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Clock Synchronization

Alice L Chuck

"

Atomic clock ()
16:27

A C S B

16:21 16:23 16:25 16:27 16:29 16:31

16:20 16:22 16:24 16:26 16:28 16:30

[Singer, 2011]



Sensor network localization

[Yemini, 1978]



Protein conformation fromm NMR data

[Crippen & Havel 1988]



Clock synchronization: solutions
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Distance Geometry Problem (DGP)

Given: Determine whether 4.
— a simple graph G = (V, E

PIe grapt (V. E) a realization z 1 V — R¥ s.t.
— an edge function d: E — R>q Y{u, v} € B
— an integer K € N v

|y — zol|2 = duw

1 1 ? //T
GL oL

Let n=|V|



More applications

e Autonomous underwater vehicles [Bahr et al. 2009]

e Statics of rigid structures [Maxwell 1864]

e Matrix completion [Laurent 2009]

e Statistics [Boer 2013]

e Psychology [Kruskal 1964]

[Liberti et al., SIREV 2014]
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Definitions

e Decision problem: mathematical YES/NO-type question depending
on a parameter vector =«

e Instance: same as above with 7 replaced by given values v

e Certificate: proof that a given answer is true

e P: all decision problems solvable in at most p(|xr|) steps
where p is a polynomial

e NP: all decision problems with |YES certificate| < p(|r])
where p is a polynomial
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Reductions

e P, (). decision problems

e If d algorithm A which:

1. reformulates instances P of P into instances Q of Q
2. has answer(P) = YES iff answer(A(Q)) = YES
3. is polytime in the instance size |P|

then A is a reduction of P to Q

13



NP-hardness

e () is NP-hard if every problem in NP reduces to @

e () is NP-complete if it is NP-hard and is in NP

Why does it work?

polytime reduction

(. how hard?

any P in NP

v

Suppose () easier than P

Solve P by reducing to @ in polytime and then solve @
Then P as easy as (), against assumption

= () at least as hard as P

So if Q is NP-hard it is as hard as any problem in NP
= () IS as hard as the hardest problem in NP

14



NP-hardness proofs

Given a new problem (), take any known
NP-hard problem P and reduce it to @

Why does it work?

P: NP-hard polytime reduction > | (). how hard?

e As before: Suppose ... (etc.) = @ at least as hard as P
e Since P is NP-hard, it is hardest in NP, and so is )

= @ is NP-hard

15



Complexity of the DGP

Complexity of the DGP
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DGP c NP?

e NP: YES/NO problems with polytime-checkable proofs for YES

e DGP is a YES/NO problem

e Solutions might involve irrational numbers when K > 1

e Some empirical evidence that DGP € NP [Beeker et al. 2013]
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The DGP is NP-hard

Partition

Given a = (a1,...,an) € N7, 3[@{1,...,7’&} s.t. Ya, = > a; ?
el 11

e Reduce (NP-hard) Partition to DGP;
e a —> cycle C with V(C) ={1,...,n}, E(C) ={{1,2},...,{n,1}}
e For 1 <n let di,i—l—l = a;, and dn,n—l—l = d,1 = an

e E.g. fora=1(1,4,1,3,3), get cycle graph:

[Saxe, 1979]
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Partition is YES = DGP;, is YES

e Given: IC{l,...,n} s.t. Y a; = > a;
el 1Z1

e Construct: realization x of C in R
l. x1 =0 // start

2. induction step: suppose x; known

ifiel

let ;41 = x; +d; ;41 // go right
else

Tiy1 = T; — dj 41 // go left

e Correctness proof. by the same induction
but careful when i = n. have to show x,41 = o1



I =1{1,2,3}




lel



lel












Partition is YES = DGP; is YES

(1) = Z(%‘Jrl —x;) = > dijiy1=

=y 1e1
= Z a; = Z a; =
icl i1
=) dii41 = ) (zi—xziq1) = (2)
i1 i1
D =02)=)> (zj41—z) = (z;—zi41) = > (Ti41 — ;)
el 11 1<n
= (Tp41 —2n) + (@n —xp—1) + -+ (z3 —22) + (22 — 71)

— Tp+1

26

L1



Partition is NO = DGP; is NO

e By contradiction: suppose DGPq is YES, z realization of C
o FF={{u,v} € EC)|xzy <ay}, E(C)NF = {{u,v} € E(C) | xy, > xv}

e Trace xq,...,xn: follow edges in ' (—) and in E(C) \ F ()
(xv - xu) — (wu - xv)

x4 r1 s r3 22 {u%:eF {u%:%F

o | ° # | # #

3 =2 -1 0 1 2 3 D lw—w| = Y feu—

{u,w}eF {u,w}¢F

IS Z duyw = Z duw
{uw}eF {u,v}¢F

e let J={i<n|{i,i+1} e F}u{n|{n,1} € F}
= Z a; = Z a;
icJ iZJ
e SO J solves Partition instance, contradiction
e = DGP is NP-hard, DGPq is NP-complete

