
CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE1

PROGRAMS∗2

MARTINA CERULLI† , ANTOINE OUSTRY§‡ , CLAUDIA D’AMBROSIO§ , AND LEO LIBERTI§3

Abstract. We focus on convex semi-infinite programs with an infinite number of quadratically parametrized4
constraints. In our setting, the lower-level problem, i.e., the problem of finding the constraint that is the most5
violated by a given point, is not necessarily convex. We propose a new convergent approach to solve these semi-6
infinite programs. Based on the Lagrangian dual of the lower-level problem, we derive a convex and tractable7
restriction of the considered semi-infinite programming problem. We state sufficient conditions for the optimality of8
this restriction. If these conditions are not met, the restriction is enlarged through an Inner-Outer Approximation9
Algorithm, and its value converges to the value of the original semi-infinite problem. This new algorithmic approach10
is compared with the classical Cutting Plane algorithm. We also propose a new rate of convergence of the Cutting11
Plane algorithm, directly related to the iteration index, derived when the objective function is strongly convex, and12
under a strict feasibility assumption. We successfully test the two methods on two applications: the constrained13
quadratic regression and a zero-sum game with cubic payoff. Our results are compared to those obtained using the14
approach proposed in [29], as well as using the classical relaxation approach based on the KKT conditions of the15
lower-level problem.16

Key words. Semi-infinite programming, Semidefinite programming, Cutting Plane, Convergent algorithms17

AMS subject classifications. 90C34, 90C22, 90C4618

1. Introduction. A Semi-Infinite Programming (SIP) problem is an optimization problem19

with a finite number of decision variables, and an infinite number of parametrized constraints. In20

this paper we consider a standard SIP problem, for which the parameter set is independent from21

the variables, as opposed to the generalized SIP problem, where such set is allowed to depend on22

the decision variables. We further assume that the SIP problem is convex with respect to (w.r.t.)23

the decision variable x, and has infinitely many constraints which are quadratic and possibly non-24

convex w.r.t. the parameter y. More precisely, we assume that the objective function F (x) is25

continuous and convex in x, where x is the array of decision variables, constrained to be in the26

feasible set X ⊂ Rm. The constraint functions are convex in x and possibly non-convex quadratic27

in the parameter y. The parameter set is the polytope28

F = {y ∈ Rn : Ay ≤ b} = {y ∈ Rn : ∀j ≤ r, a>j y ≤ bj},29

where r is an integer, A is a r×n matrix, aj is the j-th row of the matrix A, and b a r-dimensional30

vector. As already introduced, the set F does not depend on x, i.e., the standard SIP problem is31

considered. The Mathematical Programming (MP) formulation we study is as follows:32 {
min
x∈X

F (x)

s.t. h(x) ≤ 1
2y
>Q(x)y + q(x)>y ∀y ∈ F ,

(SIP)33

34

where F (x) and h(x) are continuous convex functions in the variables x, and both the n×n matrix35

Q(x) and the n-dimensional vector q(x) depend linearly on x. We remark that −h(x) may be36

interpreted as the constant term of the quadratic function in y, in the right hand side. Being 0n37

∗This research was partly funded by the European Union’s Horizon 2020 research and innovation program under
the Marie Sklodowska-Curie grant agreement n. 764759 ETN “MINOA”.
†ESSEC Business School of Paris, Cergy-Pontoise, France (cerulli@essec.edu)
‡École des Ponts, 77455, Marne-la-Vallée, France.
§LIX - CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France (ous-

try@lix.polytechnique.fr, dambrosio@lix.polytechnique.fr, liberti@lix.polytechnique.fr)

1

This manuscript is for review purposes only.

mailto:cerulli@essec.edu
mailto:oustry@lix.polytechnique.fr
mailto:oustry@lix.polytechnique.fr
mailto:dambrosio@lix.polytechnique.fr
mailto:liberti@lix.polytechnique.fr

2 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

the n× n null matrix, we further introduce the following matrices38

• Q(x) = 1
2

(
Q(x) q(x)
q(x)> 0

)
,39

• G(x) = 1
2

(
Q(x) q(x)
q(x)> −2h(x)

)
= Q(x)−

(
0n 0
0 h(x)

)
,40

• Aj = 1
2

(
0n aj
a>j 0

)
, ∀j ∈ {1, . . . , r},41

and the set P =

{
M(y) =

(
yy> y
y> 1

)
: y ∈ F

}
⊂ R(n+1)×(n+1), that we will use in the paper to42

obtain different formulations of problem (SIP). Here are the assumptions we make on (SIP).43

Assumption 1. The objective function F (x) is convex and J-Lipschitz continuous on X .44

Assumption 2. X is convex and compact.45

Assumption 3. The functions q(x) and Q(x) are linear, i.e., the function Q(x) is linear.46

Assumption 4. The function h(x) is convex and Lipschitz continuous on X .47

Assumption 5. The set F is compact, and a scalar ρ > 0 is known such that the set F is48

included in the centered l2-ball with radius ρ.49

Assumptions 1, 2, 3 and 4 guarantee that the SIP problem is convex.50

In the following, given a formulation (P) of an optimization problem, we denote its optimal51

value by val(P), and we will use the term reformulation to describe a formulation having the same52

set of optima of (P), i.e., what is defined as exact reformulation in [26, Definition 10]. With the53

term relaxation, we will refer to a formulation having a feasible set which contains the feasible set54

of (P) [26, Definition 13]. Instead, we will use the term restriction when referring to a formulation55

having a feasible set which is included in the feasible set of (P). Finally, a formulation (P) is defined56

finite when it has a finite number of variables and constraints.57

As detailed in [38], the key to the theoretical as well as algorithmic handling of SIP problems58

lies in their bilevel structure. Indeed, the set of infinitely many parametrized constraints (SIP) is59

equivalent to 0 ≤ φ(x), where φ(x) = miny∈F g(x, y) is the so-called value function. This allows60

writing the constraints in problem (SIP) as the lower-level problem of a bilevel program, as long61

as g(x, y) = 1
2y
>Q(x)y + q(x)>y − h(x). In contrast to the upper-level problem which consists in62

minimizing F (x) over the feasible set {x ∈ X | 0 ≤ φ(x)}, in the lower-level problem x plays the63

role of an m-dimensional parameter, and y is the decision variable. Given this equivalence, in the64

following, we will refer to the lower level and the upper level of the bilevel reformulation of (SIP)65

as “the lower level” and “the upper level” of (SIP), respectively. Whereas the upper level of (SIP)66

is convex under the assumptions above, the lower level is not necessarily convex w.r.t. y.67

Our first contribution is a new convergence rate of a classical Cutting Plane (CP) algorithm68

[8, 12, 22, 43] solving (SIP). While such algorithm and its convergence are well known in SIP, we de-69

rive a new convergence rate in terms of the number of iterations, under the additional assumptions70

that F (x) is strongly convex and that there exists an upper-level solution strictly satisfying the71

constraint involving the lower-level problem. As a second contribution, we propose a new approach72

to solve problem (SIP). A tractable restriction with a finite number of constraints is obtained by73

dualizing, using Lagrangian duality and Semidefinite Programming (SDP), the problem min
y∈Y

g(x, y),74

i.e., the problem of finding the most violated constraint among the infinite number of constraints75

of the corresponding SIP problem. If g(x, y) is convex in y, i.e., if Q(x) is positive semidefinite76

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 3

(PSD), the obtained formulation is not a restriction, but a reformulation of (SIP). The dualiza-77

tion technique has been used in the SIP literature in [10, 25], and inspired by approaches from78

robust optimization [4, Section 1.3-1.4]. However, SDP together with Lagrangian duality has never79

been used to dualize a quadratic programming lower-level problem to the best of our knowledge.80

Moreover, the finite single-level formulation we obtain with this approach is convex, contrary to81

the pre-existing methods in [10, 25]. When g(x, y) is not convex in y, we still have convergence82

guarantees. Indeed, we introduce a new Inner-Outer Approximation (IOA) algorithm, that pro-83

gressively enlarges the restriction set so as to generate a sequence of feasible points the values of84

which converge to the value of (SIP).85

The rest of the paper is organized as follows. We review the relevant literature in Section 2. A86

CP algorithm for solving formulation (SIP) is presented in Section 3, and a new rate of convergence87

is derived in Subsection 3.1. A finite restriction/reformulation of problem (SIP) is introduced and88

discussed in Section 4, in order to present a new convergent algorithm, the IOA algorithm, in89

Subsection 4.5. Applications are introduced in Section 5. Numerical results, obtained by applying90

both solution approaches to these applications, are presented in Section 6: our results, compared91

to those obtained by solving our formulations with the algorithm proposed in [29], illustrate the92

interest of the proposed method. Finally, Section 7 concludes the paper.93

2. Literature review. Despite the difficulty in solving SIP problems for their infinitely many94

constraints, many algorithms have been proposed in literature [11, 19, 31]. Most of them consist in95

generating a sequence of finite problems, with different techniques.96

The discretization approach [18, 30, 41] consists in replacing the infinite constraint parameter set97

by a finite subset which samples it finely: this leads to a relaxation of the original problem, the value98

of which converges towards the value of the original problem when the mesh gets finer. This method99

is commonly used for parameters sets of low dimensions, but faces the curse of dimensionality when100

the number of parameters increases. Indeed, the cost per iteration increases drastically as the size101

of the considered finite subset grows. When the considered finite subset of constraints is increased102

at each iteration by adding the most violated constraint, such discretization method for convex103

problems corresponds to the Kelley algorithm [22], also known as cutting plane algorithm.104

Reduction based methods [19, 31], under some strong assumptions, replace the infinitely many105

SIP constraints by finitely many constraints which locally are sufficient to describe the SIP feasible106

set. In order to do this, all the local minima of the lower-level problem must be computed, and this107

is the bottleneck of this type of method.108

Interior point methods for solving linear or convex SIP problems are suggested in [35, 37], and109

for solving SIP problems with convex lower level in [40]. In [21], proximal penalty approaches have110

been proposed, and a deletion procedure of inactive constraints is suggested.111

A further class of methods is the so-called exchange method family [17, 31, 24, 47]. The notion112

“exchange algorithm” refers to the fact that in every step some new constraints are added and113

some of the old constraints may be deleted, i.e., an exchange of constraints takes place. When no114

constraint is deleted and only one new constraint is added at each iteration, the exchange method115

can be seen as a CP algorithm [22]. A generalized CP algorithm designed to solve SIP problems116

is described in [8], and its convergence is established in the general case of continuous functions117

and compact feasible set. In [43], a CP algorithm for solving a convex SIP problems with a strictly118

convex quadratic objective function is presented. The relaxed CP approach for solving convex119

quadratic SIP problems is studied in [12]. At each iteration, an approximate solution is computed,120

using “inexact” minimizers for generating new cuts. Extending the central CP algorithm proposed121

in [15] for solving linear SIP problems, a central CP method is proposed in [23] for convex SIP122

This manuscript is for review purposes only.

4 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

problems, ensuring a linear rate of convergence w.r.t. the values of the objective function. In [6],123

an acceleration procedure of the central CP algorithm is proposed for linear SIP programs and a124

faster convergence rate is obtained.125

Some methods overestimate the optimal objective value of the lower level by solving a restriction126

of the SIP problem. These restrictions are such that they are finite, or at least easy to reformulate127

to finite problems. In [7], the first deterministic algorithm for the global optimization of non-convex128

SIP problems is proposed. The upper-level variables are decided by a branch-and-bound algorithm.129

The lower bound is given by a discretization-based relaxation. The upper bound is obtained via130

natural interval extension underestimating the value of the lower-level problem. This yields a131

restriction of the SIP problem, the feasible points of which are also feasible for the SIP problem132

(and, thus, provide an upper bound to the optimal objective value). The key assumption for a finite133

convergence of this algorithm to an approximate optimal solution is the assumptions that there are134

Slater points in the SIP problem. Later on, under the same assumption and assuming continuity135

of the involved functions, a method to generate feasible points of the SIP problem is proposed136

in [29], solving restrictions of the discretization-based relaxations. A converging upper bounding137

procedure similar to the strategy proposed by [8] is used, and combined with an outer approximation138

of the feasible set. This generates infeasible iterates giving rigorous lower bounds to the optimal139

objective value. Recently, a branch-and-bound algorithm for the solution of SIP problems with a140

box-constrained lower level was proposed in [28]. In [13, 39], a convexification method is proposed141

which adaptively constructs convex relaxations of the lower-level problem, replaces the relaxed142

lower-level problems equivalently by their KKT conditions, and solves the resulting mathematical143

restrictions with complementarity constraints. This approximation produces feasible solutions for144

the original problem, under the continuity assumption and the existence of a Slater point in the145

SIP problem.146

Another class of algorithms for SIP is based on Lagrangian penalty functions and Trust-Region147

methods [9, 42]. However, in the context of problem (SIP), as for the reduction based methods,148

they would require to compute all the local minima of problem min
y∈Y

g(x, y). In the case where g is149

not convex in y, the enumeration of all local minima is intractable even for medium-scale instances.150

Lower-level duality has been already used in [10, 25], leveraging on approaches from robust151

optimization [5]. However, contrary to what is proposed in this paper, the existing dual approaches152

lead to non-convex problems, and do not use SDP. In [10], several strategies are used to reformulate153

generalized SIP problems into non-convex finite minimization problems by exploiting Wolfe duality154

for the convex lower-level problems. In [25], the authors tackle generalized SIP problems where155

the convex quadratic lower-level problem has a fixed Hessian matrix Q, which does not depend on156

the variable x. Instead, in the present paper, we consider standard SIP problems with a linear157

function Q(x) for the lower-level Hessian (as stated in Assumption 3). Back to [25], the authors use158

the Lagrangian dual of the lower level to obtain a non-convex restriction with a finite number of159

variables and constraints. In the latter problem, the convex envelopes of the non-convex functions160

in the objective and constraints can be easily computed. As a consequence, an approximate solution161

of the original problem can be obtained by solving finitely many convex problems.162

In this paper, we prove a new convergence rate for the classical CP algorithm [22, 32] to solve163

(SIP) in the case where the objective is strongly convex, and under a strict feasibility condition.164

Our convergence rate is directly related to the iteration index k, which is something new w.r.t.165

what is usually proved in SIP literature, where the linear rate of convergence is related to an index166

that is independent of the iteration k (see [31, Theorem 4.3]). Furthermore, we exploit SDP and167

Lagrangian duality (we use the so-called lower-level dualization approach) to obtain a convex single-168

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 5

level restriction of problem (SIP). If the lower level is convex in y for any value of x, the obtained169

formulation is a reformulation of (SIP). We further prove a sufficient condition on an optimal170

solution x̄ of this single-level formulation, which can be checked a posteriori to state that x̄ is an171

optimal solution of problem (SIP). We finally present a new algorithm based on the lower-level172

dualization approach, called IOA algorithm, that generates a sequence of feasible solutions of (SIP),173

the values of which are proved to converge to val(SIP).174

3. Cutting plane algorithm. We detail in this section a CP algorithm for solving formula-175

tion (SIP). We also include a proof of convergence for this algorithm in Appendix A, as well as a176

convergence rate in Section 3.1, obtained by introducing a dual view of the CP algorithm. While177

CP methods and their convergence are broadly known in the SIP literature, the convergence rate178

we prove under stricter assumptions is something new w.r.t. the state of the art.179

Algorithm 3.1 CP algorithm for (SIP)

Input: ε ≥ 0

0: Let k ← 0.
1: while true do
2: Being y` the solution of the lower-level problem solved at iteration `, solve the problem{

min
x∈X

F (x)

s.t. h(x) ≤ 1
2 (y`)>Q(x)y` + q(x)>y`, ` ∈ {0, . . . , k − 1}

(Rk)

obtaining a solution xk.
3: Compute an optimal solution yk of the lower-level problem for x = xk.
4: if h(xk) ≤ 1

2 (yk)>Q(xk)yk + q(xk)>yk + ε then
5: Return (xk, yk).
6: else
7: k ← k + 1
8: end if
9: end while

At the first iteration of Algorithm 3.1, the relaxed problem (R0) is given by minx∈X F (x),180

which considers minimizing the objective function without any constraint parametrized by y. This181

problem has a finite value according to the compactness of set X . At each iteration, Algorithm 3.1182

defines the feasible set of the upper-level problem by means of cuts in the variables x. The resulting183

(Rk) problems are relaxations of (SIP), and their feasible sets are decreasing in the sense of the184

inclusion, bounded because included in the feasible set of R0, and closed as intersections of closed185

sets. Thus, each problem (Rk) admits a minimum. Moreover, the sequence F (xk) is increasing,186

and F (xk) ≤ val(SIP) holds for any k. At step 3, the problem solved to find a new cut is187

(Pxk) min
y∈Rn
{1

2
y>Q(xk)y + q(xk)>y | Ay ≤ b}.188

This problem is a quadratic program that is either convex or non-convex depending on the positive189

semi-definiteness of the matrix Q(xk). In order to find global optima of (Pxk), regardless of the190

definiteness of Q(xk) (in turn depending on the value of xk), a global optimization algorithm should191

be employed. Step 5 returns the optimal solution of formulation (SIP). The reader is referred to192

Appendix A for a proof of the convergence of this CP algorithm.193

This manuscript is for review purposes only.

