
The Isomap algorithm in distance geometry
Leo Liberti and Claudia D’Ambrosio

CNRS LIX Ecole Polytechnique, 91128 Palaiseau, France

{liberti,dambrosio}@lix.polytechnique.fr

Abstract
The fundamental problem of distance geometry consists in finding a realization of a given weighted
graph in a Euclidean space of given dimension, in such a way that vertices are realized as points
and edges as straight segments having the same lengths as their given weights. This problem arises
in structural proteomics, wireless sensor networks, and clock synchronization protocols to name
a few applications. The well-known Isomap method is a dimensionality reduction heuristic which
projects finite but high dimensional metric spaces into the “most significant” lower dimensional
ones, where significance is measured by the magnitude of the corresponding eigenvalues. We
start from a simple observation, namely that Isomap can also be used to provide approximate
realizations of weighted graphs very e�ciently, and then derive and benchmark six new heuristics.

1998 ACM Subject Classification G.1.6,G.2.2,F.2.1,J.3

Keywords and phrases distance geometry problem, protein conformation, heuristics.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

The fundamental problem in Distance Geometry (DG) is as follows.

Distance Geometry Problem (DGP). Given an integer K Ø 1 and a simple,
edge-weighted, undirected graph G = (V, E, d), where d : E æ R

+

, determine whether
there exists realization function x : V æ RK such that:

’{i, j} œ E Îxi ≠ xjÎ = dij . (1)

The DGP arises in many applications, for various values of K. Two important applications
for K = 3 are the determination of protein structure from distance data [36], and the
localization of a fleet of unmanned submarine vehicles [2]. The localization of mobile sensors
in a wireless network is a well-studied application for the case K = 2 [11, 5, 16, 9]. The
only engineering application we are aware of for the case K = 1 is to clock synchronization
protocols in computer networks [32]. Although Eq. (1) is actually a schema (since the norm
is unspecified), most of the literature about the DGP uses the Euclidean norm (or 2-norm)
[21, 19], which is also the focus of this paper. In this context, the name of the problem is
Euclidean DGP (EDGP).

It is worth mentioning that, although the system of equations in Eq. (1) involves square
roots, the squared system

’{i, j} œ E Îxi ≠ xjÎ2 = d2

ij . (2)

has the same set of solutions as Eq. (1) and is a polynomial system of degree two [12]. This
makes it amenable to be studied using methods of algebraic geometry, for example [35]. It
was shown in [29] that the EDGP is NP-hard, by reduction from Partition to the case
K = 1. Another proof for K = 2 was sketched in [38], and further proofs for some variants

© Leo Liberti and Claudia D’Ambrosio;

licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 The Isomap algorithm in distance geometry

in K = 3 and general K were given in [17] and [20]. If the dimensionality K is not given in
advance, then the question is whether the given graph admits a realization in some dimension
K. This problem is known as Euclidean Distance Matrix Completion Problem

(EDMCP). This di�erence between being given a K as part of the input or obtaining K as
part of the output is considerable: while the EDGP is NP-hard, we do not know whether
the EDMCP is NP-hard or in P (or neither, assuming P ”= NP).

Isomap [34] is a well-known dimension reduction algorithm which is able to project a set
X µ Rn of high dimensional points belonging to a low-dimensional manifold to its intrinsic
dimension (say, K).

In this paper, we describe an easy adaptation of the Isomap algorithm to solve the EDGP.
The rationale for using Isomap on the EDGP is that finding realizations in high dimensional
spaces is empirically easier than in a given dimension K. We then describe six heuristics for
the EDGP based on Isomap, and evaluate them computationally on a test set consisting of
protein instances of di�erent sizes.

It is often remarked that the EDGP and EDMCP only serve as abstract models for
real-life applications, since in most engineering and biological settings only interval estimates
or distributions of the distances are known (rather than exact distance values). Although we
do not treat the case of intervals or distributions here, we note that it is at least theoretically
possible to extend our heuristic methods to the interval case without excessive trouble —
the simplest way to do so is to run the same heuristics using the distribution average on
each interval. A better approach would replace error measures based on exact distances by
corresponding measures in intervals [21].

The rest of this paper is organized as follows. In Sect. 2, we give a very brief account of
the history of DG, introducing some of the concepts which we shall use later on in the paper.
In Sect. 3 we describe the Isomap algorithm and its relationship to EDMCP and EDGP.
In Sect. 4 we define and motivate our new heuristics based on Isomap. Our computational
results are discussed in Sect. 5.

2 A very short history of DG

DG was formally introduced by Karl Menger in [24, 25], at a time when, under Hilbert’s
drive [14], the concerted e�ort of many mathematicians (specially from Mitteleuropa) pushed
towards the axiomatization of mathematics in general, and specifically of geometry [18].
Menger and some of his students (Gödel among them) were part of the Vienna Circle, but
when this became politicized, Menger founded his famous mathematisches Kolloquium, which
ran at the University of Vienna between 1928 and 1937. It is interesting that the only
co-authored paper published by Gödel appears in the proceedings of Menger’s Kolloquium,
and is about DG [18, 22]. Menger’s foundational work is an axiomatization of geometry
which puts metric spaces at its core (e.g. convexity can be defined via betweenness of points).
Its main achievement is to characterize the metric spaces according to the dimension of
the Euclidean spaces they can be realized in. Menger’s work was continued by his student
Blumenthal [7], but remained firmly in the domain of pure mathematics.1

A finite metric space (V, d) is a finite set V with an associated metric d. It is usually
represented as a weighted complete graph or a distance matrix. The graph is simple,
undirected and edge-weighted, say G = (V, E, d) where E = {{i, j} | i < j œ V } and

1 Another useful application dating from ancient Greece was Heron’s formula for computing the area of a
triangle from the lengths of its sides, extensively used in agricultural measurements.

