Branch-and-Bound

Leo Liberti
LIX, École Polytechnique, France

Reminders

Problems

- Decision problem: a question admitting a YES/NO answer

Example
Hamiltonian Cycle. Given an undirected graph $G=(V, E)$, does it have a simple spanning cycle?

YES instance

Spanning subgraph: a subgraph whose vertex set is V Cycle: even degree subgraph Simple cycle: connected with all vertices having degree 2

- Optimization problem: finding a mathematical structure of optimum cost Example
Travelling Salesman Problem (TSP). Given a set V and a positive square matrix $\left(d_{i j}\right)$ (where $i, j \in V$) find a tour (=order on V) of minimum total cost

Solutions

- The mathematical structures sought in decision/optimization problems are also called solutions or certificates
- Solutions can be feasible if they satisfy the constraints given in the problem statement or infeasible otherwise
- Feasible solutions of optimization problems can be optimal if their cost is best amongst all solutions, or locally optimal if their cost is best in a neighbourhood

Two faces of the same coin

- Reduction optimization \rightarrow decision: if we know how to find an optimal solution, then we trivially know how to answer the question "does the problem have a feasible solution?"
- Reduction decision \rightarrow optimization: restate "find minimum cost solution" by "is there a solution with cost at most K ?", then run a bisection search on a sequence of decision problems with different values of K

Easy \& hard problems

- Characterization of easy and hard problems championed by Jack Edmonds
- A problem is considered easy if there exists an algorithm which solves it in worst-case polynomial time in function of the instance length
- A problem is considered difficult if it is NP-hard

Problem A is NP-hard if there is another NP-hard problem B whose solutions can be used to obtain solutions of A in polynomial time

- N.B.: "difficult $=\neg$ easy" is an open question $(\Rightarrow \mathbf{P} \neq \mathbf{N P})$

Solution space

- A difficult problem must have more than polynomially many solutions
otherwise complete enumeration would be a polyomial-time algorithm
- Typically, it has exponentially or factorially many solutions
Example
The number of solutions of a TSP instance on the set $V=\{1, \ldots, n\}$ is $(n-1)!$: fix 1 as the first tour element, then there are $n-1$ choices for the second, $n-2$ for the third, and so on
- Under the hypothesis that difficult $=\neg$ easy, we cannot do much better than complete enumeration in the worst case
- Look for practically efficient methods

The branch...

The TSP again

- Consider the following graph-based TSP formulation Given a complete digraph $G=(V, A)$ with arc weight function $d: A \rightarrow \mathbb{R}_{+}$, find a tour of minimum cost
- In this formulation, a tour is a set of arcs which defines a strongly connected spanning subgraph H of G where each vertex has indegree=outdegree=1
- Spanning $\Rightarrow V(H)=V$
- indegree=outdegree $=1 \Rightarrow|A(H)|=|V|=n$
- Hence, we can consider every set of arcs to be a solution; feasible solutions correspond to tours

Growing a good arc set

- For a set S of arcs, let $d(S)=\sum_{(i, j) \in S} d_{i j}$ with $d(\varnothing)=\infty$
- Let isTour (S) be TRUE if S is a tour
- Disjunction: For $a \in A$, either $a \in S$ or $a \notin S$
- Exhaustive exploration: for a given arc a, either use it or not, then recurse the search
- Let $Y, N, S \subseteq A$: $Y=$ candidate solution, $N=$ forbidden arcs, $S=$ best tour so far (incumbent)

1. if isTour (Y) and $d(Y)<d(S)$, replace S with Y
2. if Y is not a tour, choose an $\operatorname{arc} a$ not in $Y \cup N$
3. recurse with Y replaced by $Y \cup\{a\}$ and then with N replaced by $N \cup\{a\}$

Tree-based enumeration algorithm

```
treeSearch(Y,N,S):
if isTour(Y) then
    if }d(Y)<d(S)\mathrm{ then
        S=Y
    end if
else
    if }Y\cupN\not=A\wedgeY\capN=\varnothing\mathrm{ then
        choose }a\inA\(Y\cupN
        treeSearch( }Y\cup{a},N,S
        treeSearch(Y,N\cup{a},S)
    end if
end if
```


Instance with $|V|=4$

the whole tree

zooming on the left

zooming on the right
... and the bound

Improving the "branch" idea

- What if we could determine that a branch growing from a given node α does not lead to any improving tour?
- For example, suppose we can determine that a given branch will lead to tours whose cost is at best \bar{d}
- Suppose also that our incumbent has cost $d(S)<\bar{d}$
- Then we can immediately determine that the branch should be discarded
α is said to be pruned by bound

