
A label correcting algorithm for the shortest path
problem on a multi-modal route network

Dominik Kirchler1,2,3, Leo Liberti1, Roberto Wolfler Calvo2

1 LIX; Ecole Polytechnique
{kirchler,liberti}@lix.polytechnique.fr

2 LIPN; Université Paris 13
roberto.wolfler@lipn.univ-paris13.fr

3 Mediamobile

Abstract. We consider shortest paths on a multi-modal transportation net-
work where restrictions or preferences on the use of certain modes of trans-
portation may arise. The regular language constraint shortest path problem
deals with this kind of problem. It models constraints by using regular lan-
guages. The problem can be solved efficiently by using a generalization of
Dijkstra’s algorithm (DRegLC). Recently a speed-up technique called SDALT
has been proposed to speed up DRegLC. In this paper we present a new la-
bel correcting algorithm (lcSDALT) which overcomes some limitations of
SDALT. We evaluated lcSDALT on a realistic multi-modal transportation
network with various modes of transport and road types, including time-
dependent cost functions on arcs. We observed a speed-up of a factor 3 to
30, with respect to DRegLC and of up to 50% with respect to SDALT, while
at the same time reducing memory requirements.

1 Introduction

Multi-modal transportation networks include, other than roads, public transporta-
tion, bicycle lanes, etc. Shortest paths in such networks must satisfy some additional
constraints: passengers may want to exclude some transportation modes, e.g., the
bicycle when it is raining. Furthermore, they may wish to pass by some grocery shop
on the way or to limit the number of changes between public transportation vehi-
cles. Feasibility has also to be assured: whereas walking is permitted at any point
of the itinerary, private cars or bicycles can only be used when they are available.

The regular language constrained shortest path problem (RegLCSP) deals with
this kind of problem. It uses an appropriately labeled graph and a regular language
to model constraints. A valid shortest path minimizes some cost function (distance,
time, etc.) and, in addition, the word produced by concatenating the labels on the
arcs along the shortest path must form an element of the regular language. In [3], a
systematic theoretical study of the more general formal language constrained short-
est path problem can be found. It proposes a generalization of Dijkstra’s algorithm
(DRegLC) to solve RegLCSP.

In recent years many scholars worked on speed-up techniques for Dijkstra’s algo-
rithm and shortest paths on continental sized road networks can now be found in a
few milliseconds [5]. DRegLC has received less attention. A recent work [14] proposes

the algorithm SDALT (State Dependent uniALT) which succeeds in accelerating
DRegLC by anticipating information of the additional constraints, modeled by the
regular language, during a pre-processing phase. It uses the preprocessed data to
calculate lower bounds of the distance of the shortest path to guide DRegLC faster
toward the target.

Our Contribution SDALT is based on the uniALT algorithm [9], which works cor-
rectly only if the node potential function is feasible. The potential function is used
to determine lower bounds to guide the algorithm faster to the target. We propose
the algorithm lcSDALT which overcomes this limitation. It includes all the char-
acteristics of SDALT but introduces more flexibility in the choice of the potential
function. It therefore runs faster than SDALT by up to 50% in our setting. Fur-
thermore, it reduces memory requirements. We provide experimental results on a
realistic multi-modal public transportation network including time-dependent cost
functions on arcs. It is composed of the road and public transportation network
of the French region Ile-de-France : private and rental bicycles, walking, car (in-
cluding changing traffic conditions over the day), and public transportation. The
experiments show that our algorithm performs well in networks where some trans-
portation modes tend to be faster than others or the constraints cause a major
detour on the non-constrained shortest path. We observed speed-ups of a factor 3
to 30, in respect to plain DRegLC.

2 Related Work

Early works on the use of regular languages in the context of shortest path problems
with applications to database queries include [20, 15]. Algorithmic and complexity-
theoretical results on the use of various types of languages for the formal language
constrained shortest path problem can be found in [3]. The authors prove that the
problem is solvable in deterministic polynomial time when regular languages are
used and they provide a generalization of Dijkstra’s algorithm (DRegLC).

In recent years, much effort has been dedicated to accelerating algorithms to
solve the uni-modal shortest path problem on large road networks, see [5] for a
comprehensive overview. It identifies three basic ingredients to most modern speed-
up techniques: bi-directional search, goal-directed search, and contraction.

ALT is a bi-directional, goal directed search technique based on the A∗ search
algorithm [11] and has been first discussed in [9]. It uses lower bounds on the
distance to the target to guide Dijkstra’s algorithm. UniALT is the uni-directional
version of the ALT algorithm. Efficient implementations of uniALT and ALT as well
as experimental data on continental size road networks with time-dependent edges
cost are given in [16].

In [1], various speed-up techniques and its combinations including bi-directional
and goal-directed search have been applied to DRegLC on rail and road networks.
The performance of the algorithm strongly depends on the network properties and
on how restrictive the regular language is. The authors of [4] propose Access Node
Routing to isolate the public transportation network from road networks so that
they can be treated individually. A similar approach has been followed in [7] where

contraction has been applied only to arcs belonging to the road network of a multi-
modal transportation network including roads, public transport and flight data. No
update of preprocessing data is needed for different regular languages

The authors of [19] use contraction on a continental size road network where
roads are labeled according to their road type. A subclass of the regular languages,
the Kleene languages, is used to constrain the shortest path. It can be used to
exclude certain road types. Kleene Languages are less expressive than regular lan-
guages but contraction proves to be very effective in such a scenario. The authors
report on speed-ups of over 3 orders of magnitude compared to DRegLC.

