Euclidean Distance Geometry

Leo Liberti
IBM Research, USA
CNRS LIX Ecole Polytechnique, France

MFD 2014, Campinas

Table of contents

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations

Applications

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations

Clock Synchronization

[Singer, 2011]

Sensor network localization

[Yemini, 1978]

Protein conformation from NMR data

[Crippen & Havel 1988]

Clock synchronization: solutions

Definition

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations

Distance Geometry Problem (DGP)

Given:

- a simple graph G = (V, E)
- an edge function $d:E\to\mathbb{R}_{>0}$
- an integer $K \in \mathbb{N}$

Determine whether \exists :

a realization
$$x: V \to \mathbb{R}^K$$
 s.t. $\forall \{u, v\} \in E \quad ||x_u - x_v||_2 = d_{uv}$

More applications

- Autonomous underwater vehicles [Bahr et al. 2009]
- Statics of rigid structures [Maxwell 1864]
- Matrix completion [Laurent 2009]
- Statistics [Boer 2013]
- Psychology [Kruskal 1964]

Complexity primer

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations

Definitions

- <u>Decision problem</u>: mathematical YES/NO-type question depending on a parameter vector π
- Instance: same as above with π replaced by given values v
- Certificate: proof that a given answer is true
- P: all decision problems solvable in at most $p(|\pi|)$ steps where p is a polynomial
- **NP**: all decision problems with |YES certificate| $\leq p(|\pi|)$ where p is a polynomial

Reductions

- P,Q: decision problems
- If \exists algorithm A which:
 - 1. reformulates instances \bar{P} of P into instances \bar{Q} of Q
 - 2. has answer(\bar{P}) = YES iff answer($A(\bar{Q})$) = YES
 - 3. is polytime in the *instance size* $|\bar{P}|$

then A is a reduction of P to Q

NP-hardness

- ullet Q is **NP**-hard if every problem in **NP** reduces to Q
- Q is NP-complete if it is NP-hard and is in NP

Why does it work?

any P in **NP** — polytime reduction Q: how hard?

- ullet Suppose Q easier than P
- Solve P by reducing to Q in polytime and then solve Q
- Then P as easy as Q, against assumption
- ullet \Rightarrow Q at least as hard as P

So if Q is **NP**-hard it is as hard as any problem in **NP**

 $\Rightarrow Q$ is as hard as the hardest problem in NP

NP-hardness proofs

Given a new problem Q, take any known \mathbf{NP} -hard problem P and reduce it to Q

Why does it work?

 $P: \mathbf{NP}\text{-hard} \xrightarrow{\text{polytime reduction}} Q: \text{ how hard?}$

- As before: Suppose . . . (etc.) $\Rightarrow Q$ at least as hard as P
- Since P is **NP**-hard, it is hardest in **NP**, and so is Q

 $\Rightarrow Q$ is **NP**-hard

Complexity of the DGP

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations

$DGP \in NP$?

- NP: YES/NO problems with polytime-checkable proofs for YES
- DGP is a YES/NO problem
- DGP₁ \in **NP**, since $d_{uv} = |x_u x_v| \Rightarrow (d \in \mathbb{Q} \rightarrow x \in \mathbb{Q})$
- ullet Solutions might involve irrational numbers when K>1
- Some empirical evidence that DGP ∉ NP [Beeker et al. 2013]

The DGP is NP-hard

Partition

Given
$$a=(a_1,\ldots,a_n)\in\mathbb{N}^n$$
, $\exists~I\subseteq\{1,\ldots,n\}$ s.t. $\sum\limits_{i\in I}a_i=\sum\limits_{i\not\in I}a_i$?

- Reduce (NP-hard) Partition to DGP₁
- $a \longrightarrow \text{cycle } C \text{ with } V(C) = \{1, ..., n\}, \ E(C) = \{\{1, 2\}, ..., \{n, 1\}\}$
- For i < n let $d_{i,i+1} = a_i$, and $d_{n,n+1} = d_{n,1} = a_n$
- E.g. for a = (1, 4, 1, 3, 3), get cycle graph:

[Saxe, 1979]

Partition is YES \Rightarrow DGP₁ is YES

• Given:
$$I \subset \{1, \ldots, n\}$$
 s.t. $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$

• Construct: realization x of C in \mathbb{R}

1.
$$x_1 = 0$$
 // start

2. induction step: suppose x_i known

• Correctness proof: by the same induction but careful when i = n: have to show $x_{n+1} = x_1$

$$I = \{1, 2, 3\}$$

Partition is YES \Rightarrow DGP₁ is YES

$$(1) = \sum_{i \in I} (x_{i+1} - x_i) = \sum_{i \in I} d_{i,i+1} =$$

$$= \sum_{i \in I} a_i = \sum_{i \notin I} a_i =$$

$$= \sum_{i \notin I} d_{i,i+1} = \sum_{i \notin I} (x_i - x_{i+1}) = (2)$$

$$(1) = (2) \Rightarrow \sum_{i \in I} (x_{i+1} - x_i) = \sum_{i \notin I} (x_i - x_{i+1}) \Rightarrow \sum_{i \le n} (x_{i+1} - x_i) = 0$$
$$\Rightarrow (x_{n+1} - x_n) + (x_n - x_{n-1}) + \dots + (x_3 - x_2) + (x_2 - x_1) = 0$$
$$\Rightarrow x_{n+1} = x_1$$

Partition is $NO \Rightarrow DGP_1$ is NO

- \bullet By contradiction: suppose DGP₁ is YES, x realization of C
- $F = \{\{u, v\} \in E(C) \mid x_u \leq x_v\}, E(C) \setminus F = \{\{u, v\} \in E(C) \mid x_u > x_v\}$
- Trace x_1, \ldots, x_n : follow edges in $F(\rightarrow)$ and in $E(C) \setminus F(\leftarrow)$

• Let $J = \{i < n \mid \{i, i+1\} \in F\} \cup \{n \mid \{n, 1\} \in F\}$

$$\Rightarrow \sum_{i \in J} a_i = \sum_{i \notin J} a_i$$

- So J solves Partition instance, contradiction
- $\bullet \Rightarrow \mathsf{DGP}$ is **NP**-hard, DGP_1 is **NP**-complete