Relaxations

- How can we compute the bound to the cost in the optimization direction (lower if minimum, upper if maximum)?
- Consider the case of linear programming (optimizing along a linear direction on a polyhedron):

As the number of constraints increases, the optimum gets worse

- In general, if $C \supseteq D$ are two sets whose elements are weighted, $\min C \leq \min D$ and $\max C \geq \max D$
- If the problem requires optimizing over D, then optimizing over C gives a guaranteed bound for the problem on D
- Optimization on C is a relaxation of the optimization on D A relaxation is useful only if optimizing on C is easier than on D

A bound for the TSP

$\mathcal{T}=$ set of all tours on V	$\mathcal{O}=$ set of all orders on V
$\mathcal{S}=$ set of all permutations of V	$\mathcal{M}=$ set of all maps $V \rightarrow V$

- We have $\mathcal{T}=\mathcal{O} \subsetneq \mathcal{S} \subsetneq \mathcal{M}$, so \mathcal{M} is a relaxation of \mathcal{T}
- Finding the minimum cost map $f: V \rightarrow V$ is easy:

$$
\begin{equation*}
\forall v \in V \quad f(v)=\operatorname{argmin}\left\{d_{v w} \mid w \in \delta^{+}(v)\right\} \tag{*}
\end{equation*}
$$

(where $\delta^{+}(v)=\{w \in V \mid(u, v) \in A\}$ is the outstar of v)

- Consider the TSP instance:

	1	2	3	4
1	∞	1.2	0.6	2
2	1.2	∞	3	1.1
3	0.6	3	∞	0.9
4	2	1.1	0.9	∞

- The map $1 \rightarrow 3,2 \rightarrow 4,3 \rightarrow 1,4 \rightarrow 3$ has minimum cost $0.6+1.1+0.6+0.9=3.2$

No tour can ever have lower cost

Adapting the bound to a node

- A node α in the search tree is a quadruplet $\left(Y, N, S, c^{\prime}\right)$ where $Y, N, S \subset A$ and $c^{\prime} \in \mathbb{R}$ (discussed later)
- Every tour in the subtree rooted at α contains the arcs in Y and does not contain the arcs in N
- \Rightarrow we need a bound on tours extending Y and not containing N
- Again use maps $V \rightarrow V$ as target relaxations

Consider mapping $u \rightarrow v$ for all $(u, v) \in Y$ and not mapping $w \rightarrow z$ for all $(w, z) \in N$

- We update (*) as follows

$$
\forall u \in V \quad f(u)= \begin{cases}v & \text { if }(u, v) \in Y \quad(* *) \\ \operatorname{argmin}\left\{d_{v w} \mid w \in \delta^{+}(v) \backslash N\right\} & \text { otherwise }\end{cases}
$$

- Define lowerBound (α) to return the set of arcs defined by f

Implicit exhaustive exploration

- BB generates exploration trees (also called BB trees)
- These trees are not explicitly exhaustive (as for treeSearch) because some nodes are pruned by bound
- Since pruning by bound is guaranteed not to lose any optimal solution, the search is said to be "implicitly exhaustive"
- To reduce CPU time, aim to reduce the tree size by adjusting some parameters

Choosing the next node

- treeSearch works using a depth-first exploration
- This imposes a depth-first order to the BB tree nodes
- Is this the best possible order as regards tree size?
- Intuitively, we wish to find the best tour S^{*} as early as possible in the search:
e since $d\left(S^{*}\right)$ is small, the chance that other nodes have lower bounds \bar{d} with $\bar{d} \geq d\left(S^{*}\right)$ increases
- more nodes could be pruned by bound
- Choose order which maximizes chances to find S^{*} early:

Process node with lowest lower bound

Infeasible nodes

- Suppose that, at node α, Y contains the arcs $(1,2),(2,1)$ and that $n>2$
- Since $(1,2),(2,1)$ is already a tour (of length 2), no extension of $(1,2),(2,1)$ can ever be Hamiltonian
- No need to explore the subtree rooted at α : the node is infeasible and can be pruned
- In general, if Y contains a tour shorter than n, it can be pruned (pruned by infeasibility)
- Also, in ($* *$) it might happen that, given $u,(u, v) \in N$ for each v, so $f(u)=\varnothing \Rightarrow$ node is infeasible
- Nodes are also infeasible if $Y \cap N \neq \varnothing$
- Let isFeasible (α) return TRUE iff α is a feasible node