27
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With congruences

e (G,K): DGP instance

e X C RE™: set of solutions

e Congruence:. composition of translations, rotations, reflections

e C = set of congruences in RE

e x ~y means dp € C (y = px):
distances in z are preserved in y through p

o = if [X| >0, |X| =20

29



Modulo congruences

~

e Congruence is an equivalence relation ~ on X
(reflexive, symmetric, transitive)

e Partitions X into equivalence classes

e X = X/~ sets of representatives of equivalence classes

e Focus on |X]| rather than |X]|

30



Cardinality of X

infeasible & | X| =0

rigid graph & | X| < X

globally rigid graph < |X| =1

flexible graph < |X| = 280

| X | = Ng: impossible by Milnor's theorem

31



Milnor’s theorem implies | X| £ Ng

e System S of polynomial equations of degree d

Vi<m pi(z1,...,255) =0

e Let X be the set of x € R satisfying S

e Number of connected components of X is < d(2d — 1)"K—1
[Milnor 1964]

e If | X| is countable then G cannot be flexible
= incongruent elements of X are separate connected components
= by Milnor’s theorem, there’'s finitely many of them
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Examples

vi=1{1,2,3}

E' = {{u,v} | u < v}
dl =1
V2=Vviu{4}

E?=FE'Uu{{1,4},{2,4}}
d?>=1A dig = \/5

Vi=Vv?
dt =1

T3
1 T2
T4

T3
T o
T4 x3
T1 o

p congruence in R?
= px Vvalid realization
|1 X|=1

p reflects x4 wrt x1, x>

= px Vvalid realization

X =2 (49

p rotates z>x3, T1xa by 6
= px Vvalid realization

| X| is uncountable
/7 =)

33



Mathematical optimization formulations

Mathematical optimization formulations
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System of quadratic constraints

V{iu,v} € E | — %HQ = d?2w

e Around 10 vertices

e Computationally useless

35



Quadratic objective

min Y (ou— w0l — d2,)2
TERM Ly v)eE

e Globally optimal value zero iff x is a realization of GG
e SBB: 10-100 vertices, exact solutions

e heuristics: 100-1000 vertices, poor quality

[Lavor et al., 2006]

36



Convexity and concavity

max, > lzw — zoll?
zER™ {uv}teFE

V{u,v} € E ||zy — xv||2 < d%w

e Convex constraints, concave objective

e Computationally no better than “quadratic objective”

37



Pointwise reformulation

ma?é{ Z quk(xuk — ka)
z€R {uwlteE k<K

V{u,v} € E ||zy — :cv||2 < d%w

e Convex subproblem in stochastic iterative heuristics
“‘guess 6 and solve”

e 100-1000 vertices, good quality

[L. IOS14/MAGO14(slides)]
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SDP formulation

min Z (qu + Xov — QXUU)
Xz0 {uv}er
V{iu,v} € E  Xyu + Xov — 2Xup 2> d12w

e Similar to those of Ye, Wolkowicz — works better for proteins

e 100 vertices, good quality

[D'Ambrosio et al., in progress]
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Realizing complete graphs

Realizing complete graphs

40



Cliques

2-clique

(—

4-clique
3-clique

(K 4+ 1)-cligue = K-clique @ a vertex

41



Triangulation

1 2 3
1 1
1 5 3 0 1 2
Example: realize triangle on a line
e From |jz3 —z1|| =2 and ||z3 — xp|| = 1 get
:1:% — 2x123 + az% = 4 (1)
:1:% — 2xox3 + :1:% = 1. (2)

e (2) — (1) yields

CB%—CB%—:%

2x3(x1 — )
= 2x3

|
B

e Hence xz3 = 2

42



Realizing a (K + 1)-clique in R¥—1

e Apply triangulation inductively on K
assume z1,...,rx € RE=1 known, compute y = 214

e K quadratic egns (Vj < K ||y — z;]|2 = d? ) in K — 1 vars

J,K+1
{ lyll2 =221 -y + |22l = 2y, [1]
[yl — 22k -y + llzxl* = digqy [K]
e Form system Vj < K ([j] — [K])
{ 2(z1 — k) y = |lzall® = llexll® — df giq + di geta [1] — [K]
2(@x-1—2x) y = |ex-1ll® — [|lzk|® - d%{—l,K—l—l + d%(,K—I—l [K —1] - [K]

e Thisisa (K —1) x (K —1) linear system Ay =b

Solve to find y

[Dong, Wu 2002]
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“Solve” ?