6 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

3.1. A convergence rate for the CP algorithm. In this section, we give a convergence194

rate of the CP Algorithm 3.1, under two additional assumptions on the SIP problem. The proofs195

of all the lemmata introduced in this section are in Appendix B.196

First of all, using the notation introduced in Section 1, we remark that (SIP) can be formulated197

as198 {
min
x∈X

F (x)

s.t. 0 ≤ 〈G(x), Y 〉, ∀Y ∈ P.
(SIP′)199

200

We define K = cone(P) ⊂ R(n+1)×(n+1) as the convex cone generated by P, and L(x, Y) = F (x)−
〈G(x), Y 〉 as the Lagrangian function defined over X × K. We remark that, ∀x ∈ X , the following
holds:

sup
Y ∈K

L(x, Y) =

{
F (x) if 0 ≤ 〈G(x), Y 〉, ∀Y ∈ P
+∞ else.

Hence, problem (SIP′) can be expressed as the saddle-point problem min
x∈X

sup
Y ∈K

L(x, Y). At this201

point, we make the following further assumption.202

Assumption 6. The objective function F (x) is µ-strongly-convex, i.e., F (x)− µ
2 ‖x‖

2 is convex.203

Assumption 6 is quite strong, but we remark that, if the original objective function is just convex, it204

is always possible to enforce this assumption by “regularizing” the SIP problem adding a `2 penalty205

to the primal objective function, i.e., minimizing F (x) + µ
2 ‖x‖

2 instead of F (x). The Lagrangian206

function L(x, Y) is linear (thus, continuous and concave) w.r.t. Y for all x ∈ X and is continuous207

and convex w.r.t. x for all Y ∈ K. The convexity w.r.t. x follows from Assumptions 1–4 and from208

the fact that Yn+1,n+1 ≥ 0 for any Y ∈ K. Since the set X is convex (Assumption 2) and the set209

K is convex too, Sion’s minimax theorem [36] is applicable and the following holds:210

min
x∈X

sup
Y ∈K

L(x, Y) = sup
Y ∈K

min
x∈X

L(x, Y).211

Defining the dual function θ(Y) = min
x∈X

L(x, Y), we know that212

(3.1) val(SIP′) = sup
Y ∈K

θ(Y).213

Notice that the dual function θ(Y) is concave, as a minimum of linear functions in Y . As a214

direct application of [20, Corollary VI.4.4.5], the dual function θ(Y) is differentiable because of215

the uniqueness of arg min
x∈X
L(x, Y), which is, in turn, a consequence of the strong convexity of216

L(x, Y) w.r.t. x that follows from Assumption 6. Moreover, the gradient of the dual function is217

∇θ(Y) = −G(x), where x = arg min
x∈X
L(x, Y). The differentiability of θ implies, in particular, that218

θ is continuous. We prove now that we can replace the sup operator with the max operator in the219

formulation (3.1), under the following additional assumption.220

Assumption 7. There exists x̂ ∈ X , s.t., ∀ y ∈ F , g(x̂, y) = 1
2y
>Q(x̂)y + q(x̂)>y − h(x̂) > 0.221

Lemma 3.1. Under Assumption 7, the dual problem of (SIP′) has an optimal solution Y ∗.222

Proof. Proof in Appendix B.1.223

According to this lemma, the dual version of problem (SIP′), thus, reads224

(DSIP) max
Y ∈K

θ(Y).225

This concave maximization problem on the convex cone K is the Lagrangian dual of the prob-226

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 7

lem (SIP′). Indeed, in this section, we are dualizing the whole problem (SIP), contrary to Section 4,227

where we will dualize the lower-level problem only. We are now going to see that the CP algorithm228

3.1 can be interpreted, from a dual perspective, as a cone constrained Fully Corrective Frank-Wolfe229

(FCFW) algorithm [27] solving the dual problem (DSIP). We prove that, during the execution of230

the CP Algorithm 3.1, the dual variables obtained when solving the relaxation (Rk) instantiate231

the iterates of a FCFW algorithm. In the following, the sets Bk ⊂ R(n+1)×(n+1) are finite sets,232

composed of rank-one matrices of the form M(y).233

The initialization of the CP can be seen, in the dual perspective, as the initialization of the234

FCFW algorithm, with B0 ← ∅ and Y 0 = 0. Then, the generic iteration k is described in Table 1.235

Primal perspective:
CP

Link
Dual perspective:

FCFW

Step 1
Solve (Rk) and

store the solution xk
Duality

Solve the dual problem on cone(Bk), i.e.,

max
Y ∈cone(Bk)

θ(Y),

and store the solution Y k, the associated
xk and the gradient ∇θ(Y k) = −G(xk)

Step 2

Solve the lower-level problem (Pxk)

min
y∈F

1
2y
>Q(xk)y + q(xk)>y

and store the solution yk

Zk = M(yk)

Solve the problem

max
Z∈P

〈∇θ(Y k), Z〉

and store the solution Zk

Step 3a
If h(xk) ≤ 1

2 (yk)>Q(xk)yk + q(xk)>yk + ε,
Return (xk, yk)

Reformulation
If 〈∇θ(Y k), Zk〉 ≤ ε,

Return (Y k, xk)

Step 3b

If h(xk) > 1
2 (yk)>Q(xk)yk + q(xk)>yk + ε,

build (Rk+1) as (Rk) with the additional ineq.

h(x) ≤ 1
2 (yk)>Q(x)yk + q(x)>yk.

Reformulation
If 〈∇θ(Y k), Zk〉 > ε,

set Bk+1 ← Bk ∪ {Zk}.

Table 1: The k-th iteration of the CP (Algorithm 3.1), and of the FCFW algorithm

The different steps summarized in Table 1 can be explained as follows:236

• Step 1 : At iteration k, the set Bk represents, from a dual perspective, the set of CPs in237

the primal relaxation (Rk). The dual problem of (Rk) is in fact a restriction of (DSIP) on238

cone(Bk), which is a polyhedral subcone of K, since the following holds:239

max
Y ∈cone(Bk)

θ(Y) = max
Y ∈cone(Bk)

min
x∈X

(F (x)− 〈G(x), Y 〉)

= min
x∈X

max
Y ∈cone(Bk)

(F (x)− 〈G(x), Y 〉)

= min
x∈X
{F (x) s.t.0 ≤ 〈G(x), Z〉, ∀Z ∈ Bk},

240

which we recognize being the master problem (Rk). The absence of duality gap is, also241

in this case, a direct application of Sion’s Theorem [36]. The new dual solution Y k is242

obtained solving this restriction of (DSIP) on cone(Bk), and the primal solution xk =243

arg min
x∈X
L(x, Y k) gives the gradient of the dual function in Y k, i.e., ∇θ(Y k) = −G(xk).244

• Step 2 : Finding the SIP constraint that is the most violated by xk is equivalent to finding245

This manuscript is for review purposes only.

8 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

the furthest point of P in the direction ∇θ(Y k). Indeed, the following holds:246

max
Z∈P

〈∇θ(Y k), Z〉 = −min
Z∈P
〈G(xk), Z〉(3.2)247

= −min
y∈F
{1

2
y>Q(xk)y + q(xk)>y − h(xk)},(3.3)248

249

and any optimal solution Zk in problem (3.2) has the form Zk = M(yk), with yk optimal250

in problem (3.3).251

• Step 3a: The CP feasibility test h(xk) ≤ 1
2 (yk)>Q(xk)yk+q(xk)>yk+ε is equivalent to the252

dual optimality condition 〈∇θ(Y k), Zk〉 ≤ ε, according to the equality ∇θ(Y k) = −G(xk).253

• Step 3b: Increasing the set of atoms Bk+1 ← Bk ∪ {Zk} is the dual of adding the corre-254

sponding cut (with yk s.t. Zk = M(yk)) to (Rk), which creates the relaxation (Rk+1).255

The following lemma states a property of the iterates Y k for all k.256

Lemma 3.2. For any k ∈ N, 〈∇θ(Y k), Y k〉 = 0.257

Proof. Proof in Appendix B.2.258

Based on the dual interpretation of the CP algorithm, we are now going to state a convergence rate259

for this algorithm. We begin with two technical lemmata.260

Lemma 3.3. It exists L > 0 s.t. function θ is L-smooth, i.e., for all Y, Y ′ ∈ K,

‖∇θ(Y)−∇θ(Y ′)‖2 ≤ L‖Y − Y ′‖2,
which means that function ∇θ is L-Lipschitz continuous.261

Proof. Proof in Appendix B.3.262

The following lemma is a consequence of the L-smoothness of θ.263

Lemma 3.4. Being L the smoothness constant associated with θ, for any Y, Z ∈ K and γ ≥ 0,264

θ(Y + γZ) ≥ θ(Y) + γ〈∇θ(Y), Z〉 − L‖Z‖2

2
γ2.265

Proof. Proof in Appendix B.4.266

We define the constant T = max
Z∈P

‖Z‖2. According to Lemma 3.1, (DSIP) admits an optimal267

solution Y ∗. We define τ as the last element of the optimal dual solution Y ∗, i.e., τ = Y ∗n+1,n+1.268

This scalar plays a central role in the convergence rate analysis, conducted in the following theorem.269

Theorem 3.5. Under Assumptions 1-7, if Algorithm 3.1 executes iteration k ∈ N, then270

(3.4) δk ≤
2LTτ2

k + 2
,271

where δk is the objective error val(SIP)− F (xk) ≥ 0.272

Proof. We emphasize that at each iteration k, θ(Y k) = F (xk), thus δk may also be seen as the273

optimality gap in the dual problem (DSIP) (i.e., δk = val(SIP)−F (xk) = θ(Y ∗)−θ(Y k)). We prove274

the inequality (3.4) by induction.275

Base case: k = 0. Since θ is concave, we have that δ0 = θ(Y ∗)− θ(Y 0) ≤ 〈∇θ(Y 0), Y ∗−Y 0〉 =
〈∇θ(Y 0), Y ∗〉, with the last equality following from Y 0 = 0. We remark that 〈∇θ(Y 0), Y ∗〉 =
〈∇θ(Y 0)−∇θ(Y ∗), Y ∗〉 since 〈∇θ(Y ∗), Y ∗〉 = 0 by optimality of Y ∗. Hence,

δ0 ≤ 〈∇θ(Y 0)−∇θ(Y ∗), Y ∗〉 ≤ ‖∇θ(Y 0)−∇θ(Y ∗)‖ ‖Y ∗‖,
where the last inequality is the Cauchy-Schwarz inequality. Using the L-Lipschitzness of ∇θ276

(Lemma 3.3), we know that ‖∇θ(Y 0) − ∇θ(Y ∗)‖ ≤ L‖Y 0 − Y ∗‖ = L‖Y ∗‖. Finally, we deduce277

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 9

that, since Y ∗ ∈ τconv(P), δ0 ≤ L‖Y ∗‖2 ≤ LTτ2.278

Induction. We suppose that the algorithm runs k + 1 iterations, and that the property (3.4)279

is true for k. Using Lemma 3.4, we can compute a lower bound on the progress made during the280

iteration of index k + 1:281

θ(Y k+1) ≥ θ(Y k + γZk) ≥ θ(Y k) + γ〈∇θ(Y k), Zk〉 − L‖Zk‖2

2
γ2,282

for any γ ≥ 0. Multiplying by −1, adding θ(Y ∗) to both left and right hand sides of the above283

inequality, and using ‖Zk‖2 ≤ T , we have that284

(3.5) δk+1 ≤ δk − γ〈∇θ(Y k), Zk〉+
LT

2
γ2,285

for any γ ≥ 0. We remark that the value T is independent from k. By concavity of θ, δk = θ(Y ∗)−286

θ(Y k) ≤ 〈∇θ(Y k), Y ∗−Y k〉. By Lemma 3.2, we have 〈∇θ(Y k), Y k〉 = 0. Thus, δk ≤ 〈∇θ(Y k), Y ∗〉.287

As Y ∗n+1,n+1 = τ , we know that Y ∗ ∈ τ conv(P), and, therefore,288

(3.6) δk ≤ max
Z∈τconv(P)

〈∇θ(Y k), Z〉 = max
Z∈τP

〈∇θ(Y k), Z〉 = τ〈∇θ(Y k), Zk〉,289

where the last equality follows from the definition of Zk. Combining Eqs. (3.5) and (3.6), we obtain290

δk+1 ≤ δk−γτ−1δk+ LT
2 γ2, for every γ ≥ 0. Factoring and setting γ̃ = γτ−1 (for any γ̃ ≥ 0) yields:291

(3.7) δk+1 ≤ (1− γ̃)δk +
LTτ2

2
γ̃2.292

We have derived a lower bound on the optimality gap at iteration k. Applying Eq. (3.7) with293

γ̃ = 2
k+2 , we obtain:294

δk+1 ≤ (1− 2

k + 2
)δk +

LTτ2

2

4

(k + 2)2
≤ k

k + 2

2LTτ2

k + 2
+
LTτ2

2

4

(k + 2)2
,295

296

with the second inequality coming from the application of (3.4), which holds for k by the induction297

hypothesis. Finally, we deduce that298

δk+1 ≤
2LTτ2

k + 2
(

k

k + 2
+

1

k + 2
) ≤ 2LTτ2

k + 2

k + 1

k + 2
≤ 2LTτ2

k + 2

k + 2

k + 3
=

2LTτ2

k + 3
,299

300

where the third inequality follows from the observation that k+1
k+2 ≤

k+2
k+3 . Hence, the property (3.4)301

is true for k + 1 as well. This concludes the proof.302

We remark that the convergence rate defined in (3.4) is directly related to the iteration index k,303

which is something different w.r.t. what is usually proved for existing CP algorithms solving SIP304

problems [6, 23, 31], where the rate of convergence is not directly controlled by k.305

4. Lower-level dualization approach and Inner-Outer approximation algorithm. A306

possible way to deal with the SIP problem (SIP) is what we call lower-level dualization approach,307

which consists in replacing the constraint involving the quadratic lower-level problem with one308

involving its dual. In particular, we consider a strong dual of an SDP relaxation of the lower-level309

problem (or a reformulation if the latter is convex), which is something new w.r.t. the existing SIP310

literature. We recall that the lower-level problem of (SIP), for any x ∈ X , reads:311

(Px)

{
min
y∈Rn

1
2y
>Q(x)y + q(x)>y

s.t. a>j y ≤ bj , ∀j ∈ {1, . . . , r},
312

where the objective function f(x, y) = 1
2y
>Q(x)y + q(x)>y is convex if Q(x) is PSD. In Subsec-313

tion 4.1, we introduce the classical SDP relaxation (reformulation, if the lower level is convex) of the314

This manuscript is for review purposes only.