L. Liberti and Claudia D’Ambrosio XX:3

d : E æ R
+

such that d(i, j) is the value of the metric on the edge {i, j} of the underlying
set V . The distance matrix is an n ◊ n symmetric matrix D with zero diagonal, where
n = |V |, such that the component dij is the value of the metric defined on i and j, for all
i < j œ V . Given some positive integer K, a metric space (V, d) is realized in the Euclidean
space RK w.r.t. Î · Î if there exists a realization function from V to RK w.r.t. Î · Î. The main
problem in DG, for Menger and Blumenthal, was that of categorizing finite metric spaces
(V, d) according to the integers K such that V can be realized in RK .

A note [31] written by Schoenberg’s in 1935 on a paper by Fréchet showed that any
Euclidean Distance Matrix (EDM) D = (dij), i.e. when the metric is the 2-norm, can be
e�ciently transformed into the Gram matrix of a Euclidean realization of the underlying
metric. Since a matrix X is Gram if and only if it is Positive Semidefinite (PSD), and since
PSD matrices can be factored as X = xx€ where x is a matrix of rank K Æ n, this o�ers
a method for finding a realization of D in RK [33]. This result was subsequently adapted
to work on wrong or approximate EDMs by replacing negative eigenvalues of D by zero,
and resulted in the hugely successful multidimensional scaling (MDS) method [8]. A further
refinement, obtained by using only at most K positive eigenvalues of D, called principal
component analysis (PCA) was equally successful. This firmly establishes DG as a branch
not only of pure, but also of applied mathematics.

The first explicit mention of the DGP appears to arise in a 1978 paper by Yemini [37],
which calls the reader’s attention to the problem of finding a realization in the plane of a set
of mobile sensors where the distances are only known if two sensors are close enough.

3 The Isomap method in Distance Geometry

The Isomap algorithm projects a finite subset of points X µ Rn to RK (for some positive
given K < n) as follows:

1. it computes all pairwise distances for X, yielding the distance matrix D

2. it selects a subset d of “short” Euclidean distances in D (usually up to a given threshold),
yielding a simple connected weighted graph G = (V, E, d) where d : E æ R

+

;
3. it computes all shortest paths in G, and produces an approximate distance matrix D̃,

where D̃ij = dij for all {i, j} œ E and D̃ij is the value of the shortest path from i to j
otherwise;

4. it derives a corresponding approximate Gram matrix B̃ by setting

B̃ = ≠1
2JD̃2J, (3)

where J = In ≠ 1

n 11

€;
5. it finds the (diagonal) eigenvalue matrix � of B̃ and the corresponding eigenvector matrix

P , so that B̃ = P €�P ;
6. since B̃ is only an approximation of a Gram matrix, it might have some negative

eigenvalues: Isomap replaces all the negative eigenvalues with zeroes;
7. in case there are still more than K positive eigenvalues, Isomap replaces the smallest

ones, leaving only the largest K eigenvalues on the diagonal of a PSD matrix �̃;
8. finally, it sets x = P €


�̃.

Steps 4-8 are collectively known as PCA. Without Step 7, they are known as classic MDS
[15].

XX:4 The Isomap algorithm in distance geometry

3.1 Isomap and the EDMCP
How can Isomap apply to the EDGP? A simple explanation is as follows: solving the EDGP is
hard, but solving the EDMCP is not as hard, and provides a realization xÕ of G in (generally)
more than K dimensions, say in Rn. At this point, Isomap could be applied to xÕ and give
an approximate projection in RK .

Although it was mentioned in Sect. 1 that no-one knows yet whether the EDMCP is
NP-hard or in P, that statement refers to the usual definition of these complexity classes in
the the Turing Machine (TM) computational model. On the other hand, the fact that the
EDMCP can be solved e�ciently in practice can be made more precise.

I Theorem 1. The EDMCP can be solved in a polynomial number of basic steps in the Real
RAM computational model [6].

Proof. We first show that the EDMCP can be described by the following pure feasibility
Semidefinite Program (SDP):

’{i, j} œ E Xii + Xjj ≠ 2Xij = d2

ij

X ≤ 0.

<
(4)

Assume Eq. (4) has a solution Xú for a given EDMCP instance. Then, since Xú is a PSD
matrix, it is also a Gram matrix, which means that it can be factored as Xú = Y Y €.
Consider a realization xú œ Rn given by xú

i = Yi for each i œ V , where Yi is the i-th row of
Y . Then we have

Îxú
i ≠ xú

j Î2 = ÎYi ≠ YjÎ2 = Y €
i Yi + Yj

€Yj ≠ 2YiYj = Xii + Xjj ≠ 2Xij = d2

ij

by the linear constraints in Eq. (4). This means that Y is a valid realization for G in Rn,
i.e. the given EDMCP instance is YES. Assume now that Eq. (4) is infeasible, but suppose
that the given instance is YES: then it has a realization Y of G in Rn, and it is immediate
to verify that its Gram matrix Xú = Y Y € satisfies Eq. (4) providing a contradiction, so the
given EDMCP instance must be NO, which concludes the first part of the proof.