Overview This paper is organized as follows. Section 3 will first define the graph we
are using to model the transportation network and give more details about RegLCSP
and SDALT. Section 4 presents our new algorithm lcSDALT and its implementation.
Its application to a realistic multi-modal transportation network and computational
results, as well as some conclusive remarks are presented in section 4.3.

3 Preliminaries

Consider a labeled, directed graph G = (V,A,Σ) consisting of a set of nodes v ∈ V ,
a set of labels l ∈ Σ, and a set of labeled arcs (i, j, l) ∈ A which are triplets in
V × V × Σ, i, j ∈ V, l ∈ Σ. (i, j, l) represents an arc from node i to node j having
label l. The labels are used to mark arcs as, e.g., foot paths (label f), bicycle
lanes (label b), etc. Arc costs represent travel times. They are positive and time-
dependent: c : A → (R+ → R+), i.e. cijl(τ) gives the traveling times from node i
to node j using transportation mode l at time τ ≥ 0. We only use functions which
satisfy the FIFO property as the time-dependent shortest path problem in FIFO
networks is polynomially solvable [13], whereas it is NP-hard in non-FIFO networks
[17]. FIFO means that cijl(x) + x ≤ cijl(y) + y for all x, y ∈ R+, x ≤ y, (i, j, l) ∈ A
or, in other words, that for any arc (i, j, l), leaving node i earlier guarantees that
one will not arrive later at node j (also called the non-overtaking property).

3.1 Solving the RegLCSP

The regular language constrained shortest path problem (RegLCSP) consists in find-
ing a shortest path from a source node r to a target node t with starting time
τstart on the labeled graph G by minimizing some cost function (in our case travel
time) and, in addition, the concatenated labels along the shortest path must form
a word of a given regular language L0. The regular language is used to model the
constraints on the sequence of labels (e.g., exclusion of labels, predefined order of
labels, etc.). Any regular language L0 can be described by a non-deterministic fi-
nite state automaton A′ = (S0, Σ0, δ0, s0, F0), consisting of a set of states S0, a set
of labels Σ0 ⊆ Σ, a transition function δ0 : Σ0 × S0 → 2S0 , an initial state s0,

and a set of final states F0 (see for an example Figure 4a). Note that
←→
S (s,A) and

←→
Σ (s,A) return all states and labels reachable on an atomaton A by starting at state

s, backward and forward, respectively. E.g., in Figure 4a,
←−
S (s1,A0) = {s0, s1, s3}−→

Σ (s4,A0) = {cfast, cpav, f, t, v}.

To efficiently solve RegLCSP, a generalization of Dijkstra’s algorithm (which we
denote DRegLC throughout this paper) has first been proposed in [3]. The DRegLC

algorithm can be seen as the application of Dijkstra’s algorithm [8] to the product
graph P = G× S0 with tuples (v, s) as nodes for each v ∈ V and s ∈ S0 such that
there is an arc ((v, s)(w, s′)) between (v, s) and (w, s′) if there is an arc (i, j, l) ∈ A
and a transition such that s′ ∈ δ0(l, s). To reduce storage space DRegLC works on the
implicit product graph P by generating all the neighbors which have to be explored
only when necessary.

3.2 SDALT

The SDALT algorithm [14] is a speed-up technique for DRegLC based on A∗ [11] and
landmarks [9]. It is also based on DRegLC and works on the implicit product graph
P . Different from DRegLC, SDALT uses an estimated lower bound of the distance
to the target to guide the search more directly toward the target. More precisely,
it employs a key k(v, s) = dr(v, s) + π(v, s) where dr(v, s) is the tentative distance
label from (r, s0) to (v, s) and the potential function π : (V × S) → R gives an
under-estimation of the distance from (v, s) to (t, s), s ∈ F0. At every iteration,
the algorithm selects the node (v, s) with the smallest key k(v, s). Intuitively, nodes
which are close to the shortest estimated path between the source and the target
node are explored first. So the closer π(v, s) is to the actual remaining distance, the
faster the algorithm will find the target.

It can be shown (see [12]) that SDALT is equivalent to DRegLC on a product
graph with reduced arc costs cπ(v,sv)(w,sw)l = cvwl − π(v, sv) + π(w, sw). DRegLC is
based on Dijkstra’s algorithm which works only for non-negative arc costs, so not
all potential functions can be used. A potential function π is feasible, if cπ(v,sv)(w,sw)l

is non-negative for all (v, w, l) ∈ A. Note that, if π′ and π′′ are feasible potential
functions, then max(π′, π′′) is a feasible potential function [9].