Number of solutions

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations

With congruences

- (G,K): DGP instance
- $\tilde{X} \subseteq \mathbb{R}^{Kn}$: set of solutions
- Congruence: composition of translations, rotations, reflections
- $C = \text{set of congruences in } \mathbb{R}^K$
- $x \sim y$ means $\exists \rho \in C \ (y = \rho x)$: distances in x are preserved in y through ρ
- $\bullet \Rightarrow \text{if } |\tilde{X}| > 0, |\tilde{X}| = 2^{\aleph_0}$

Modulo congruences

ullet Congruence is an equivalence relation \sim on $ilde{X}$ (reflexive, symmetric, transitive)

- ullet Partitions \tilde{X} into equivalence classes
- $X = \tilde{X}/\sim$: sets of representatives of equivalence classes
- ullet Focus on |X| rather than $|\tilde{X}|$

Cardinality of X

- infeasible $\Leftrightarrow |X| = 0$
- rigid graph $\Leftrightarrow |X| < \aleph_0$
- globally rigid graph $\Leftrightarrow |X| = 1$
- flexible graph $\Leftrightarrow |X| = 2^{\aleph_0}$
- $|X| = \aleph_0$: impossible by Milnor's theorem

Milnor's theorem implies $|X| \neq \aleph_0$

ullet System S of polynomial equations of degree d

$$\forall i \leq m \quad p_i(x_1, \dots, x_{nK}) = 0$$

- ullet Let X be the set of $x \in \mathbb{R}^{nK}$ satisfying S
- Number of connected components of X is $\leq d(2d-1)^{nK-1}$ [Milnor 1964]
- ullet If |X| is countable then G cannot be flexible
 - \Rightarrow incongruent elements of X are separate connected components
 - ⇒ by Milnor's theorem, there's finitely many of them

Examples

$$V^{1} = \{1, 2, 3\}$$

$$E^{1} = \{\{u, v\} \mid u < v\}$$

$$d^{1} = 1$$

$$V^{2} = V^{1} \cup \{4\}$$

$$E^{2} = E^{1} \cup \{\{1, 4\}, \{2, 4\}\}\}$$

$$d^{2} = 1 \wedge d_{14} = \sqrt{2}$$

$$V^{3} = V^{2}$$

$$E^{3} = \{\{u, u+1\} | u \leq 3\} \cup \{1, 4\}$$

$$d^{1} = 1$$

$$\rho$$
 reflects x_4 wrt $\overline{x_1, x_2}$
 $\Rightarrow \rho x$ valid realization
 $|X| = 2 \; (\triangle, \widehat{})$

 ρ rotates $\overline{x_2x_3}$, $\overline{x_1x_4}$ by θ $\Rightarrow \rho x$ valid realization |X| is uncountable $(\Box, \angle J, \angle J, \angle J, \ldots)$

Mathematical optimization formulations

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations

System of quadratic constraints

$$\forall \{u, v\} \in E \qquad \|x_u - x_v\|^2 = d_{uv}^2$$

- Around 10 vertices
- Computationally useless

Quadratic objective

$$\min_{x \in \mathbb{R}^{nK}} \sum_{\{u,v\} \in E} (\|x_u - x_v\|^2 - d_{uv}^2)^2$$

- ullet Globally optimal value **zero** iff x is a realization of G
- sBB: 10-100 vertices, exact solutions
- heuristics: 100-1000 vertices, poor quality

Convexity and concavity

$$\max_{x \in \mathbb{R}^{nK}} \quad \sum_{\{u,v\} \in E} ||x_u - x_v||^2$$

$$\forall \{u,v\} \in E \quad ||x_u - x_v||^2 \le d_{uv}^2$$

- Convex constraints, concave objective
- Computationally no better than "quadratic objective"

Pointwise reformulation

$$\max_{x \in \mathbb{R}^{nK}} \quad \sum_{\{u,v\} \in E, k \le K} \theta_{uvk} (x_{uk} - x_{vk})$$
$$\forall \{u,v\} \in E \quad \|x_u - x_v\|^2 \le d_{uv}^2$$

- ullet Convex subproblem in stochastic iterative heuristics "guess heta and solve"
- 100-1000 vertices, good quality

[L. IOS14/MAGO14(slides)]

SDP formulation

$$\min_{X \succeq 0} \sum_{\{u,v\} \in E} (X_{uu} + X_{vv} - 2X_{uv})$$

$$\forall \{u,v\} \in E \quad X_{uu} + X_{vv} - 2X_{uv} \ge d_{uv}^{2}$$

- Similar to those of Ye, Wolkowicz works better for proteins
- 100 vertices, good quality

Realizing complete graphs

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations

Cliques

2-clique

3-clique

4-clique

(K+1)-clique = K-clique \oplus a vertex

Triangulation

Example: realize triangle on a line

• From $||x_3 - x_1|| = 2$ and $||x_3 - x_2|| = 1$ get

$$x_3^2 - 2x_1x_3 + x_1^2 = 4 (1)$$

$$x_3^2 - 2x_2x_3 + x_2^2 = 1. (2)$$

• (2) - (1) yields

$$2x_3(x_1 - x_2) = x_1^2 - x_2^2 - 3$$

$$\Rightarrow 2x_3 = 4,$$

• Hence $x_3 = 2$

Realizing a (K+1)-clique in \mathbb{R}^{K-1}

- Apply triangulation inductively on K assume $x_1, \ldots, x_K \in \mathbb{R}^{K-1}$ known, compute $y = x_{K+1}$
- K quadratic eqns $(\forall j \leq K \ \|y x_j\|^2 = d_{j,K+1}^2)$ in K-1 vars $\begin{cases} \|y\|^2 2x_1 \cdot y + \|x_1\|^2 &= d_{1,K+1}^2 \\ &\vdots \\ \|y\|^2 2x_K \cdot y + \|x_K\|^2 &= d_{KK+1}^2 \end{cases}$ [1]
- Form system $\forall j \leq K ([j] [K])$

$$\begin{cases}
2(x_1 - x_K) \cdot y &= ||x_1||^2 - ||x_K||^2 - d_{1,K+1}^2 + d_{K,K+1}^2 & [1] - [K] \\
\vdots & \vdots & \vdots \\
2(x_{K-1} - x_K) \cdot y &= ||x_{K-1}||^2 - ||x_K||^2 - d_{K-1,K+1}^2 + d_{K,K+1}^2 & [K-1] - [K]
\end{cases}$$

• This is a $(K-1) \times (K-1)$ linear system Ay = b

Solve to find y

[Dong, Wu 2002]

"Solve"?