The algorithm

Require: set Q of nodes $\left(Y, N, S, c^{\prime}\right)$ ordered by increasing $c^{\prime} \in \mathbb{R}$
Let $Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}$
while $Q \neq \varnothing$ do
Let $\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q$; let $Q=Q \backslash\{\alpha\}$
if isFeasible (α) then
Let $L=$ lowerBound (α)
if $d(L)<d(S)$ then
if \neg isTour (L) then
if $Y \cup N \neq A$ then
choose $a \in A \backslash(Y \cup N)$
Let $\beta=(Y \cup\{a\}, N, S, d(L))$; let $\gamma=(Y, N \cup\{a\}, S, d(L))$
Let $Q=Q \cup\{\beta, \gamma\}$
end if
else
Let $S=L$
end if
end if
end if
end while
return S

In action on the root node

Let $Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}$
while $Q \neq \varnothing$ do
Let $\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q$
Let $Q=Q \backslash\{\alpha\}$
if isFeasible (α) then

$$
\text { Let } L=\text { lowerBound }(\alpha)
$$

$$
\text { if } d(L)<d(S) \text { then }
$$

if \neg isTour (L) then
if $Y \cup N \neq A$ then choose $a \in A \backslash(Y \cup N)$ Let $\beta=(Y \cup\{a\}, N, S, d(L))$ Let $\gamma=(Y, N \cup\{a\}, S, d(L))$ Let $Q=Q \cup\{\beta, \gamma\}$
end if
else
Let $S=L$
end if
end if
end if
end while

root node

$Y=N=S=\varnothing$
isFeasible $(\alpha)=$ TRUE
because \varnothing can be extended to a tour

In action on the root node

Let $Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}$
while $Q \neq \varnothing$ do
while $Q \neq \varnothing$ do
Let $\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q$
Let $Q=Q \backslash\{\alpha\}$
if isFeasible (α) then $\frac{\text { Let } L=\text { lowerBound }(\alpha)}{\text { if } d(L)<d(S) \text { then }}$
if \neg isTour (L) then
if $Y \cup N \neq A$ then choose $a \in A \backslash(Y \cup N)$ Let $\beta=(Y \cup\{a\}, N, S, d(L))$
Let $\gamma=(Y, N \cup\{a\}, S, d(L))$
Let $Q=Q \cup\{\beta, \gamma\}$
end if
else
Let $S=L$
end if
end if
end if
end while
root node
Instance:

	1	2	3	4
1	∞	1.2	0.6	2
2	1.2	∞	3	1.1
3	0.6	3	∞	0.9
4	2	1.1	0.9	∞

$L=\{(1,3),(2,4),(3,1),(4,3)\}$
by greedy choice of cheap-
est next vertex

In action on the root node

Let $Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}$
while $Q \neq \varnothing$ do
Let $\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q$
Let $Q=Q \backslash\{\alpha\}$
if isFeasible (α) then
Let $L=$ lowerBound (α)
if $d(L)<d(S)$ then
if \neg isTour (L) then
if $Y \cup N \neq A$ then
choose $a \in A \backslash(Y \cup N)$
Let $\beta=(Y \cup\{a\}, N, S, d(L))$
Let $\gamma=(Y, N \cup\{a\}, S, d(L))$
Let $Q=Q \cup\{\beta, \gamma\}$
end if
else
Let $S=L$
end if
end if
end if
end while
root node
$L=\{(1,3),(2,4),(3,1),(4,3)\}$
$d(L)=3.2<\infty=d(\varnothing)$

In action on the root node

```
Let \(Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}\)
while \(Q \neq \varnothing\) do
    Let \(\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q\)
    Let \(Q=Q \backslash\{\alpha\}\)
    if isFeasible \((\alpha)\) then
        Let \(L=\) lowerBound \((\alpha)\)
        if \(d(L)<d(S)\) then
            if \(\frac{\neg \text { isTour }(L)}{\text { if } Y \cup N \neq A}\) then
                choose \(a \in A \backslash(Y \cup N)\)
                        Let \(\beta=(Y \cup\{a\}, N, S, d(L))\)
                        Let \(\gamma=(Y, N \cup\{a\}, S, d(L))\)
                    Let \(Q=Q \cup\{\beta, \gamma\}\)
            end if
            else
                Let \(S=L\)
            end if
        end if
        end if
end while
```


root node

$L=\{(1,3),(2,4),(3,1),(4,3)\}$
is evidently not a tour

In action on the root node

Let $Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}$
while $Q \neq \varnothing$ do
Let $\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q$
Let $Q=Q \backslash\{\alpha\}$
if isFeasible (α) then
Let $L=$ lowerBound (α)
if $d(L)<d(S)$ then
if \neg istour (L) then
if $\underline{Y \cup N \neq A}$ then
choose $a \in A \backslash(Y \cup N)$
Let $\beta=(Y \cup\{a\}, N, S, d(L)) \quad Y=N=\varnothing \Rightarrow Y \cup N \neq A$
Let $\gamma=(Y, N \cup\{a\}, S, d(L))$
Let $Q=Q \cup\{\beta, \gamma\}$
end if
else
Let $S=L$
end if
end if
end if
end while

