancestor of
β, γ; by Line 7 there must be a ∈ Ar (Yθ ∪Nθ) such that a ∈ Yβ and a ∈ Nγ . Thus, a ∈ Yα ∩Nα, which
means that φ(α) = 0, so α has no subnodes. 2

By Lemmata 2.4 and 2.7, each non-leaf node in V corresponds to a choice of Y,N such that τ(Y) =
0 ∧ φ(Y,N) = 1, i.e. pairs (Y,N) such that Y contains no circuit, Y ∩N = ∅ and Y ∪N (A. We first
evaluate the number of pairs (Y,N) of subsets of A such that Y ∩N = ∅ and Y ∪N (A; for each choice
of Y (A there are all possible choices of N (Ar Y . Since |A| = n(n− 1), we have:

n(n−1)
∑

h=0

(

n(n− 1)

h

) n(n−1)−h−1
∑

ℓ=0

(

n(n− 1)− h

ℓ

)

=
∑

h+ℓ<n(n−1)

(

n(n− 1)

h

)(

n(n− 1)− h

ℓ

)

=
∑

h+ℓ<n(n−1)

n!(n− 1)!

(hℓ)!(n(n− 1)− h− ℓ)!
.

To this total, we have to take away the number of circuits of i nodes for 1 < i < n, i.e.
∑

1<i<n(i− 1)!.

Amongst the leaf nodes there are the circuits of any length ≤ n: there are
∑

1<i≤n(i − 1)! of them.
Further, it is easy to show that in a binary tree the number of leaf nodes is t+ 1 where t is the number
of non-leaf nodes; and by Lemma 2.7 this is an upper bound for the case of G. All in all, we have

2

∑

h+ℓ<n(n−1)

n!(n− 1)!

(hℓ)!(n(n− 1)− h− ℓ)!
+ (n− 1)!

+ 1 (2)

nodes.

As concerns worst-case complexity, a coarse analysis bounds the number of pairs of subsets of A by
22n(n−1), so we obtain an overall bound O(22n

2

+ (n− 1)!).

2.2 Enters the bound

In order to improve on the practical performance of Alg. 1, we introduce a technique to compute a lower
bound d̄ to the optimal cost d(S) of the best circuit S ⊂ A in a subgraph Gα rooted at a given node
α of the G. If this bound is worse than the cost d(S′) best circuit S′ found so far (the incumbent),
i.e. d̄ ≥ d(S′), then there is no need for branching at this node: the subgraph of G rooted at α cannot
contain a better circuit than the incumbent. The node α is said to be pruned by bound. This important
insight, by the way, also implies that Thm. 2.6 will hold for a treeSearch algorithm modified this way.

Alg. 2 finds such a lower bound, based on choosing the best “next node” for each node in V . We remark
that this algorithm provides a bound which varies in function of the node element Y,N . Notationally,
for a set of arcs S on the node set V we define Λ−(S) = {v ∈ V | ∃u ∈ V (u, v) ∈ S} and Λ+(S) =
{v ∈ V | ∃u ∈ V (v, u) ∈ S}. Line 7 is reached if no “next node” can be chosen for a given u due to
incompatibilities between Y and N : if such is the case, no circuit can ever be found with such Y,N and
the subgraph need not be explored.

2 BRANCH-AND-BOUND 7

Algorithm 2 lowerBound(Y,N)

1: R = Y

2: for u ∈ V r Λ−(Y) do
3: if {(u, v) 6∈ N | v ∈ V } 6= ∅ then

4: a = argmin{duv | (u, v) 6∈ N}
5: R = R ∪ {a}
6: else

7: return ∞
8: end if

9: end for

10: return d(R)

2.8 Lemma

Alg. 2 called with arguments Y,N gives a lower bound to the optimal cost of the circuits encoded in the

nodes of the subgraph of G rooted at the node α ∈ V with Yα = Y and Nα = N .