Tight bounds can be produced by using landmarks and the triangle inequality
[9]. The main idea is to select a small set of nodes ` ∈ L ⊂ V (also called landmarks),
appropriately spread over the network, and pre-compute all distances of shortest
paths between the landmarks and any other node. By using these landmark distances
and the triangle inequality, lower bounds on the distances between any two nodes
can be derived. Finding good landmarks is difficult and several heuristics exist [9,
10]. SDALT applies these concepts to speed-up DRegLC on P by using the following
potential function (see also Figure 1):

π(v, s) = max
⋃
`∈L

{d′(`, t, s)− d′(`, v, s), d′(v, `, s)− d′(t, `, s), 0} (1)

d′(i, j, s) denotes the constrained landmark distance, which is the travel time on
the shortest path from (i, s) to (j, s′) for some s′ ∈ F0 constrained by the regu-
lar language Li→js . Here lies the major conceptual difference between SDALT and
uniALT. Differently from uniALT, SDALT does not use Dijkstra’s algorithm to de-
termine landmark distances, but it uses the DRegLC algorithm instead. This way, it is
possible to constrain the landmark distance calculation by some regular languages
which is derived from L0. Thus SDALT is able to already consider the constraints
given by L0 during the preprocessing phase. Note that d′(v, t, s) is constrained by

v

`

t
d′(`, v, s), L`→v

s

d′(`, t, s), L`→t

s

d′(v, t, s), Lv→t

s

v

`

t

d′(v, `, s), Lv→`

s

d′(t, `, s), Lt→`

s

d′(v, t, s), Lv→t

s

Fig. 1: Landmark distances for SDALT

Lv→ts = Ls0. Ls0 is equal to L0 except that the initial state of A0 is replaced by s.
Intuitively Ls0 represents the constraints of L0 to be considered for the remaining
portion of the shortest path from an arbitrary node (v, s) to the target.

In [14] three methods, (bas), (adv), and (spe) have been presented on how
to choose L`→ts , L`→vs , Lv→`s , Lt→`s used to constrain the calculation of d′(`, t, s),
d′(`, v, s), d′(v, `, s), d′(t, `, s) in such a way that the resulting potential function
(Equation 1) results feasible and provides correct lower bounds. They are based on
Proposition 1. Note that the concatenation of two regular languages L1 and L2 is
the regular language L3 = L1 ◦ L2 = {v ◦ w|(v, w) ∈ L1 × L2}. E.g., if L1 = {a, b}
and L1 = {c, d} then L1 ◦ L2 = L3 = {ac, ad, bc, bd}.

Proposition 1 ([14]). For all s ∈ S, if L`→vs ◦ Lv→ts ⊆ L`→ts , then d′(`, t, s) −
d′(`, v, s) is a lower bound for the distance d′(v, t, s). Equally, if Lv→ts ◦Lt→`s ⊆ Lv→`s

then d′(v, `, s)− d′(t, `, s) is a lower bound for d′(v, t, s).

4 Label Correcting State Dependent uniALT: lcSDALT

SDALT works correctly only if reduced arc costs are non-negative. It turns out, how-
ever, that by violating this condition often tighter lower bounds can be produced.
This compensates, at least in our scenario, the additional computational effort re-
quired to remedy the disturbing effects of the use of negative reduced costs on the
underlying Dijkstra’s algorithm and in addition results in shorter query times and
lower memory requirements.

This is why we propose a variation of SDALT, which can handle negative reduced
costs. The major impact of this is that settled nodes may be re-inserted into the
priority queue for re-examination (correction). In our setting, the number of arcs
with non-negative reduced arc costs is limited and we can prove that the algorithm
may stop once the target node is extracted from the priority queue. We name the
new algorithm Label Correcting State Dependent uniALT (lcSDALT). Note that
here label refers to the distance label of the algorithm and not to the labels on arcs.

4.1 Query

The algorithm lcSDALT is similar to DRegLC and uniALT. As priority queue Q we
use a binary heap. The pseudo-code in figure 2 works as follows: the algorithm
maintains, for every visited node (v, s) in the product graph P , a tentative distance
label dr(v, s) and a parent node p(v, s). It starts by computing the potential for the
start node (r, s0) and by inserting into Q (line 3). At every iteration, the algorithm

1 function SDALT_Lcor(G,r,t,τstart,L0)
2 dr(v, s):= ∞, p(v, s):=-1, πv,s := 0, ∀(v, s) ∈ V × S
3 path_found:= false, dr(r, s0):= 0, k(r, s0):= π(r, s0), p(r, s0):= -1
4 insert (r, s0) in priority queue Q
5 while Q is not empty:
6 extract (v, s) with smallest key k from Q
7 if v == t and s ∈ F0:
8 path_found:= true, break
9 for each (w, s′) s.t. (v, w, l) ∈ A ∧ s′ ∈ δ(l, s):

10 dtmp:= dr(v, s) + cvwl(τstart + dr(v, s)) //time-dependency
11 if dtmp < dr(w, s

′):
12 p(w, s′):= (v, s), dr(w, s

′):= dtmp

14 if (w, s′) not in Q and never visited: //insert
15 πw,s′:= π(w, s

′)

16 k(w, s′):= dr(w, s
′) + πw,s′

17 insert (w, s′) in Q
18 elif (w, s′) not in Q: //re-insert
19 k(w, s′):= dr(w, s