In action on the root node

```
Let \(Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}\)
while \(Q \neq \varnothing\) do
    Let \(\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q\)
    Let \(Q=Q \backslash\{\alpha\}\)
    if isFeasible \((\alpha)\) then
        Let \(L=\) lowerBound \((\alpha)\)
        if \(d(L)<d(S)\) then
            if \(\neg\) isTour \((L)\) then
                if \(Y \cup N \neq A\) then
                \(\frac{\text { choose } a \in A \backslash(Y \cup N)}{\text { Let } \beta=(Y \cup\{a\}, N, S, d(L))}\)
                Let \(\gamma=(Y, N \cup\{a\}, S, d(L))\)
                    Let \(Q=Q \cup\{\beta, \gamma\}\)
            end if
            else
                Let \(S=L\)
            end if
        end if
        end if
end while
```

root node
for example, take a as the cheapest arc in $A \backslash \varnothing=A$,
i.e. $a=(1,3)$

In action on the root node

Let $Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}$
while $Q \neq \varnothing$ do
Let $\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q$
Let $Q=Q \backslash\{\alpha\}$
if isFeasible (α) then
Let $L=$ lowerBound (α)
if $d(L)<d(S)$ then
if \neg isTour (L) then
if $Y \cup N \neq A$ then choose $a \in A \backslash(Y \cup N)$ $\frac{\text { Let } \beta=(Y \cup\{a\}, N, S, d(L))}{\text { Let } \gamma=(Y, N \cup\{a\}, S, d(L))}$
root node
create a new node with
$Y=\{(1,3)\}, N=\varnothing, S=\varnothing$
$d(L)=3.2$
end if
else
Let $S=L$
end if
end if
end if
end while

In action on the root node

Let $Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}$
while $Q \neq \varnothing$ do
Let $\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q$
Let $Q=Q \backslash\{\alpha\}$
if isFeasible (α) then
Let $L=$ lowerBound (α)
if $d(L)<d(S)$ then
if \neg isTour (L) then
if $Y \cup N \neq A$ then choose $a \in A \backslash(Y \cup N)$
Let $\beta=(Y \cup\{a\}, N, S, d(L))$
$\frac{\text { Let } \gamma=(Y, N \cup\{a\}, S, d(L))}{\text { Let } Q=Q \cup\{\beta, \gamma\}}$
end if
else
Let $S=L$
end if
end if
end if
end while

root node

create a new node with
$Y=\varnothing, N=\{(1,3)\}, S=\varnothing$,
$d(L)=3.2$

In action on the root node

Let $Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}$
while $Q \neq \varnothing$ do
Let $\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q$
Let $Q=Q \backslash\{\alpha\}$
if isFeasible (α) then
Let $L=$ lowerBound (α)
if $d(L)<d(S)$ then
if \neg isTour (L) then
if $Y \cup N \neq A$ then choose $a \in A \backslash(Y \cup N)$ Let $\beta=(Y \cup\{a\}, N, S, d(L))$
Let $\gamma=(Y, N \cup\{a\}, S, d(L))$
Let $Q=Q \cup\{\beta, \gamma\}$
end if
else
Let $S=L$
end if
end if
end if
end while

root node

add these new nodes to the queue Q

The BB tree

In action on the incumbent

```
Let \(Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}\)
while \(Q \neq \varnothing\) do
    Let \(\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q\)
    Let \(Q=Q \backslash\{\alpha\}\)
    if isFeasible \((\alpha)\) then
        Let \(L=\) lowerBound \((\alpha)\)
        if \(d(L)<d(S)\) then
            if \(\neg\) istour \((L)\) then
            if \(Y \cup N \neq A\) then
                choose \(a \in A \backslash(Y \cup N)\)
                Let \(\beta=(Y \cup\{a\}, N, S, d(L))\)
                    Let \(\gamma=(Y, N \cup\{a\}, S, d(L))\)
                        Let \(Q=Q \cup\{\beta, \gamma\}\)
            end if
            else
                Let \(S=L\)
            end if
        end if
        end if
end while
```