- 1. What if A is singular?
- 2. Or: A nonsingular but instance is NO

Singularity: rkA = K - 2

One row $x_j - x_K$ of A depends on the others

K = 2	triangle in \mathbb{R}^1	$x_1 - x_2 = 0$	$x_3? x_1 = x_2 x_3?$
K = 3	4-clique in \mathbb{R}^2	x_1, x_2, x_3 on a line	x_4 ? x_1 x_2 x_4 ?
K = 4	5-clique in \mathbb{R}^3	x_1, \ldots, x_4 in a plane	x_{1} x_{2} x_{3} x_{4} x_{5} ?

Trend continues: $\operatorname{rk} A = K - 2 \Rightarrow |X| = 2$ (see later)

Two rows $x_j - x_k$ depend on the others

Trend continues: [Hendrickson, 1992]

Thm. 5.8. If a graph G is connected, flexible and has more than K vertices, |X| contains almost always a submanifold diffeomorphic to a circle

Hendrickson's theorem also applies to non-cliques

Nonsingular matrix A with NO instance

- Infeasible quadratic system $\forall j \leq K+1 \ \|x_j-x_K\|^2 = d_{jK}$
- ullet Take differences, get nonsingular A and value for x_K
- ... but it's wrong!

Shit happens!

Every time you solve the linear system Ay = b check feasibility with quadratic system

Algorithm for realizing complete graphs in \mathbb{R}^K

- Assume:
 - (i) G = (V, E) complete
 - (ii) $|V| = n \ge K + 2$
- (iii) we know x_1, \ldots, x_{K+1}
- ullet Increase K: we know how to realize x_{K+2} in \mathbb{R}^K
- Use this inductively for each $i \in \{K + 2, ..., n\}$

Algorithm for realizing complete graphs in \mathbb{R}^K

```
// realize next vertex iteratively
for i \in \{K + 2, ..., n\} do
   // use (K+1) immediate adjacent predecessors to compute x_i
   if rkA = K then
      x_i = A^{-1}b // A, b defined as above
   else
      x_i = \infty // A singular, mark \infty and exit
      break
   end if
   // check that x_i is feasible w.r.t. other distances
   for \{j \in N(i) \mid j < i\} do
      if ||x_i - x_j|| \neq d_{ij} then
         // if not, mark infeasible and exit loop *
         x_i = \emptyset
         break
      end if
   end for
   if x_i = \emptyset then
      break
   end if
end for
return x
```

^{*} the "ignore trouble" policy, a.k.a. "ignore probability zero events"

Complexity of Alg. 1

- Outer loop: O(n)
- Rank and inverse of $A: O(K^3)$
- Inner loop: O(n)
- Get $O(n^2K^3)$
- ullet But in most applications K is fixed
- Get $O(n^2)$

But how do we find the realization of the first K + 1 vertices?

Realizing (K+1)-cliques in \mathbb{R}^K

- Realizing (K+1)-cliques in \mathbb{R}^{K-1} yields "flat simplices" (e.g. triangles on lines)
- ullet Use "natural" embedding dimension \mathbb{R}^K
- Same reasoning as above: get system Ay = b where $y = x_{K+1}$ and $A_j = 2(x_j x_K)$
- But now A is $(K-1) \times K$
- Same as previous case with A singular

Almost square

How can you solve the following system Ay = b:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1K} \\ \vdots & \vdots & \ddots & \vdots \\ a_{K-1,1} & a_{K-1,2} & \dots & a_{K-1,K} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_{K-1} \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_{K-1} \end{pmatrix}$$

where A has one more columns than rows and rank K-1?

Basics and nonbasics

- Since $\operatorname{rk} A = K 1$, $\exists K 1$ linearly independent columns
- B: set of their indices
- \bullet \mathcal{N} : index of remaining columns
- $B: (K-1) \times (K-1)$ square matrix of columns in \mathcal{B}
- $\bullet \Rightarrow B$ is nonsingular
- Can partition columns as A = (B|N)Column j corresponds to variable y_j
- Variables $y_{\mathcal{B}}$ are called *basic variables*
- Variable $y_{\mathcal{N}}$ is called *nonbasic variable*

The dictionary

$$(B|N)y = b$$

$$\Rightarrow By_{\mathcal{B}} + Ny_{\mathcal{N}} = b$$

$$\Rightarrow y_{\mathcal{B}} = B^{-1}b - B^{-1}Ny_{\mathcal{N}}$$

Basics expressed in function of nonbasic

One quadratic equation

ullet From value of $y_{\mathcal{N}}$, can use dictionary to get y

• Use one quadratic equation

- 1. Pick any $h \in \{1, ..., K-1\}$, equation is $||x_h y||_2^2 = d_{hK}^2$
- 2. $y = (y_{\mathcal{B}}|y_{\mathcal{N}})^{\top}$
- 3. Replace $y_{\mathcal{B}}$ with $B^{-1}b B^{-1}Ny_{\mathcal{N}}$ in equation
- 4. Solve resulting quadratic equation in one variable $y_{\mathcal{N}}$
- 5. Get 0,1 or 2 values for y_N
- 6. \Rightarrow Get 0,1 or 2 positions for x_{K+1}

What if $B^{-1}N$ is zero?