′) + πw,s′

20 insert (w, s′) in Q
21 else: //decrease
22 k(w, s′):= dr(w, s

′) + πw,s′

23 decreaseKey w, s′ in Q
24 end for
25 end while

Fig. 2: Pseudo-code lcSDALT

extracts the node (v, s) in Q with the smallest key (the node is settled) and relaxes
all outgoing arcs (line 9), i.e. checking and possibly updating the key and distance
label for every node (w, s′) where s′ ∈ δ(l, s). More precisely, a new temporary
distance label dtmp = dr(v, s) + cvwl(τstart + dr(v, s)) is compared to the currently
assigned distance label (lines 10). If it is smaller, it either inserts or re-inserts node
(w, s′) into the priority queue or decreases its key (line 14, 18, 21). Note that it is
necessary to calculate the potential of a node (w, s′) only the first time it is visited.
The cost of arc (v, w, l) might be time-dependent and thus has to be evaluated for
time τstart + dr(v, s). The algorithm terminates when a node (t, s) with s ∈ F0 is
settled. The resulting shortest path can be produced by following the parent nodes
backward starting from node (t, s).

Correctness The algorihtm lcSDALT is based on DRegLC and uniALT. It suffices to
prove that when the target node (t, s′), s′ ∈ F0 is extracted from the priority queue
the algorithm can stop (see Lemma 1 and Proposition 2). Note that π(t, s′) = 0,
that d∗r(v, s) is the distance of the shortest path from (r, s0) to (v, s), and that there
are no negative cycles as arc costs and potentials are always non-negative.

Lemma 1. The priority queue always contains a node (i, s′) with key k(i, s′) =
d∗r(i, s

′) +π(i, s′) and which belongs to the shortest path from (r, s0) to (t, s′′) where
s′′ ∈ F0, s

′ ∈ S.

Proposition 2. If a solution exists, lcSDALT finds the shortest path.

Proof. Let us suppose that a node (t, s), where s ∈ F0, is extracted from the priority
queue but its distance label is not optimal, so dr(t, s) 6= d∗r(t, s). Node (t, s) has key
k(t, sf) = dr(t, sf) + π(t, s) 6= d∗r(t, s). By Lemma 1, this means that there exists

some node (i, s′) in the priority queue on the shortest path from (r, s0) to (t, s)
which has not been settled because its key k(i, s′) > k(t, s). This means k(i, s′) =
d∗r(i, s

′) + π(i, s′) > dr(t, s) + π(t, s) = k(t, s), which is a contradiction. ut

Complexity Complexity of DRegLC, SDALT as well as lcSDALT when a feasible
potential function is used is equal to the complexity of the Dijkstra’s algorithm on
the product graph P which is O(m log n) where m = |A||S|2 and n = |V ||S| are
the number of arcs and nodes of P . If the potential function is non-feasible the key
of a node extracted from the priority queue could not be minimal, hence already
extracted nodes might have to be re-inserted into the priority queue at a later point
(line 18-20) and re-examined (corrected). The algorithm lcSDALT can handle this
but in this case its complexity is similar to the complexity of the Bellman-Ford
algorithm (plus the time needed to manage the priority queue): O(mn log n).

4.2 Constrained landmark distances

For calculating the distance bounds for a generic node (v, s) of P , we give three
procedures to determine the regular languages L`→ts , L`→vs , Lv→`s , Lt→`s which are
used to constrain the landmark distance calculation (see Table 1). The languages
produced by procedure 1 allows every combination of labels in Σ0. The language
produced by procedure 2 is similar but depends on the state s of the node (v, s).
It allows every combination of labels in Σ0 except those labels for which there is
no longer any transition between states which are reachable from s. Procedure 3
is the trickiest and produces four distinct languages for a node (v, s) of P . L`→ts

is determined in such a way that all constraints given by A0 on shortest paths
which pass by a node (v, s) on A0 will be considered. Lv→`s considers only those
constraints that apply to paths starting from (v, s) to a final node. L`→vs and Lt→`s

are derived in such a way that they put as few constraints as possible on the distance
calculation but assure that Proposition 1 is valid. Consider, e.g., a transportation
network. The procedures are based on the intuition that fast transportation modes
which are excluded by L0 should also not be used to calculate the bounds. Also, if
there are constraints which infer a major detour from the unconstrained shortest
path, this detour should also be considered by the landmark distance calculation.

In [14] these procedures have been used with SDALT to produce three methods
which assure that reduced costs are always non-negative; a basic method (bas) which
applies procedure 1 to all nodes (v, s) of P ; an advanced method (adv) which applies
procedure 2 to all nodes and uses a slightly modified potential function; a specific
method (spe) which applies procedure 3 to all nodes. These methods can also be
used with lcSDALT. In the following we will present two new methods which can
only be used with lcSDALT, as reduced costs may be negative: an adapted version
of (adv) which we will call (advlc) and a new method (mixlc).

(advlc) Equally to (adv), this method applies procedure 2 to all nodes (v, s) of
P . Differently to (adv) it uses Equation 1 as potential function and thereby
considerably reduces the number of potentials to be calculated.