10 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

lower-level problem regularized by a ball constraint, and, then, in Subsection 4.2, we introduce the315

SDP dual of this relaxation (reformulation, resp.). In Subsection 4.3 we present a single-level finite316

formulation, (SIPR), obtained applying the so-called lower-level dualization approach to the problem317

(SIP). This formulation is a reformulation of (SIP) if Q(x) is PSD for any x ∈ X . Otherwise, an a318

posteriori sufficient condition on a computed solution x̄ of (SIPR) introduced in Subsection 4.4 can319

be verified. If x̄ satisfies such condition, one can state that x̄ is an optimal solution of (SIP). If not,320

an IOA algorithm is proposed in Subsection 4.5, which generates a sequence of converging feasible321

solutions of (SIPR). The proofs of all the lemmata introduced in this section are in Appendix C.322

4.1. SDP relaxation/reformulation of the lower-level problem. In this section, we323

reason for any fixed value of the decision vector x ∈ X . We denote by 〈A,B〉 = Tr(A>B) the324

Froebenius product of two square matrices A and B with same size. Using the matrices Q, and Aj325

introduced in Section 1, under Assumption 5, the problem326

(4.1)

min
Y ∈R(n+1)×(n+1)

〈Q(x), Y 〉

s.t. 〈Aj , Y 〉 ≤ bj ∀j ∈ {1, . . . , r}
Tr(Y) ≤ 1 + ρ2

Yn+1,n+1 = 1
Y � 0
rank(Y) = 1,

327

is a reformulation of (Px), because any feasible matrix Y has the form Y =

(
y
1

)(
y
1

)>
with y ∈ F ,

and, therefore, 〈Q(x), Y 〉 = f(x, y). The constraint Tr(Y) ≤ 1 + ρ2, derives from Assumption 5 as
follows:

‖y‖22 ≤ ρ
2 ⇔ Tr(yy>) ≤ ρ2 ⇔ Tr(Y) ≤ ρ2 + 1,

being Tr(Y) = Tr(yy>) + 1. This constraint does not play any role at this point, but will be useful328

thereafter to come up with a dual SDP problem with no duality gap (see Section 4.2). If we relax329

the non-convex constraint rank(Y) = 1 in problem (4.1), we obtain:330

(SDPx)

min
Y ∈R(n+1)×(n+1)

〈Q(x), Y 〉

s.t. 〈Aj , Y 〉 ≤ bj ∀j ∈ {1, . . . , r}
Tr(Y) ≤ 1 + ρ2

Yn+1,n+1 = 1
Y � 0,

331

which is a SDP relaxation of (Px), as proved in the following Lemma 4.1. If Q(x) is PSD, Lemma 4.1332

states that (SDPx) has the same optimal objective function value of (Px), the rank-constraint333

relaxation notwithstanding.334

Lemma 4.1. Under Assumption 5, val(SDPx) ≤ val(Px). If Q(x) is PSD, val(SDPx) = val(Px).335

Proof. Proof in Appendix C.1.336

4.2. Dual SDP problem. As already done in Section 4.1, also in this section we reason for337

any fixed value of x ∈ X . Let E be a (n + 1) × (n + 1) matrix s.t. En+1,n+1 = 1 and Eij = 0338

everywhere else. Let In+1 be the (n+ 1)× (n+ 1) identity matrix. The following SDP problem339

(DSDPx)

max

λ∈Rr+, α∈R+, β∈R
−b>λ− α(1 + ρ2)− β

s.t. Q(x) +
r∑
j=1

λjAj + αIn+1 + βE � 0,
340

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 11

is the dual of problem (SDPx), as the following lemma states.341

Lemma 4.2. Formulations (SDPx) and (DSDPx) are a primal-dual pair of SDP problems and342

strong duality holds, i.e., val(SDPx) = val(DSDPx).343

Proof. Proof in Appendix C.2.344

4.3. SDP restriction/reformulation of the SIP problem. Leveraging on Section 4.1345

and Section 4.2, which focus on the lower-level problem (Px), its SDP relaxation (SDPx) and the346

respective dual problem (DSDPx), we propose a single-level finite restriction of problem (SIP). It347

is a reformulation of (SIP) if Q(x) is PSD for any x ∈ X .348

Theorem 4.3. The finite formulation349

min
x,λ,α,β

F (x)

s.t. x ∈ X
h(x) ≤ −b>λ− α(1 + ρ2)− β
Q(x) +

∑
j λjAj + αIn+1 + βE � 0

x ∈ Rm, λ ∈ Rr+, α ∈ R+, β ∈ R,

(SIPR)350

351

is a restriction of problem (SIP). If Q(x) is PSD for any x ∈ X , it is a reformulation of (SIP).352

Proof. Let Feas(SIP) and Feas(SIPR) be the feasible sets of (SIP) and (SIPR), respectively. Since353

(SIP) and (SIPR) share the same objective function, proving for any x ∈ Rm the implication354

(4.2)
(
∃ λ ∈ Rr+, α ∈ R+, β ∈ R : (x, λ, α, β) ∈ Feas(SIPR)

)
=⇒ x ∈ Feas(SIP),355

will prove the first part of the theorem. For any x ∈ X , we have:356

(4.3) h(x) ≤ val(SDPx) =⇒ h(x) ≤ val(Px) ⇐⇒ x ∈ Feas(SIP),357

where the first implication stems from Lemma 4.1, which stipulates that val(SDPx) ≤ val(Px).358

Applying Lemma 4.2, we obtain that:359

(4.4) h(x) ≤ val(SDPx) ⇐⇒ h(x) ≤ val(DSDPx).360

For any x ∈ X , we have that361

(4.5) h(x) ≤ val(DSDPx) ⇐⇒ ∃ λ ∈ Rr+, α ∈ R+, β ∈ R :

 h(x) ≤ −b>λ− α(1 + ρ2)− β

Q(x) +
r∑
j=1

λjAj + αIn+1 + βE � 0 .
362

The equivalence (4.5) just expresses the fact that the maximization problem (DSDPx) has a value363

exceeding h(x) if and only if it has a feasible solution with value exceeding h(x). Hence, from (4.4),364

and (4.5), the following equivalences hold:365

h(x) ≤ val(SDPx) ⇐⇒ ∃ λ ∈ Rr+, α ∈ R+, β ∈ R :

 h(x) ≤ −b>λ− α(1 + ρ2)− β

Q(x) +
r∑
j=1

λjAj + αIn+1 + βE � 0
(4.6)366

⇐⇒ ∃ λ ∈ Rr+, α ∈ R+, β ∈ R, (x, λ, α, β) ∈ Feas(SIPR).367368

The equivalence (4.6), together with implication (4.3), proves the implication (4.2).369

If Q(x) is PSD for any x ∈ X , we can replace the implication (4.3) by the equivalence370

(4.7) h(x) ≤ val(SDPx) ⇐⇒ h(x) ≤ val(Px) ⇐⇒ x ∈ Feas(SIP).371

This, together with equivalence (4.6), proves that372

∃ λ ∈ Rr+, α ∈ R+, β ∈ R : (x, λ, α, β) ∈ Feas(SIPR) ⇐⇒ x ∈ Feas(SIP),373

meaning that (SIPR) is a reformulation of (SIP), since the objective function is the same.374

This manuscript is for review purposes only.

12 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

Assumptions 1, 2, 3, and 4 imply that the single-level finite problem (SIPR) is convex.375

4.4. Optimality of the SDP restriction: a sufficient condition. Theorem 4.3 states376

that, if Q(x) � 0 for all x ∈ X , the single-level finite formulation (SIPR) is an exact reformulation377

of the problem (SIP). In this section, we show that, even if this a priori condition is not satisfied,378

an a posteriori condition on the computed solution x̄ of (SIPR) enables us to state that x̄ is an379

optimal solution of (SIP).380

Theorem 4.4. Let x̄ be a solution of the single-level formulation (SIPR). Assuming that381

Q(x̄) � 0, then x̄ is optimal in (SIP).382

Proof. Given a closed convex set S, according to the definition [20, Def. III.5.1.1], the tangent383

cone to S at x (denoted by TS(x)) is the set of directions u ∈ Rm such that it exists a sequence384

(xk)k∈N in S, and a positive sequence (tk)k∈N s.t. tk → 0 and xk−x
tk
→ u. Moreover, according to385

the definition [20, Def. III.5.2.4], the normal cone NS(x) to S at x is the polar cone of the tangent386

cone TS(x), i.e., NS(x) = TS(x)◦. We define the closed convex set C (resp. Ĉ) as the feasible set of387

formulation (SIP) (resp. (SIPR)).388

Since Q(x̄) � 0 and detQ(x) is continuous, it exists r > 0 s.t. for all x in the open ball of389

radius r with center x̄ (denoted by B(x̄, r)), Q(x) � 0. According to Lemma 4.1, this means that390

for all x in X ∩B(x̄, r), val(Px) = val(SDPx). Hence, we deduce that, for any x ∈ X ∩B(x̄, r), x is391

feasible in (SIP) if and only if x is feasible in (SIPR). In other words, C ∩ B(x̄, r) = Ĉ ∩ B(x̄, r).392

According to the aforementioned definition of the tangent and normal cones, we further deduce393

that TC(x̄) = TĈ(x̄), and NC(x̄) = TC(x̄)◦ = TĈ(x̄)◦ = NĈ(x̄).394

We know that x̄ is optimal in (SIPR), i.e., x̄ ∈ arg minx∈Ĉ F (x). Since F is a finite-valued convex395

function, and Ĉ is a closed and convex set, Theorem [20, Th. VII.1.1.1] holds, and we can deduce396

that 0 ∈ ∂F (x̄)+NĈ(x̄). Using the equality NC(x̄) = NĈ(x̄), we have that 0 ∈ ∂F (x̄)+NC(x̄) too.397

Applying the same Theorem [20, Th. VII.1.1.1] with the closed and convex constraint set C, we398

know that 0 ∈ ∂F (x̄) +NC(x̄) implies that x̄ ∈ arg min
x∈C

F (x), meaning that x̄ is optimal in (SIP).399

If this sufficient condition is satisfied, although solving a problem with a different feasible set,400

i.e., restriction (SIPR), a guarantee of global optimality for the original problem (SIP) is obtained.401

4.5. Inner-Outer Approximation algorithm. If neither the lower level is convex, nor the402

sufficient optimality condition in Theorem 4.4 is satisfied, we do not directly obtain an optimal403

solution of the SIP problem by solving (SIPR). Yet, in this section, we present an algorithm based404

on the lower-level dualization approach that allows us to construct a sequence of feasible solutions405

of the SIP problem, the values of which converge to the SIP optimal value.406

For k ∈ N∗, we consider two finite sequences x1, . . . , xk−1 ∈ X and v1, . . . , vk−1 ∈ R s.t.407

v` = val(Px`). Since, for all ` = 1, . . . , k − 1, the inequality408

∀y ∈ F , 1

2
y>Q(x`)y + q(x`)>y ≥ v`,409

holds, the following SDP problem is still a relaxation of (Px), for any x ∈ X :410

(SDPkx)

min
Y ∈R(n+1)×(n+1)

〈Q(x), Y 〉

s.t. 〈Aj , Y 〉 ≤ bj ∀j ∈ {1, . . . , r}
〈Q(x`), Y 〉 ≥ v` ∀` ∈ {1, . . . , k − 1}
Tr(Y) ≤ 1 + ρ2

Yn+1,n+1 = 1
Y � 0.

411

For ease of reading, in the following, we denote by VP(x) = val(Px) the optimal value of prob-412

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 13

lem (Px), by VSDP(x) = val(SDPx) the optimal value of problem (SDPx), and by V kSDP(x) =413

val(SDPkx) the optimal value of problem (SDPkx). With this notation v` = val(Px`) = VP(x`).414

We underline that the function V kSDP(x) depends on the finite sequence x1, . . . , xk−1 ∈ X . Being415

η` the Lagrangian multiplier associated to the constraint 〈Q(x`), Y 〉 ≥ v`, the strong SDP dual of416

problem (SDPkx) is417

(4.8)

max

λ∈Rr+,α∈R+,

β∈R,η∈Rk−1
+

−b>λ− α(1 + ρ2)− β +
k−1∑̀
=1

η`v`

s.t. Q(x) +
r∑
j=1

λjAj + αIn+1 + βE −
k−1∑̀
=1

η`Q(x`) � 0.

418

Hence, for any x̂ ∈ X , h(x̂) ≤ V kSDP(x̂) holds if and only if Ωk(x̂) 6= ∅, where Ωk(x̂) is defined as419

Ωk(x̂) := {(λ, α, β, η) ∈ Rr+ × R+ × R× Rk−1
+ : h(x̂) ≤ −b>λ− α(1 + ρ2)− β +

k−1∑
`=1

η`v` ∧420

Q(x̂) +
r∑
j=1

λjAj + αIn+1 + βE −
k−1∑
`=1

η`Q(x`) � 0}.421

422
423

Algorithm 4.1 IOA algorithm for (SIP)

Input: µ > 0, µ > 0, d ≥ 0, ε ≥ 0, k ← 0

0: Solve the restriction (SIPR), obtaining a solution x̂0.
1: if Q(x̂0) � 0 then
2: Return x̂0.
3: else
4: k ← 1.
5: while true do
6: Choose any µk ∈

[
µ, µ

]
.

7: Being Y ` the extended solution of problem (Px`), solve
min

x,x̂,λ,α,β,η
F (x) + F (x̂) + µk

2
‖x− x̂‖2

s.t. h(x) ≤ 〈Q(x), Y `〉, ` ∈ {1, . . . , k − 1}
(λ, α, β, η) ∈ Ωk(x̂), x, x̂ ∈ X ,

(4.9)

obtaining two solutions xk, x̂k.
8: Solve (Pxk) obtaining a value vk, a solution yk, and an extended solution Y k = M(yk).
9: if ‖xk − x̂k‖ ≤ d and h(xk) ≤ vk + ε then

10: Return x̂k.
11: else
12: k ← k + 1.
13: end if
14: end while
15: end if

Algorithm 4.1 is the pseudocode of the IOA algorithm. It starts by solving the restriction424

(SIPR) and checks whether the condition presented in Theorem 4.4 is satisfied or not. If yes, the425

This manuscript is for review purposes only.