• $y_{\mathcal{B}} = B^{-1}b - B^{-1}Ny_{\mathcal{N}}$ reduces to $y_{\mathcal{B}} = B^{-1}b$

• Use one quadratic equation

- 1. Pick any $h \in \{1, \dots, K-1\}$, equation is $||x_h y||_2^2 = d_{hK}^2$
- 2. $y = (y_{\mathcal{B}}|y_{\mathcal{N}})^{\top}$
- 3. Replace $y_{\mathcal{B}}$ with $B^{-1}b$ in equation
- 4. Solve resulting quadratic equation in one variable $y_{\mathcal{N}}$
- 5. Get 0,1 or 2 values for y_N
- 6. \Rightarrow Get 0,1 or 2 positions for x_{K+1}

The difference

- $B^{-1}N \neq 0$: $y_{\mathcal{N}} \xrightarrow{\text{dictionary}} y_{\mathcal{B}}$
- Different values $y_{\mathcal{N}}^+ \neq y_{\mathcal{N}}^- \longrightarrow y^+, y^-$ with different components
- $B^{-1}N = 0$: $y_{\mathcal{B}} \xrightarrow{\text{quadratic eqn.}} y_{\mathcal{N}}$
- Even if $y_{\mathcal{N}}^+ \neq y_{\mathcal{N}}^-$, K-1 components of y^+, y^- are equal $aff(x_1, \dots, x_{K-1}) = \{y \in \mathbb{R}^K \mid y_{\mathcal{N}} = 0\}$

The case of no solutions

ullet No realizations exist for this (K+1)-clique in \mathbb{R}^K

DGP instance is NO

The case of one solution

• Assume for simplicity: $\mathcal{N}=K$, h=1, $B^{-1}N\neq 0$ Then $\|x_h-y\|^2=d_{h,K+1}^2$ becomes:

$$\lambda y_K^2 - 2\mu y_K + \nu = 0$$
, where $\lambda = 1 + \sum_{\ell,j < K} \beta_{\ell j}^2 a_{jK}^2$ $\mu = x_{1K} + \sum_{\ell,j < K} \beta_{\ell j} a_{jK} (\beta_{\ell j} b_{\ell} - x_{1\ell})$ $\nu = \sum_{\ell,j < K} \beta_{\ell j} b_{\ell} (\beta_{\ell j} b_{\ell} - 2x_{1\ell}) + \|x_1\|^2 - d_{1,K+1}^2$

- (Exactly one solution for y_K) $\Leftrightarrow \mu^2 = \lambda \nu$, not a tautology
- The set of all (K+1)-clique DGP instances in \mathbb{R}^K s.t. $\mu^2=\lambda\nu$ has Lebesgue measure 0
- Ignore them, they happen with probability* 0!

^{*} Assuming continuous distributions over the reals. For floating point number, who knows? . . . but we'll ignore these instances anyhow

Discriminant > 0, = 0

The case of two solutions

- K spheres $\mathbb{S}_1^{K-1}, \dots, \mathbb{S}_K^{K-1}$ in \mathbb{R}^K centered at x_1, \dots, x_K with radii $d_{1,K+1}, \dots, d_{K,K+1}$
- x_{K+1} must be at the intersection of $\mathbb{S}_1^{K-1}, \dots, \mathbb{S}_K^{K-1}$
- If $\bigcap_{j} \mathbb{S}_{j}^{K-1} \neq \emptyset$, then $|\bigcap_{j} \mathbb{S}_{j}^{K-1}| = 2$ in general

will not mention "probability 0" or "in general" anymore

Mirror images

• Let $x^+ = \{x_1, \dots, x_K, x_{K+1}^+\}$, $x^- = \{x_1, \dots, x_K, x_{K+1}^-\}$ assume dim aff $(x_1, \dots, x_K) = K$ (†)

Theorem

 $x^+, x^- \in \mathbb{R}^K$ are reflections w.r.t. hyperplane defined by x_1, \dots, x_K

- Proof
 - 1. x^+, x^- congruent by construction
 - 2. $\forall i \leq K \ x_i \in x^+ \cap x^- \to x^+, x^- \text{ not translations}$
 - 3. $|x^+ \cap x^-| = K < |x^+| = |x^-| \to x^+, x^- \text{ not rotations by (†)}$
 - 4. \Rightarrow must be reflections

Algorithm for realizing (K+1)-cliques in \mathbb{R}^K

```
// realize 1 at the origin
x_1 = (0, \dots, 0)
// realize next vertex iteratively
for \ell \in \{2, ..., K+1\} do
   // at most two positions in \mathbb{R}^{\ell-1} for vertex \ell
  S = \bigcap \mathbb{S}_i^{\ell-2}
  if S = \emptyset then
      // warn if infeasible
      return 0
   end if
   // arbitrarily choose one of the two points
   choose any x_{\ell} \in S
end for
// return feasible realization
return x
```

Complexity of Alg. 2

- Outer loop: O(K)
- Gaussian elimination on $A: O(K^3)$
- Some messing about to obtain x_{K+1}^+, x_{K+1}^- : $+O(K^2)$
- Get $O(K^4)$
- ullet But in most applications K is fixed
- **Get** O(1)

Back to complete graphs

- Alg. 2: realize $1, \ldots, K+1$ in \mathbb{R}^K : O(1)
- Alg. 1: Realize K + 2, ..., n: $O(n^2)$
- $\bullet \Rightarrow O(n^2)$
- What about |X|?
 - Alg. 1 is deterministic: one solution from x_1, \ldots, x_{K+1}
 - Alg. 2 is stochastic: pick one of two values K times

$$\Rightarrow |X| = 2^K$$

K-trilaterative graphs

- In Alg. 1 we only need each v > K+1 to have K+1 adjacent predecessors in order to find a unique solution for x_v
- Determination of x_v from K+1 adjacent predecessors: K-trilateration
- *K*-trilaterative graph:
 - (i) has a vertex order ensuring this property
 - (ii) the initial K+1 vertices induce a (K+1)-clique the order is called K-trilateration order
- Alg. 1 realizes all K-trilaterative graphs

The DGP restricted to K-trilaterative graphs in \mathbb{R}^K is easy

[Eren et al. 2004]

The story so far

- Lots of nice applications
- DGP is NP-hard
- May have 0, 1, finitely many or 2^{\aleph_0} solutions modulo congruences
- Continuous optimization techniques don't scale well
- ullet Using K+1 adjacent predecessors, realize K-trilaterative graphs in \mathbb{R}^K in polytime
- Do we $need\ K+1$ adjacent predecessors, or can we do with less?