(mixlc) The method (spe) applies the regular languages constructed by applying
procedure 3 for each state of L0. This is space-consuming and bounds for nodes

proc. regular language and/or NFA

1 Lv→`s = Lt→`s = L`→vs = L`→ts = Lproc1 = {Σ∗0}
Lproc1 : Aproc1 = ({s}, Σ0, δ : {s} ×Σ0 → {s}, s, {s})

2 Lv→`s = Lt→`s = L`→vs = L`→ts = Lproc2,s = {
−→
Σ (s,A0)∗}

Lproc2,s : Aproc2,s = ({s},
−→
Σ (s,A0), δ : {s} ×Σ(s,A0)→ {s}, s, {s})

3 L`→vs : A`→vs = (S =
←−
S (s,A0), Σ =

←−
Σ (s,A0), δ0|S×Σ), s, {s})

L`→ts : A`→ts = (S =
←−
S (s,A0) ∪

−→
S (s,A0),

Σ =
←−
Σ (s,A0) ∪

−→
Σ (s,A0), δ0|S×Σ , s, F0 ∩ S)

Lv→`s : Av→`s = (S =
−→
S (s,A0), Σ =

−→
Σ (s,A0), δ0|S×Σ), s, F0 ∩ S)

Lt→`s : At→`s = ({s}, Σ =
⋂
s ∈ F0 ∩

−→
S (s,A0){l ∈ Σ0 : ∃δ0(s, l) = {s}},

δ : s×Σ = {s}, s, {s})
Table 1: With reference to a generic RegLCSP where the SP is constrained by
regular language L0 (A0 = (S0, Σ0, δ0, s0, F0)) the table shows three procedures to
determine the regular language to constrain the distance calculation for a generic
node (n, s) of the product graph P .

with certain states may be worse than those produced by procedure 2. This
is why we introduce a more flexible new method (mixlc) which provides the
possibility to freely choose for each state between the application of procedure
2 or procedure 3. This also often gives a trade-off between memory requirements
and performance improvement. To find the desired calibration for a given L0 and
to determine when to use procedure 2 or procedure 3 some testing is necessary.

Memory requirements and time-dependency Memory requirements to hold
preprocessing data for (advlc) grow linearly in respect to |L| × |V | × |S|. (mixlc)
may require in the worst case up to four times more space than (advlc). Similar to
D, DRegLC and also lcSDALT can easily be adapted to the time-dependent scenario
by selecting landmarks and calculating landmark distances by using the minimum
weight cost function cijl = minτ cijl(τ). Indeed, potentials stay valid as long as arc
weights only increase and do not drop below a minimal value [2, 6].

4.3 Experimental Results

The algorithm lcSDALT is implemented in C++ and compiled with GCC 4.1. A
binary heap is used as priority queue. Similar to the basic version of uniALT [16],
periodical additions of landmarks (max 6 landmark) take place. Experiments are
run on a Intel Xeon, clocked at 2.6 Ghz, with 16 GB of RAM.

The multi-modal transportation network is based on road and public transporta-
tion data of the French region Ile-de-France. It consists of five layers: private bike,
rental bike, walking, car and public transportation. Each layer is connected to the
walking layer through transfer arcs which model the time needed to transfer from
one layer to another (e.g., the time needed to unchain and mount a bike). Each arc
has exactly one associated label, e.g. f for arcs representing foot paths, ptr for train

s0 s2s1
t t

f b f

(a) A0: Automaton allows walking (f)
and biking (b). Once the bike is dis-
carded (state s2) it may not be used
again. S0 = {s0, s1, s2}, initial state
s0, F = {s0, s2}, Σ0 = {f, b, t}.

L0 : f∗|(f∗tb∗tf∗)
(b) A0 expressed as a regular expres-
sion. The vertical bar | represents the
boolean ’or’ and the asterisk ∗ indicates
that there are zero or more of the pre-
ceding element.

(bas) (adv) (mix) (spe)

L`→v
s0

s0

f

f∗

L`→t
s0

s0

bft

(b|f |t)∗
s0 s2s1

t t

f b f

f∗|(f∗tb∗tf∗)

L`→v
s1

s0 s1
t

f b

f∗tb∗

L`→t
s1

L`→v
s2

= L`→t
s2

s0

f

f∗
s0 s1 s2

t t

f b f

f∗tb∗tf∗

Fig. 3: Example of a regular language L0 (scenario A) and its representation as an
automaton (3a) and regular expression (3b). The table lists the languages used to
constrain the landmark distance calculation by applying (bas), (adv), (mix), and
(spe). E.g., for (adv): L`→vs0 = L`→ts0 = L`→vs1 = L`→ts1 : (b|f |t)∗, L`→vs2 = L`→ts2 : f∗.

tracks, ctoll for toll roads. The graph consists off circa 4.1mil arcs and 1.2mil nodes.
Dimensions of the graph and a list off all used labels are given in Table 2.