14 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

algorithm stops returning the solution which is optimal for both (SIPR) and (SIP). Otherwise,426

it performs a sequence of iterations, until the stopping criteria are satisfied, i.e., ‖xk − x̂k‖ ≤ d427

and h(xk) ≤ vk + ε. At each iteration the convex optimization problem (4.9) is solved. This428

problem is a coupling between the minimization of F on a relaxed set and the minimization of F429

on a restricted set. Indeed, x belongs to an outer-approximation (relaxation), whereas x̂ belongs430

to an inner-approximation (restriction) of SIP feasible set, since x̂ satisfies V kSDP(x̂) ≥ h(x̂). The431

minimization of F over these two sets is coupled by a proximal term that penalizes the distance432

between x and x̂. After solving the master problem (4.9), the lower-level problem (Px) is solved for433

x = xk. The solution of such problem is used to restrict the outer-approximation, and to enlarge434

the inner-approximation. We are now going to prove the convergence of Algorithm 4.1. We begin435

with two technical lemmata.436

Lemma 4.5. It exists ζ ∈ R+ such that, for any sequence (xk)k∈N∗ ∈ X , the value function437

V kSDP is ζ-Lipschitz over X for all k ∈ N∗. Moreover, for any sequence (xk)k∈N∗ ∈ X :438

1. ∀x ∈ X , VSDP(x) = V 1
SDP(x) ≤ V 2

SDP(x) ≤ ... ≤ V kSDP(x) ≤ VP(x),439

2. ∀` ≤ k − 1, V kSDP(x`) = VP(x`) = v`.440

Proof. Proof in Appendix C.3.441

Lemma 4.6. Under Assumptions 1–5, and denoting by x∗ an optimal solution of problem (SIP),442

if Algorithm 4.1 runs iteration k, then F (xk) ≤ F (x∗) + µk(xk − x̂k)>(x∗ − xk).443

Proof. Proof in Appendix C.4.444

Before proving Theorem 4.7, we must assume that Slater condition holds for the restric-445

tion (SIPR), even if there is no need to know the corresponding Slater point to run the algorithm.446

Assumption 8. It exists xS ∈ X that is strictly feasible in (SIPR), i.e., VSDP(xS) > h(xS).447

Under Assumptions 1–5 and Assumption 8 the IOA algorithm converges, as stated in the448

following theorem.449

Theorem 4.7. Under Assumptions 1–5 and Assumption 8, if d = ε = 0, Algorithm 4.1450

• either terminates in finite time and the last iterate x̂k is an optimal solution of (SIP),451

• or generates an infinite sequence (x̂k) of feasible solutions in (SIP) s.t. F (x̂k)→ val(SIP).452

Proof. First of all, we emphasize that iterate x̂k, for any k ∈ N, is feasible in (SIP) since453

V kSDP(x̂k) − h(x̂k) ≥ 0 by definition of x̂k, and since VP(x̂k) ≥ V kSDP(x̂k) according to Lemma 4.5:454

this proves that VP(x̂k)− h(x̂k) ≥ 0.455

We start by considering the first case, where Algorithm 4.1 stops. If it stops before entering456

the loop, i.e., if Q(x̂0) � 0, we can apply Theorem 4.4 and conclude that x̂0 is an optimal solution457

of (SIP). If it stops at iteration k during the loop, this means that xk = x̂k since d = 0. Applying458

Lemma 4.6, we deduce that F (x̂k) = F (xk) ≤ F (x∗) + µk(xk − x̂k)>(x∗ − xk) = F (x∗), where x∗459

is any optimal solution of (SIP). Therefore, the first part of the theorem is proved.460

Now, we consider the second case: Algorithm 4.1 does not stop, and generates infinite sequences461

(xk)k∈N∗ and (x̂k)k∈N∗ . Using the notation x− := max{0,−x} to denote the negative part of x, we462

claim that (VP(xk)− h(xk))− → 0; for sake of brevity, we do not detail the proof of this vanishing463

here, but it uses exactly the same arguments used in the proof of Theorem A.1 (in Appendix A),464

relying on the compactness of sets X and F as well as on the continuity of the involved functions.465

We prove now that (V kSDP(xk) − h(xk))− → 0. The sequence νk := V kSDP(xk) − h(xk) is bounded466

since (i) VSDP(xk)−h(xk) ≤ V kSDP(xk)−h(xk) ≤ VP(xk)−h(xk) due to Lemma 4.5 and (ii) VSDP−h467

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 15

as well as VP−h are continuous (thus bounded) on the compact set X . Therefore, (νk)− is bounded468

too, and we must prove that the only possible limit for any converging subsequence of (νk)− is 0.469

We define any convergent subsequence extracted from (νk)− as (ν−ψ0(k)), where ψ0 : N∗ → N∗470

is an increasing application, and ν∗ the limit of (ν−ψ0(k)). Since (xψ0(k)) is bounded, it exists a471

converging subsequence (xψ(k)). We have then νψ(k) = V
ψ(k)
SDP

(
xψ(k)

)
− h

(
xψ(k))

)
for all k ∈ N∗.472

We add and substract V
ψ(k)
SDP (xψ(k−1))+h(xψ(k−1) to the right hand side of the equation, obtaining:473

νψ(k) =
(
V
ψ(k)
SDP (xψ(k−1))− h(xψ(k−1))

)
+
(
V
ψ(k)
SDP (xψ(k))− V ψ(k)

SDP (xψ(k−1))
)

+
(
h(xψ(k−1))− h(xψ(k))

)
. As474

ψ is an increasing function, we have ψ(k−1) ≤ ψ(k)−1, and thus, applying Lemma 4.5, we deduce475

that V
ψ(k)
SDP (xψ(k−1)) = VP(xψ(k−1)). This is why, since V

ψ(k)
SDP is ζ-Lipschitz (Lemma 4.5),476

νψ(k) =
(
VP(xψ(k−1))− h(xψ(k−1))

)
+
(
V
ψ(k)
SDP (xψ(k))− V ψ(k)

SDP (xψ(k−1))
)

+
(
h(xψ(k−1))− h(xψ(k))

)
477

≥
(
VP(xψ(k−1))− h(xψ(k−1))

)
− ζ‖xψ(k) − xψ(k−1)‖+

(
h(xψ(k−1))− h(xψ(k))

)
.478

479

Being the negative part function decreasing and subadditive, we deduce that:480

(4.10) ν−ψ(k) ≤
(
VP(xψ(k−1))− h(xψ(k−1))

)−
+
(
h(xψ(k−1))− h(xψ(k))− ζ‖xψ(k) − xψ(k−1)‖

)−
.481

As xψ(k) is converging and h is continuous, we have that h(xψ(k−1)) − h(xψ(k)) − ζ‖xψ(k) −482

xψ(k−1)‖ → 0. Hence the negative part of this term, appearing in Eq. (4.10), vanishes as well.483

Since
(
VP(xψ(k−1))− h(xψ(k−1))

)−
is extracted from (VP(xk)−h(xk))−, which converges to zero, we484

deduce that the whole expression in the right hand side of Eq. (4.10) vanishes when k →∞. Thus,485

ν−ψ(k) → 0 and, by uniqueness of the limit, ν∗ = 0. As a conclusion, ν−k =
(
V kSDP(xk)− h(xk)

)− → 0.486

Using Assumption 8, we introduce a Slater point xS ∈ X such that VSDP(xS)− h(xS) = c > 0.487

We also introduce λk := ν−k /(c + ν−k). We notice that λk → 0, since ν−k → 0. We define x̄k =488

(1− λk)xk + λkx
S , i.e., a convex combination of xk and xS . We emphasize that (x̄k, x̄k) is feasible489

in problem (4.9) at iteration k since490

• x̄k satisfies the constraints on x, because both xk and xS satisfy the convex constraints491

h(x) ≤ 〈Q(x), Y `〉 for ` ∈ {1, . . . , k − 1}, and, by convex combination, so does x̄k;492

• x̄k satisfies the constraint on the x̂-component, since a solution (λ, α, β, η) ∈ Ωk(x̄k) exists.493

Indeed, by concavity of V kSDP − h, we have that V kSDP(x̄k) − h(x̄k) ≥ (1 − λk)(V kSDP(xk) −494

h(xk)) + λk(VP(xS) − h(xS)) = (1 − λk)νk + λkc ≥ −(1 − λk)ν−k + λkc. By construction495

of λk, λkc− (1− λk)ν−k = 0 and thus V kSDP(x̄k)− h(x̄k) ≥ 0. This means that the value of496

problem (4.8) is greater than h(x̄k), and thus that it exists (λ, α, β, η) ∈ Ωk(x̄k).497

As the objective value of (x̄k, x̄k) in the problem (4.9) is 2F (x̄k), by optimality of (xk, x̂k):498

(4.11) F (xk) + F (x̂k) +
µk
2
‖xk − x̂k‖2 ≤ 2F ((1− λk)xk + λkx

S) ≤ 2(1− λk)F (xk) + 2λkF (xS),499

with the second inequality following from the convexity of F . We also notice that (x̂k, x̂k) is feasible500

in the problem (4.9) at iteration k, thus F (xk) + F (x̂k) + µk
2 ‖x

k − x̂k‖2 ≤ 2F (x̂k), which means501

(4.12) F (xk) +
µk
2
‖xk − x̂k‖2 ≤ F (x̂k).502

Summing Eq. (4.11) with Eq. (4.12), we obtain that 2F (xk) + µk‖xk − x̂k‖2 ≤ 2(1 − λk)F (xk) +503

2λkF (xS), and thus µk‖xk − x̂k‖2 ≤ 2λk
(
F (xS)− F (xk)

)
. Using that 0 < µ ≤ µk,504

(4.13) ‖xk − x̂k‖ ≤
√
µ−1(2λk (F (xS)− F (xk)))505

This manuscript is for review purposes only.

16 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

holds. Since λk → 0, and F (xS)− F (xk) is bounded, we deduce from Eq. (4.13) that506

(4.14) ‖xk − x̂k‖ → 0.507

Taken an optimal solution of (SIP), x∗, since x̂k is feasible in (SIP) as stated above, and since F508

is J-Lipschitz according to Assumption 1, we deduce that F (x∗) ≤ F (x̂k) ≤ F (xk) + J‖xk − x̂k‖.509

According to Lemma 4.6, we know that F (xk) ≤ F (x∗) + µk(xk − x̂k)>(x∗ − xk), which implies,510

according to the Cauchy-Schwartz inequality, that511

(4.15) F (x∗) ≤ F (x̂k) ≤ F (x∗) + µk‖xk − x̂k‖‖x∗ − xk‖+ J‖xk − x̂k‖.512

Since ‖x∗−xk‖ is bounded, we deduce from Eq. (4.14) that F (x∗)+µk‖xk− x̂k‖‖x∗−xk‖+J‖xk−513

x̂k‖ → F (x∗) and thus, F (x̂k)→ F (x∗) = val(SIP).514

Based on the previous Theorem, we deduce that the Algorithm 4.1 stops in finite time if the515

tolerance parameters are positive. We prove this result in the following corollary, in which we use516

the notation diam(X) := max
x1,x2∈X

‖x1 − x2‖.517

Corollary 4.8. Under Assumptions 1–5, and Assumption 8, if ε > 0 and d > 0, Algorithm 4.1518

terminates in finite time and returns a solution x̂k feasible in (SIP); moreover F (x̂k) ≤ val(SIP) +519

d(µkdiam(X) + J), where J is the Lipschitz constant for F .520

Proof. Proof in Appendix C.5.521

5. Applications. In this section, we present two problems that can be modeled as (SIP).522

For each of these, we present both the SIP formulation, and the corresponding single-level finite523

formulation (SIPR).524

5.1. Constrained quadratic regression. We consider a quadratic statistical model with525

Gaussian noise linking a vector w ∈ Rn of explanatory variables, i.e., the features vector, and an526

output z ∈ R as follows: z = 1
2w
>Q̄w + q̄>w + c̄+ ε, where Q̄ ∈ Rn×n s.t. Q̄ = Q̄>, q̄ ∈ Rn, c̄ ∈ R527

and ε ∼ N (0, σ2). Let us suppose that the parameters of this model are unknown, except an a priori528

bound B ∈ R+ on their magnitude. Moreover, we are given a dataset (wi, zi)1≤i≤P ∈ (Rn × R)P .529

Note that wi is an n-dimensional vector, for any i = 1, . . . , P . The problem of finding the maximum530

likelihood estimator for Q̄ ∈ Rn×n, q̄ ∈ Rn, c̄ ∈ R just consists in computing the triplet (Q, q, c) ∈531

Rn×n×Rn×R that minimizes the least-squares error
P∑
i=1

(zi− 1
2w
>
i Qwi−q>wi−c)2. We consider that532

(i) the features vector belongs to a given polytope F ⊂ Rn, (ii) the noiseless value 1
2y
>Q̄y+ q̄>y+ c̄533

is nonnegative for any y ∈ F . Hence, this inverse problem is a “constrained quadratic regression534

problem” that may be written as:535

(5.1)

min
Q,q,c

P∑
i=1

(zi − 1
2
w>i Qwi − q>wi − c)2

s.t. Q = Q>

0 ≤ 1
2
y>Qy + q>y + c ∀y ∈ F

‖Q‖∞ ≤ B, ‖q‖∞ ≤ B, |c| ≤ B
Q ∈ Rn×n, q ∈ Rn, c ∈ R.

536

Formulation (5.1) is a SIP problem. In particular, this model fits in the general setting of formulation537

(SIP), where the matrix Q is itself the upper-level variable of dimensions n×n. As in Section 4, we538

assume that F = {y ∈ Rn : a>j y ≤ bj ,∀j = 1, . . . , r} is included in the centered `2-ball with radius539

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 17

ρ > 0, and we use the notation Aj =

(
0n

aj
2

a>j
2

0

)
for all j ∈ {1, . . . , r}. Then540

(5.2)

min
Q,q,c,λ,α,β

P∑
i=1

(zi − 1
2
w>i Qwi − q>wi − c)2

s.t. Q = Q>

−c ≤ −b>λ− α(1 + ρ2)− β
1
2

(
Q+ 2αIn q

q> 2(β + α)

)
+

r∑
j=1

λjAj � 0

‖Q‖∞ ≤ B, ‖q‖∞ ≤ B, |c| ≤ B
Q ∈ Rn×n, q ∈ Rn, c ∈ R
λ ∈ Rr+, α ∈ R+, β ∈ R.

541

is the (SIPR) formulation corresponding to (5.1). Formulation (5.2) is feasible, because the all-542

zero solution satisfies every constraint. In general, (5.2) is a restriction of (5.1) since Q may not543

necessarily be PSD. The set Ωk(Q̂, q̂, ĉ) that will be used in the IOA algorithm is:544

Ωk(Q̂, q̂, ĉ) :=

{
(λ, α, β, η) ∈Rr+ × R+ × R× Rk−1

+ : − ĉ ≤ −b>λ− α(1 + ρ2)− β +

k−1∑
`=1

η`v` ∧545

1

2

(
Q̂+ 2αIn q̂

q̂> 2(β + α)

)
+

r∑
j=1

λjAj −
k−1∑
`=1

1

2
η`

(
Q` q`
q>` 0

)
� 0

}
,546

547
548

where (Q`, q`) is the solution x` obtained by solving problem (4.9) at iteration `, and v` is the549

value of the lower-level problem: min
y∈F

1
2y
>Q` y + q>` y.550

In order to benchmark our approaches, we can solve the following relaxation of (5.1) obtained551

by replacing the lower-level problem by its KKT conditions:552

(5.3)

min
Q,q,c,y,γ

P∑
i=1

(zi − 1
2
w>i Qwi − q>wi − c)2

s.t. Q = Q>

−c ≤ 1
2
y>Qy + q>y

Ay ≤ b
Qy + q +A>γ = 0

γ>(Ay − b) = 0
‖Q‖∞ ≤ B, ‖q‖∞ ≤ B, |c| ≤ B
Q ∈ Rn×n, q ∈ Rn, c ∈ R, y ∈ Rn, γ ∈ Rr+,

553

where γ is the KKT multiplier vector associated to the lower-level constraints Ay ≤ b. Problem (5.3)554

is a non-convex polynomial problem involving multivariate polynomials of degree up to three. We555

also compare our results with those obtained by the global optimization algorithm proposed in [29].556

557 5.2. Zero-sum game with cubic payoff. In this section, we are interested in solving a two-558

player zero-sum game that is related to an undirected graph G = (V,E). We assume that player559

1 benefits from a strategical advantage on player 2, which will be explained more precisely later.560

We let n denote the cardinality of V . Each player positions a resource on each node i ∈ V . After561

normalization, we can consider that the action set of both players is ∆n = {x ∈ Rn+ :
n∑
i=1

xi = 1}.562

A two-player zero-sum game is a two-player game s.t., for every strategy x ∈ ∆n of player 1, and for563

every strategy y ∈ ∆n of player 2, the payoffs of the two players sum to zero. If we define Pi(x, y)564

as the payoff of player i related to the strategy pair (x, y), we thus have that P1(x, y) = −P2(x, y).565

Since the payoffs sum to zero, we can write the zero-sum game by specifying only one game payoff.566

This manuscript is for review purposes only.