"incumbent" node the queue Q is not empty

In action on the incumbent

```
Let \(Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}\)
while \(Q \neq \varnothing\) do
    \(\frac{\text { Let } \alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q}{\text { Let } Q=Q \backslash\{\alpha\}}\)
    if isFeasible \((\alpha)\) then
        Let \(L=\) lowerBound \((\alpha)\)
        if \(d(L)<d(S)\) then
            if \(\neg\) isTour \((L)\) then
                if \(Y \cup N \neq A\) then
                choose \(a \in A \backslash(Y \cup N)\)
                Let \(\beta=(Y \cup\{a\}, N, S, d(L)\)
                Let \(\gamma=(Y, N \cup\{a\}, S, d(L))\)
                Let \(Q=Q \cup\{\beta, \gamma\}\)
            end if
        else
            Let \(S=L\)
            end if
        end if
        end if
end while
```

"incumbent" node
$Q=\{(\{(1,3)\}, \varnothing, \varnothing, 3.2)$,
$(\varnothing,\{(1,3)\}, \varnothing, 3.2)\}$
since both nodes have associated bound $c^{\prime}=3.2$, both can be chosen
for example, choose the node $\alpha=(\varnothing,\{(1,3)\}, \varnothing, 3.2)$

In action on the incumbent

Let $Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}$
while $Q \neq \varnothing$ do
Let $\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q$
Let $Q=Q \backslash\{\alpha\}$
if isFeasible (α) then
Let $L=$ lowerBound (α) if $d(L)<d(S)$ then
if \neg isTour (L) then
if $Y \cup N \neq A$ then choose $a \in A \backslash(Y \cup N)$
"incumbent" node
Let $\beta=(Y \cup\{a\}, N, S, d(L))$
$Q=\{(\{(1,3)\}, \varnothing, \varnothing, 3.2)\}$
Let $\gamma=(Y, N \cup\{a\}, S, d(L))$
Let $Q=Q \cup\{\beta, \gamma\}$
end if
else
Let $S=L$
end if
end if
end if
end while

In action on the incumbent

```
Let \(Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}\)
while \(Q \neq \varnothing\) do
    Let \(\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q\)
    Let \(Q=Q \backslash\{\alpha\}\)
    if isFeasible \((\alpha)\) then
        Let \(L=\) lowerBound \((\alpha)\)
        if \(d(L)<d(S)\) then
            if \(\neg\) istour \((L)\) then
            if \(Y \cup N \neq A\) then
                choose \(a \in A \backslash(Y \cup N)\)
                Let \(\beta=(Y \cup\{a\}, N, S, d(L)\)
                Let \(\gamma=(Y, N \cup\{a\}, S, d(L))\)
                    Let \(Q=Q \cup\{\beta, \gamma\}\)
            end if
            else
                Let \(S=L\)
            end if
        end if
        end if
end while
```

"incumbent" node
Since $Y=\varnothing$, there are no circuits of length <4 the node is feasible

In action on the incumbent

Let $Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}$
while $Q \neq \varnothing$ do
Let $\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q$
Let $Q=Q \backslash\{\alpha\}$
if isFeasible (α) then
$\frac{\text { Let } L=\text { lowerBound }(\alpha)}{\text { if } d(L)<d(S) \text { then }}$
if \neg istour (L) then
if $Y \cup N \neq A$ then choose $a \in A \backslash(Y \cup N)$ Let $\beta=(Y \cup\{a\}, N, S, d(L))$ Let $\gamma=(Y, N \cup\{a\}, S, d(L))$ Let $Q=Q \cup\{\beta, \gamma\}$
end if
else
Let $S=L$
end if
end if
end if
end while
"incumbent" node
($N=\{(1,3)\}$)
The greedy choice
$\{(1,3),(2,4),(3,1),(4,3)\}$
does not work because $(1,3) \in N$

	1	2	3	4
1	∞	1.2	0.6	2
2	1.2	∞	3	1.1
3	0.6	3	∞	0.9
4	2	1.1	0.9	∞

"next best" choice is to replace $(1,3)$ with $(1,2)$, obtaining
$L=\{(1,2),(2,4),(3,1),(4,3)\}$
with cost $d(L)=3.8$