Data of the public transportation network has been provided by STIF4. It in-
cludes geographical information, as well as timetable data on bus lines, tramways,
subways and regional trains. Our model is similar to the one presented in [18]. Data
for the car layer is based on road and traffic information provided by Mediamobile5.
Arc labels and travel time are set according to the road type. Circa 15% of the road
arcs have a time-dependent cost function to represent changing traffic conditions
throughout the day. Transfers from the car layer to the walking layer are possible at
uniformly distributed transfers arcs. The walking as well as the private and rental
bike layers are based on road data (walking paths, cycle paths, etc.) extracted from
geographical data freely available from OpenStreetMap. Arc cost equals walking or
biking time. Arcs are replicated and inserted in each of the layers if both walking
and biking are possible. The rental bike layer includes only arcs in the area around
the city of Paris, where the rental bike service6 is available. Bike rental stations serve
as connection points between the walking layer and the rental bike layer as rental
bikes have to be picked up and returned at bike rental stations. The private bike
layer is connected to the walking layer at common street intersections. In addition,

4 Syndicat des Transports IdF, www.stif.info, data for scientific use (01/12/2010)
5 www.v-trafic.fr, www.mediamobile.fr
6 Vélib’, www.velib.paris.fr

layer nodes arcs labels
walking 275 606 751 144 f (all arcs except 20 arcs with label z)
public trans-
portation

109 922 292 113 pb (bus, 72 512 arcs), pm (metro, 1 746), pr (tram, 1 746), pt (train, 8 309),
ptc (connection between stations, 32 490), ptw (walking station intern,
176 790), time-dependent 82 833

private bike 250 206 583 186 b
rental bike 38 097 83 928 v
car 613 972 1 273 170 ctoll (toll roads, 3 784), cfast (fast roads, 16 502), cpav (paved roads except toll

and fast roads, 1 212 957), cunpav (unpaved roads, 27 979), time-dependent
188 197

transfers - 1 107 457 t (walking↔private bike 493 601, walking↔rental bike 2 404, walking↔car
572 604, walking↔public transportation 38 848)

Tot 1 287 803 4 095 971 time-dependent arcs 271 030 (7 687 204 Time Points)

Table 2: Dimensions of the graph

s0

s1 s2

s3

s4 s5

f t t

t

t

pc

t
t

t

t

pbptpw pbptpw

b

cfastcpav fvt

(a) Scenario B

s0

s2

s1

s3

s4

t

f

t

t

p

t

f

b ftv

s0 s1
z

bft bftz

(b) Scenarios C and E

s0

s1 s2

s3 s4

s5 s6

ft

ft

ft

fppctv

bft

cft

z

z

z

fppctvz

bftz

cftz

(c) Scenario D

Fig. 4: Instances used for experimental evaluation. Note that labels pbpmprptpw have
been substituted by p and ctollcfastcpav by c.

we introduced ten arcs with label z between nodes of the foot layer. They represent
foot paths close to locations of interest, and are used to simulate the problem of
reaching a target and in addition passing by any pharmacy, grocery shop, etc.

We ran 500 test instances for five RegLCSP scenarios, see Figures 3a and 4.
They have been chosen with the intention to represent real-world queries, which may
arise when looking for constraint shortest paths on a multi-modal transportation
network. Source node r, target node t, and start time τstart are picked at random.
r and t always belong to the walking layer. We use 32 landmarks which are placed
exclusively on the walking layer. Preprocessing for the different scenarios takes less
than a minute. For each instance we compare running times of the different methods
withDRegLC. See Table 3 for experimental results. time is the average running time in
msec of the algorithm over 500 test instances. SettNo, reInsNo and calcPot give the
average of the number of settled nodes, re-inserted nodes and calculated potentials.
MaxSett gives the maximum number of settled nodes. For (mix)lc all states for
which procedure 2 has been applied is given. For all other states procedure 3 has
been used.

sce. method time speed-up settNo maxSett reInsNo nCalPot size proc 2
A DRegLC 238 1.0 296 656 986 292 - - 0

(bas) 19 12.4 21 476 950 992 0 76 144 311
(adv) 18 13.6 10 930 684 296 0 129 020 622
(adv)lc 13 18.1 10 927 682 981 11 68 820 622
(spe) 62 3.9 45 548 202 382 0 272 174 1 244
(mix)lc 13 *18.9 11 034 254 259 19 74 544 933 s1

B DRegLC 624 1.0 610 375 1 487 766 - - 0
(bas) 219 2.9 156 828 973 345 0 676 969 311
(adv) 190 3.3 51 258 346 549 0 2 295 030 1 866
(adv)lc 174 3.6 145 535 857 619 30 623 198 1 866
(spe) 237 2.6 176 766 667 125 0 543 388 2 177
(mix)lc 89 *7.0 60 053 350 237 87 343 585 1 244 s0, s3, s4

C DRegLC 630 1.0 658 738 1 785 747 - - 0
(bas) 515 1.2 414 553 1 721 989 0 1 981 520 311
(adv) 338 1.9 158 193 977 793 0 2 437 770 933
(adv)lc 263 2.4 223 070 2 217 083 64 034 919 554 933
(spe) 238 2.7 156 739 929 544 0 633 859 1 866
(mix)lc 149 *4.2 91 917 499 646 1 064 674 115 1 244 s0, s1, s2, s4
(mix)lc 161 3.9 97 119 620 991 2 564 686 516 933 s0, s1, s2

D DRegLC 1 722 1.0 1 248 060 3 085 428 - - 0
(bas) 565 3.0 373 695 1 830 094 0 1 731 400 311
(adv) 695 2.5 352 969 1 557 331 0 3 297 090 1 244
(adv)lc 558 3.1 356 679 1 575 981 40 1 640 950 1 244
(spe) 476 3.6 337 849 1 791 504 0 734 068 2 488
(mix)lc 364 *4.7 221 631 1 278 208 48 953 802 2 177 s0