Having established that solving the EDMCP is the same as solving Eq. (4), we remark
that the Interior Point Method (IPM) can be used to solve SDPs in polynomial time to any
desired accuracy [1] in the TM computational model. If a primal path-following IPM based
on Newton’s steps could be run on a Real RAM machine, it would find an exact real solution
for the EDMCP. J

In practice, the IPM can only compute approximate solutions to Eq. (4) in floating point
precision, which might not satisfy the constraints exactly. But SDP technology can be used
in practice to solve EDMCPs e�ciently to very good approximations.

3.2 Isomap and the EDGP
Although our basic idea is to solve an EDMCP instance in order to find a high dimensional
realization of G as a pre-processing step to applying Isomap, it is easy to streamline this
procedure better. We observe that Step 3 requires a weighted graph G as input, and that a
weighted graph is part of the definition of any EDGP instance. It is therefore su�cient to
start Isomap from Step 3. The Isomap for DG works as follows.

A. Run the Floyd-Warshall all-shortest-paths algorithm [23] on the partial distance matrix
DG represented by G = (V, E, d) and obtain D̃, a completion of DG;

L. Liberti and Claudia D’Ambrosio XX:5

B. find the (approximate) Gram matrix B̃ of D̃;
C. find the PSD matrix BÕ closest to B̄ by zeroing the negative eigenvalues, and then perform

PCA to extract an approximate realization x in RK .

The interest in using the Isomap for DG is that it lends itself to the construction of many
heuristics, through its combination with various pre- and post-processing algorithms. For
example, Step A, which essentially aims at solving an EDMCP instance by completing the
corresponding graph using shortest paths, can be replaced by the solution of the SDP in
Eq. (4). Moreover, the final solution x obtained in Step C can be used as a starting point by
a local Nonlinear Programming (NLP) solver.

4 Isomap heuristics

We list in this section six new heuristics based on Isomap for solving EDGPs.

(i) Isomap. This is the Isomap algorithm for DG as described in Sect. 3.2.
(ii) IsoNLP. This variant adds a post-processing phase consisting of a local NLP solver to

improve the output of Isomap (see Sect. 4.1 below). Because of the importance of this
phase, every following heuristic also uses it.

(iii) SPT. This variant, the name of which stands for spanning tree, replaces Step A of the
Isomap algorithm definition given in Sect. 3.2 as follows: compute a realization xÕ œ RK

using a spanning tree of G (see Sect. 4.2 below for details). This realization is then
used to obtain the EDM D̃. SPT also adds a post-processing local NLP solution phase.

(iv) SDP. This variant replaces Step A: solve Eq. (4) using a “natural” SDP formulation
(see Sect. 4.3 below), obtain a realization xÕ in Rn, and use it to compute the EDM D̃.
SDP also adds a post-processing local NLP solution phase.

(v) Barvinok. This variant is similar to SDP, but it endows the SDP with an objective
function designed to decrease the rank of the solution xÕ to p = O(


|E|) (see Sect. 4.4

below). Barvinok also adds a post-processing local NLP solution phase.
(vi) DGSol. This variant uses one of the first modern algorithms for solving EDGPs, dgsol

[26], to compute an initial realization xÕ in RK , which it then uses to compute the EDM
D̃ (see Sect. 4.5 below). DGSol also adds a post-processing local NLP solution phase.

4.1 Post-processing using a local NLP solver (IsoNLP)
Although Isomap can be used on its own, the quality of the realizations it obtains is greatly
improved when the output is used as a starting point for a local NLP algorithm, such as
active set or barrier algorithms [13]. Aside from Isomap, the rest of our heuristics all include
this post-processing phase.

In the case of the SDP and Barvinok heuristics, this post-processing is backed by a
theoretical result given in [4], also exploited in [10], which states that there is an SDP
solution of Eq. (4) which is asymptotically not too far from the manifold of solutions of
Eq. (2): hence, it makes sense to try a single local descent to reach that manifold.

The choice of solver was carried out through some preliminary computational experiments.
Since most tests were carried out in Python, we limited ourselves to solvers o�ering a Python
API. Among these, we decided to use the one which proved out to be empirically fastest,
namely lbfgs from scipy.optimize, limited to 50 iterations. Code optimization might
change this choice, specially in view of the fact that we only employed Python-enabled solvers,
with APIs that shine more for ease of coding than e�ciency.

XX:6 The Isomap algorithm in distance geometry

4.2 Spanning tree realization heuristic (SPT)
A possible way to construct an approximate distance matrix D̃ based on an EDGP instance
G consists in identifying a spanning subgraph of G for which the EDGP can be solved
e�ciently, and then use the corresponding realization to compute D̃. We use trees, which
are a polynomial case of the EDGP.