1. What if A is singular?

2. Or: A nonsingular but instance is NO

44



Singularity: rkA =K — 2

One row z; — ri of A depends on the others

N o o +
K =2 | triangle in R 1 — I 0] 237 @i—zo @3
' 5(34?
3
K = 3 | 4-clique in R? | z1,x2,23 On a line MAEER ¢ ®
T To
O 584?
//7/.335?
e
. . . - 2 3\
K =4 | 5-clique in R3 | z1,...,x4 in a plane z® o’
\\\\‘\\O/ T5?

Trend continues: rk A= K — 2 = |X| = 2 (see later)
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Singularity: rkA =K — 3

Two rows z; — z; depend on the others

K = 3 | 4-clique in R2 Tr1 = o = x3

K =4 | 5-clique in R3 | z1,...,24 on a line

Trend continues: [Hendrickson, 1992]

Thm. 5.8. If a graph G is connected, flexible and has more than K vertices,

X|
contains almost always a submanifold diffeomorphic to a circle

46



Hendrickson’s theorem also applies to non-cliques

a7



Nonsingular matrix A with NO instance

e Infeasible quadratic system Vj < K 4+ 1 |lz; — zx||? = d;x
e Take differences, get nonsingular A and value for xg

e ...but it's wrong!

Shit happens!

Every time you solve the linear system Ay = b
check feasibility with quadratic system

48



Algorithm for realizing complete graphs in RE

e Assume:
(i) G = (V,E) complete
(i) |[V]=n>K 42

(III) we know x1,... y TRK+41
e Increase K: we know how to realize zj 1o in RE

e Use this inductively for each i € {K +2,...,n}

49



Algorithm for realizing complete graphs in RE

// realize next vertex iteratively
foric {K+2,...,n} do
// use (K + 1) immediate adjacent predecessors to compute x;
if rkA = K then
x; = A7'b // A,b defined as above
else
xi = oo // A singular, mark co and exit
break
end if
// check that x; is feasible w.r.t. other distances
for {j e N(i) | j < i} do
if ||CBZ — CBJH # dij then
// if not, mark infeasible and exit loop *

end for
if x; =0 then
break
end if
end for
return =z

* the “ignore trouble” policy, a.k.a. “ignore probability zero events”

50



Complexity of Alg. 1

e Outer loop: O(n)

e Rank and inverse of A: O(K?3)

e Inner loop: O(n)

e Get O(n2K?3)

e But in most applications K is fixed

e Get O(n?)

But how do we find the realization of the first K + 1 vertices?

51



Realizing (K + 1)-cliques in R¥

Realizing (K + 1)-cliques in RE—1 yields “flat simplices”
(e.g. triangles on lines)

Use “natural” embedding dimension R

Same reasoning as above:
get system Ay =b where y = xx 1 and A; = 2(z; — zg)

But now Ais (K—-1) x K

Same as previous case with A singular

52



Almost square

How can you solve the following system Ay = b:

ai1 aip ... Q1K Y1 b1

aK-11 OK—-12 --- OK_1K YK—1 br_1

where A has one more columns than rows and rank K — 17

53



Basics and nonbasics

Sincerk A=K -1, d K —1 linearly independent columns
B: set of their indices

N index of remaining columns

B: (K —1) x (K — 1) square matrix of columns in B

= B is nonsingular

Can partition columns as A = (B|N)
Column 5 corresponds to variable Y;

Variables yi are called basic variables

Variable yas is called nonbasic variable

54



The dictionary

(BIN)y
= Byg+ Nyy = b

|
S

Y
N~
()]

|
3
T
3
gl—‘
=

Basics expressed in function of nonbasic

55



One quadratic equation

e From value of y,r, can use dictionary to get y

e Use one quadratic equation

1.

2.

6.

Pick any h € {1,..., K — 1}, equation is |lz; — y|3 = dix

y = (yglyn) '

. Replace yg with B~1b — B~1 Ny, in equation
. Solve resulting quadratic equation in one variable yus

. Get 0,1 or 2 values for yus

= Get 0,1 or 2 positions for x4 1

56



What if B—1N is zero?

e yg = B~ b — B~1Ny, reduces to yg = B~ 1b

e Use one quadratic equation

1.

2.

6.