E DRegLC 764 1.0 795 822 1 458 519 - - 0
(bas) 143 5.3 115 941 598 273 0 407 108 311
(adv) 119 6.4 115 941 598 273 0 411 869 311
(adv)lc 120 6.4 116 042 598 273 32 406 877 311
(spe) 25 30.3 27 532 216 389 0 109 125 622
(mix)lc 22 *34.4 23 607 145 308 608 85 776 933 s0

Table 3: Experimental results

4.4 Discussion of experimental results and conclusive remarks

The algorithm lcSDALT, by adopting the five methods (bas), (adv), (advlc), (spe)
and (mixlc), in comparison to DRegLC, succeeds in directing the constrained shortest
path search faster toward the target. (bas) works well in situations where L0 excludes
a priori fast transportation modes (scenario A). (adv) gives a supplementary speed-
up in cases where initially allowed fast transportation modes are excluded from a
later state on A0 onward. (spe) has a positive impact on running times for scenarios
where the visit of some infrequent labels is imposed by L0 (E) or the use of fast
transportation modes is somehow limited (B). Finally, the new methods (advlc)
and (mixlc) prove to be very efficient. (advlc) runs up to 20% faster than (adv) as
it substantially reduces the number of calculated potentials, especially for larger
automata. The extra flexibility provided by (mixlc) often results in a reduction of
running time (up to 50%) and a substantial reduction of memory space.

Recent works on finding constrained shortest paths on multi-modal networks
reported speed-ups of different orders of magnitude. They succeed in doing this by
using contraction hierarchies and by either limiting the constraints which can be
imposed on the shortest paths [19] or by identifying homogenous regions (arcs with
the same label) of the network and by applying contractions only to those regions
[7]. lcSDALT does not provide such speed-ups but proves to work consistently good
even when considering more difficult constraints then the one considered in [19] and
on a highly dis-homogenous graph. Also, time-dependent cost functions on arcs can

be easily incorporated. Therefore, lcSDALT seems a good ingredient to future more
advances algorithms on multi-modal networks.

References

1. C. Barrett, K. Bisset, M. Holzer, G. Konjevod, M. Marathe, and D. Wagner. Engineer-
ing label-constrained shortest-path algorithms. Algorithmic Aspects in Information
and Management, pages 27–37, 2008.

2. C. Barrett, K. Bisset, R. Jacob, G. Konjevod, and M. V. Marath. Classical and con-
temporary shortest path problems in road networks: Implementation and experimental
analysis of the TRANSIMS router. Proc. ESA, pages 126–138, 2002.

3. C. Barrett, R. Jacob, and M. Marathe. Formal-Language-Constrained Path Problems.
SIAM Journal on Computing, 30(3):809, 2000.

4. D. Delling, T. Pajor, and D. Wagner. Accelerating Multi-Modal Route Planning by
Access-Nodes. Algorithms-ESA 2009, 2, 2009.

5. D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning
algorithms. Algorithmics of large and complex networks, 2:117–139, 2009.

6. D. Delling and D. Wagner. Time-Dependent Route Planning. Online, 2:207–230, 2009.
7. J. Dibbelt, T. Pajor, and D. Wagner. User-Constrained Multi-Modal Route Plan-

ning. In Proceedings of the 14th Workshop on Algorithm Engineering and Experiments
(ALENEX’12). SIAM, 2012.

8. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, Dec. 1959.

9. A. V. Goldberg and C. Harrelson. Computing the shortest path: A search meets
graph theory. In Proceedings of the 16th annual ACM-SIAM Symposium on Discrete
algorithms, pages 156–165. SIAM, 2005.

10. A. V. Goldberg and R. Werneck. Computing point-to-point shortest paths from ex-
ternal memory. US Patent App. 11/115,558, 2005.

11. P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

12. T. Ikeda, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Tenmoku, and K. Mi-
toh. A fast algorithm for finding better routes by AI search techniques. IEEE, 1994.

13. D. Kaufman and R. Smith. Fastest paths in time-dependent networks for intelligent
vehicle-highway systems applications. Journal of Intelligent Transportation Systems,
1(1):1–11, 1993.

14. D. Kirchler, L. Liberti, T. Pajor, and R. Wolfler Calvo. UniALT for Regular Language
Constrained Shortest Paths on a Multi-Modal Transportation Network. In ATMOS
2011, pages 64–75. Schloss Dagstuhl, 2011.

15. A. O. Mendelzon and P. T. Wood. Finding Regular Simple Paths in Graph Databases.
SIAM Journal on Computing, 24(6):1235, 1995.

16. G. Nannicini, D. Delling, L. Liberti, and D. Schultes. Bidirectional A search for time-
dependent fast paths. Experimental Algorithms, 2(2):334–346, 2008.

17. A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. Journal of the ACM, 37(3):607–625, July 1990.

18. E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient models for timetable
information in public transportation systems. Journal of Experimental Algorithmics,
12(2):1–39, June 2007.

19. M. Rice. Graph indexing of road networks for shortest path queries with label restric-
tions. Proceedings of the VLDB Endowment, pages 69–80, 2010.