Let T be a tree on V , and for each v œ V let NT (v) be the set of vertices adjacent to
v in T . The following algorithm realizes any tree in K = 1, and more specifically in the
non-negative half-line R

+

.

1. Let r be a vertex with highest degree in G;
2. let xr = 0;
3. let Q = {r} be a priority queue containing vertices with their degrees w.r.t. V r Q as

priority;
4. pop the vertex u with highest priority from Q;
5. for each v œ NT (u) let xv = xu + duv and add v to Q.

I Lemma 2. The above algorithm is correct and runs in linear time.

Proof. The important invariant of the algorithm is that every vertex u entering Q has a
known realization xu: this holds by Step 5 and because at the first iteration Q only contains
r, realized at xr = 0. It is also easy to see that, by connectedness of G, every vertex in
V enters Q at least once. Moreover, since G is a tree, it has no cycles, which implies that
no vertex can ever enter Q more than once. Since every vertex enters Q exactly once, the
complexity of this algorithm is �(|V |). J

Once a tree is realized in a half-line, one can embed the realization in as many dimensions as
needed, by embedding a congruent copy of the half-line in an appropriate Euclidean space.

The algorithm we use to construct a realization in RK from a tree is based on the above
one. It takes a general graph G as input, grows a largest-degree priority spanning tree, and
realizes each vertex v as a uniformly chosen random point on the sphere centered at xu with
radius duv for each edge {u, v} in the spanning tree. More precisely, we modify the above
algorithm as follows: (a) we introduce a set Z (initialized to {r}) that records the vertices
entering the tree and replace NT (u) by NG(u) r Z; (b) we replace xv = xu + duv by xv

sampled uniformly at random from SK≠1(xu, duv).

4.3 Euclidean distance SDP objective (SDP)
Another way to compute D̃ is to solve the SDP in Eq. (4), and obtain a realization Y having
rank generally higher than K; D̃ is then set to the EDM corresponding to Y . IPM algorithms
for SDP o�er us some additional flexibility in that they solve optimization problems rather
than pure feasibility problems such as Eq. (4).

In the SDP heuristic, we simply rewrite the pure feasibility SDP as an optimization
problem. First, we reformulate Eq. (2) as follows:

min
q

{i,j}œE

Îxi ≠ xjÎ2

’{i, j} œ E Îxi ≠ xjÎ2 Ø d2

ij .

Z
^

\ (5)

The objective function of Eq. (5) “pulls together” the realizations of the vertices, limited to
the minimum possible value dij of each pairwise distance in E because of the constraints.

L. Liberti and Claudia D’Ambrosio XX:7

Notice that Eq. (5) has a convex objective but reverse convex constraints, both linearized in
the SDP relaxation below [10]:

min
X≤0

q
{i,j}œE

(Xii + Xjj ≠ 2Xij)

’{i, j} œ E Xii + Xjj ≠ 2Xij Ø d2

ij ,

Z
^

\ (6)

Once the SDP solver finds a feasible solution Xú for Eq. (6), one can either compute D̃ by
inverting Eq. (3) with B̃ = Xú, or factor Xú into Y Y € and then use the realization Y in Rn

to compute D̃ as the corresponding EDM.

4.4 Barvinok’s result (Barvinok)
The Barvinok heuristic is very similar to the SDP heuristic, but we solve a di�erent SDP:
more precisely, we endow Eq. (4) with an objective function min F • X for some “regular”
matrix F (we sketch the regularity definition below). Barvinok proves in [3] that this SDP
will generally provide a realization Y having rank O(


|E|) rather than O(n). We recall that

F • Y is the trace of the dot product of F € and X. Write the columns of F one after the
other to obtain a column vector in Rn2 , and do the same for X: then F • X corresponds to
the “ordinary” scalar product between these vectors.

More precisely, Barvinok proves that if a graph is realizable in Rt for some t which is
generally O(n), then it is also realizable for t = Â(


8|E| + 1 ≠ 1)/2Ê. The way he achieves

this result is by showing that there exists a solution X to the SDP

min
X≤0

F • X

’{i, j} œ E Xii + Xjj ≠ 2Xij = d2

ij ,

J
(7)

having rank Æ t, and that there exist matrices F which yield these low-rank solutions.
Specifically, F must be “regular” with respect to the quadratic forms involved in the
constraints of Eq. (7). In other words, if we write Xii + Xjj ≠ 2Xij as Qij • X for some real
symmetric n ◊ n matrix Qij (for each {i, j} œ E), then F must be “regular” with respect to
all the Qijs.

Regularity, in this context, is defined by two conditions, one easy to explain and one
harder. First, and easiest, F should be positive definite (PD), namely all its eigenvalues
should be strictly positive. The hard part is as follows: consider the set of n ◊ n matrices X
that are feasible in (4): since each such X is PSD, it can be factored into Y Y €. As X ranges
over the feasible region of Eq. (7), Y ranges over possible realizations of G having various
ranks r Æ n. We let this range be Y = {Y œ Rr◊n | Y Y € = X satisfies (4) · 1 Æ r Æ n}.
Now we partition Y according to the values of r:

’r Æ n Yr = {Y œ Rn◊r | Y Y € = X satisfies (4)}.