In action on the incumbent

```
Let \(Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}\)
while \(Q \neq \varnothing\) do
    Let \(\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q\)
    Let \(Q=Q \backslash\{\alpha\}\)
    if isFeasible \((\alpha)\) then
        Let \(L=\) lowerBound \((\alpha)\)
        if \(d(L)<d(S)\) then
            if \(\neg\) isTour \((L)\) then
            if \(Y \cup N \neq A\) then
                choose \(a \in A \backslash(Y \cup N)\)
            Let \(\beta=(Y \cup\{a\}, N, S, d(L))\)
            Let \(\gamma=(Y, N \cup\{a\}, S, d(L))\)
            Let \(Q=Q \cup\{\beta, \gamma\}\)
            end if
        else
            Let \(S=L\)
            end if
        end if
        end if
end while
```

"incumbent" node
($S=\varnothing$)
$3.8=d(L)<\infty=d(\varnothing)$

In action on the incumbent

```
Let \(Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}\)
while \(Q \neq \varnothing\) do
    Let \(\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q\)
    Let \(Q=Q \backslash\{\alpha\}\)
    if isFeasible \((\alpha)\) then
        Let \(L=\) lowerBound \((\alpha)\)
        if \(d(L)<d(S)\) then
            if \(\frac{\neg \text { isTour }(L)}{\text { if } Y \cup N \neq A}\) then
                choose \(a \in A \backslash(Y \cup N)\)
                Let \(\beta=(Y \cup\{a\}, N, S, d(L))\)
                    Let \(\gamma=(Y, N \cup\{a\}, S, d(L))\)
                    Let \(Q=Q \cup\{\beta, \gamma\}\)
                end if
            else
                Let \(S=L\)
            end if
        end if
        end if
end while
```

"incumbent" node
L yields a function
$1 \rightarrow 2,2 \rightarrow 4,4 \rightarrow 3,3 \rightarrow 1$
which is a Hamiltonian tour

In action on the incumbent

```
Let \(Q=\{(\varnothing, \varnothing, \varnothing,-\infty)\}\)
while \(Q \neq \varnothing\) do
    Let \(\alpha=\left(Y, N, S, c^{\prime}\right)=\operatorname{argmin}_{c^{\prime}} Q\)
    Let \(Q=Q \backslash\{\alpha\}\)
    if isFeasible \((\alpha)\) then
        Let \(L=\) lowerBound \((\alpha)\)
        if \(d(L)<d(S)\) then
            if \(\neg\) isTour \((L)\) then
                if \(Y \cup N \neq A\) then
                choose \(a \in A \backslash(Y \cup N)\)
                Let \(\beta=(Y \cup\{a\}, N, S, d(L))\)
                Let \(\gamma=(Y, N \cup\{a\}, S, d(L))\)
                    Let \(Q=Q \cup\{\beta, \gamma\}\)
            end if
            else
                Let \(S=L\)
            end if
        end if
        end if
end while
```

"incumbent" node we update S with $L=\{(1,2),(2,4),(3,1),(4,3)\}$ and $d(S)=3.8$

The BB tree again

It works

Thm.
The Branch-and-Bound algorithm finds a tour of minimum cost
Proof
(Sketch)
(termination) Once Y, N and the node set order have been given, there are unique possible values for S, c^{\prime}. Since $Y, N \subset A$, the number of nodes is finite. Notice no node is ever considered more than once: hence the algorithm terminates.
(optimality) Suppose, to get a contradiction, that the algorithm returns a tour S but that the optimum S^{*} has $d\left(S^{*}\right)<d(S)$. Then there exist BB tree nodes with $Y \subset S^{*}$ and $N \subset A \backslash S^{*}$ which are feasible (for otherwise S^{*} would not be Hamiltonian), and such that $d(Y)<d(S)$ (because $Y \subseteq$ $S^{*} \Rightarrow d(Y) \leq d\left(S^{*}\right)<d(S)$). In particular, there will be a branch leading to a node with $L=S^{*}$: since $d(L)=d\left(S^{*}\right)<d(S)$, the algorithm will set $S=L=S^{*}$, against the assumption.

In general

- A general Branch-and-Bound algorithm rests on the following fundamental primitives:
- a (not necessarily binary) disjunction over which to branch, such that a recursive search over the disjunction lists all possible solutions
- the ability to compute a bound value (in the optimization direction) which improves as the number of constraints imposed on the solution increases
- Speed-up heuristics include:
- a good strategy for choosing the next node to process
- computation of a good incumbent
- good choice of branching disjunction

Application to Mixed-Integer Linear Programming

MILP formulation

- A MILP is like a Linear Program (LP) where some of the variables are constrained to be integer
- Formulation: given known vectors $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$, a known matrix $A \in \mathbb{R}^{n m}$, a known set $Z \subseteq\{1, \ldots, n\}$ and a vector $x \in \mathbb{R}^{n}$ of decision variables,

$$
\begin{aligned}
\min c^{\top} x & \\
A x & \leq b \\
\forall i \in Z \quad x_{i} & \in \mathbb{Z}
\end{aligned}
$$