18 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

Player 1 wishes to minimize it, and player 2 wishes to maximize it. The game payoff P (x, y) related567

to the pair of strategies (x, y) ∈ ∆n ×∆n is the sum of:568

• the opposite of a term describing the “proximity” between x and y in the graph, x>My,569

where M ∈ Rn×n is a matrix having Mij = 1 if i = j or {i, j} ∈ E, and Mij = 0 otherwise,570

• the quadratic costs that player 1 has to pay to deploy his resources on the graph: c1(x) =571
1
2x
>Q1x+ q>1 x,572

• the opposite of the quadratic costs that player 2 has to pay to deploy her resources on the573

graph, and that is influenced by player 1 strategy: c2(x, y) = 1
2y
>Q2(x)y + q>2 y. In this574

sense, player 1 has a strategic advantage over player 2.575

Hence, this zero-sum game can then be written as min
x∈∆n

max
y∈∆n

− x>My + c1(x)− c2(x, y). Loosely576

speaking, player 1 trades off his costs for placing his resource where player 2’s one is (i.e., maximizing577

the proximity) and for augmenting player 2’s costs. In the meantime, player 2 tries to avoid player578

1, while minimizing her own costs. From player 1’s perspective, this problem can be cast as the579

following SIP formulation:580
min
x,z

1
2
x>Q1x+ q>1 x+ z

s.t. −z ≤ 1
2
y>Q2(x)y + (q2 +M>x)>y ∀y ∈ ∆n

x ∈ ∆n, z ∈ R.

(5.4)581

582

This latter formulation clearly fits in the general setting of formulation (SIP). Hence, we apply the583

methodology of Section 4 with r = n + 2, ρ = 1, a1 = 1 (1 is the all-ones n-dimensional vector),584

b1 = 1, a2 = −1, b2 = −1, and ∀j ∈ {1, . . . , n} aj+2 = −ej (ej is the j-th vector of the standard585

basis in Rn) and bj = 0. The dual variable is λ ∈ Rn+2
+ . In this application, the single-level finite586

formulation (SIPR) reads587

min
x,z,λ,α,β

z + 1
2
x>Q1x+ q>1 x

s.t. −z ≤ −λ1 + λ2 − 2α− β

1
2

(
Q2(x) + 2αIn W (x, λ)

W (x, λ)> 2β + 2α

)
� 0

x ∈ ∆n, z ∈ R
λ ∈ Rn+2

+ , α ∈ R+, β ∈ R,

(5.5)588

589

where W (x, λ) = q2 + M>x −
n∑
j=1

λj+2ej + (λ1 − λ2)1. If Q2(x) � 0 is PSD for any x ∈ ∆n,590

formulation (5.5) is a reformulation of (5.4). Otherwise, it is just a restriction of (5.4). In any case,591

such formulation is feasible, because for given vectors x ∈ ∆n, λ ∈ Rn+2
+ , and scalar β ∈ R, taking592

arbitrary large scalars α and z, the two constraints are satisfied.593

The set Ωk(x̂, ẑ) that will be used in the IOA algorithm, as a constraint in problem (4.9), is:594

Ωk(x̂, ẑ) :=

{
(λ, α, β, η) ∈Rn+2

+ × R+ × R× Rk−1
+ : − ẑ ≤ −λ1 + λ2 − 2α− β +

k−1∑
`=1

η`v` ∧595

1

2

(
Q2(x̂) + 2αIn W (x̂, λ)
W (x̂, λ)> 2β + 2α

)
−
k−1∑
`=1

1

2
η`

(
Q2(x`) q2 +M>x`

(q2 +M>x`)
> 0

)
� 0

}
,596

597

where x` is the solution obtained by solving problem (4.9) at iteration `, and v` is the value598

of the lower-level problem: min
y∈∆n

1
2y
>Q2(x`)y + (q2 + M>x`)

>y. As for the first application, we599

benchmark our two approaches both with the KKT-based relaxation/reformulation (depending on600

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 19

the convexity of the lower-level problem), and with the algorithm proposed by Mitsos in [29]. Given601

the KKT multipliers γ1 and γ2 associated respectively to the lower-level constraint
n∑
i=1

yi = 1, and602

the nonnegativity constraint y ≥ 0, the single-level finite formulation obtained by replacing the603

lower level of (5.4) by its KKT conditions, is604

min
x,z,y,γ1,γ2

z + 1
2
x>Q1x+ q>1 x

s.t. −z ≤ 1
2
y>Q2(x)y + (q2 +M>x)>y

Q2(x)y + q2 +M>x+ γ11− Inγ2 = 0

−γ>2 (Iny) = 0

x ∈ ∆n, y ∈ ∆n, z ∈ R, γ1 ∈ R, γ2 ∈ Rn+.

(5.6)605

606

The KKT multiplier γ1 is associated to an equality constraint, hence it can be either nonnegative607

or negative, and we have no complementarity constraint involving it in formulation (5.6). This608

relaxation/reformulation of problem (5.4), as well as (5.6), is a non-convex polynomial optimization609

problem involving multivariate polynomials of degree up to three.610

6. Numerical results. In this section we present the numerical results obtained by testing611

several instances of the two applications presented in Section 5, available online at the public612

repository https://github.com/aoustry/SIP-with-QP-LL.613

For the constrained quadratic regression (Section 5.1), we solve twenty randomly generated614

instances. Each of these instances is generated by choosing the statistical parameters Q̄, q̄, c̄ at615

random, drawing P = 4000 random features vectors wi ∈ Rn, and then computing the associated616

outputs zi ∈ R with a centered Gaussian noise. The data (wi, zi)1≤i≤P are produced with Q̄ PSD617

for ten instances, named PSD inst# in Table 2, and are produced with an indefinite Q̄ for ten618

instances, named notPSD inst# in Table 2.619

For the zero-sum game with cubic payoff application (Section 5.2), we test twenty-two instances620

where the matrix M is taken from the DIMACS graph coloring challenge1. We randomly generate621

Q1 in a way such that it is PSD, as well as the coefficients of the linear function Q2(x) such that622

Q2(x) is PSD for all feasible x in the instances named # PSD in Table 3. Regarding the instances623

named # notPSD in Table 3, no particular precaution is taken to enforce that Q2(x) is PSD. Hence,624

the sign of the eigenvalues of Q2(x) depends on x. The code that generates all the instances is625

available online, in the aforementioned repository.626

The global solutions of SIP formulations are found using the CP algorithm (Algorithm 3.1627

presented in Section 3), the IOA algorithm (Algorithm 4.1 presented in Section 4.5), and the global628

solution algorithm proposed in [29], that we call “Mitsos Algorithm” in this section. We also629

benchmark these algorithms with the traditional relaxation/reformulation approach based on the630

KKT conditions of the lower-level problem.631

The CP algorithm is implemented using the Python programming language [45]. Both the632

master problem (Rk) and the lower-level problem (Pxk) are solved using the global QP solver633

Gurobi [16]. The tolerance for the feasibility error ε = (h(xk)− val(Pxk))+ is set to 10−6.634

The IOA algorithm is also implemented in Python. We use the conic optimization solver Mosek635

[2] to solve (SIPR) at step 0 as well as the master problem (4.9) at step 7. The global solver Gurobi636

is used to solve the problem (Pxk) at step 8. The tolerances d and ε, used in the stopping criteria,637

are set to 10−6. An a priori knowledge on the convex nature of the lower-level problem gives the638

1 https://mat.tepper.cmu.edu/COLOR/instances.html

This manuscript is for review purposes only.

https://github.com/aoustry/SIP-with-QP-LL
https://mat.tepper.cmu.edu/COLOR/instances.html

20 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

guarantee that formulation (SIPR) has the same value of formulation (SIP). In such case, one can639

just solve (SIPR) to obtain an optimal solution of (SIP). Yet, this prior knowledge is not common640

to all the possible applications of our approaches, hence we decide to treat all the instances in the641

same way, by running the sequence of instructions described in Algorithm 4.1.642

Mitsos algorithm [29], used to benchmark the proposed approaches, is implemented using643

Python. As already said in Section 2, the algorithm generates, at each iteration, a lower and644

an upper bound of the optimal value of (SIP). The relaxation solved to get a lower bound is ob-645

tained by approximating the infinite constraint parameter set by a progressively finer finite subset.646

The formulation solved to get an upper bound is obtained by restricting the infinite constraints647

right hand side by εg > 0 and considering a successively finer discretization of the parameter set.648

For arbitrary combinations of the discretized parameter set and εg, this formulation is neither a re-649

striction, nor a relaxation of the SIP problem. However, the existence of a SIP-Slater point ensures650

that the algorithm finitely generates feasible iterates, the objective value of which converges to the651

optimal value. In our implementation, at each iteration, both the relaxation, and the restriction of652

the SIP problem, as well as the lower level for the corresponding iterate, are solved using Gurobi.653

We implement the KKT relaxations/reformulations with the AMPL modeling language [14],654

and solve them using Gurobi, for sake of fairness in the comparison. The KKT formulations are655

particularly hard to solve, mainly because of the complementarity constraints. Indeed, for most of656

the tested instances, Gurobi does not terminate within the time limit. For these instances, we just657

display, in italic font, the lower bound given by the optimal value of the best relaxation of the KKT658

formulation found by Gurobi within the time limit.659

For all the approaches, Gurobi is run with its default settings. The tests were performed on a660

computer with a 2.70GHz Intel(R) Core(TM) i7 quad-core and with 16 GB of RAM. For all the661

approaches we set a time limit (t.l.) of 18.000 seconds (5 hours).662

The results for Application 1 and Application 2 are reported in Table 2 and Table 3 respectively.663

The headings are the following:664

• “n” is the number of the lower-level variables; “time(s)” is the computing time in seconds;665

“it” is the number of iterations (for the IOA algorithm, such number is 0 when the sufficient666

condition at step 1 is verified and the algorithm does not enter the loop);667

• for CP and Mitsos algorithms “obj/LB-UB” is, respectively, either the optimal value of SIP668

formulation, or a pair of values corresponding to: the best lower bound (LB) and the best669

feasible solution, i.e., upper bound (UB), found by the algorithm within the time limit;670

• for the IOA algorithm “obj/UB” is, respectively, either the optimal value of the SIP for-671

mulation (the sufficient condition at step 1 is verified), or the best value F (x̂k) found by672

the algorithm within the time limit;673

• for CP and IOA algorithms “% (Pxk)” is the percentage of the total computing time, i.e.,674

time(s), used to solve (Pxk);675

• for the KKT approach, “obj/LB” is, respectively, either the optimal value of the KKT676

formulation, or the best lower bound of such value found by the solver Gurobi within the677

time limit, which is a lower bound for the SIP optimal value too.678

In Table 2 and Table 3, the minimum required times are reported in bold for each instance.679

As expected, the optimal values found by the three considered global methods are the same for680

all the instances (when the algorithm stops before the time limit is hit). In terms of computational681

time, the IOA algorithm is more efficient than the other approaches for all the instances where the682

restriction is proven to be optimal during the preliminary step of this algorithm. When solving the683

other instances, CP shows the best performance, although the number of iterations needed by the684

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 21

Instances CP algorithm IOA algorithm KKT Mitsos algorithm [29]
Name n obj/LB–UB time(s) it % (Pxk) obj/UB time(s) it % (Pxk) obj/LB obj/LB–UB time(s) it
PSD inst1 5 358.64 0.70 6 3.4 358.64 0.27 0 - 355.78 358.64 1.26 6
PSD inst2 5 365.60 0.32 3 3.6 365.60 0.23 0 - 363.85 365.60 0.56 3
PSD inst3 5 363.43 0.91 8 3.4 363.43 0.22 0 - 359.16 363.43 1.78 8
PSD inst4 5 353.90 0.54 5 3.6 353.90 0.22 0 - 353.19 353.90 0.97 5
PSD inst5 10 391.21 4.81 17 1.1 391.21 0.60 0 - 359.48 391.21 10.14 17
PSD inst6 10 397.59 4.92 17 1.0 397.59 0.63 0 - 353.55 397.59 10.45 17
PSD inst7 13 440.84 8.70 19 0.7 440.84 1.01 0 - 358.19 440.84 25.1 19
PSD inst8 13 382.17 2581 17 99.7 382.17 2734 15 98.6 345.52 382.17 6193 17
PSD inst9 15 564.84 – 622.88 t.l. 5 100 572.77 1.62 0 - 351.95 564.84 – inf t.l. 5
PSD inst10 15 526.22 – 545.34 t.l. 8 100 528.93 1.44 0 - 346.43 526.22 – inf t.l. 8
notPSD inst1 5 358.47 0.22 2 4.4 358.47 2.03 4 0.8 345.12 358.47 0.28 2
notPSD inst2 5 378.28 0.22 2 4.95 378.28 2.04 4 0.5 370.89 378.28 0.28 2
notPSD inst3 5 345.81 0.12 1 3.5 345.81 0.66 1 0.3 345.81 345.81 0.18 1
notPSD inst4 5 353.25 0.11 1 4.3 353.25 1.10 2 0.3 353.25 353.25 0.14 1
notPSD inst5 10 503.88 5.17 18 8.4 503.88 32.2 18 1.3 360.42 503.88 11.3 18
notPSD inst6 10 482.96 31.6 36 68.0 482.96 84.2 35 32.4 357.48 482.96 65.4 36
notPSD inst7 13 647.08 119 61 77.2 647.08 211 54 37.8 351.31 647.08 263 61
notPSD inst8 13 588.19 566 77 92.8 588.19 700 74 73.6 358.28 588.19 977 77
notPSD inst9 15 1126.44 687 97 89.9 1126.44 922 92 63.4 345.44 1126.44 1356 97
notPSD inst10 15 580.60 595 64 92.0 580.60 711 60 70.9 350.60 580.60 1047 64