Proof. Let α ∈ V, and let λ = lowerBound(Yα, Nα). If no node of the subgraph Gα of G rooted at α

encodes a tour, then the theorem trivially holds because by convention we set d(∅) = ∞, so assume at
least one node β of Gα encodes a tour S. Then by Line 1 in Alg. 1 Yβ = S, so Yβ is a tour. Since α is
an ancestor of β, by Lemma 2.2 Yβ ⊃ Yα and Nβ ⊃ Nα. Thus, we can write S = Yα ∪ S′ for some arc
set S′. By Line 7 in Alg. 1, S ∩Nβ = ∅, so that S ∩Nα = ∅ and hence S′ ∩Nα = ∅. By Lines 4-5 in
Alg. 2, R = Yα∪R′ for some arc set R′ with R′∩Nα = ∅. Also, because S is a tour, Λ−(Yα) and Λ−(S′)
partition Λ−(S) = V . By Line 2 in Alg. 2, Λ−(R′) = V r Λ−(Yα), which implies Λ−(R′) = Λ−(S′).
Furthermore, by Line 4 in Alg. 2, each arc (u, v) ∈ R′ is chosen as having minimum cost over all the arcs
in δ+(u)rNα. Thus, d(R

′) ≤ d(S′). Since S = Yα ∪ S′ and R = Yα ∪R′, d(R) ≤ d(S) as claimed. 2

More in general, one might see each property of the sought structure (such as tours) as a constraint
imposed on simpler structures (such as arc sets S). Since all tours H have Λ−(H) = V , the set L of all
arc sets S such that Λ−(S) = V has fewer constraints than the set H of all tours. In other words, L is a
relaxation of H, or, more precisely, L ⊃ H. In general, optimal cost structures in relaxation sets provide
bounds for the optimal cost structures of interest, as

min
c

L ≤ min
d

H ≤ max
d

H ≤ max
c

L (3)

for all cost functions c : L → R, d : H → R such that c(S) = d(S) for all S ∈ H. Lemma 2.8 can also be
seen as a corollary of this result.

2.2.1 The relaxed solution

On top of returning the lower bound d̄, Alg. 2 can also returned a relaxed solution R such that d̄ = d(R).
This solution can be used profitably to speed up the search by replacing the test τ(Y) = 1 at Line 1 in
Alg. 1 with τ(R) = 1. All the results in Sect. 2.1 hold anyhow: if R is a tour (i.e. τ(R) = 1) at a node
α of G then there must be a node β in the subgraph Gα of G rooted at α with Yβ = R by Lemma 2.5.
Thus, the effect of this test replacement is simply that of finding circuits earlier on in the search.

2.3 Feasible nodes

If it can be established that a node α ∈ V, independently of its associated lower bound, is such that
Yα cannot be extended to a tour without using the arcs in Nα, then by Lemma 2.2 it is clear that the
subgraph Gα of G rooted at α cannot contain any tour, and therefore α can be discarded. Such nodes

2 BRANCH-AND-BOUND 8

are said to be pruned by infeasibility. By constrast, all other nodes in G are called feasible nodes. With
reference to the TSP, the main feasibility test is encoded in the definition of φ and implemented at Line
6 of Alg. 1.

2.4 A good order for processing nodes

It is well known that a recursive procedure such as Alg. 1 explores generates a depth-first order on the
exploration of the nodes of G. On the other hand, intuitively the node order has an impact on the size
of G (and hence on the CPU time taken by Branch-and-Bound): if we were able to identify the optimal
circuit S∗ immediately, then a lot more nodes would be pruned by bound, as a lower value for d(S∗)
would make the inequality d̄ ≥ d(S∗) true for comparatively mode nodes α with lower bound equal to d̄.

The most commonly employed strategy for locating rooted subgraphs of G likely to contain good TSP
optima is that of processing nodes with lowest lower bound first. Specifically, if d̄ is the lower bound
computed by Alg. 2 at the current node α, the subnodes of α are stored along with d̄ in a priority queue
Q ordered according to values of d̄.

2.5 The Branch-and-Bound algorithm for the TSP

Algorithm 3 branchAndBound(n, d)

Require: set Q of nodes (Y,N, S, c′) ordered by increasing c′ ∈ R

Let Q = {(∅,∅,∅,−∞)}
while Q 6= ∅ do

Let α = (Y,N, S, c′) = argminc′Q; let Q = Qr {α}
if φ(α) = 1 then

Let R = lowerBound(α)
if d(R) < d(S) then
if τ(R) = 0 then

if Y ∪N 6= A then

choose a ∈ Ar (Y ∪N)
Let β = (Y ∪ {a}, N, S, d(R)); let γ = (Y,N ∪ {a}, S, d(R))
Let Q = Q ∪ {β, γ}

end if

else

Let S = R

end if

end if

end if

end while

return S