- This expresses the minimum value of the objective function $c^{\top} x$ subject to the linear constraints $A x \leq b$ and the integrality constraints $\forall i \in Z\left(x_{i} \in \mathbb{Z}\right)$
- If $Z=\varnothing$, get LP - can solve it by the simplex method or by some interior point method

MILP BB

- Solution: assignment of values \bar{x} to decision variables x
- Feasible solution: \bar{x} satisfies all constraints
- Relaxation: all solutions \bar{x} satisfying linear but not necessarily integrality constraints (solve using simplex)
- Lower bound: minimum objective value of the relaxed LP
- Branching: pick a variable x_{i} with $i \in Z$ s.t. $\bar{x} \notin \mathbb{Z}$:

$$
x \leq\lfloor\bar{x}\rfloor \quad \vee \quad x \geq\lceil\bar{x}\rceil
$$

is a valid disjunction

- Applications: too many to mention! (scheduling, energy production, network design, vehicle routing, logistics, stock management, combinatorial optimization problems...)
- Implementations: IBM-ILOG CPLEX (commercial), FICO XPress (commercial), CBC (open source), GLPK (open source)

MILP example

$$
\begin{aligned}
\max 3 x_{1}+4 x_{2} & \\
2 x_{1}+x_{2} & \leq 6 \\
2 x_{1}+3 x_{2} & \leq 9 \quad(1) \\
x_{1}, x_{2} & \geq 0 \\
x_{1}, x_{2} & \in \mathbb{Z}
\end{aligned}
$$

MILP BB Tree

12.75

$$
\overline{x_{2}} \leq 1
$$

$$
\overline{x_{1}} \leq 1
$$

Historical notes

First reference to BB: 1960

ECONOMETRICA

AN AUTOMATIC METHOD OF SOLVING DISCRETE PROGRAMMING PROBLEMS

By A. H. Land and A. G. Doig

In the classical linear programming problem the behaviour of continuous, nonnegative variables subject to a system of linear inequalities is investigated One possible generalization of this problem is to relax the continuity condi tion on the variables. This paper presents a simple numerical algorithm for the solution of programming problems in which some or all of the variables can take only discrete values. The algorithm requires no special techniques beyond those used in ordinary linear programming, and lends itself to automatic computing. Its use is illustrated on two numerical examples

1. Introduction

There is a growing literature $[\mathbf{1}, \mathbf{3}, \mathbf{5}, \mathbf{6}]$ about optimization problems which could be formulated as linear programming problems with additional constraints that some or all of the variables may take only integral values. This form of linear programming arises whenever there are indivisibilities. It is not meaningful, for instance, to schedule 3-7/10 flights between two cities, or to undertake only $1 / 4$ of the necessary setting up operation for running a job through a machine shop. Yet it is basic to linear programming that the variables are free to take on any positive value, ${ }^{1}$ and this sort of answer is very likely to turn up

In some cases, notably those which can be expressed as transport prob lems, the linear programming solution will itself yield discrete values of the variables. In other cases the percentage change in the maximand ${ }^{2}$ from common sense rounding of the variables is sufficiently small to be neglected. But there remain many problems where the discrete variable constraints are significant and costly.

Until recently there was no general automatic routine for solving such problems, as opposed to procedures for proving the optimality of conjectured solutions, and the work reported here is intended to fill the gap. About the time of its completion an alternative method was proposed by Gomory [5] and subsequently extended by Beale [1]. Gomory's method

[^0]
First reference to TSP: 1759

S O L U T I O N

D'UNE
QUESTION CURIEUSE QUI NE PAROIT Soumise A AUCUNE ANALYSE,
PAR M. E ULER.