We then require that the map ÂF : R|E| æ Rn◊n given by ÂF (z) = F ≠
q

{i,j}œE

zijQij

intersects each Yr transversally, for each r Æ n. A map „ between smooth manifolds A æ B
intersects a submanifold BÕ ™ B transversally if either „(A) has no intersection with BÕ at
all or, if it does, the intersection points are “well behaved”, meaning their tangent spaces are
non-singular in a certain way. Explaining this more precisely would require the introduction
of too many new concepts; to give a suggestion, the curves Â(z) = z2 + c intersect the
manifold z = 0 transversally as long c ”= 0, since at c = 0 the tangent of Â(z) at the
intersection point is parallel to the manifold z = 0.

XX:8 The Isomap algorithm in distance geometry

In summary, F is regular if it is positive definite (PD) and the map ÂF (z) intersects each
Yr transversally. Since regular matrices prevent a corresponding (linear) map from displaying
some type of singularity, most PD matrices are regular once the quadratic forms are fixed.
Indeed, Barvinok’s paper does not even suggest a way to sample or construct such matrices.

In [3, Example 4.1], Barvinok exploits the special structure of r-diagonal matrices to
prove that the rank reduction is improved if the Qij are r-diagonal. Since our quadratic
forms are fixed, and not r-diagonal in general, this is hardly relevant to our case. On the
other hand, strictly diagonally dominant r-diagonal matrices are PD, so this suggests a good
way to randomly generate regular matrices. We recall that a matrix F is r-diagonal if it
consists of a diagonal band of width 2r + 1, i.e. an identity with r (small) nonzero entries
to the left and right of the i-th diagonal entry. The o�-diagonal nonzeros should be small
enough for the matrix to be diagonally dominant and, in particular, PD.

4.5 Moré-Wu’s dgsol algorithm
The dgsol algorithm has an outer iteration and an inner one [26]. The outer iteration starts
from a smoothed convexified version of the penalty objective function

f(x) =
ÿ

{i,j}œE

!
Îxi ≠ xjÎ2

2

≠ d2

ij

"
2 (8)

obtained via a Gaussian transform

ÈfÍ⁄(x) = 1
fiKn/2⁄Kn

⁄

RKn

f(y) exp(≠Îy ≠ xÎ2

2

/⁄2)dy, (9)

which tends to f(x) as ⁄ æ 0. For each fixed value of ⁄ in the outer iteration, the inner
iteration is based on the step

x¸+1 = x¸ ≠ –¸H¸ÒÈfÍ⁄(x¸),

for ¸ œ N, where –¸ is a step size, and H¸ is an approximation of the inverse Hessian matrix
of f . In other words, the inner iteration implements a local NLP solution method which uses
the optimum at the previous value of ⁄ as a starting point.

Overall, this yields a homotopy method which traces a trajectory as a function of ⁄ æ 0,
where a unique (global) optimum of the convex smoothed function ÈfÍ⁄ for a high enough
value of ⁄ (hopefully) follows the trajectory to the global minimum of the multimodal,
nonconvex function ÈfÍ

0

= f .
The initial solution could theoretically be obtained by setting ⁄ large enough so that

ÈfÍ⁄(x) is convex, but DGSol’s initial solution is computed by means of a spanning tree
realization instead (see Sect. 4.2).

5 Computational assessment

We consider two test sets: a larger test set based on instances of various sizes, and a smaller
test set with five very large sized instances. All instances are protein instances derived from
Protein Data Bank (PDB) files, which contain realizations in R3. In order to obtain realistic
instances, we computed the EDMs of these realizations, then kept the partial distance matrix
consisting of all distances within a threshold of 5Å. This generates instances that are similar
to the type of distance data produced by Nuclear Magnetic Resonance (NMR) experiments
[30].

L. Liberti and Claudia D’Ambrosio XX:9

All of the heuristics have been coded in Python 2.7. All the tests have been obtained
on a single core of an Intel Xeon processor at 2.53GHz with 48GB RAM. SDPs were solved
using Mosek 7.1.0.41 [27] through the PICOS [28] Python-based API.

5.1 Small to large sizes
We consider a set of 25 protein instances with sizes ranging from n = 15, |E| = 39 to n = 488,
|E| = 5741, detailed in Table 1. For each instance and solution method we record the (scaled)
mean (MDE) and largest (LDE) distance error of the solution, defined as:

mde(x) = 1
|E|

ÿ

{i,j}œE

| Îxi ≠ xjÎ2 ≠ dij |
dij

;
lde(x) = 1

|E| max
{i,j}œE

| Îxi ≠ xjÎ2 ≠ dij |
dij

as a measure of the solution quality, as well as the CPU time taken by each method. All CPU
times have been computed in Python using the time module. The last three lines of Table 1
contain geometric means, averages and standard deviations. Best results are emphasized in
boldface.

According to Table 1, IsoNLP and Barvinok are the best heuristics with respect to both
MDE and LDE, whereas Isomap is the fastest (but quality-wise among the worst).

5.2 Very large sizes
For the large sized instance benchmark, we considered a set of five very large protein datasets,
detailed in Table 2. None of the heuristics above, aside from Isomap, was able to terminate
within 12h of CPU time, the issue being that our post-processing phase based on Python’s
scipy.optimize.lbfgs local NLP solver is too slow. The results obtained by Isomap,
however, are quite poor qualitywise, with MDE and LDE measures attaining values around
0.99 for all five instances.