Pick any h € {1,..., K — 1}, equation is |lz; — y|3 = dix

y = (yglyn) '

. Replace yg with B~1b in equation
. Solve resulting quadratic equation in one variable yus

. Get 0,1 or 2 values for yus

= Get 0,1 or 2 positions for x4 1

57



T he difference

o B-1N -+ 0: ypr dlctlonary> ”

e Different values y]\L/ =Y — yT,y~ with different components

drati .
e« B-1N =0 B quadratic eqn)yN

e Even if y]\'} 7 Yn, K —1 components of y+,y_ are equal
aff(zy,...,zx_1) = {y € R® |y = 0}

58



The case of no solutions

e No realizations exist for this (K 4+ 1)-clique in R¥

e DGP instance is NO

59



The case of one solution

e Assume for simplicity: N =K, h=1, B"IN #0
Then |lzj, — yl|? = dj ;. becomes:

Ay%( —2uyxg +v = 0, where
A= 1+ Z Biia5k
<K
p = xix + Z Beja;k (Beibe — T1¢)
li<K
v = Z Beibe(Beibe — 2214) + ||z1]|* — d kya
li<K

e (Exactly one solution for yx) < u2 = v, not a tautology

e The set of all (K + 1)-clique DGP instances in R® s.t. u2 = \v
has Lebesgue measure 0O

e Ignore them, they happen with probability* O!

* Assuming continuous distributions over the reals. For floating point number, who knows? . ..
but we'll ignore these instances anyhow
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Discriminant >0, =0

61



T he case of two solutions

e K spheres S¥~1 ... sp~1in RK
centered at z1,...,xx
with radii dl,K+17---7dK,K—|—1

e x5 must be at the intersection of S¥~1, ... sk—1

o If ﬂ-SJK_l # &, then |ﬂjS§{_1| = 2 in general

J

e Wwill not mention “probability 0" or “in general” anymore

[Coope 2000]
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Mirror images

o Let zT = {xl,...,xK,w}t_H}, r = {af;l,...,xK,az[_{_'_l}
assume dim aff(zq,...,2x) = K (1)

e T heorem
zT, 2~ € RE are reflections w.r.t. hyperplane defined by z1,...,zx

e Proof
1. z1, 2~ congruent by construction
2. Vi< Kz; €zt na™ — 21,2~ not translations
3. zT Nz | =K < |zF| = |z~ | — 7,2~ not rotations by (})
4. = must be reflections

63



Algorithm for realizing (K + 1)-cliques in RX

// realize 1 at the origin
x1 = (0,...,0)
// realize next vertex iteratively
for/e{2,..., K+ 1} do
// at most two positions in Rt~ for vertex ¢
S= NS
1<t
if S =9 then
// warn if infeasible
return 0
end if
// arbitrarily choose one of the two points
choose any zy € S
end for
// return feasible realization

return =«
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Complexity of Alg. 2

e Outer loop: O(K)

e Gaussian elimination on A: O(K?3)

e SOome messing about to obtain :1:};_'_1,
o Get O(K?%)

e But in most applications K is fixed

e Get O(1)

Triq: FO(K?)
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Back to complete graphs

Alg. 2: realize 1,...,K +1 in R¥: O(1)
Alg. 1: Realize K +2,...,n: O(n?)
= 0(n?)

What about |X|?

— Alg. 1 is deterministic: one solution from x1,...,Tg41
— Alg. 2 is stochastic: pick one of two values K times

= |X| = 2K

66



K-trilaterative graphs

e In Alg. 1 we only need each v > K + 1 to have K + 1 adjacent
predecessors in order to find a unique solution for x,

e Determination of x, from K-+1 adjacent predecessors: K-trilateration

e K-trilaterative graph:

(i) has a vertex order ensuring this property
(ii) the initial K + 1 vertices induce a (K + 1)-clique
the order is called K-trilateration order

e Alg. 1 realizes all K-trilaterative graphs

The DGP restricted to K-trilaterative graphs in RE s easy

[Eren et al. 2004]
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The story so far

e Lots of nice applications

e DGP is NP-hard

e May have 0O, 1, finitely many or 280 solutions modulo congruences
e Continuous optimization techniques don't scale well

e Using K + 1 adjacent predecessors, realize K-trilaterative graphs
in RE in polytime

e DO we need K + 1 adjacent predecessors, or can we do with
less?

68



T he Branch-and-Prune algorithm

The Branch-and-Prune algorithm

69



Fewer adjacent predecessors

e Alg. 2 only needs K adjacent predecessor

e Extend to n vertices: (K — 1)-trilaterative graphs

e Can we realize (K — 1)-trilaterative graphs in RE7?
e A small case: graph consisting of two K + 1 cliques

1 1




Take a closer look. ..

e Realization of a K 4+ 1 clique in RE knowing T1y.- oy LE

e We know how to do that!
e Consistent with 2 solutions for xzg, reflected across plane through
LD, X3, T4

71



Discretization and pruning edges

e (K — 1)-trilaterative graph G = (V, E):

e Discretization edges:
Ep={{u,v} € E|u,v< K} U {{u,v} € E|v>KAu€ Uy}
initialvclique verte;order

e Pruning edges Ep = FE \ Ep

72



Role of discretization edges

Missing discretization edge
= non-rigid structure
= X uncountable

Else: X finite

73



Role of pruning edges

No pruning edges: 8 incongruent realizations in R2

1 3 5 1 3 5
5
\
4 4
/ RN
3 3%5 5 3
AN AN AN / AN
2 2 4%2
/ / /
1 1 1
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Role of pruning edges