Je me trouvai un jour dans une compagnie, où, à Poccafion du jeu d'echecs quelqu'un propofa cette queftion: de parcourir avec un cavalier toutes les cafes d'un échiquier, fans parvenir jamais deux fois à la même, ©' en commencant par une cafe donnée. On mettoit pour cette fin des jettons fur toutes les 64 cafes de l'échiquier, a l 'exception de celle où le Cavalier devoit commencer fa route; \& de chaque cafe où le Cavalier paffoit conformément à fa marche, on ôtoit le jetton, de forte qu'il s'agiffoit d'enlever de cette façon fucceffivement tous les jettons. Il faloit donc éviter d'un côté, que le cavalier ne revint jamais à une cafe vuide, \& d'un autre côté il faloit diriger en forte fa courfe, quili parcourut enfin toutes les cafes.
2. Ceux qui croyoient cette queftion affez aifée firent plufieurs efflais inutiles fans pouvoir atteindre au but; après quoi celui qui avoit propofé la queftion, ayant commencé par une cafe donnée, 2 fçu fi bien diriger la route, qu'il a heureufement enlevé tous les jertons. Cependant la multitude des cafes ne permettoit pas qu'on ait pû imprimer à la mémoire la route quill avoit fuivie; \& ce n'étoit qu'aprés plufieurs eflais, que j’ai enfin rencontré une telle route, qui fatisfit à la queftion; encore ne valoit-elle que pour une certaine cafe initiale. Je ne me fouviens plus, fi on lui a laiffé la liberté de la choifir lui-même; mais il a très pofitivement affuré qu'il éroit en étar de l'éxécuter, quelle que foit la cafe où l'on voulut quil commençat.

曖 312

toute particpliere, que Mr. Bertrand de Geneve m'a fournie; car, quoiqu'elle foit legere en elle-même, \& tout à fait étrangere à la Géomérrie, elle doit être regardée comme très remarquable, dès qu'on aura trouvé moyen d'y appliquer P'Analyfe. Or je ferai voir qu'elle eft fufceptible d'une analyfe tout particuliere, qui doit mériter d'autant plus d'artention, que cette analy fe demande des raifonnemens peu ufités silleurs. On convient aifément de l'excellence de l'Analy fe, mais on la croit communément bornée à de certaines recherches, qu'on rapporte aux Mathématiques; \& partant il fera toujours fort important d'en faire ufage dans des matieres qui lui femblent refufer tout accès: puisqu'il eft certain qu'elle renferme l'art de raifonner dans le plus haut degré. On ne fauroit donce étendre les bornes de l'Analyfe, fans qu'on ait raifon de s'en promettre de très grands avantages.
6. Or d'abord je remarque, qu'on pourroit fatisfaire à la queftion, fil l'on trouvoit une telle route, où la derniere cafe marquée par 64 feroit éloignée de la premiere i d'un faut de cavalier, de forte qu'il pourroit fauter de la derniere fur la premiere. Car, ayant trouvé une telle route rentrante en ellc-même, on pourra commencer par quelque cafe que ce foit, \& de là continuer la courfe fuivant l'ordre des nombres jusqu'à la cafe marquée par 64, d'où, en fautant à celle qui eft marquée par I , il acheveroit la courfé jusqu'à retourner à celle d'où il étoit parti. Or voilà une telle route rentrante en elle -même,

42	57	4					
55	10	41	58	4		39	
12	43	56	6	22	59		
63	5	11	30	25	28		
32	13	62	27	60	23		
53	64	3^{1}	24	29			
4	33		51	16	35		
		15					

John D. C. Little
Massachusetts Institute of Technology

Katta G. Murty*
Indian Statistical Institute
Dura W. Sweeney \dagger
International Business Machines Corporation

Caroline Karel

Case Institute of Technology
(Received March 6, 1963)

Abstract

A 'branch and bound' algorithm is presented for solving the traveling salesman problem. The set of all tours (feasible solutions) is broken up into increasingly small subsets by a procedure called branching. For each subset a lower bound on the length of the tours therein is calculated Eventually, a subset is found that contains a single tour whose length is less than or equal to some lower bound for every tour. The motivation of the branching and the calculation of the lower bounds are based on ideas frequently used in solving assignment problems. Computationally, the algorithm extends the size of problem that can reasonably be solved without using methods special to the particular problem.

THE TRAVELING salesman problem is easy to state: A salesman, starting in one city, wishes to visit each of $n-1$ other cities once and only once and return to the start. In what order should he visit the cities to minimize the total distance traveled? For 'distance' we can substitute time, cost, or other measure of effectiveness as desired. Distance or costs between all city pairs are presumed known.

The problem has become famous because it combines ease of statement with difficulty of solution. The difficulty is entirely computational, since a solution obviously exists. There are $(n-1)$! possible tours, one or more of which must give minimum cost. (The minimum cost could conceivably be infinite-it is conventional to assign an infinite cost to travel between city pairs that have no direct connection.)

The traveling salesman problem recently achieved national prominence

The end

[^0]: ${ }^{1}$ Or more generally, any value within a bounded interval
 We shall speak throughout of maximisation, but of course an exactly analogous argument applies to minimisation