Table 2: Numerical results of the first application

Instances CP algorithm IOA algorithm KKT Mitsos algorithm [29]
Name n obj/LB–UB time(s) it % (Pxk) obj/UB time(s) it % (Pxk) obj/LB obj/LB–UB time(s) it

jean PSD 80 -0.0760 49.5 183 23.5 -0.0760 19.9 0 - -1.0121 -0.0760 128 171
myciel4 PSD 23 -0.3643 4.81 390 31.0 -0.3643 0.09 0 - -1.0154 -0.3643 139 371
myciel5 PSD 47 -0.3164 21.6 684 13.1 -0.3164 1.51 0 - -1.0171 -0.3164 580 633
myciel6 PSD 95 -0.2841 399 2203 2.8 -0.2841 42.0 0 - -1.0207 -0.2841 6738 2008
myciel7 PSD 191 -0.2608 7498 5586 0.5 -0.2608 3452 0 - -1.9246 -0.2608 – -0.2608 t.l. 3268
queen5 5 PSD 25 -0.5536 1.73 165 39.4 -0.5536 0.12 0 - -1.0163 -0.5536 19.7 151
queen6 6 PSD 36 -0.4619 8.98 511 22.3 -0.4619 0.37 0 - -1.0185 -0.4619 168 458
queen7 7 PSD 49 -0.4054 31.0 937 12.1 -0.4054 1.60 0 - -1.0204 -0.4054 602 863
queen8 8 PSD 64 -0.3614 97.0 1578 7.0 -0.3614 4.43 0 - -1.0215 -0.3614 1662 1416
queen8 12 PSD 96 -0.3000 1194 4138 1.9 -0.3000 36.4 0 - -1.0217 -0.3000 14153 3570
queen9 9 PSD 81 -0.3247 351 2637 3.4 -0.3247 14.9 0 - -1.0216 -0.3247 5027 2357
jean notPSD 80 2.3979 6.82 7 99.5 2.3979 195 8 4.0 1.4095 2.3979 16.4 7
myciel4 notPSD 23 0.5198 43.5 40 99.8 0.5198 52.8 41 82.9 -0.2441 0.5198 102.6 40
myciel5 notPSD 47 1.2779 42.4 37 99.7 1.2779 86.3 33 35.3 0.3167 1.2779 103 37
myciel6 notPSD 95 2.9378 236 35 99.9 2.9378 2223 38 11.8 1.7319 2.9378 615 35
myciel7 notPSD 191 6.2486 773 23 99.9 6.2932 t.l. 4 0.06 -9.2171 6.2486 1320 23
queen5 5 notPSD 25 0.3800 21.2 51 99.4 0.3800 29.5 44 57.2 -0.3318 0.3800 42.4 51
queen6 6 notPSD 36 0.8511 293 73 99.9 0.8511 350 68 81.5 -0.0377 0.8511 751 73
queen7 7 notPSD 49 1.3510 69.8 44 99.7 1.3510 161 40 40.7 0.3615 1.3510 174 44
queen8 8 notPSD 64 1.8122 543 33 100 1.8122 1001 42 70.1 0.7866 1.8122 1113 33
queen8 12 notPSD 96 2.8102 1049 34 100 2.8102 2525 32 32.4 1.6273 2.8102 1935 34
queen9 9 notPSD 81 2.2979 2424 46 100 2.2979 2613 39 69.9 1.2042 2.2979 4545 46

Table 3: Numerical results of the second application

three methods is always comparable. Indeed, IOA iterations are, in average, more time consuming685

than the other algorithms and hence, for these instances, the computational time for IOA is larger686

even if the number of iterations of IOA is often less w.r.t. CP and Mitsos algorithm. As regards687

Mitsos algorithm, it turns out to be slower than CP. When compared to the IOA algorithm, it is688

sometimes better in terms of computational time, as shown in Table 4. We recall that, as the IOA689

algorithm, Mitsos algorithm computes a sequence of feasible solutions, the value of which converges690

to the optimal value, whereas the iterates in the CP algorithm are only asymptotically feasible.691

The instance “PSD inst8” is interesting, since the restriction (5.2) is obviously optimal (its692

This manuscript is for review purposes only.

22 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

Instances IOA algorithm Mitsos algorithm [29]

First application
PSD inst# 100% 0%

notPSD inst# 40% 60%

Second application
PSD 100% 0

notPSD 60% 40%

Table 4: Percentage of instances for which each approach requires less computational time than the other

value is also 382.17), but the IAO algorithm is not able to detect it immediately. Indeed, matrix693

Q0 found solving the formulation (5.2) for “PSD inst8” is not positive definite, but only positive694

semidefinite, thus the algorithm needs to enter the loop and runs 15 iterations before stopping.695

As concerns the KKT formulation, we see that the quality of the lower bounds computed by696

Gurobi within the time limit is very bad. Indeed, this formulation is particularly hard to solve697

mainly because of the complementarity constraints.698

To understand the causes of the computational time required by the IOA and the CP algorithms,699

we can look at “% (Pxk)” columns of Table 2 and 3. As regards the CP algorithm, for the first700

application, the time required to perform step 3 of the CP algorithm (i.e., to solve (Pxk)) is longer701

than the time required to perform step 2 (i.e., to solve (Rk)) only for the bigger instances (n ≥ 13702

for instances with a convex lower level and n ≥ 10 for instances with a non-convex lower level).703

In fact, when n grows, more time is needed to solve a possibly non-convex QP problem having704

Q and q as coefficients, rather than a convex QP having Q and q as variables. When n is small,705

it is different: even if the inner problem is quadratic non-convex, it has a small size so it is not706

harder to solve than the master problem. For the second application, the time required to solve707

the lower-level problem is longer than the time required to solve the master problem only for the708

instances having a non-convex lower level, i.e., the second half of the Table 3 rows. Indeed, when709

Q2(xk) is not PSD, problem (Pxk) is possibly non-convex and it becomes harder to solve than the710

master problem. As regards the IOA algorithm, we see that the percentage of time required to711

solve problem (Pxk) depends on the instance. Actually, the difficulty of the lower-level problem712

may also vary, for a same instance, between iterates, depending, e.g., on the number of the negative713

eigenvalues of Q(xk). In general, the value in the column “% (Pxk)” for the IOA algorithm is always714

less than the corresponding value in the column of the CP algorithm. This means, as expected,715

that the master program is more costly for IOA than for CP.716

7. Conclusion. We focus on a convex semi-infinite program having an infinite number of717

quadratically parameterized constraints. We consider two independent approaches to deal with such718

SIP problems. First, we focus on a classical cutting plane algorithm for solving the SIP formulation.719

We propose for it a new convergence rate, in the case where the objective function is strongly-720

convex and under a Slater assumption. Our new convergence rate presents the nice property to be721

directly related to the iteration index k, which is something new w.r.t. what is usually proved in722

SIP literature, where the linear rate of convergence is not controlled by k (see [31, Theorem 4.3]).723

Second, a new convex finite formulation (SIPR) obtained via the lower-level dualization approach724

provides a feasible solution x̂, which is optimal either if the quadratic lower-level problem is convex,725

or if a sufficient condition we introduce on x̂ (that can be computed a posteriori) is verified. Based726

on the lower-level dualization approach, we present a new convergent algorithm, named Inner-Outer727

Approximation algorithm, which solves at each iteration a relaxation of the restriction (SIPR). Our728

computational experiments on small and medium-scale instances show the superiority, in terms of729

solution time, of the Inner-Outer Approximation algorithm for the instances where it is able to730

certify the optimality of the restriction. As concerns the other cases, the cutting plane approach is731

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 23

faster, but the IOA often requires less iterations, and provides a feasible solution at each iteration.732

Both methods find an optimal solution of the SIP problem with good accuracy. We also compare the733

performances of the proposed approaches with the “Mitsos algorithm” [29], which provides feasible734

solutions at each iteration, and the KKT relaxation approach, which only provides loose lower735

bounds. A possible extension of our work could be implementing the Inner-Outer Approximation736

algorithm with the lower-level problem solved with an “on-demand” accuracy at each iteration.737

A rule for the update of the proximal parameter µ in the Inner-Outer Approximation algorithm738

should be studied to improve the performances of the algorithm itself. These possibilities will be739

addressed in future works.740

REFERENCES741

[1] S. Abbott, Understanding Analysis, Undergraduate Texts in Mathematics, Springer New York, 2016, https:742
//doi.org/10.1007/978-1-4939-2712-8.743

[2] M. ApS, The MOSEK python optimizer API manual. Version 9.2.36, 2021, https://docs.mosek.com/9.2/744
pythonapi/index.html.745

[3] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer, Non-linear parametric optimization, Springer,746
1982, https://doi.org/10.1007/978-3-0348-6328-5.747

[4] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization, Princeton university press, 2009.748
[5] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization, Society for Industrial and Applied749

Mathematics, 2001, https://doi.org/10.1137/1.9780898718829.750
[6] B. Betró, An accelerated central cutting plane algorithm for linear semi-infinite programming, Mathematical751

Programming, 101 (2004), pp. 479–495, https://doi.org/10.1007/s10107-003-0492-5.752
[7] B. Bhattacharjee, P. Lemonidis, W. H. Green Jr, and P. I. Barton, Global solution of753

semi-infinite programs, Mathematical Programming, 103 (2005), pp. 283–307, https://doi.org/10.1007/754
s10107-005-0583-6.755

[8] J. W. Blankenship and J. E. Falk, Infinitely constrained optimization problems, Journal of Optimization756
Theory and Applications, 19 (1976), pp. 261–281, https://doi.org/10.1007/BF00934096.757

[9] I. D. Coope and G. A. Watson, A projected lagrangian algorithm for semi-infinite programming, Mathematical758
Programming, 32 (1985), pp. 337–356, https://doi.org/10.1007/BF01582053.759

[10] M. Diehl, B. Houska, O. Stein, and P. Steuermann, A lifting method for generalized semi-infinite programs760
based on lower level wolfe duality, Computational Optimization and Applications, 54 (2013), pp. 189–210,761
https://doi.org/10.1007/s10589-012-9489-4.762

[11] H. Djelassi, A. Mitsos, and O. Stein, Recent advances in nonconvex semi-infinite programming: Applications763
and algorithms, EURO Journal on Computational Optimization, 9 (2021), https://doi.org/10.1016/j.ejco.764
2021.100006.765

[12] S. Fang, C. Lin, and S. Wu, Solving quadratic semi-infinite programming problems by using relaxed766
cutting-plane scheme, Journal of Computational and Applied Mathematics, 129 (2001), pp. 89–104,767
https://doi.org/10.1016/S0377-0427(00)00544-6.768

[13] C. A. Floudas and O. Stein, The adaptive convexification algorithm: A feasible point method for769
semi-infinite programming, SIAM Journal on Optimization, 18 (2008), pp. 1187–1208, https://doi.org/770
10.1137/060657741.771

[14] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming,772
Cengage Learning, Boston, MA, 2002.773

[15] P. Gribik, A central-cutting-plane algorithm for semi-infinite programming problems, in Semi-infinite pro-774
gramming, Springer, 1979, pp. 66–82, https://doi.org/10.1007/BFb0003884.775

[16] L. Gurobi Optimization, Gurobi optimizer reference manual, 2021, http://www.gurobi.com.776
[17] R. Hettich, A review of numerical methods for semi-infinite optimization, Semi-infinite programming and777

applications, (1983), pp. 158–178, https://doi.org/10.1007/978-3-642-46477-5 11.778
[18] R. Hettich, An implementation of a discretization method for semi-infinite programming, Mathematical Pro-779

gramming, 34 (1986), pp. 354–361, https://doi.org/10.1007/BF01582235.780
[19] R. Hettich and K. O. Kortanek, Semi-infinite programming: Theory, methods, and applications, SIAM781

Review, 35 (1993), pp. 380–429, https://doi.org/10.1137/1035089.782
[20] J. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms I: Fundamentals,783

vol. 305, Springer-Verlag Berlin Heidelberg, 2013, https://doi.org/10.1007/978-3-662-02796-7.784
[21] A. Kaplan and R. Tichatschike, A regularized penalty method for solving convex semi-infinite programs,785

This manuscript is for review purposes only.

https://doi.org/10.1007/978-1-4939-2712-8
https://doi.org/10.1007/978-1-4939-2712-8
https://doi.org/10.1007/978-1-4939-2712-8
https://docs.mosek.com/9.2/pythonapi/index.html
https://docs.mosek.com/9.2/pythonapi/index.html
https://docs.mosek.com/9.2/pythonapi/index.html
https://doi.org/10.1007/978-3-0348-6328-5
https://doi.org/10.1137/1.9780898718829
https://doi.org/10.1007/s10107-003-0492-5
https://doi.org/10.1007/s10107-005-0583-6
https://doi.org/10.1007/s10107-005-0583-6
https://doi.org/10.1007/s10107-005-0583-6
https://doi.org/10.1007/BF00934096
https://doi.org/10.1007/BF01582053
https://doi.org/10.1007/s10589-012-9489-4
https://doi.org/10.1016/j.ejco.2021.100006
https://doi.org/10.1016/j.ejco.2021.100006
https://doi.org/10.1016/j.ejco.2021.100006
https://doi.org/10.1016/S0377-0427(00)00544-6
https://doi.org/10.1137/060657741
https://doi.org/10.1137/060657741
https://doi.org/10.1137/060657741
https://doi.org/10.1007/BFb0003884
http://www.gurobi.com
https://doi.org/10.1007/978-3-642-46477-5_11
https://doi.org/10.1007/BF01582235
https://doi.org/10.1137/1035089
https://doi.org/10.1007/978-3-662-02796-7

24 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

Optimization, 26 (1992), pp. 215–228, https://doi.org/10.1080/02331939208843853.786
[22] J. Kelley, Jr., The cutting-plane method for solving convex programs, Journal of the society for Industrial787

and Applied Mathematics, 8 (1960), pp. 703–712, https://www.jstor.org/stable/2099058.788
[23] K. O. Kortanek and H. No, A central cutting plane algorithm for convex semi-infinite programming problems,789

SIAM Journal on optimization, 3 (1993), pp. 901–918, https://doi.org/10.1137/0803047.790
[24] P. Laurent and C. Carasso, An algorithm of successive minimization in convex programming, RAIRO.791

Analyse numérique, 12 (1978), pp. 377–400, http://www.numdam.org/item/M2AN 1978 12 4 377 0/.792
[25] E. Levitin and R. Tichatschke, A branch-and-bound approach for solving a class of generalized semi-infinite793

programming problems, Journal of Global Optimization, 13 (1998), pp. 299–315, https://doi.org/10.1023/794
A:1008245113420.795

[26] L. Liberti, S. Cafieri, and F. Tarissan, Reformulations in mathematical programming: A computational796
approach, in Foundations of Computational Intelligence Volume 3: Global Optimization, A. Abraham797
et al., eds., Springer, Berlin, Heidelberg, 2009, pp. 153–234, https://doi.org/10.1007/978-3-642-01085-9 7.798

[27] F. Locatello, M. Tschannen, G. Rätsch, and M. Jaggi, Greedy algorithms for cone constrained799
optimization with convergence guarantees, arXiv preprint, (2017), http://arxiv.org/abs/1705.11041.800

[28] A. Marendet, A. Goldsztejn, G. Chabert, and C. Jermann, A standard branch-and-bound approach for801
nonlinear semi-infinite problems, European Journal of Operational Research, 282 (2020), pp. 438–452,802
https://doi.org/10.1016/j.ejor.2019.10.025.803

[29] A. Mitsos, Global optimization of semi-infinite programs via restriction of the right-hand side, Optimization,804
60 (2011), pp. 1291–1308, https://doi.org/10.1080/02331934.2010.527970.805

[30] R. Reemtsen, Discretization methods for the solution of semi-infinite programming problems, Journal of Op-806
timization Theory and Applications, 71 (1991), pp. 85–103, https://doi.org/10.1007/BF00940041.807

[31] R. Reemtsen and S. Görner, Numerical methods for semi-infinite programming: A survey, in Reemtsen and808
Rückmann [32], pp. 195–275, https://doi.org/10.1007/978-1-4757-2868-2 7.809