The Branch-and-Prune algorithm

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations

Fewer adjacent predecessors

- ullet Alg. 2 only needs K adjacent predecessor
- \bullet Extend to n vertices: (K-1)-trilaterative graphs
- Can we realize (K-1)-trilaterative graphs in \mathbb{R}^K ?
- A small case: graph consisting of two K+1 cliques

Take a closer look...

- ullet Realization of a K+1 clique in \mathbb{R}^K knowing x_1,\ldots,x_K
- We know how to do that!
- Consistent with 2 solutions for x_5 , reflected across plane through x_2, x_3, x_4

Discretization and pruning edges

- (K-1)-trilaterative graph G=(V,E): $\forall v>K \exists U_v \subset V \ (|U_v|=K \ \land \ \forall u \in U_v(u < v) \ \land \ \{u,v\} \in E)$
- Discretization edges:

$$E_D = \underbrace{\{\{u,v\} \in E \mid u,v \leq K\}}_{\text{initial clique}} \, \cup \, \underbrace{\{\{u,v\} \in E \mid v > K \land u \in U_v\}}_{\text{vertex order}}$$

• Pruning edges $E_P = E \setminus E_D$

Role of discretization edges

Role of pruning edges

No pruning edges: 8 incongruent realizations in \mathbb{R}^2

Role of pruning edges

Pruning edge {1,4}: only 4 realizations remain valid

Motivation

Protein backbones

 \bullet Total order < on V

- Covalent bond distances: $\{u-1,u\} \in E$
- Covalent bond **angles**: $\{u-2,u\} \in E$
- NMR experiments: $\{u-3,u\} \in E$ (and other edges $\{u,v\}$ with v-u>3)

Generalize "3" to K

[Lavor et al., COAP 2012]

KDMDGP graphs

Generalization of **protein backbone order**:

v > K is adjacent to K immediate predecessors $v - 1, \dots, v - K$

KDMDGP: Discretizable Molecular Distance Geometry Problem

The Branch-and-Prune (BP) algorithm

$BP(v, \bar{x}, X)$:

- 1. Given v > K, realization $\bar{x} = (x_1, \dots, x_{v-1})$
- 2. Compute $S = \bigcap_{u \in U_v} \mathbb{S}_u^{K-1}$
- 3. For each $x_v \in S$ s.t. $\forall \{u, v\} \in E_P \ (u < v \to ||x_u x_v|| = d_{uv})$
 - (a) let $x = (\bar{x}, x_v)$
 - (b) if v = n add x to X, else call $\mathbf{BP}(v+1, x, X)$
- Recursive: starts with $BP(K+1, (x_1, ..., x_K), \varnothing)$
- All realizations in X are incongruent*
- ullet Can be easily modified to find only p solutions for given p
- ullet Applies to all (K-1)-trilaterative graphs in \mathbb{R}^K
- Specialize to KDMDGP graph by setting $U_v = \{v-1, \dots, v-K\}$
- * with probability 1, and aside from *one* reflection at v = K + 1 [L. et al. ITOR 2008]

Complexity of BP

- Most operations are $O(K^h)$ for some fixed $h \Rightarrow O(1)$
- Distance check at Step 3: O(n)
- Recursion on at most 2 branches at each call: binary tree
- Only recurse when v > K, v < n: 2^{n-K} nodes
- Overall $O(n2^{n-K}) = O(2^n)$

Worst-case exponential behaviour

Hardness of KDMDGP

- The ${}^{\mathsf{K}}\mathsf{DMDGP}$ is NP -hard for each K
 - every DGP instance is also DMDGP if K=1
 - reduction from Partition can be extended to any K

- \bullet (K-1)-trilateration graphs are **NP**-hard by inclusion
- No polytime algorithm unless P=NP

Trilaterative graphs in \mathbb{R}^K are complexitywise borderline at K

Correctness

Thm.

When BP terminates, X contains every incongruent realization of G

Proof.

ullet Let $ar{y}$ be any realization of G

• Since G has an initial K-clique, can rotate/translate/reflect \bar{y} to y[K] = x[K] for all $x \in X$

ullet BP exhaustively constructs every extension of x[K] which is feasible with all distances, so $y \in X$

Two examples

Empirical observations

- Fast: up to 10k vertices in a few seconds on 2010 hardware
- **Precise**: errors in range $O(10^{-9})-O(10^{-12})$
- Number of solutions always a power of 2: obvious if $E_P = \emptyset$, but otherwise mysterious
- Linear-time behaviour on proteins: this really shouldn't happen

Symmetry in the KDMDGP

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations
- [L. et al. DAM 2014]

Partial reflections

• For each v > K, let

$$g_v(x) = (x_1, \dots, x_{v-1}, R_x^v(x_v), \dots, R_x^v(x_n))$$

be the partial reflection of x w.r.t. v

- ullet Note: the g_v 's are idempotent operators
- $G_D = (V, E_D)$: subgraph of G given by discretization edges
- $\forall v > K$ reflection R_x^v gives a binary choice in general*
- $X_D \subset \mathbb{R}^{nK}$ contains 2^{n-K} incongruent realizations of G_D

^{*} subsequent results hold "with probability 1"

Discretization group

- $\mathcal{G}_D = \langle g_v \mid v > K \rangle$: the discretization group of G w.r.t. K subgroup of a Cartesian product of reflection groups
- ullet An element $g\in \mathscr{G}_D$ has the form $\underset{v>K}{\otimes} g_v^{a_v}$, where $a_v\in \{0,1\}$
- Action of \mathscr{G}_D on X_D : $g(x) = \left(g_{K+1}^{a_{K+1}} \circ \cdots \circ g_n^{a_n}\right)(x)$

Commutativity of partial reflections

Lemma A \mathscr{G}_D is Abelian

Proof Assume K < u < v. Then

$$g_{u}g_{v}(x) = g_{u}(x_{1}, \dots, x_{v-1}, R_{x}^{v}(x_{v}), \dots, R_{x}^{v}(x_{n}))$$

$$= (x_{1}, \dots, x_{u-1}, R_{g_{v}(x)}^{u}(x_{u}), \dots, R_{g_{v}(x)}^{u}R_{x}^{v}(x_{v}), \dots, R_{g_{v}(x)}^{u}R_{x}^{v}(x_{n}))$$

$$= (x_{1}, \dots, x_{u-1}, R_{x}^{u}(x_{u}), \dots, R_{g_{u}(x)}^{v}R_{x}^{u}(x_{v}), \dots, R_{g_{u}(x)}^{v}R_{x}^{u}(x_{n}))$$

$$= g_{v}(x_{1}, \dots, x_{u-1}, R_{x}^{u}(x_{u}), \dots, R_{x}^{u}(x_{n}))$$

$$= g_{v}g_{u}(x)$$

where equality of these terms holds by a Technical Lemma (next slide)