20. J. Romeuf. Shortest path under rational constraint. Information processing letters,
28(5):245–248, 1988.

A Proofs

Lemma 2. The priority queue always contains a node (i, s′) with key k(i, s′) =
d∗r(i, s

′) +π(i, s′) and which belongs to the shortest path from (r, s0) to (t, s′′) where
s′′ ∈ F0, s

′ ∈ S.

Proof. Let q∗ = (p1 = (r, s0), . . . , pm = (t, s′′)) be the shortest path from (r, s0) to
(t, s′′) on P (constrained by L0). At the first step of the algorithm node p1 = (r, s0)
is inserted in the priority queue with key k(r, s) = d∗r(r, s) +π(r, s) = π(r, s). When
node pn with k(i, s) = d∗r(i, s) + π(i, s) for some n ∈ {1, . . . ,m} is extracted from
the priority queue, at least one new node pn+1 = (j, s′) with dr(j, s

′) = d∗r(j, s
′) =

d∗r(i, s) + c(i,s)(j,s′)l(τ) is inserted in the queue by lines 14, 18, 21. ut

B Suppressed figures

π = 15 π = 10

π = 1

π = 9

π = 3 π = 0

r 1

2

3

4 t

5
5

1 1

5 5

step 1 insert node r in Q with key 15
step 2 extract node r from Q and insert node 1 in Q with key 15
step 3 extract node 1 from Q and insert node 2 in Q with key 11

and insert node 3 in Q with key 15
step 4 extract node 2 from Q and insert node 4 in Q with key 18
step 5 extract node 3 from Q and insert node 2 in Q with key 8
step 6 extract node 2 from Q and decrease node 3 in Q with key 15
step 7 extract node 4 from Q and insert node t in Q with key 15
step 8 extract node t from Q and terminate

Fig. 5: Application of algorithm lcSDALT without constraints. Arc from node 1 to
node 2 has negative reduced cost 5 + 1− 10 = −4 and as a result node 2 is inserted
twice in the priority queue (P).

method characteristics

(advlc) lcSDALT uses Equation 1, SDALT for (adv) must apply a modified potential function:
πadv(v, s) = max{π(v, sx)|sx ∈ Ω(s,A0)}

(mixlc) mixes procedures 2 and 3

Table 4: Characteristics of (advlc) and (mixlc)

regular language
to constrain

distance calculation settled nodes on P

algo Lt→`s0 Lv→`s0 Lt→`s1 Lv→`s1 (key in square brackets)

DRegLC no potential all

std not constrained (r, s0)[9], . . . all except (1, s0), (2, s0)

bas (f |b)∗ (r, s0)[10], (5, s1)[10], (6, s1)[10],(7, s1)[11], (8, s1)[11],
(t, s1)[11]

adv (f |b)∗ f∗ (r, s0)[10], (5, s1)[10], (7, s1)[11], (8, s1)[11], (t, s1)[11]

spe f∗bf∗ f∗ (r, s0)[11], (7, s1)[11], (8, s1)[11],(t, s1)[11]

lr

1 2

3 4

5 6

7 8

t

f, 1

f, 1

f, 4

f, 4
c, 1

b, 3 f, 4 b, 3

b, 3
f, 4

f, 4

f, 9

0 1
b

f f

Fig. 6: Example showing the application of lcSDALT on a labeled graph. The short-
est paths is constrained by the regular expression f∗bf∗ (NFA on the right of the
graph). The table shows the regular languages used to constrain the landmark dis-
tance calculation, as well as the search space. Optimal path: (r, s0), (9, s1), (10, s1),
(t, s1). Node l is the landmark.

C Further details for instances

Here we provide more information about the instances used for experimental eval-
uation. Note that labels pbpmprptpw have been substituted by p and ctollcfastcpav by
c.

s0 s2s1
t t

f b f

Fig. 7: Scenario A: The target may be reach be either walking or walking and taking
a private bike. Once discarded, the bike may not be used again.

s0

s1 s2

s3

s4 s5

f t t

t

t

pc

t
t

t

t

pbptpw pbptpw

b

cfastcpav fvt

Fig. 8: Scenario B: The target may be reached by walking or by using a private
car (only paved and fast roads are allowed, no toll roads). The target may also be
reached by private bike or/and by taking public transportation (no metro allowed).
Maximal one change of public transportation vehicles is permitted. Once discarded
the private car or private bike or left public transportation, the itinerary may be
continued by walking or by taking a rental bike.

s0

s2

s1

s3

s4

t

f

t

t

p

t

f

b ftv

Fig. 9: Scenario C: The target may be reached by walking or by taking a private
bike. Public transportation may be used once but without changing vehicles. Once
left public transportation, the itinerary may be continued by walking or by taking
a rental bike.

s0 s1
z

bft bftz

Fig. 10: Scenario E: At any point of the itinerary taking a private bike or walking
is possible. An arc with label z has obligatorily to be visited. It may represent a
street with a grocery shop, a post office, etc

s0

s1 s2

s3 s4

s5 s6

ft

ft

ft

fppctv

bft

cft

z

z

z

fppctvz

bftz

cftz

Fig. 11: Scenario D: An arc with label z has obligatorily to be visited. It may rep-
resent a street with a grocery shop, a post office, etc. Other than that either public
transportation or private bike or private car may be used.

