
Branch-and-Bound

Leo Liberti

LIX, École Polytechnique, France

INF431 2011, Lecture – p. 1

Reminders

INF431 2011, Lecture – p. 2

Problems
Decision problem: a question admitting a YES/NO answer
Example

HAMILTONIAN CYCLE. Given an undirected graph G = (V,E), does it

have a simple spanning cycle?

1

2

3

4

YES instance

1
2

5

3
4

NO instance

Spanning subgraph: a subgraph

whose vertex set is V

Cycle: even degree subgraph

Simple cycle: connected with all

vertices having degree 2

Optimization problem: finding a mathematical structure of optimum cost
Example

TRAVELLING SALESMAN PROBLEM (TSP). Given a set V and a positive

square matrix (dij) (where i, j ∈ V) find a tour (=order on V) of

minimum total cost

INF431 2011, Lecture – p. 3

Solutions

The mathematical structures sought in
decision/optimization problems are also called solutions

or certificates

Solutions can be feasible if they satisfy the constraints
given in the problem statement or infeasible otherwise

Feasible solutions of optimization problems can be
optimal if their cost is best amongst all solutions, or
locally optimal if their cost is best in a neighbourhood

INF431 2011, Lecture – p. 4

Two faces of the same coin

Reduction optimization→decision: if we know how to find
an optimal solution, then we trivially know how to
answer the question “does the problem have a feasible
solution?”

Reduction decision→optimization: restate “find minimum
cost solution” by “is there a solution with cost at most
K?”, then run a bisection search on a sequence of
decision problems with different values of K

INF431 2011, Lecture – p. 5

Easy & hard problems

Characterization of easy and hard problems
championed by Jack Edmonds

A problem is considered easy if there exists an algorithm
which solves it in worst-case polynomial time in function
of the instance length

A problem is considered difficult if it is NP-hard

Problem A is NP-hard if there is another NP-hard
problem B whose solutions can be used to obtain
solutions of A in polynomial time

instance(A)

solution(A) solution(B)

instance(B)

algorithm(B)

polytime

polytime oracle for solving B

N.B.: “difficult = ¬easy” is an open question (⇒P6=NP)

INF431 2011, Lecture – p. 6

Solution space

A difficult problem must have more than polynomially
many solutions
otherwise complete enumeration would be a polyomial-time algorithm

Typically, it has exponentially or factorially many
solutions
Example

The number of solutions of a TSP instance on the
set V = {1, . . . , n} is (n − 1)!: fix 1 as the first tour
element, then there are n−1 choices for the second,
n− 2 for the third, and so on

Under the hypothesis that difficult = ¬easy, we cannot do
much better than complete enumeration in the worst
case

Look for practically efficient methods

INF431 2011, Lecture – p. 7

The branch. . .

INF431 2011, Lecture – p. 8

The TSP again

Consider the following graph-based TSP formulation

Given a complete digraphG = (V,A) with arc weight func-

tion d : A → R+, find a tour of minimum cost

In this formulation, a tour is a set of arcs which defines
a strongly connected spanning subgraph H of G where
each vertex has indegree=outdegree=1

Spanning ⇒ V (H) = V

indegree=outdegree=1 ⇒ |A(H)| = |V | = n

Hence, we can consider every set of arcs to be a
solution; feasible solutions correspond to tours

INF431 2011, Lecture – p. 9

Growing a good arc set

For a set S of arcs, let d(S) =
∑

(i,j)∈S

dij with d(∅) = ∞

Let isTour(S) be TRUE if S is a tour

Disjunction: For a ∈ A, either a ∈ S or a 6∈ S

Exhaustive exploration: for a given arc a, either use it or not,
then recurse the search

Let Y,N, S ⊆ A: Y =candidate solution, N =forbidden
arcs, S =best tour so far (incumbent)

1. if isTour(Y) and d(Y) < d(S), replace S with Y

2. if Y is not a tour, choose an arc a not in Y ∪N

3. recurse with Y replaced by Y ∪{a} and then with
N replaced by N ∪ {a}

INF431 2011, Lecture – p. 10

Tree-based enumeration algorithm

treeSearch(Y,N, S):

if isTour(Y) then

if d(Y) < d(S) then

S = Y

end if

else

if Y ∪N 6= A ∧ Y ∩N = ∅ then

choose a ∈ Ar (Y ∪N)

treeSearch(Y ∪ {a}, N, S)

treeSearch(Y,N ∪ {a}, S)

end if

end if

INF431 2011, Lecture – p. 11

Instance with |V | = 4

the whole tree

zooming on the left

zooming on the right

INF431 2011, Lecture – p. 12

. . . and the bound

INF431 2011, Lecture – p. 13

Improving the “branch” idea

What if we could determine that a branch growing from
a given node α does not lead to any improving tour?