Commutativity of partial reflections

Technical Lemma

(Proof sketch for K=2) Let $y \perp \mathsf{Aff}(x_{v-1},\ldots,x_{v-K})$ and $\rho^y = R_x^v$

One realization generates all others

Lemma B The action of \mathscr{G}_D on X_D is transitive

Proof By induction on v: assume result holds to v-1 with g', then either it holds for v and g=g', else flip and let $g=g_vg'$

[L. et al. 2013]

Structure and invariance

ullet \mathscr{G}_D is Abelian and generated by n-K idempotent elements

$$\Rightarrow \mathscr{G}_D \cong C_2^{n-K}$$

• $\mathscr{G}_D \leq \operatorname{Aut}(X_D)$ by construction

Solution sets

- ullet X: set of incongruent realizations of G
- ullet G_D defined on same vertices but fewer edges
 - ⇒ fewer distance constraints on realizations
 - ⇒ more realizations
- ullet All realizations of G are also realizations of G_D

$$\Rightarrow X \subseteq X_D$$

Losing invariance on pruning edges

Lemma C Let $W^{uv} = \{u + K + 1, \dots, v\}$ be the range of $\{u, v\}$ $\forall x \in X, \ u, w, v \in V \ (w \in W^{uv} \leftrightarrow ||x_u - x_v|| \neq ||g_w(x)_u - g_w(x)_v||)$

Proof sketch for K = 2

Corollary If $\{u,v\} \in E_P$ and $w \in W^{uv}$, $g_w(x) \notin X$

[L. et al. 2013]

Pruning group

Define:

$$\Gamma = \{g_w \in \mathscr{G}_D \mid w > K \land \forall \{u, v\} \in E_P \ (w \notin W^{uv})\}$$

$$\mathscr{G}_P = \langle \Gamma \rangle$$

Lemma D X is invariant w.r.t. \mathscr{G}_P

Proof

Follows by corollary, invariance of X_D w.r.t. \mathscr{G}_D and $X\subseteq X_D$

Transitivity of the pruning group

Lemma E The action of \mathscr{G}_P on X is transitive

- Given $x, y \in X$, aim to show $\exists g \in \mathscr{G}_P \ (y = g(x))$
- Lemma B $\Rightarrow \exists g \in \mathscr{G}_D$ with $y = g(x) \in X_D$
- Suppose $g \notin \mathscr{G}_P$ and aim for a contradiction
- ullet $\Rightarrow \exists \{u,v\} \in E_P \text{ and } w \in W^{uv} \text{ s.t. } g_w \text{ is a component of } g$
- Lemma C $\Rightarrow ||g_w(x)_u g_w(x)_v|| \neq d_{uv}$
- If w is the only such vertex, $y = g(x) \neq x$ against hypothesis, done
- Suppose \exists another $z \in W^{uv}$ s.t. g_z is a component of g
- Set of cases s.t. $||x_u x_v|| = ||g_z g_w(x)_u g_z g_w(x)_v||$ given $||g_w(x)_u g_w(x)_v|| \neq ||x_u x_v|| \neq ||g_z(x)_u g_z(x)_v||$ has Lebesgue measure 0 in all DGP inputs
- ullet By induction, holds for any number of components g_z of g with $z \in W^{uv}$
- $\Rightarrow y = g(x) \neq x$ against hypothesis, done

The main result

Theorem $|X| = 2^{|\Gamma|}$

- Lemma A $\Rightarrow \mathscr{G}_D \cong C_2^{n-K} \Rightarrow |\mathscr{G}_D| = 2^{n-K}$
- $\mathscr{G}_P \leq \mathscr{G}_D \Rightarrow \exists \ell \in \mathbb{N} \ (\mathscr{G}_P \cong C_2^{\ell})$, with $\ell = |\Gamma|$
- Lemma E $\Rightarrow \forall x \in X$ $\mathscr{G}_P x = X$
- Idempotency $\Rightarrow \forall g \in \mathscr{G}_P \quad g^{-1} = g$ $\Rightarrow \forall g, h \in \mathscr{G}_P, x \in X \ (gx = hx \to h^{-1}gx = x \to hgx = x \to hg = I \to h = g^{-1} = g)$ \Rightarrow the mapping $\mathscr{G}_P x \to \mathscr{G}_P$ given by $gx \to g$ is injective
- $\forall g, h \in \mathcal{G}_P, x \in X \ (g \neq h \to gx \neq hx)$ \Rightarrow the mapping $gx \to g$ is surjective
- \Rightarrow the mapping $gx \rightarrow g$ is a bijection
- $\bullet \Rightarrow |\mathscr{G}_P x| = |\mathscr{G}_P|$
- $\Rightarrow \forall x \in X$ $|X| = |\mathscr{G}_P x| = |\mathscr{G}_P| = 2^{|\Gamma|}$

[L. et al. 2013]

Symmetry-aware BP

- Don't need to explore all branches of BP tree
- Build
 Г as a pre-processing step
- Run BP, terminating as soon as |X| = 1
- For each $g \in \mathscr{G}_P$, compute gx

Complexity

- Computing Γ : O(mn)
 - 1. initialize indicator vector $\iota = (\iota_{K+1}, \ldots, \iota_n)$ for $g_v \in \Gamma$
 - 2. initialize $\iota = 1$
 - 3. for each $\{u,v\} \in E_P$ and $w \in W^{uv}$ let $\iota_w = 0$
- BP: $O(2^n)$
- Compute gx for each $g \in \mathscr{G}_P$: $O(2^{|\Gamma|})$
- Overall: $O(2^n)$
- Gains depend on the instance

Tractability of protein instances

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations

[L. et al. 2013]

Max depth: n, looks good! Aim to prove width is bounded

Number of solutions at each BP tree level

Depends on range of longer pruning edge incident to level v

Periodic pruning edges

- 2^{ℓ} growth up to level ℓ , then constant: $O(2^{\ell}n)$ nodes in BP tree
- BP is Fixed-Parameter Tractable (FPT) in a bunch of cases
- For all tested protein backbones, $\ell \le 5 \Rightarrow$ BP linear on proteins!