We therefore decided to re-implement2

IsoNLP using a fully compiled language (a mixture
of pure C and Fortran 77). We use the Isomap algorithm to obtain a starting point for dgopt,
the optimization engine used by dgsol. Since dgopt is a homotopy method rather than a
simple NLP solver, we thought it would be fair to compare this heuristic with dgsol itself,
which uses a spanning tree heuristic (see Sect. 4.2) to provide a starting point to dgopt. The
results of our tests are presented in Table 2.

The results do not show a clear quality-wise dominance of either solution method. CPU
time wise, DGSol has a clear advantage: this is easily explained since IsoNLP di�ers from
DGSol only by the choice of the initial (approximate) realization, which takes O(n3) in IsoNLP

(finding eigenvalues and eigenvectors within IsoMAP) and O(n) in DGSol (Lemma 2). Given
the large lde values, by our past experience the only reliable solution in Table 2 is the water

realization obtained by IsoNLP (see Fig. 1).
Methodologically, there is a generality vs. e�ciency trade-o� at play in evaluating IsoNLP

versus DGSol. Whereas the former applies to the EDGP for any given K, the latter only
solves EDGP instances with K fixed to the constant 3 (this trade-o� does not concern our
implementation, which calls parts of the dgsol program). Speficically, the evaluation of the
integral in Eq. (9) depends on a dy = dy

1

· · · dyK which explicitly depends on K.

2 See http://www.lix.polytechnique.fr/~liberti/isomapheur.zip.

http://www.lix.polytechnique.fr/~liberti/isomapheur.zip

X
X

:10
T

he
Isom

ap
algorithm

in
distance

geom
etry

Instance mde lde CPU
Name n |E| Isomap IsoNLP SPT SDP Barvinok DGSol Isomap IsoNLP SPT SDP Barvinok DGSol Isomap IsoNLP SPT SDP Barvinok DGSol

C0700odd.1 15 39 0.585 0.001 0.190 0.068 0.000 0.135 0.989 0.004 0.896 0.389 0.001 0.634 0.002 1.456 1.589 0.906 1.305 1.747
C0700odd.2 15 39 0.599 0.000 0.187 0.086 0.000 0.128 0.985 0.002 0.956 0.389 0.009 1.000 0.003 1.376 1.226 1.002 1.063 0.887
C0700odd.3 15 39 0.599 0.000 0.060 0.086 0.000 0.128 0.985 0.002 0.326 0.389 0.009 1.000 0.003 1.259 1.256 0.861 1.167 0.877
C0700odd.4 15 39 0.599 0.000 0.283 0.086 0.001 0.128 0.985 0.002 2.449 0.389 0.008 1.000 0.003 1.347 1.222 0.976 1.063 1.033
C0700odd.5 15 39 0.599 0.000 0.225 0.086 0.000 0.128 0.985 0.002 0.867 0.389 0.007 1.000 0.003 1.284 1.157 0.987 1.100 0.700
C0700odd.6 15 39 0.599 0.000 0.283 0.086 0.000 0.128 0.985 0.002 1.520 0.389 0.002 1.000 0.002 1.372 1.196 0.998 1.305 0.909
C0700odd.7 15 39 0.585 0.001 0.080 0.068 0.000 0.135 0.989 0.004 0.361 0.389 0.001 0.634 0.003 1.469 1.322 0.894 1.093 1.719
C0700odd.8 15 39 0.585 0.001 0.056 0.068 0.000 0.135 0.989 0.004 0.275 0.389 0.003 0.634 0.003 1.408 1.306 0.692 1.079 1.744
C0700odd.9 15 39 0.585 0.001 0.057 0.068 0.000 0.135 0.989 0.004 0.301 0.389 0.002 0.634 0.002 1.430 1.172 0.791 1.093 1.745
C0700odd.A 15 39 0.585 0.001 0.043 0.068 0.000 0.135 0.989 0.004 0.316 0.389 0.004 0.634 0.002 1.294 1.269 0.722 1.220 1.523
C0700odd.B 15 39 0.585 0.001 0.151 0.068 0.000 0.135 0.989 0.004 1.022 0.389 0.004 0.634 0.002 1.297 1.279 0.871 1.111 1.747
C0700odd.C 15 39 0.835 0.022 0.033 0.039 0.031 0.025 1.012 0.147 0.393 0.211 0.294 0.167 0.004 6.803 6.369 7.371 7.030 7.000
C0700odd.D 36 242 0.835 0.022 0.041 0.039 0.042 0.025 1.012 0.147 0.423 0.211 0.268 0.167 0.006 6.806 6.575 7.422 7.603 7.095
C0700odd.E 36 242 0.835 0.022 0.064 0.039 0.031 0.025 1.012 0.147 0.894 0.211 0.260 0.167 0.006 6.911 6.638 7.365 6.979 7.008
C0700odd.F 36 242 0.599 0.000 0.047 0.086 0.000 0.128 0.985 0.002 0.308 0.389 0.005 1.000 0.002 1.299 1.310 1.008 1.100 1.040
C0150alter.1 37 335 0.786 0.058 0.066 0.014 0.015 0.010 0.992 0.571 0.693 0.256 0.285 0.253 0.004 9.492 9.456 10.276 10.120 9.272
C0080create.1 60 681 0.887 0.053 0.083 0.024 0.024 0.054 1.967 0.949 0.789 0.511 0.516 0.718 0.012 18.835 19.720 21.247 20.906 19.962
C0080create.2 60 681 0.887 0.053 0.047 0.024 0.024 0.054 1.967 0.949 0.585 0.511 0.512 0.718 0.008 18.791 20.009 21.728 20.885 19.740
C0020pdb 107 999 0.939 0.110 0.119 0.059 0.060 0.103 1.242 1.113 1.349 1.082 1.138 0.798 0.035 29.024 27.772 35.273 35.486 32.479
1guu 150 955 0.986 0.068 0.069 0.057 0.057 0.061 0.999 0.854 0.830 0.735 0.751 0.768 0.048 30.869 28.784 41.488 41.852 37.848
1guu-1 150 959 0.986 0.061 0.063 0.058 0.057 0.060 1.000 0.711 0.855 0.805 0.829 0.778 0.053 31.322 31.442 42.308 41.590 37.218
1guu-4000 150 968 0.974 0.081 0.080 0.072 0.065 0.079 1.000 0.901 0.728 0.760 0.961 0.826 0.050 30.352 29.856 42.330 39.832 42.015
C0030pkl 198 3247 0.961 0.112 0.160 0.076 0.077 0.137 1.197 1.354 2.230 1.995 2.054 1.401 0.091 105.175 104.775 149.192 146.360 111.859
1PPT 302 3102 0.984 0.121 0.129 0.128 0.129 0.123 1.000 1.519 1.219 1.944 1.956 1.224 0.356 112.448 110.345 185.815 187.182 118.681
100d 488 5741 0.987 0.146 0.146 0.155 0.157 0.137 1.000 1.577 1.397 1.764 1.749 1.358 0.828 229.809 213.136 659.638 659.280 233.115
GeoMean 0.74 0.00 0.09 0.06 0.00 0.08 1.07 0.04 0.73 0.50 0.06 0.66 0.01 6.30 6.04 5.93 6.63 6.30
Avg 0.76 0.04 0.11 0.07 0.03 0.10 1.09 0.44 0.88 0.63 0.47 0.77 0.06 26.12 25.21 49.69 49.55 27.96
StDev 0.17 0.05 0.07 0.03 0.04 0.04 0.27 0.55 0.57 0.52 0.65 0.34 0.18 51.69 48.82 135.08 134.97 53.26