For example, suppose we can determine that a given

branch will lead to tours whose cost is at best d̄

Suppose also that our incumbent has cost d(S) < d̄

Then we can immediately determine that the branch
should be discarded

α is said to be pruned by bound

INF431 2011, Lecture – p. 14

Relaxations
How can we compute the bound to the cost in the optimization

direction (lower if minimum, upper if maximum)?

Consider the case of linear programming (optimizing along a linear

direction on a polyhedron):

o
p
t.
 d

ir
ec

ti
o
n

o
p
t.
 d

ir
ec

ti
o
n

o
p
t.
 d

ir
ec

ti
o
n

o
p
t.
 d

ir
ec

ti
o
n

o
p
t.
 d

ir
ec

ti
o
n

o
p
t.
 d

ir
ec

ti
o
n

As the number of constraints increases, the optimum gets worse

In general, if C ⊇ D are two sets whose elements are weighted,

minC ≤ minD and maxC ≥ maxD

If the problem requires optimizing over D, then optimizing over C

gives a guaranteed bound for the problem on D

Optimization on C is a relaxation of the optimization on D

A relaxation is useful only if optimizing on C is easier than on D

INF431 2011, Lecture – p. 15

A bound for the TSP
T = set of all tours on V O = set of all orders on V

S = set of all permutations of V M = set of all maps V → V

We have T = O (S (M, so M is a relaxation of T

Finding the minimum cost map f : V → V is easy:

∀v ∈ V f(v) = argmin{dvw | w ∈ δ+(v)}, (∗)

(where δ+(v) = {w ∈ V | (u, v) ∈ A} is the outstar of v)

Consider the TSP instance:

1 2 3 4

1 ∞ 1.2 0.6 2
2 1.2 ∞ 3 1.1
3 0.6 3 ∞ 0.9
4 2 1.1 0.9 ∞

The map 1 → 3, 2 → 4, 3 → 1, 4 → 3 has minimum cost

0.6+1.1+0.6+0.9= 3.2

No tour can ever have lower cost
INF431 2011, Lecture – p. 16

Adapting the bound to a node

A node α in the search tree is a quadruplet (Y,N, S, c′) where

Y,N, S ⊂ A and c′ ∈ R (discussed later)

Every tour in the subtree rooted at α contains the arcs in Y and does

not contain the arcs in N

⇒ we need a bound on tours extending Y and not containing N

Again use maps V → V as target relaxations

Consider mapping u → v for all (u, v) ∈ Y

and not mapping w → z for all (w, z) ∈ N

We update (∗) as follows

∀u ∈ V f(u) =







v if (u, v) ∈ Y

argmin{dvw | w ∈ δ+(v)rN} otherwise
(∗∗)

Define lowerBound(α) to return the set of arcs defined by f

INF431 2011, Lecture – p. 17

Implicit exhaustive exploration

BB generates exploration trees (also called BB trees)

These trees are not explicitly exhaustive (as for
treeSearch) because some nodes are pruned by bound

Since pruning by bound is guaranteed not to lose any
optimal solution, the search is said to be “implicitly
exhaustive”

To reduce CPU time, aim to reduce the tree size by
adjusting some parameters

INF431 2011, Lecture – p. 18

Choosing the next node

treeSearch works using a depth-first exploration

This imposes a depth-first order to the BB tree nodes

Is this the best possible order as regards tree size?

Intuitively, we wish to find the best tour S∗ as early as
possible in the search:

since d(S∗) is small, the chance that other nodes have

lower bounds d̄ with d̄ ≥ d(S∗) increases

more nodes could be pruned by bound

Choose order which maximizes chances to find S∗

early:

Process node with lowest lower bound

INF431 2011, Lecture – p. 19

Infeasible nodes

Suppose that, at node α, Y contains the arcs (1, 2), (2, 1)
and that n > 2

Since (1, 2), (2, 1) is already a tour (of length 2),

no extension of (1, 2), (2, 1) can ever be Hamiltonian

No need to explore the subtree rooted at α: the node is
infeasible and can be pruned

In general, if Y contains a tour shorter than n, it can be
pruned (pruned by infeasibility)

Also, in (∗∗) it might happen that, given u, (u, v) ∈ N for
each v, so f(u) = ∅ ⇒ node is infeasible

Nodes are also infeasible if Y ∩N 6= ∅

Let isFeasible(α) return TRUE iff α is a feasible node

INF431 2011, Lecture – p. 20

The algorithm

Require: set Q of nodes (Y,N, S, c′) ordered by increasing c′ ∈ R

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q; let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L)); let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

return S

INF431 2011, Lecture – p. 21

In action on the root node

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

root node

Y = N = S = ∅
isFeasible(α) = TRUE
because ∅ can be extended
to a tour

INF431 2011, Lecture – p. 22

In action on the root node

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

root node

Instance:

1 2 3 4

1 ∞ 1.2 0.6 2
2 1.2 ∞ 3 1.1
3 0.6 3 ∞ 0.9
4 2 1.1 0.9 ∞

L = {(1, 3), (2, 4), (3, 1), (4, 3)}
by greedy choice of cheap-
est next vertex

INF431 2011, Lecture – p. 23

In action on the root node

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

root node

L = {(1, 3), (2, 4), (3, 1), (4, 3)}
d(L) = 3.2 < ∞ = d(∅)

INF431 2011, Lecture – p. 24

In action on the root node

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

root node

L = {(1, 3), (2, 4), (3, 1), (4, 3)}
is evidently not a tour

INF431 2011, Lecture – p. 25

In action on the root node

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

root node

Y = N = ∅ ⇒ Y ∪N 6= A

INF431 2011, Lecture – p. 26

In action on the root node

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

root node

for example, take a as the
cheapest arc in A r ∅ = A,
i.e. a = (1, 3)

INF431 2011, Lecture – p. 27

In action on the root node

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

root node

create a new node with
Y = {(1, 3)}, N = ∅, S = ∅,
d(L) = 3.2

INF431 2011, Lecture – p. 28

In action on the root node

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

root node

create a new node with
Y = ∅, N = {(1, 3)}, S = ∅,
d(L) = 3.2

INF431 2011, Lecture – p. 29

In action on the root node

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

root node

add these new nodes to the
queue Q

INF431 2011, Lecture – p. 30

The BB tree

root node

[(1,3), t rue]

LB=3.2

[(1,3), false]

LB=3.8

incumbent

[(3,4) , t rue]

LB=3.6

[(3,4), false]

LB=3.2

[(4,2), t rue]

LB=5.6

pruned by bound

[(4,2), false]

LB=5.4

pruned by bound

[(2,4), t rue]

LB=3.2

[(2,4), false]

LB=3.3

[(3,1), t rue]

LB=3.2

infeasible

[(3,1), false]

LB=5.6

pruned by bound

[(2,1), t rue]

LB=5.7

pruned by bound

[(2,1), false]

LB=7.5

pruned by bound

INF431 2011, Lecture – p. 31

In action on the incumbent

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

“incumbent” node

the queue Q is not empty

INF431 2011, Lecture – p. 32

In action on the incumbent

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

“incumbent” node

Q = {({(1, 3)},∅,∅, 3.2),
(∅, {(1, 3)},∅, 3.2)}
since both nodes have associated

bound c′ = 3.2, both can be cho-

sen

for example, choose the
node α = (∅, {(1, 3)},∅, 3.2)

INF431 2011, Lecture – p. 33

In action on the incumbent

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

“incumbent” node

Q = {({(1, 3)},∅,∅, 3.2)}

INF431 2011, Lecture – p. 34

In action on the incumbent

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

“incumbent” node

Since Y = ∅, there are no
circuits of length < 4
the node is feasible

INF431 2011, Lecture – p. 35

In action on the incumbent

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

“incumbent” node

(N = {(1, 3)})
The greedy choice

{(1, 3), (2, 4), (3, 1), (4, 3)}
does not work because (1, 3) ∈ N

1 2 3 4

1 ∞ 1.2 0.6 2
2 1.2 ∞ 3 1.1
3 0.6 3 ∞ 0.9
4 2 1.1 0.9 ∞

“next best” choice is to replace

(1, 3) with (1, 2), obtaining

L = {(1, 2), (2, 4), (3, 1), (4, 3)}

with cost d(L) = 3.8

INF431 2011, Lecture – p. 36

In action on the incumbent

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

“incumbent” node

(S = ∅)
3.8 = d(L) < ∞ = d(∅)

INF431 2011, Lecture – p. 37

In action on the incumbent

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

“incumbent” node

L yields a function
1 → 2, 2 → 4, 4 → 3, 3 → 1
which is a Hamiltonian tour

INF431 2011, Lecture – p. 38

In action on the incumbent

Let Q = {(∅,∅,∅,−∞)}

while Q 6= ∅ do

Let α = (Y,N, S, c′) = argmin
c
′Q

Let Q = Q r {α}

if isFeasible(α) then

Let L = lowerBound(α)

if d(L) < d(S) then

if ¬ isTour(L) then

if Y ∪N 6= A then

choose a ∈ A r (Y ∪N)

Let β = (Y ∪ {a}, N, S, d(L))

Let γ = (Y,N ∪ {a}, S, d(L))

Let Q = Q ∪ {β, γ}

end if

else

Let S = L

end if

end if

end if

end while

“incumbent” node

we update S with
L = {(1, 2), (2, 4), (3, 1), (4, 3)}
and d(S) = 3.8

INF431 2011, Lecture – p. 39

The BB tree again

root node

[(1,3), t rue]

LB=3.2

[(1,3), false]

LB=3.8

incumbent

[(3,4) , t rue]

LB=3.6

[(3,4), false]

LB=3.2

[(4,2), t rue]

LB=5.6

pruned by bound

[(4,2), false]

LB=5.4

pruned by bound

[(2,4), t rue]

LB=3.2

[(2,4), false]

LB=3.3

[(3,1), t rue]

LB=3.2

infeasible

[(3,1), false]

LB=5.6

pruned by bound

[(2,1), t rue]

LB=5.7

pruned by bound

[(2,1), false]

LB=7.5

pruned by bound

INF431 2011, Lecture – p. 40

It works

Thm.