2

10

The story so far

- Nice applications, problem is hard, could have many solutions
- Continuous methods don't scale
- If certain vertex orders are present, use mixed-combinatorial methods
- ullet Realize K-trilaterative in polytime but (K-1)-trilaterative are hard
- If adjacent predecessors are immediate, theory of symmetries
- Number of solutions is a power of two
- For proteins, BP is linear time
- How do we find these vertex orders?

Finding vertex orders

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations

[Cassioli et al., DAM]

... wasn't the backbone providing them?

- NMR data not as clean as I pretended
- Have to mess around with side chains
- What about other applications, anyhow?

Methods for finding trilaterative orders automatically

Mostly bad news

- Finding *K*-trilaterative orders is **NP**-complete :-(
- But also FPT :-)
- ullet Finding KDMDGP orders is **NP**-complete for all K :-(
- It's also really hard in practice, and methods don't scale well

Definitions

Trilateration Ordering Problem (TOP)

Given a connected graph G = (V, E) and a positive integer K, does G have a K-trilateration order?

Contiguous Trilateration Ordering Problem (CTOP)

Given a connected graph G = (V, E) and a positive integer K, does G have a (K-1)-trilateration order such that $U_v = \{v-1, \ldots, v-K\}$ for each v > K?

Both problems are in NP

Hardness of TOP

- Essentially due to finding the initial clique
 - brute force: test all $\binom{n}{K}$ subsets of V
 - $-\binom{n}{K}$ is $O(n^K)$, polytime if K fixed
- Reduction from K-Clique problem: Given a graph, does it have a K-clique?

Reduction from K-Clique

- If K-Clique instance is YES
 - start with $\alpha = (initial clique of G, \mathbf{K})$
 - induction: if α_{v-1} defined, pick α_v at shortest path distance 1 from $\bigcup \alpha$
- If K-Clique instance is NO
 - By contradiction: suppose \exists trilateration order α in G'
 - Initial clique $\alpha[K] = (\alpha_1, \dots, \alpha_K)$ must have K-1 vertices in G, 1 in K
 - $-\alpha_{K+1}$ must be in G, hence $\exists K$ -clique in G

Once the initial clique is known

Greedily grow a trilateration order α

- ullet Initialize lpha with initial K-clique ${f K}$
- Let $W = V \setminus \mathbf{K}$
- $\forall v > K$ $a_v = | \text{vertices in } \mathbf{K} \text{ adjacent to } v |$ // at termination, a_v will be the number of adjacent predecessors of v
- While $W \neq \emptyset$:
 - 1. choose $v \in W$ with largest a_v
 - 2. if $a_v < K$ instance is NO
 - 3. $\alpha \leftarrow (\alpha, v)$
 - 4. for all $u \in W$ adjacent to v, increase a_u
 - 5. $W \leftarrow W \setminus \{v\}$
- Instance is YES

[Mucherino et al., OPTL 2012]

Greedy algorithm is correct

• Assume TOP instance is YES, proceed by induction

- start: by maximality, $a_{K+1} > K$
- assume α is a valid TOP up to v-1, suppose $a_v < K$
- but instance is YES so there is another $z \in W$ with $a_z \geq K$
- contradicts maximality of a_v

Assume TOP instance is NO

- algorithm termination at $W = \emptyset$ contradicts the NO
- hence it must terminate with $W \neq \varnothing$ and "NO" answer

Complexity

- Outer while loop: O(n)
- Choice of largest a_v : O(n)
- Inner loop on W: O(n)
- Overall: $O(n^2)$
- If we add brute force initial clique: $O(2^K n^2)$
- ullet Polytime if K fixed, FPT otherwise

CTOP is hard

Reduction from Hamiltonian Path (HP)

Given a graph G, does it have a path passing through each vertex exactly once?

- α a H. path in $G \Rightarrow \forall v \neq 1, n \ \alpha_v$ is adjacent to $\alpha_{v-1}, \alpha_{v+1}$
- ullet Apart from initial 1-clique $lpha_1$ every $lpha_v$ is adjacent to its immediate predecessor
- $\bullet \Rightarrow \alpha$ is a KDMDGP order in G with K=1
- HP is the same as ${}^{\mathsf{K}}\mathsf{DMDGP}$ with K=1
- → By inclusion, KDMDGP is NP-hard

• Reduction from HP

• Technical proof

How do we find KDMDGP orders?

Mathematical optimization & CPLEX

- $x_{vi} = 1$ iff vertex v has rank i in the order
- Each vertex has a unique order rank:

$$\forall v \in V \quad \sum_{i \in \bar{n}} x_{vi} = 1;$$

• Each rank value is assigned a unique vertex:

$$\forall i \in \bar{n} \quad \sum_{v \in V} x_{vi} = 1;$$

• There must be an initial *K*-clique:

$$\forall v \in V, i \in \{2, \ldots, K\}$$

$$\sum_{u \in N(v)} \sum_{j < i} x_{uj} \geq (i-1)x_{vi};$$

• Each vertex with rank > K must have at least K contiguous adjacent predecessors

$$\forall v \in V, i > K$$

$$\sum_{u \in N(v)} \sum_{i-K \le j < i} x_{uj} \ge K x_{vi}.$$

• Do not expect too much; scales up to 100 vertices

How about those 10k-atom backbones?

We have <u>Carlile</u> for those

- Note the repetitions they serve a purpose!
- ullet Repetition orders are also hard to find for any K
- ... but Carlile knows how to handcraft them!

[Lavor et al. JOGO 2013]

And what about the side-chains?

The Carlile+Antonio tool!