Pruning edge {1,4}: only 4 realizations remain valid

2
/N
5 1%3
N %
2 4 2 4 4
//// N / % N
1 3 5 1 3 5
5
N
4 4
/ AN
3 3 5 5 3
N N
2 2 4%2
/ / %
1 1 1
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Motivation

e [otal order < onV

Protein backbones

e Covalent bond distances: {u— 1,u} € E

e Covalent bond angles: {u —2,u} € F

e NMR experiments: {u —3,u} € F
(and other edges {u,v} with v —u > 3)

[Lavor et al., COAP 2012]

Generalize “3"” to K

76



“DMDGP graphs

Generalization of protein backbone order:
v > K is adjacent to K immediate predecessors v — 1,...,v — K

KDMDGP: Discretizable Molecular Distance Geometry Problem
77



The Branch-and-Prune (BP) algorithm

BP(v, 7, X):
1. Given v > K, realization x = (z1,...,2y—1)
2. Compute S= N Sk-1

’LLEUU
3. For each xy € S s.t. V{u,v} € Ep (u < v — ||y — zo|| = duv)

(a) let z = (z, zv)

(b) if v =mn add x to X, else call BP(v+ 1, z, X)

e Recursive: starts with BP(K + 1, (z1,...,2x), D)
e All realizations in X are incongruent*®
e Can be easily modified to find only p solutions for given p

e Applies to all (K — 1)-trilaterative graphs in RX
Specialize to KDMDGP graph by setting U, ={v—-1,...,v— K}

* with probability 1, and aside from one reflection at v =K + 1

[L. et al. ITOR 2008]
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Complexity of BP

Most operations are O(K") for some fixed h = O(1)
Distance check at Step 3: O(n)

Recursion on at most 2 branches at each call: binary tree
Only recurse when v > K,v < n: 2" & nodes

Overall O(n2" 1) = O(2")

Worst-case exponential behaviour

79



Hardness of XDMDGP

e The KDMDGP is NP-hard for each K
— every DGP instance is also DMDGP if K =1

— reduction from Partition can be extended to any K

e (K — 1)-trilateration graphs are NP-hard by inclusion

e NoO polytime algorithm unless P=NP

Trilaterative graphs in RE are complexitywise borderline at K
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Correctness

Thm.
When BP terminates, X contains every incongruent realization of GG

Proof.

e Let y be any realization of G

e Since G has an initial K-clique, can rotate/translate/reflect y to
y[K] = z[K] for all z € X

e BP exhaustively constructs every extension of z[K] which is feasible
with all distances, so y € X

for a realization y, y[h] = (y1,..., yp) IS the initial segment of y
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Two examples




Empirical observations

e Fast: up to 10k vertices in a few seconds on 2010 hardware

e Precise: errors in range O(10~9)-0(1012)

e Number of solutions always a power of 2:
obvious if Ep = &, but otherwise mysterious

e Linear-time behaviour on proteins:
this really shouldn't happen
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Symmetry in the X"DMDGP

Symmetry in the X"DMDGP

[L. et al. DAM 2014]
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Partial reflections

e For each v > K, let
gv(fC) — (:Cla ey Ly—1, quljj(mv)a et Rg(fﬁn))
be the partial reflection of x w.r.t. v

e Note: the gy's are idempotent operators
o Gp = (V,Ep): subgraph of GG given by discretization edges
e Vv > K reflection RY gives a binary choice in general*

e X C R™ contains 2"~ incongruent realizations of Gp

* subsequent results hold ‘“with probability 1"
85



Discretization group

e Yp = (gv | v> K): the discretization group of G w.r.t. K
subgroup of a Cartesian product of reflection groups

e An element g € ¥p has the form @ g%, where ay, € {0,1}
v>K

e Action of ¥p on Xp: g(x) = (g}l{Kfll o oggn) (x)
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Commutativity of partial reflections

Lemma A ¢p is Abelian
Proof Assume K < u < v. Then

gugv(z) = gu(x1,...,Ty_1, Rp(zv), ..., Rz(zn))
= (21...,Ty—1, R;U(x) (Tu), .- Rg (@RU (zv), - 9o (x)RU (zn))
= (x1...,2%y—1, Rp(xu),..., gu(x)Rx(xU),. T (x)Ru(:cn))
= guv(x1,...,2y_1, Ra(xe), .., Ry (xn))
= gvgu(x)

where equality of these terms holds by a Technical Lemma
(next slide)

[L. et al. 2013]
87



Commutativity of partial reflections

Technical Lemma

(Proof sketch for K =2) Let ylLAff(xy_1,...,2,_k) and p¥ = RY

pZpYt = pf Y p*t
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One realization generates all others