The Branch-and-Bound algorithm finds a tour of minimum cost

Proof

(Sketch)

(termination) Once Y,N and the node set order have been given, there are

unique possible values for S, c′. Since Y,N ⊂ A, the number of nodes

is finite. Notice no node is ever considered more than once: hence the

algorithm terminates.

(optimality) Suppose, to get a contradiction, that the algorithm returns a tour

S but that the optimum S∗ has d(S∗) < d(S). Then there exist BB tree

nodes with Y ⊂ S∗ and N ⊂ A r S∗ which are feasible (for otherwise

S∗ would not be Hamiltonian), and such that d(Y) < d(S) (because Y ⊆

S∗ ⇒ d(Y) ≤ d(S∗) < d(S)). In particular, there will be a branch leading

to a node with L = S∗: since d(L) = d(S∗) < d(S), the algorithm will set

S = L = S∗, against the assumption.

INF431 2011, Lecture – p. 41

In general

A general Branch-and-Bound algorithm rests on the
following fundamental primitives:

a (not necessarily binary) disjunction over which
to branch, such that a recursive search over the
disjunction lists all possible solutions

the ability to compute a bound value (in the opti-
mization direction) which improves as the num-
ber of constraints imposed on the solution in-
creases

Speed-up heuristics include:

a good strategy for choosing the next node to
process

computation of a good incumbent

good choice of branching disjunction

INF431 2011, Lecture – p. 42

Application to Mixed-Integer Linear
Programming

INF431 2011, Lecture – p. 43

MILP formulation

A MILP is like a Linear Program (LP) where some of the
variables are constrained to be integer

Formulation: given known vectors c ∈ Rn, b ∈ Rm, a
known matrix A ∈ Rnm, a known set Z ⊆ {1, . . . , n} and
a vector x ∈ Rn of decision variables,

min cTx

Ax ≤ b

∀i ∈ Z xi ∈ Z

This expresses the minimum value of the objective function

cTx subject to the linear constraints Ax ≤ b and the integrality

constraints ∀i ∈ Z (xi ∈ Z)

If Z = ∅, get LP — can solve it by the simplex method
or by some interior point method

INF431 2011, Lecture – p. 44

MILP BB
Solution: assignment of values x̄ to decision variables x

Feasible solution: x̄ satisfies all constraints

Relaxation: all solutions x̄ satisfying linear but not
necessarily integrality constraints (solve using simplex)

Lower bound: minimum objective value of the relaxed LP

Branching: pick a variable xi with i ∈ Z s.t. x̄ 6∈ Z:

x ≤ ⌊x̄⌋ ∨ x ≥ ⌈x̄⌉

is a valid disjunction

Applications: too many to mention! (scheduling, energy
production, network design, vehicle routing, logistics, stock

management, combinatorial optimization problems. . .)

Implementations: IBM-ILOG CPLEX (commercial), FICO XPress

(commercial), CBC (open source), GLPK (open source)
INF431 2011, Lecture – p. 45

MILP example

max 3x1 + 4x2

2x1 + x2 ≤ 6 (1)

2x1 + 3x2 ≤ 9 (2)

x1, x2 ≥ 0

x1, x2 ∈ Z

INF431 2011, Lecture – p. 46

MILP BB Tree

(1) (2)

12.75

(1) (2)
(3)

11.5: pruned

(1) (2)

(3)

12.5

(1) (2)

(3)

(4)

12.33 . . .

(1) (2)

(3)

(4)

infeasible

(1) (2)

(3)

(4)

x = (1, 2), 11: inc.

(1) (2)

(4)

(3)

x = (0, 3), 12: opt.

x2 ≤ 1 x2 ≥ 2

x1 ≤ 1 x1 ≥ 2

x2 ≤ 2 x2 ≥ 3

INF431 2011, Lecture – p. 47

Historical notes

INF431 2011, Lecture – p. 48

First reference to BB: 1960

INF431 2011, Lecture – p. 49

First reference to TSP: 1759

INF431 2011, Lecture – p. 50

First reference to BB for TSP: 1963

INF431 2011, Lecture – p. 51

The end

INF431 2011, Lecture – p. 52