[32] R. Reemtsen and J. Rückmann, eds., Semi-Infinite Programming, Springer, Boston, 1998.810
[33] R. T. Rockafellar and R. J.-B. Wets, Variational analysis, vol. 317, Springer, Berlin, Heidelberg, 2009,811

https://doi.org/10.1007/978-3-642-02431-3.812
[34] G. Romano, New results in subdifferential calculus with applications to convex optimization, Applied Mathe-813

matics and Optimization, 32 (1995), pp. 213–234, https://doi.org/10.1007/BF01187900.814
[35] U. Schättler, An interior-point method for semi-infinite programming problems, Annals of Operations Re-815

search, 62 (1996), pp. 277–301, https://doi.org/10.1007/BF02206820.816
[36] M. Sion, On general minimax theorems, Pacific Journal of mathematics, 8 (1958), pp. 171–176, https://doi.817

org/pjm/1103040253.818
[37] G. Sonnevend, A new class of a high order interior point method for the solution of convex semiinfinite819

optimization problems, in Computational Optimal Control, Springer, 1994, pp. 193–211, https://doi.org/820
10.1007/978-3-0348-8497-6 16.821

[38] O. Stein, Bi-level strategies in semi-infinite programming, vol. 71 of Nonconvex Optimization and Its Appli-822
cations, Springer Boston, MA, 2013, https://doi.org/10.1007/978-1-4419-9164-5.823

[39] O. Stein and P. Steuermann, The adaptive convexification algorithm for semi-infinite programming with824
arbitrary index sets, Mathematical programming, 136 (2012), pp. 183–207, https://doi.org/10.1007/825
s10107-012-0556-5.826

[40] O. Stein and G. Still, Solving semi-infinite optimization problems with interior point techniques, SIAM J.827
Control and Optimization, 42 (2003), pp. 769–788, https://doi.org/10.1137/S0363012901398393.828

[41] G. Still, Discretization in semi-infinite programming: the rate of convergence, Mathematical programming,829
91 (2001), pp. 53–69, https://doi.org/10.1007/s101070100239.830

[42] Y. Tanaka, M. Fukushima, and T. Ibaraki, A globally convergent SQP method for semi-infinite nonlinear831
optimization, Journal of Computational and Applied Mathematics, 23 (1988), pp. 141–153, https://doi.832
org/10.1016/0377-0427(88)90276-2.833

[43] R. Tichatschke and V. Nebeling, A cutting-plane method for quadratic semi infinite programming problems,834
Optimization, 19 (1988), pp. 803–817, https://doi.org/10.1080/02331938808843393.835

[44] H. Tuy, Convex Analysis and Global Optimization, vol. 22, Springer, Boston, MA, 2 ed., 1998, https://doi.836
org/10.1007/978-3-319-31484-6.837

[45] G. Van Rossum and F. L. Drake, Jr., Python tutorial, Centrum voor Wiskunde en Informatica Amsterdam,838
The Netherlands, 1995.839

[46] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM review, 38 (1996), pp. 49–95, https://doi.840
org/10.1137/1038003.841

[47] L. Zhang, S.-Y. Wu, and M. A. López, A new exchange method for convex semi-infinite programming, SIAM842
Journal on optimization, 20 (2010), pp. 2959–2977, https://doi.org/10.1137/090767133.843

This manuscript is for review purposes only.

https://doi.org/10.1080/02331939208843853
https://www.jstor.org/stable/2099058
https://doi.org/10.1137/0803047
http://www.numdam.org/item/M2AN_1978__12_4_377_0/
https://doi.org/10.1023/A:1008245113420
https://doi.org/10.1023/A:1008245113420
https://doi.org/10.1023/A:1008245113420
https://doi.org/10.1007/978-3-642-01085-9_7
http://arxiv.org/abs/1705.11041
https://doi.org/10.1016/j.ejor.2019.10.025
https://doi.org/10.1080/02331934.2010.527970
https://doi.org/10.1007/BF00940041
https://doi.org/10.1007/978-1-4757-2868-2_7
https://doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.1007/BF01187900
https://doi.org/10.1007/BF02206820
https://doi.org/pjm/1103040253
https://doi.org/pjm/1103040253
https://doi.org/pjm/1103040253
https://doi.org/10.1007/978-3-0348-8497-6_16
https://doi.org/10.1007/978-3-0348-8497-6_16
https://doi.org/10.1007/978-3-0348-8497-6_16
https://doi.org/10.1007/978-1-4419-9164-5
https://doi.org/10.1007/s10107-012-0556-5
https://doi.org/10.1007/s10107-012-0556-5
https://doi.org/10.1007/s10107-012-0556-5
https://doi.org/10.1137/S0363012901398393
https://doi.org/10.1007/s101070100239
https://doi.org/10.1016/0377-0427(88)90276-2
https://doi.org/10.1016/0377-0427(88)90276-2
https://doi.org/10.1016/0377-0427(88)90276-2
https://doi.org/10.1080/02331938808843393
https://doi.org/10.1007/978-3-319-31484-6
https://doi.org/10.1007/978-3-319-31484-6
https://doi.org/10.1007/978-3-319-31484-6
https://doi.org/10.1137/1038003
https://doi.org/10.1137/1038003
https://doi.org/10.1137/1038003
https://doi.org/10.1137/090767133

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 25

Appendices We report in this section the proof of convergence of Algorithm 3.1, as well as844

the proofs of all the lemmata and corollaries introduced in the paper. While the convergence of the845

cutting plane algorithm is well-known in literature (even if we prove here the convergence of our846

specific Algorithm 3.1 from scratch, for sake of completeness), the other proofs reported in these847

appendices are new results.848

Appendix A. Convergence proof of CP algorithm. In this section, a convergence849

proof for Algorithm 3.1 is given. Since Q(x) and q(x) are linear w.r.t. x, the function f(x, y) =850
1
2y
>Q(x)y + q(x)>y is continuously differentiable, and therefore Lipschitz continuous on the com-851

pact set X ×F (see Assumptions 2 and 5), with H > 0 an associated Lipschitz constant. Moreover,852

x 7→ val(Px) is continuous over the compact feasible set X , as shown, e.g., in [33, Th. 1.17], and [3,853

Sec. 4.2]. Based on these observations, we prove the convergence of the algorithm.854

Theorem A.1. Assume that X and F are compact and that ε = 0, Algorithm 3.1 either ter-855

minates in K ∈ N? iterations, in which case xK is a solution of (SIP), or generates an infinite856

sequence (xk)k∈N? with the following convergence guarantees:857

• feasibility error: εk =
(
val(Pxk)− h(xk)

)− → 0,858

• objective error: δk = val(SIP)− F (xk)→ 0.859

Proof. If Algorithm 3.1 terminates at iteration K ∈ N?, xK is feasible in (SIP), i.e., xK ∈ X and860

val(PxK) ≥ h(xK), which implies that F (xK) ≥ val(SIP). At the same time F (xK) = val(RK) ≤861

val(SIP), being (Rk) a relaxation of (SIP) by definition. Thus, F (xK) = val(SIP), and xK is an862

optimal solution of (SIP).863

Let us suppose now that the stopping test is never satisfied. In this context, we prove first864

the convergence of the feasibility error εk towards 0. For any k ∈ N?, we have that val(Pxk) =865
1
2y
k>Q(xk)yk + q(xk)>yk = f(xk, yk), thus εk =

(
f(xk, yk)− h(xk)

)−
. Since f(x, y), h(x) and the866

negative part function are continuous, and since both xk and yk are bounded, the sequence εk is867

also bounded. According to Bolzano-Weierstrass theorem [1], this bounded sequence has at least868

a convergent subsequence. In the following, we define any convergent subsequence extracted from869

εk as εψ0(k), where ψ0 : N? 7→ N? is an increasing application. Defining as ε∗ ∈ R the limit of this870

convergent subsequence, we will show that this limit value is in fact 0.871

The sequence
(
yψ0(k), εψ0(k)

)
is a subsequence of the bounded sequence (yk, εk), therefore it is872

bounded. According to the Bolzano-Weierstrass theorem, sequence
(
yψ0(k), εψ0(k)

)
has a convergent873

subsequence
(
yψ(k), εψ(k)

)
. Since εψ(k) is a convergent subsequence of εψ0(k), εψ(k) → ε∗ holds.874

Because ψ(k − 1) < ψ(k) by definition of ψ, the cut related to yψ(k−1) is a constraint of problem875

Rψ(k) (added by Algorithm 3.1 at iteration k − 1). Thus, f(xψ(k), yψ(h−1))− h(xψ(k)) ≥ 0, and876

f(xψ(k), yψ(k))− h(xψ(k)) = f(xψ(k), yψ(k))− f(xψ(k), yψ(k−1)) + f(xψ(k), yψ(k−1))− h(xψ(k))

≥ f(xψ(k), yψ(k))− f(xψ(k), yψ(k−1)).
877
878

Being the negative part function decreasing, εψ(k) =
(
f(xψ(k), yψ(k))− h(xψ(k))

)−
is less than or879

equal to
(
f(xψ(k), yψ(k))− f(xψ(k), yψ(k−1))

)−
. Therefore εψ(k) ≤

∣∣∣f(xψ(k), yψ(k))− f(xψ(k), yψ(k−1))
∣∣∣.880

From this last result and the fact that f is H-Lipschitz continuous, we deduce that881

(A.1) εψ(k) ≤ H ‖
(
xψ(k)

yψ(k)

)
−
(
xψ(k)

yψ(k−1)

)
‖ = H ‖yψ(k) − yψ(k−1)‖.882

As yψ(k) is convergent, we know that ‖yψ(k) − yψ(k−1)‖ → 0. Being εψ(k) nonnegative, we deduce883

from Eq. (A.1) that εψ(k) → 0, and thus, ε? = 0.884

This manuscript is for review purposes only.

26 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

We proved that the sequence εk is bounded, and that any converging subsequence converge885

towards 0, thus we can conclude that εk converges towards 0 itself, according to a well-known886

result in analysis [1]. Based on this result, we prove now the second point, i.e., the convergence of887

objective error. We know that888

(A.2) ∀k ∈ N? F (xk) ∈
[
F (x1), val(SIP)

]
,889

therefore the increasing sequence F (xk) is bounded, and thus, converging. Since xk is bounded, we890

can derive a converging subsequence xφ(k) → x? with φ : N? 7→ N? being an increasing func-891

tion. The associated feasibility error is εφ(k) =
(
val(Pxφ(k))− h(xφ(k))

)−
. On the one hand,892

being εφ(k) a subsequence of εk which converges towards zero, εφ(k) → 0. On the other hand,893

εφ(k) → (val(Px?)− h(x?))
−

holds by continuity of x 7→ val(Px) and h(x). By uniqueness of the894

limit, (val(Px?)− h(x?))
−

= 0. Therefore, x? ∈ X is feasible in (SIP) and F (x?) ≥ val(SIP). From895

(A.2) we also know that F (x?) ≤ val(SIP), and thus F (x?) = val(SIP). We can conclude that F (xk)896

is bounded and admits a unique limit point which is val(SIP). Hence, δk → 0.897

Appendix B. Proofs of Lemmata in Section 3.898

B.1. Proof of Lemma 3.1. We denote by x̂ ∈ X the primal feasible solution s.t. g(x̂, y) =899
1
2y
>Q(x̂)y + q(x̂)>y − h(x̂) > 0 for all y ∈ F . Since the set F is compact and the function g(x̂, y)900

is continuous in y and positive, it exists c > 0 s.t. g(x̂, y) ≥ c for all y ∈ F . For any Y ∈ K, we901

have that Y =
∑p
k=1 λkM(yk), for an integer p ∈ N, vectors y1, . . . , yp ∈ F and nonnegative scalars902

λ1, . . . , λp ∈ R+. Since 〈G(x̂),M(y)〉 = 1
2y
>Q(x̂)y + q(x̂)>y − h(x̂) for any y ∈ F , the following903

holds by linearity:904

〈G(x̂), Y 〉 = 〈G(x̂),

p∑
k=1

λkM(yk)〉 =

p∑
k=1

λk〈G(x̂),M(yk)〉 ≥
p∑
k=1

λkc = Yn+1,n+1c.905

906

Moreover, by definition of θ, for any Y ∈ K θ(Y) = min
x∈X

F (x) − 〈G(x), Y 〉 ≤ F (x̂) − 〈G(x̂), Y 〉 ≤907

F (x̂)− Yn+1,n+1c. We take then a maximizing sequence (Y k)k∈N of problem (3.1). Defining VSIP′ =908

val(SIP′), we know that θ(Y k)→ VSIP′ and hence, it exists j ∈ N s.t. for all k ≥ j, θ(Y k) ≥ VSIP′−1.909

This implies that, for all k ≥ j, 0 ≤ Y kn+1,n+1 ≤
F (x̂)−VSIP′+1

c . Defining τ̄ = F (x̂)−VSIP′+1
c , we deduce910

that ∀k ≥ j, Y k belongs to τ̄ conv(P), which is compact. Thus, the sequence (Y k)k∈N admits an911

accumulation point Y ∗, s.t. θ(Y ∗) = VSIP′ by continuity of θ.912

B.2. Proof of Lemma 3.2. This property follows from the 1st order optimality condition at913

1 of the differentiable function w(t) = θ(tY k). Indeed, w′(1) = 〈∇θ(Y k), Y k〉 = 0, because (i) 1 is914

optimal for w since Y k ∈ arg max
Y ∈cone(Bk)

θ(Y), (ii) 1 lies in the interior of the definition domain of w.915

B.3. Proof of Lemma 3.3. For the purpose of this proof, we introduce the linear operator916

Q?, defined as the adjoint operator of the linear (by Assumption 3) operator Q(x). With this917

notation, we have that 〈Q(x), Y 〉 = x>(Q?Y). We also denote by ‖Q?‖op the operator norm of Q?.918

We notice that the image of the bounded set X by the subdifferential mapping ∂h(X) =
⋃
x∈X

∂h(x)919

is bounded according to Th.6.2.2 in [20, Chap.]. Hence D ≥ 0 exists such that920

(B.1) ∀x ∈ X , ∀s ∈ ∂h(x), ‖s‖2 ≤ D.921

Given Y, Y ′ ∈ K, we are now going to prove that ‖∇θ(Y)−∇θ(Y ′)‖2 ≤ L‖Y − Y ′‖2 for a constant922

L that is independent from Y and Y ′. Being iX (x) the indicator function of the set X , we introduce923

the functions w(x) = L(x, Y) + iX (x) and w′(x) = L(x, Y ′) + iX (x). According to Assumptions924

6, as well as 2, 3, and 4 we remark that application w (resp. w′) is µ-strongly convex because925

it is the sum of the µ-strongly convex function F (x) and the function −〈G(x), Y 〉 + iX (x) (resp.926

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 27

−〈G(x), Y ′〉+ iX (x)) convex in x. Being u (resp. u′) the unique (for strong convexity) minimum of927

function w (resp. w′) the optimality conditions of function w, and w′ respectively read928

0 ∈ ∂w(u),(B.2)929

0 ∈ ∂w′(u′).(B.3)930931

We remark that w′(x) = F (x) + iX (x) + Y ′n+1,n+1h(x) − x>(Q?Y ′). The function F (x) + iX (x) is932

convex in x as a sum of convex functions; the function Y ′n+1,n+1h(x) is convex in x since h(x)933

is convex and Y ′n+1,n+1 ≥ 0 by definition of cone K; −x>(Q?Y ′) is linear (convex) in x. The934

intersection of the relative interiors of the domains of these convex functions is ri(X). Being X935

a finite-dimensional convex set, ri(X) 6= ∅ [44, Prop. 1.9]. Hence, the subdifferential of the sum936

is the sum of the subdifferentials [34, Th. 2.1], and the subdifferential of function w′ at u′ reads937