[Costa et al. JOGO, submitted]

Approximate realizations

- 1. Applications
- 2. Definition
- 3. Complexity primer
- 4. Complexity of the DGP
- 5. Number of solutions
- 6. Mathematical optimization formulations
- 7. Realizing complete graphs
- 8. The Branch-and-Prune algorithm
- 9. Symmetry in the KDMDGP
- 10. Tractability of protein instances
- 11. Finding vertex orders
- 12. Approximate realizations

Data errors

The "distance = real number" paradigm is a lie!

- Covalent bonds are fairly precise
- NMR data is a mess [Berger, J. ACM 1999]
 - experimental errors yield intervals $[d_{uv}^L, d_{uv}^U]$
 - NMR outputs frequencies of (atom type pair, distance value)
 weighted graph reconstruction yields systematic error
 - some atom type pairs yield more error ("only trust H—H")
- Properties of specific molecules give rise to other constraints
- The protein graph may not be (K-1)-trilaterative based on the backbone

The Lavorder comes to the rescue!

- Carlile's handcrafted repetition orders properties:
 - repetitions allow a "virtual backbone" of H atoms only
 - discretization edges: $\{v,v-i\}$ covalent bonds for $i\in\{1,2\}$, $\{v,v-3\}$ sometimes covalent sometimes from NMR
 - most NMR data restricted to pruning edges
- When $d_{v,v-3}$ is an interval: intersect two spheres with sph. shell

ullet Discretize circular segments and run BP with modified S Algorithm no longer exhaustive

Die Symmetriktheoriedämmerung

• Intervals and discretization break the theory of symmetries

• Only some bounds for the number b of BP solutions:

$$\exists \ell, k \quad 2^{\ell} q^k \leq b \leq 2^{n-3} q^M$$

q = |discretization points|, M = |NMR discretization edges|

But at least it's producing results

Joint work with Institut Pasteur

[Cassioli et al., BMC Bioinf., submitted]

General approximate methods

 All these methods are specialized to protein distance data from NMR

What about general approximate methods?

Assume large-sized input data with errors

No assumptions on graph structure

Ingredients

- \bullet PDM = Partial Distance Matrix (a representation of G)
- EDM = Euclidean Distance Matrix
- 1. Complete the given PDM d to a symmetric matrix D
- 2. **Find** a realization x (in some dimension \bar{K}) s.t. the EDM $(||x_u x_v||)$ is "close" to D
- 3. **Project** x from dimension \bar{K} to dimension K, keeping pairwise distances approximately equal

Completing the distance matrix

- $\forall \{u,v\} \not\in E$ let $D_{uv} = \text{length of the shortest path } u \to v$
- Use Floyd-Warshall's algorithm $O(n^3)$

```
1: // n \times n array D_{ij} to store distances
 2. D = 0
 3: for \{i, j\} \in E do
 4: D_{ij} = d_{ij}
 5: end for
 6: for k \in V do
    for j \in V do
7:
8: for i \in V do
            if D_{ik} + D_{kj} < D_{ij} then
              // D_{ij} fails to satisfy triangle inequality, update
10:
              D_{ij} = D_{ik} + D_{kj}
11:
            end if
12:
    end for
13:
    end for
14:
15: end for
```

Finding a realization

- \bullet Let's give ourselves many dimensions, say $\bar{K}=n$
- Attempt to find $x: V \to \mathbb{R}^n$ with $(\|x_u x_v\|_2) \approx (D_{uv})$
- If we had the Gram matrix B of x, then:
 - 1. find eigen(value/vector) matrices Λ , Y of B
 - 2. since B is PSD, $\Lambda \ge 0 \Rightarrow \sqrt{\Lambda}$ exists
 - 3. $\Rightarrow B = Y \wedge Y^{\top} = (Y \sqrt{\Lambda})(Y \sqrt{\Lambda})^{\top}$
 - 4. $x = Y\sqrt{\Lambda}$ is such that $xx^{\top} = B$

• Can we compute B from D?

Schoenberg's theorem

- Standard method for computing B from D^2
- Also known as classic MultiDimensional Scaling (MDS)
- Apply many algebraic manipulations to

$$d_{uv}^2 = \|x_u - x_v\|^2 = x_u^\top x_u + x_v^\top x_v - 2x_u^\top x_v$$
 where the centroid $\sum\limits_{k \leq n} x_{uk} = 0$ for all $u \leq n$

• Get
$$B=-\frac{1}{2}(I_n-\frac{1}{n}\mathbf{1}_n)D^2(I_n-\frac{1}{n}\mathbf{1}_n)$$
, i.e.
$$x_u\cdot x_v=\frac{1}{2n}\sum_{k\leq n}(d_{uk}^2+d_{kv}^2)-d_{uv}^2-\frac{1}{2n^2}\sum_{\substack{h\leq n\\k\leq n}}d_{hk}^2$$

• D "approximately" EDM $\Rightarrow B$ "approximately" Gram

[Schoenberg, Annals of Mathematics, 1935]

Project to \mathbb{R}^K for a given K

- ullet Only use the K largest eigenvalues of Λ
- \bullet Y[K] = K columns of Y corresp. to K largest eigenvalues
- $\Lambda[K] = K$ largest eigenvalues of Λ on diagonal
- $x = Y[K]\sqrt{\Lambda[K]}$ is a $K \times n$ matrix
- ullet Y[K] span the subspace where x "fills more space", i.e. neglecting other dimensions causes smaller errors w.r.t. the realization in \mathbb{R}^n

This method is called **Principal Component Analysis** (PCA)

Isomap

Given K and PDM d:

- 1. D = FloydWarshall(d)
- 2. B = MDS(D)
- 3. x = PCA(B, K)

[Tenenbaum et al. Science 2000]

Some references

- L. Liberti, C. Lavor, N. Maculan, A. Mucherino, *Euclidean distance geometry and applications*, SIAM Review, **56**(1):3-69, 2014
- L. Liberti, B. Masson, J. Lee, C. Lavor, A. Mucherino, *On the number of realizations of certain Henneberg graphs arising in protein conformation*, Discrete Applied Mathematics, **165**:213-232, 2014
- L. Liberti, C. Lavor, A. Mucherino, *The discretizable molecular distance geometry problem seems easier on proteins*, in [see below], 47-60
- A. Mucherino, C. Lavor, L. Liberti, N. Maculan (eds.), *Distance Geometry:* Theory, Methods and Applications, Springer, New York, 2013

THE END