Lemma B The action of ¥p on X is transitive

99 € Dp (y = g(2)): namely, v = gs(ga(g3(@)))

Proof By induction on v: assume result holds to v — 1 with ¢/, then either

it holds for v and g = ¢/, else flip and let g = g,¢’

[L. et al. 2013]
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Structure and invariance

e ¢ is Abelian and generated by n — K idempotent elements

— %D = CS_K

o ¥p < Aut(Xp) by construction
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Solution sets

e X: set of incongruent realizations of GG

e G p defined on same vertices but fewer edges
= fewer distance constraints on realizations
= more realizations

e All realizations of G are also realizations of Gp
= X g XD
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Losing invariance on pruning edges

Lemma C Let W"W ={u+ K+ 1,...,v} be the range of {u,v}
Ve € X, u,w,v €V (w € W' & |[xy — xo|| # ||gw(®)u — gw(x)v]|)

Proof sketch for K =2

Corollary If {u,v} € Ep and w € W%, gy(x) € X

[L. et al. 2013]
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Pruning group

Define:

—|
|

{gw €9p | w > K AV{u,v} € Ep (w & W)}
(r)

-
|

Lemma D X is invariant w.r.t. ¥p
Proof
Follows by corollary, invariance of Xp w.r.t. ¥p and X C Xp
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Transitivity of the pruning group

Lemma E The action of ¥p on X is transitive

e Given z,y € X, aim to show dg € ¥p (y = g(x))

e Lemma B = dg € ¥p with y = g(x) € Xp

e Suppose g € ¥p and aim for a contradiction

o = FH{u,v} € Ep and w € W* s.t. g, iS @ component of g

o Lemma C = [|gw(2)y — gu(@)s|| Z duv

e If w is the only such vertex, y = g(x) # x against hypothesis, done

e Suppose J another z € W™ s.t. g, is a component of g

e Set of cases s.t. |lzu — zoll = [|9:9u(®)u — g:9u(@)ul| given ||gu(z)u — gu(a)u]| #
|y — xo|| # ||g(x)y — g-(x)y|| has Lebesgue measure 0 in all DGP inputs

e By induction, holds for any number of components g, of g with z € W"

= y = g(x) # = against hypothesis, done

[L. et al. 2013]
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T he main result

Theorem |X| = 2!l

e Lemma A =¥, = Cg_K = |9p| = pn—K

o ¥p <Y = EMEN(gpgcé),With €=||_|

e Lemma E=Vre X |¥Ypx=X

e Idempotency = Vg € ¥p g_1 =g
1

=Vg,he%p,zc X (gr=hr -hlgr=2 —hgr=2—hg=1—h=g '=g)
= the mapping ¥px — ¥p given by gz — g is injective

e Vghe¥9p,x € X (9 #h — gr #= hx)
= the mapping gz — g is surjective

e = the mapping gxr — g is a bijection
o = |Ypx| = |¥9p|
o =>VreX |X|= |9z =|9| =2

[L. et al. 2013]
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Symmetry-aware BP

e Don’'t need to explore all branches of BP tree

e Build [ as a pre-processing step

e Run BP, terminating as soon as |X| =1

e For each g € ¥p, compute gz

[Mucherino et al. JBCB 2012]
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Complexity

e Computing I": O(mn)
1. initialize indicator vector « = (tg41,...,tn) fOr gy €T
2. initialize + =1
3. for each {u,v} € Ep and w € W' let 1, =0

e BP: O(2")
e Compute gz for each g € ¥p: O(2|r|)
e Overall: O(2")

e Gains depend on the instance
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Tractability of protein instances

Tractability of protein instances

[L. et al. 2013]
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Let’s handle the BP tree

Max depth: n, looks good! Aim to prove width is bounded



Number of solutions at each BP tree level

Depends on range of longer pruning edge incident to level v

K+ 1 2 3 4 5 6 7 8 9
2 4 8 16 32 64 128 256 512 no pruning edges
N N
N

2- -=>4- -> 8\ 16 32 64 128 256

\

\ \
2 4 Y 8 16 32 64 128

2 *4——>8——>16\ 32 64

2 4 8 ' 16 32

8 nodes at level K 4+ 4 2 4 8 16
{3, K+5} € Ep = gi+4,9x+5 € T \

2 4- -=>8
= no symmetry at levels K + 4
and K +5 ) 4
= only 4 nodes at level K +5 \
5 pruning edges make

graph K-trilaterative
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Periodic pruning edges