Table 1 Comparative results on small to large sized protein instances (K = 3).

L. Liberti and Claudia D’Ambrosio XX:11

Instance mde lde CPU
Name |V | |E| IsoNLP dgsol IsoNLP dgsol IsoNLP dgsol

water 648 11939 0.005 0.15 0.557 0.81 26.98 15.16
3al1 678 17417 0.036 0.007 0.884 0.810 170.91 210.25
1hpv 1629 18512 0.074 0.078 0.936 0.932 374.01 60.28
il2 2084 45251 0.012 0.035 0.910 0.932 465.10 139.77
1tii 5684 69800 0.078 0.077 0.950 0.897 7400.48 454.375

Table 2 Tests on large protein instances (K = 3).

Figure 1 Comparison between water from the PDB (left) and the same structure reconstructed
using IsoNLP (right).

6 Conclusion

This paper is concerned with Isomap-based heuristics for solving the Euclidean Distance
Geometry Problem. It discusses the Isomap algorithm in the context of Distance Geometry,
proposes six new heuristics, and benchmarks them on a set of protein conformation instances
of various sizes.

References
1 F. Alizadeh. Interior point methods in semidefinite programming with applications to

combinatorial optimization. SIAM Journal on Optimization, 5(1):13–51, 1995.
2 A. Bahr, J. Leonard, and M. Fallon. Cooperative localization for autonomous underwater

vehicles. International Journal of Robotics Research, 28(6):714–728, 2009.
3 A. Barvinok. Problems of distance geometry and convex properties of quadratic maps.

Discrete and Computational Geometry, 13:189–202, 1995.
4 A. Barvinok. Measure concentration in optimization. Mathematical Programming, 79:33–53,

1997.
5 P. Biswas, T. Lian, T. Wang, and Y. Ye. Semidefinite programming based algorithms for

sensor network localization. ACM Transactions in Sensor Networks, 2:188–220, 2006.
6 L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the

real numbers: NP-completeness, recursive functions, and universal machines. Bulletin of
the American Mathematical Society, 21(1):1–46, 1989.

7 L. Blumenthal. Theory and Applications of Distance Geometry. Oxford University Press,
Oxford, 1953.

8 T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, Boca Raton, 2001.
9 M. Cucuringu, Y. Lipman, and A. Singer. Sensor network localization by eigenvector

synchronization over the Euclidean group. ACM Transactions on Sensor Networks, 8:1–42,
2012.

XX:12 The Isomap algorithm in distance geometry

10 G. Dias and L. Liberti. Diagonally dominant programming in distance geometry. In
R. Cerulli, S. Fujishige, and R. Mahjoub, editors, International Symposium in Combin-
atorial Optimization, volume 9849 of LNCS, pages 225–236, New York, 2016. Springer.