∂w′(u′) = ∂(F + iX)(u′)−Q?Y ′ + Y ′n+1,n+1∂h(u′). Based on this decomposition, it follows from (B.3)938

that ∃ g0 ∈ ∂(F + iX)(u′), g1 ∈ ∂h(u′) such that939

(B.4) g0 −Q?Y ′ + Y ′n+1,n+1g1 = 0.940

Additionally, since w(x) = F (x)+iX (x)−x>(Q?Y)+Yn+1,n+1h(x), and g0 ∈ ∂(F +iX)(u′), g1 ∈ ∂h(u′),941

g0 −Q?Y + Yn+1,n+1g1 ∈ ∂w(u′). Combining this with Eq. (B.4), we deduce:942

(B.5) Q?(Y ′ − Y) + (Yn+1,n+1 − Y ′n+1,n+1)g1 ∈ ∂w(u′).943

Applying Th.6.1.2 in [20, Chap.], the µ-strong convexity of w gives that, for any s1 ∈ ∂w(u) and944

s2 ∈ ∂w(u′), 〈s2 − s1, u
′ − u〉 ≥ µ‖u − u′‖22. Moreover, due to the Cauchy-Schwartz inequality,945

‖s1− s2‖2‖u−u′‖2 ≥ 〈s2− s1, u
′−u〉. Therefore, ‖s2− s1‖2 ≥ µ‖u−u′‖2 holds for any s1 ∈ ∂w(u)946

and s2 ∈ ∂w(u′). Since 0 ∈ ∂w(u) according to (B.2), and Q?(Y ′−Y) + (Yn+1,n+1−Y ′n+1,n+1)g1 ∈947

∂w(u′) according to (B.5), we deduce that
∥∥Q?(Y ′ − Y) + (Yn+1,n+1 − Y ′n+1,n+1)g1 − 0

∥∥
2
≥ µ‖u−u′‖2.948

According to the triangle inequality ‖Q?(Y ′ − Y)‖2 + |Yn+1,n+1 − Y ′n+1,n+1| ‖g1‖2 ≥ µ‖u − u′‖2, and949

thus, since ‖Y − Y ′‖2 ≥ |Yn+1,n+1 − Y ′n+1,n+1|, ‖Q?‖op‖Y − Y ′‖2 + ‖Y − Y ′‖2 ‖g1‖2 ≥ µ‖u− u
′‖2.950

Defining B = ‖Q?‖op + D and using that ‖g1‖2 ≤ D, which holds for (B.1), we know that951

B‖Y − Y ′‖2 ≥ µ‖u − u′‖2. According to Assumption 4, h(x) is Lipschitz continuous and so are952

q(x) and Q(x) by Assumption 3. Hence, it exists a constant K > 0 such that G(x) is K-Lipschitz953

continuous. We deduce that K‖u − u′‖2 ≥ ‖G(u) − G(u′)‖2, and, consequently, ‖Y − Y ′‖2 ≥954
µ
BK ‖G(u)−G(u′)‖2. We define the constant L = BK

µ , which is clearly independent from Y, Y ′, u and955

u′. Since ∇θ(Y) = −G(u) and ∇θ(Y ′) = −G(u′), we deduce that L‖Y − Y ′‖2 ≥ ‖∇θ(Y)−∇θ(Y ′)‖2,956

which concludes the proof.957

B.4. Proof of Lemma 3.4. For any Y,Z ∈ K and γ > 0, we obtain by integration that958

(B.6) θ(Y + γZ)− θ(Y) =

∫ γ

t=0

〈∇θ(Y + tZ), Z〉dt = γ〈∇θ(Y), Z〉+

∫ γ

t=0

〈∇θ(Y + tZ)−∇θ(Y), Z〉dt.959

Since 〈∇θ(Y +tZ)−∇θ(Y), Z〉 ≥ − |〈∇θ(Y + tZ)−∇θ(Y), Z〉| , using Cauchy-Schwartz inequality960

and L-smoothness of θ, we know that 〈∇θ(Y + tZ) − ∇θ(Y), Z〉 ≥ −‖∇θ(Y + tZ) − ∇θ(Y)‖2 ‖Z‖2 ≥961

−tL‖Z‖22. Combining this with Eq. (B.6), we deduce that θ(Y + γZ) − θ(Y) ≥ γ〈∇θ(Y), Z〉 −962 ∫ γ
t=0

tL‖Z‖22dt, which yields finally that θ(Y + γZ)− θ(Y) ≥ γ〈∇θ(Y), Z〉 − L‖Z‖2
2

γ2.963

Appendix C. Proofs of Lemmata in Section 4.964

C.1. Proof of Lemma 4.1. The inequality val(SDPx) ≤ val(Px) follows from the relaxation965

of the rank-constraint. We now assume that Q(x) is PSD and prove that val(SDPx) ≥ val(Px) holds.966

Given a matrix Y feasible for (SDPx), we denote by u1, . . . , un+1 ∈ Rn+1 a basis of eigenvectors967

of Y (which is PSD) and their respective eigenvalues v1, . . . , vn+1 ∈ R+. Let us introduce the two968

following index sets: I = {i ∈ {1, . . . , n+ 1} : (ui)n+1 6= 0} and J = {i ∈ {1, . . . , n+ 1} : (ui)n+1 =969

0}. We have then: I ∪ J = {1, . . . , n+ 1}. Moreover,970

This manuscript is for review purposes only.

28 M. CERULLI, A. OUSTRY, C. D’AMBROSIO, L. LIBERTI

• if i ∈ I : we define the nonnegative scalar µi = vi(ui)
2
n+1 and yi ∈ Rn s.t. ui = (ui)n+1

(
yi
1

)
971

• if i ∈ J : we define the nonnegative scalar νi = vi and zi ∈ Rn s.t. ui =

(
zi
0

)
.972

With this notation, we have that

Y =

n+1∑
i=1

viuiu
>
i =

∑
i∈I

vi(ui)
2
n+1

(
yi
1

)(
yi
1

)>
+
∑
i∈J

vi

(
zi
0

)(
zi
0

)>
=
∑
i∈I

µi

(
yiy
>
i yi

y>i 1

)
+
∑
i∈J

νi

(
ziz
>
i 0

0> 0

)
,

where 0 is the null n-dimensional vector (whereas 0n is the n × n null matrix). Let us define the973

vector ȳ =
∑
i∈I

µiyi. Its obj. value in (Px) is smaller than the obj. value of Y in (SDPx). In fact:974

(C.1) 〈Q(x), Y 〉 =
∑
i∈I

µif(x, yi) +
1

2

∑
i∈J

νiz
>
i Q(x)zi ≥

∑
i∈I

µif(x, yi) ≥ f(x,
∑
i∈I

µiyi) = f(x, ȳ).975

The first inequality is due to Q(x) � 0 and νi ≥ 0. The second inequality derives from
∑
i∈I

µi =976

Yn+1,n+1 = 1, and from the convexity of function f(x, y) (Jensen inequality). Moreover, since Y977

is feasible in (SDPx), for each j ∈ {1, . . . , r} we have bj ≥ 〈Aj , Y 〉 =
∑
i∈I

µia
>
j yi = a>j ȳ, which978

means that ȳ is feasible in (Px) too. This implies that f(x, ȳ) ≥ val(Px) and together with (C.1),979

that 〈Q(x), Y 〉 ≥ val(Px). This being true for any matrix Y feasible in (SDPx), we conclude that980

val(SDPx) ≥ val(Px). This proves that val(SDPx) = val(Px).981

C.2. Proof of Lemma 4.2. The Lagrangian of problem (SDPx) is defined over Y ∈ S+
n+1(R),982

λ ∈ Rr+, α ∈ R+, β ∈ R and reads Lx(Y, λ, α, β) = 〈Q(x), Y 〉 +
r∑
j=1

[λj (〈Aj , Y 〉 − bj)] + α(Tr(Y) − 1 −983

ρ2) +β(Yn+1,n+1− 1) = −
r∑
j=1

λjbj −α(1 + ρ2)−β+ 〈Q(x) +
r∑
j=1

λjAj +αIn+1 +βE, Y 〉. The Lagrangian984

dual problem of (SDPx) is: max
λ,α,β

min
Y

Lx(Y, λ, α, β). According to Lagrangian expression, it can thus985

be written as986

max
λ∈Rr+
α∈R+
β∈R

(−(

r∑
j=1

λjbj + α(1 + ρ2) + β) + min
Y ∈S+

n+1(R)
〈Q(x) +

r∑
j=1

λjAj + αIn+1 + βE, Y 〉).987

We notice that988

min
Y ∈S+

n+1(R)
〈Q(x) +

r∑
j=1

λjAj + αIn+1 + βE, Y 〉 =

 0 if (Q(x) +
r∑
j=1

λjAj + αIn+1 + βE) � 0

−∞ otherwise.
989

This proves that the dual problem of (SDPx) can be formulated as (DSDPx). To prove that990

val(SDPx) = val(DSDPx), we prove that the Slater condition, which is a sufficient condition for991

strong duality [46], holds for the dual problem (DSDPx), exploiting the Lagrangian multiplier992

associated to the constraint Tr(Y) ≤ 1 + ρ2. We denote by mx the minimum eigenvalue of Q(x).993

By definition of mx, the matrix Q(x) + (1 −mx)In+1 is positive definite. This is why (λ, α, β) =994

(0, . . . , 0, 1−mx, 0) is a strictly feasible point of (DSDPx). Hence, the Slater condition holds.995

C.3. Proof of Lemma 4.5. We begin by proving the points 1 and 2, before proving that996

the value functions are ζ-Lipschitz. Given any sequence (xk)k∈N∗ ∈ X , for all k ∈ N∗ we have that997

vk = VP(xk) and we define Uk the constraint set in (SDPkx), i.e., the set998

Uk := {Y � 0 : (∀j ∈ {1, . . . , r}, 〈Aj , Y 〉 ≤ bj) ∧ (∀` ∈ {1, . . . , k − 1}, 〈Q(x`), Y 〉 ≥ v`)∧999

(Tr(Y) ≤ 1 + ρ2) ∧ (Yn+1,n+1 = 1)}.10001001

This manuscript is for review purposes only.

CONVERGENT ALGORITHMS FOR A CLASS OF CONVEX SEMI-INFINITE PROGRAMS 29

Thus V kSDP(x) = min
Y ∈Uk

〈Q(x), Y 〉. We remark that for k = 1, the second set of constraints is1002

empty, thus U1 is exactly the constraint set of (SDPx), and therefore V 1
SDP(x) = VSDP(x) for any1003

x ∈ X . Moreover, Uk+1 ⊂ Uk. This is why V kSDP(x) ≤ V k+1
SDP (x) for any k ∈ N∗ and any x ∈ X .1004

Finally, as explained in Section 4.5, problem (SDPkx) is a relaxation of (Px) for any k ∈ N∗, thus1005

V kSDP(x) ≤ VP(x). With this, we proved point 1.1006

We fix k ∈ N∗ and we reason for any ` ∈ N∗ s.t. ` ≤ k − 1. On the one side, we know that1007

V kSDP(x`) ≤ VP(x`) from the previous point. On the other side, we know that, for any Y ∈ Uk,1008

〈Q(x`), Y 〉 ≥ v` = VP(x`), which implies that V kSDP(x`) = min
Y ∈Uk

〈Q(x`), Y 〉 ≥ VP(x`). Hence,1009

V kSDP(x`) = VP(x`), which proves point 2.1010

We recall that Q? is the adjoint operator of the linear operator Q and ‖Q?‖op is the linear1011

operator of Q?. We define Γ := max
Y ∈U1

‖Y ‖2, and ζ := ‖Q?‖opΓ, with ζ not depending on k or on1012

the choice of sequence (xk)k∈N∗ . We remark that the function −V kSDP(x) reads max
Y ∈Uk

〈x,−Q∗(Y)〉,1013

with Uk being a compact set and 〈x,−Q∗(Y)〉 a linear function in x for any Y ∈ Uk. Applying1014

[20, Th. VI.4.4.2], we deduce that −V kSDP is convex and that, for any x ∈ X , the subdifferential of1015

−V kSDP at x is1016

(C.2) ∂(−V kSDP)(x) = {−Q∗(Y) : (Y ∈ Uk) ∧ (−V kSDP(x) = 〈x,−Q∗(Y)〉)}.1017

Combining this with the observation that Uk ⊂ U1, we deduce that ∂(−V kSDP)(x) ⊂ {−Q∗(Y) :1018

Y ∈ U1}. Hence, for any x ∈ X , and any s ∈ ∂(−V kSDP)(x), we know that1019

(C.3) ‖s‖ ≤ ‖Q?‖opΓ = ζ.1020

Let us take any pair (x, x̂) ∈ X ×X . Applying convexity inequalities to −V kSDP, we deduce that for1021

any s ∈ ∂(−V kSDP)(x) and ŝ ∈ ∂(−V kSDP)(x̂), the following holds: V kSDP(x̂)−V kSDP(x) ≤ (x̂−x)>s and1022

V kSDP(x)−V kSDP(x̂) ≤ (x− x̂)>ŝ. We know from the Cauchy-Scwhartz inequality and from Eq. (C.3)1023

that (x̂− x)>s ≤ ζ‖x̂− x‖ and (x− x̂)>ŝ ≤ ζ‖x̂− x‖.1024

We deduce that ‖V kSDP(x̂)− V kSDP(x)‖ ≤ ζ‖x̂− x‖.1025

C.4. Proof of Lemma 4.6. We analyze the variation of the objective function w.r.t. the1026

variable x. Since x∗ ∈ X is a feasible value for variable x, the direction h = x∗ − xk is admissible1027

at xk in the problem (4.9). As F (x) is convex over Rn, the directional derivative F ′(xk, h) =1028

lim
t→0+

F (xk+th)−F (xk)
t is well-defined. By optimality of xk, the directional derivative of function1029

F (x) + µk
2 ‖x − x̂

k‖2 in the direction h is non-negative, i.e., F ′(xk, h) + µk(xk − x̂k)>h ≥ 0. By1030

convexity of F (x), we also have that F (x∗)−F (xk) ≥ F ′(xk, h). Combining this with the previous1031

inequality yields F (xk) ≤ F (x∗) + µk(xk − x̂k)>(x∗ − xk).1032

C.5. Proof of Corollary 4.8. We reason by contradiction: let us assume that the algorithm1033

generates an infinite sequence. We know that this implies that (VP(xk) − h(xk))− → 0 and ‖xk −1034

x̂k‖ → 0. Moreover, since the algorithm does not stop, for all k ∈ N∗, either (VP(xk)− h(xk))− > ε1035

or ‖xk − x̂k‖ > d. By case disjunction, we can deduce that either it exists an infinite number of k1036

such that (VP(xk)−h(xk))− > ε and thus ε = 0 or an infinite number of k such that ‖xk − x̂k‖ > d1037

and thus d = 0. Hence, if ε > 0 and d > 0, the algorithm terminates in finite time. As stated in1038

Theorem4.7, the iterate x̂k is feasible. The fact that F (x̂k) ≤ val(SIP) + d(µkdiam(X) + J) directly1039

follows from Eq. (4.15) since ‖xk − x̂k‖ ≤ d and ‖x∗ − xk‖ ≤ diam(X).1040

This manuscript is for review purposes only.

	Introduction
	Literature review
	Cutting plane algorithm
	A convergence rate for the CP algorithm

	Lower-level dualization approach and Inner-Outer approximation algorithm
	SDP relaxation/reformulation of the lower-level problem
	Dual SDP problem
	SDP restriction/reformulation of the SIP problem
	Optimality of the SDP restriction: a sufficient condition
	Inner-Outer Approximation algorithm

	Applications
	Constrained quadratic regression
	Zero-sum game with cubic payoff

	Numerical results
	Conclusion
	References
	Appendix A. Convergence proof of CP algorithm
	Appendix B. Proofs of Lemmata in Section 3
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4

	Appendix C. Proofs of Lemmata in Section 4
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.5
	Proof of Lemma 4.6
	Proof of Corollary 4.8