4 5 6 7 8 9 10 11 12
2 ——4——38 16 32 64 128 256 512
\
2 4 8 16 32 64 128 256
\
2 4 8 16 32 64 128
\\
2 4 8 16 32 64
\
2 4 8 6 32
\\
2 4 8 16
2 4\8
2 4

e 2/ growth up to level ¢, then constant: O(2‘n) nodes in BP tree
e BP is Fixed-Parameter Tractable (FPT) in a bunch of cases
e For all tested protein backbones, ¢ <5 = BP linear on proteins!
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The story so far

e Nice applications, problem is hard, could have many solutions
e Continuous methods don't scale
e If certain vertex orders are present, use mixed-combinatorial methods

e Realize K-trilaterative in polytime but (K — 1)-trilaterative are
hard

e If adjacent predecessors are immediate, theory of symmetries
e Number of solutions is a power of two
e For proteins, BP is linear time

e How do we find these vertex orders?
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Finding vertex orders

Applications

Definition

Complexity primer

Complexity of the DGP

Number of solutions

Mathematical optimization formulations
Realizing complete graphs

The Branch-and-Prune algorithm

Symmetry in the KDMDGP

© © N o 0 & W b=

—
-

Tractability of protein instances

[
[

. Finding vertex orders

12. Approximate realizations

[Cassioli et al., DAM]
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...wasn't the backbone providing them?

e NMR data not as clean as I pretended

e Have to mess around with side chains

e \What about other applications, anyhow?

Methods for finding trilaterative orders automatically
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Mostly bad news

e Finding K-trilaterative orders is NP-complete  :-(

e But also FPT =)

e Finding XDMDGP orders is NP-complete for all K :-(

e It’'s also really hard in practice, and methods don’t scale well
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Definitions

e Trilateration Ordering Problem (TOP)

Given a connected graph G = (V, E) and a positive integer
K, does G have a K-trilateration order?

e Contiguous Trilateration Ordering Problem (CTOP)

Given a connected graph G = (V, E) and a positive integer
K, does G have a (K — 1)-trilateration order such that U, =
{v—1,...,v— K} foreachv > K?

Both problems are in NP
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Hardness of TOP

e Essentially due to finding the initial clique

— brute force: test all (}'}) subsets of V

— (;g) is O(n®), polytime if K fixed

e Reduction from K-Clique problem:
Given a graph, does it have a K-clique?

[Mucherino et al., OPTL 2012]
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Reduction from K-Clique

G'=GpK

reduction

—————————————— =

o ® ®

e If K-Clique instance is YES
— start with o = (initial clique of G, K)
— induction: if a,_1 defined, pick «, at shortest path distance 1 from [J«

e If K-Clique instance is NO
— By contradiction: suppose 3 trilateration order o in G’
— Initial cliqgue o[K] = (a1,...,ax) must have K — 1 vertices in G, 1 in K
— ag+1 must be in G, hence 3 K-clique in G

[Cassioli et al., DAM]
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Once the initial clique is known

Greedily grow a trilateration order o

e Initialize o with initial K-clique K
o Llet W =V K

e Vv > K ay = |vertices in K adjacent to v
// at termination, a, will be the number of adjacent predecessors of v

e While W # &
1. choose v € W with largest ay
2. if ay < K instance is NO
3. a<+ (a,v)
4. for all w € W adjacent to v, increase ay
5. W+ W ~ {v}

e Instance is YES

[Mucherino et al., OPTL 2012]
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Greedy algorithm is correct

e Assume TOP instance is YES, proceed by induction
— start: by maximality, a1 > K
— assume « is a valid TOP up to v—1, suppose ay < K
— but instance is YES so there is another z € W with a, > K
— contradicts maximality of ay

e Assume TOP instance is NO
— algorithm termination at W = @ contradicts the NO
— hence it must terminate with W %= @ and “NQO" answer
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Complexity

e Outer while loop: O(n)

e Choice of largest ay: O(n)

e Inner loop on W: O(n)

e Overall: O(n?)

e If we add brute force initial clique: O(25n?)

e Polytime if K fixed, FPT otherwise
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CTOP is hard

e Reduction from Hamiltonian Path (HP)

Given a graph G, does it have a path passing through each
vertex exactly once?

e aaH. pathin G = Vv # 1,n ay is adjacent to ay,_1,a,41

e Apart from initial 1-clique a4
every oy IS adjacent to its immediate predecessor

e = o is a KDMDGP order in G with K = 1
e HP is the same as KXDMDGP with K = 1

e = By inclusion, XDMDGP is NP-hard

[Cassioli et al., DAM]
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CTOP is hard for all K

e Reduction from HP

3
1
=
reduction \
2 2 .
cl?

e Technical proof

[Cassioli et al., DAM]
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How do we find “"DMDGP orders?