11 L. Doherty, K. Pister, and L. El Ghaoui. Convex position estimation in wireless sensor net-
works. In Twentieth Annual Joint Conference of the IEEE Computer and Communications
Societies, volume 3 of INFOCOM, pages 1655–1663, Piscataway, 2001. IEEE.

12 I. DokmaniÊ, R. Parhizkar, J. Ranieri, and M. Vetterli. Euclidean distance matrices: Essen-
tial theory, algorithms and applications. IEEE Signal Processing Magazine, 1053-5888:12–
30, Nov. 2015.

13 R. Fletcher. Practical Methods of Optimization. Wiley, Chichester, second edition, 1991.
14 D. Hilbert. Grundlagen der Geometrie. Teubner, Leipzig, 1903.
15 I. Jolli�e. Principal Component Analysis. Springer, Berlin, 2nd edition, 2010.
16 N. Krislock and H. Wolkowicz. Explicit sensor network localization using semidefinite

representations and facial reductions. SIAM Journal on Optimization, 20:2679–2708, 2010.
17 C. Lavor, L. Liberti, N. Maculan, and A. Mucherino. The discretizable molecular distance

geometry problem. Computational Optimization and Applications, 52:115–146, 2012.
18 L. Liberti and C. Lavor. Six mathematical gems in the history of distance geometry. In-

ternational Transactions in Operational Research, 23:897–920, 2016.
19 L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean distance geometry and

applications. SIAM Review, 56(1):3–69, 2014.
20 L. Liberti, C. Lavor, and A. Mucherino. The discretizable molecular distance geometry

problem seems easier on proteins. In A. Mucherino, C. Lavor, L. Liberti, and N. Maculan,
editors, Distance Geometry: Theory, Methods, and Applications, pages 47–60. Springer,
New York, 2013.

21 L. Liberti, C. Lavor, A. Mucherino, and N. Maculan. Molecular distance geometry methods:
from continuous to discrete. International Transactions in Operational Research, 18:33–51,
2010.

22 L. Liberti, G. Swirszcz, and C. Lavor. Distance geometry on the sphere. In JCDCG2,
LNCS, New York, accepted. Springer.

23 K. Mehlhorn and P. Sanders. Algorithms and Data Structures. Springer, Berlin, 2008.
24 K. Menger. Untersuchungen über allgemeine Metrik. Mathematische Annalen, 100:75–163,

1928.
25 K. Menger. New foundation of Euclidean geometry. American Journal of Mathematics,

53(4):721–745, 1931.
26 J. Moré and Z. Wu. Global continuation for distance geometry problems. SIAM Journal

of Optimization, 7(3):814–846, 1997.
27 Mosek ApS. The mosek manual, Version 7 (Revision 114), 2014. (www.mosek.com).
28 G. Sagnol. PICOS: A Python Interface for Conic Optimization Solvers. Zuse Institut

Berlin, 2016. URL: picos.zib.de.
29 J. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. Proceedings

of 17th Allerton Conference in Communications, Control and Computing, pages 480–489,
1979.

30 T. Schlick. Molecular modelling and simulation: an interdisciplinary guide. Springer, New
York, 2002.

31 I. Schoenberg. Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une
classe d’espaces distanciés vectoriellement applicable sur l’espace de Hilbert". Annals of
Mathematics, 36(3):724–732, 1935.

32 A. Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied
and Computational Harmonic Analysis, 30:20–36, 2011.

picos.zib.de

L. Liberti and Claudia D’Ambrosio XX:13

33 M. Sippl and H. Scheraga. Cayley-Menger coordinates. Proceedings of the National
Academy of Sciences, 83:2283–2287, 1986.

34 J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290:2319–2322, 2000.

35 L. Wang, R. Mettu, and B.R. Donald. An algebraic geometry approach to protein structure
determination from NMR data. In Proceedings of the Computational Systems Bioinform-
atics Conference, Piscataway, 2005. IEEE.

36 K. Wüthrich. Protein structure determination in solution by nuclear magnetic resonance
spectroscopy. Science, 243:45–50, 1989.

37 Y. Yemini. The positioning problem — a draft of an intermediate summary. In Proceed-
ings of the Conference on Distributed Sensor Networks, pages 137–145, Pittsburgh, 1978.
Carnegie-Mellon University.

38 Y. Yemini. Some theoretical aspects of position-location problems. In Proceedings of the
20th Annual Symposium on the Foundations of Computer Science, pages 1–8, Piscataway,
1979. IEEE. doi:http://doi.ieeecomputersociety.org/10.1109/SFCS.1979.39.

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SFCS.1979.39

	Introduction
	A very short history of DG
	The Isomap method in Distance Geometry
	Isomap and the EDMCP
	Isomap and the EDGP

	Isomap heuristics
	Post-processing using a local NLP solver (IsoNLP)
	Spanning tree realization heuristic (SPT)
	Euclidean distance SDP objective (SDP)
	Barvinok's result (Barvinok)
	Moré-Wu's dgsol algorithm

	Computational assessment
	Small to large sizes
	Very large sizes

	Conclusion