Mathematical optimization & CPLEX

o 1,, — 1 iff vertex v has rank ¢ in the order
e Each vertex has a unique order rank:
VWEV Y my=1;
i€
e Each rank value is assigned a unique vertex:

Vi€ n mezl;

veV
e [ here must be an initial K-clique:

VWweViie{2,...,K} > ) my > (i— Dz
ueN (v) j<i
e Each vertex with rank > K must have at least K contiguous adjacent predecessors
\V/’UEV,?:>K Z Z :quZKaj‘m;.
ueN (v) 1—K<j<u

e DO not expect too much; scales up to 100 vertices
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How about those 10k-atom backbones?

We have Carlile for those

e Note the repetitions — they serve a purpose!
e Repetition orders are also hard to find for any K

e ... but Carlile knows how to handcraft them!

[Lavor et al. JOGO 2013]
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And what about the side-chains?

The Carlile4+Antonio tool!

[Costa et al. JOGO, submitted]
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Approximate realizations

Approximate realizations
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Data errors

The “distance = real number” paradigm is a lie!

e Covalent bonds are fairly precise

¢ NMR data is a mess [Berger, J. ACM 1999]
— experimental errors yield intervals [dL , dY ]
— NMR outputs frequencies of (atom type pair, distance value)
weighted graph reconstruction yields systematic error
— some atom type pairs yield more error (“only trust H—H")

e Properties of specific molecules give rise to other constraints

e The protein graph may not be (K — 1)-trilaterative based on
the backbone
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The Lavorder comes to the rescue!

e Carlile’s handcrafted repetition orders properties:
— repetitions allow a ‘“virtual backbone” of H atoms only
— discretization edges: {v,v — i} covalent bonds for i € {1, 2},
{v,v — 3} sometimes covalent sometimes from NMR
— most NMR data restricted to pruning edges

e VWhen dv,v—3 IS an interval: intersect two spheres with sph. shell
dL

e Discretize circular segments and run BP with modified S
Algorithm no longer exhaustive
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Die Symmetriktheoriedammerung

e Intervals and discretization break‘the theory of symmetries

e Only some bounds for the number b of BP solutions:
= 2€qlC <b< Qn_3qM

q = |discretization points|, M = |NMR discretization edges|
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But at least it’s producing results

Joint work with Institut Pasteur

[Cassioli et al., BMC Bioinf., submitted]
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General approximate methods

e All these methods are specialized to
protein distance data fromm NMR

e What about general approximate methods?

e Assume large-sized input data with errors

e NO assumptions on graph structure
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Ingredients

e PDM Partial Distance Matrix (a representation of G)

e EDM Euclidean Distance Matrix

1. Complete the given PDM d to a symmetric matrix D

2. Find a realization z (in some dimension K)
s.t. the EDM (||xy — xv]|) is “close” to D

3. Project =z from dimension K to dimension K,
keeping pairwise distances approximately equal
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Completing the distance matrix

o V{u,v} € F let Dy, = length of the shortest path u — v

e Use Floyd-Warshall's algorithm O(n3)

// n xmn array D;; to store distances
D=0
for {i,j} € E do
end for
for k€ V do
for j €V do
for : €V do
if Dik -+ ij < DZJ then
// D;; fails to satisfy triangle inequality, update
Dij = D + Dy;
end if
end for
end for
end for

=t

0N R WN

e e T e = T
o R 0N = O
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Finding a realization

e Let's give ourselves many dimensions, say K = n
e Attempt to find =z : V — R™ with (||zy — zv||2) = (Duv)

e If we had the Gram matrix B of z, then:
1. find eigen(value/vector) matrices A, Y of B
2. since B is PSD, A > 0 = VA exists
3. = B=YAY! = (YVANYVA)

4. = Y+/A is such that zz' = B

e Can we compute B from D7
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Schoenberg’s theorem

¢ Standard method for computing B from D?
e Also known as classic MultiDimensional Scaling (MDS)

e Apply many algebraic manipulations to

T T T

d’IQLU — HCUU,_CUUHQ — Ty xu+xv xv_zxu Ly

where the centroid > z,. =0 for all u <n

kE<n
o Get B = —3(In — +1,)D%(In — 11,), i.e
Ly - CB’U——Z(dk‘I'de)_dQQw_ dehk
k<n h<n

k<n

e D “approximately” EDM = B “approximately” Gram

[Schoenberg, Annals of Mathematics, 1935]
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Project to R¥ for a given K

e Only use the K largest eigenvalues of A

e Y[K] = K columns of Y corresp. to K largest eigenvalues
e N[K] = K largest eigenvalues of A on diagonal

o r — Y[K]\/m is a K x n matrix

® Y[K] span the subspace where x ‘“fills more space”, i.e. neglecting other

dimensions causes smaller errors w.r.t. the realization in R"

This method is called Principal Component Analysis (PCA)
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Isomap

Given K and PDM d:

1. D = FloydWarshall(qd)

MDS(D)
— PCA(B

2. B=
3. x

K)

Y

[Tenenbaum et al. Science 2000]
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THE END



