
Compact relaxations for polynomial

programming problems⋆

Sonia Cafieri1, Pierre Hansen2,4, Lucas Létocart3, Leo Liberti4, and Frédéric
Messine5

1 Laboratoire MAIAA, Ecole Nationale de l’Aviation Civile, 7 av. E. Belin, 31055
Toulouse, France, sonia.cafieri@enac.fr

2 GERAD, HEC Montreal, Canada, pierre.hansen@gerad.ca
3 LIPN, Univ. de Paris Nord, Avenue J.B. Clément, 93430 Villetaneuse, France,

lucas.letocart@lipn.univ-paris13.fr
4 LIX, École Polytechnique, 91128 Palaiseau, France,

liberti@lix.polytechnique.fr
5 ENSEEIHT-IRIT, 2 rue Charles Camichel, BP 7122, F-31 071 Toulouse, France,

frederic.messine@n7.fr

Abstract. Reduced RLT constraints are a special class of Reformu-
lation-Linearization Technique (RLT) constraints. They apply to noncon-
vex (both continuous and mixed-integer) quadratic programming prob-
lems subject to systems of linear equality constraints. We present an
extension to the general case of polynomial programming problems and
discuss the derived convex relaxation. We then show how to perform
rRLT constraint generation so as to reduce the number of inequality con-
straints in the relaxation, thereby making it more compact and faster to
solve. We present some computational results validating our approach.
Keywords: polynomial, nonconvex, MINLP, sBB, reformulation, convex
relaxation, RLT.

1 Introduction

We target Mixed-Integer Nonlinear Programming (MINLP) problems of the
form:

minx f(x)
g(x) ≤ 0
Ax = b

xL ≤ x ≤ xU

∀ i ∈ Z xi ∈ Z,

(1)

where x, xL, xU ∈ Rn, Z ⊆ N = {1, . . . , n}, A is a full rank m × n matrix,
b ∈ Rm, f : Rn → R and g : Rn → Rm′

are polynomial functions of x.
We describe an extension to polynomial programming of an existing auto-

matic reformulation technique [1–3] called reduced Reformulation-Linearization

⋆ We are grateful to Dr. Tatjana Davidović and Christoph Dürr for useful discus-
sions. Financial support by grants: Digiteo Chair 2009-14D “RMNCCO”, Digiteo
Emergence 2009-55D “ARM” is gratefully acknowledged.

2 Cafieri, Hansen, Liberti, Létocart, Messine

Technique (rRLT). This technique was originally defined only for quadratic prob-
lems subject to linear equality constraints. It replaces some of the quadratic
terms with suitable linear constraints, called rRLT constraints. These turn out
to be a subset of the RLT constraints for quadratic programming [4]. The origi-
nal RLT linearizes all quadratic terms in the problem and generates valid linear
equation and inequality cuts by considering multiplications of bound factors
(terms like xi − xL

i and xU
i − xi) by linear constraint factors (the left hand side

of a constraint such as
∑n

j=1 ajxj − b ≥ 0 or
∑n

j=1 ajxj − b = 0). Since bound
and constraint factors are always non-negative, so are their products: this way
one can generate sets of valid problem constraints. An extension of the RLT
to polynomial programming is described in [5], and to more general factorable
programming problems in [6]. These results find their practical limitations in
the extremely large number of adjoined constraints. Some heuristic techniques
[4, 7] were proposed to help filter out RLT constraints which are redundant. In
the rRLT the presence of linear equality constraints in the original problem al-
lows the generation of only those linear RLT constraints that are guaranteed to
replace a set of quadratic terms.

We aim to improve performance of spatial Branch-and-Bound (sBB) algo-
rithms targeted at nonconvex NLPs and MINLPs; in particular, the rRLT tight-
ens the lower bound computed by solving a convex relaxation of (1) at each
sBB node. We make two original contributions. First, we extend rRLT theory
from quadratic to polynomial programs. Second, as rRLT constraint generation
depends on an arbitrary choice (the basis of a certain matrix) we show how to
choose this basis in such a way as to yield a more compact (i.e., fewer constraints)
convex relaxation, denoted by rRLT-C; the rRLT-C relaxation may be weaker
than the rRLT one, but experiments show that the loss in tightness is greatly
offset by the gain in CPU time taken to solve it. We assume our polynomial
programs to be dense up to Sect. 3.2 for simplicity, and deal with sparsity in
Sect. 4.

Notationwise, we deal sometimes with indexed symbols which are scalars and
indexed symbols which are vectors; in order to avoid ambiguities, we denote with
boldface all indexed symbols indicating vectors. For example, wij is a scalar but
wij is the vector (wij1, . . . , wijn); in line with current optimization literature,
we do not use boldface to indicate the name of a whole array, so w might be
either a scalar or an array depending on the context.

The rest of this paper is organized as follows: Sect. 2 extends rRLT to polyno-
mial programming. In Sect. 3 we discuss how to construct the rRLT-C compact
relaxation. In Sect. 4 we address sparse polynomial programs. Sect. 5 discusses
some computational experiments on randomly generated instances.

2 rRLT for Polynomial Programming

The results presented herein extend [1] to the general polynomial case. Let Q =
{2, . . . , q}. For each monomial xj1 · · ·xjp appearing in the original problem (1)
where p ∈ Q, we define a finite sequence J = (j1, . . . , jp) and, consistent with the

Compact relaxations for polynomial programming problems 3

notation introduced by Sherali [5], consider defining constraints of the following
form:

wJ =
∏

ℓ≤|J|

xjℓ (2)

(for |J | = 1, i.e. J = (j), we also define wJ = xj). For all p ∈ Q, J ∈ N p

and any permutation π in the symmetric group Sp we have that wJ = wπJ by
commutativity. We therefore define an equivalence relation ∼ on N p stating that
for J,K ∈ N p, J ∼ K only if ∃π ∈ Sp such that J = πK. We then consider
the set of equivalence classes N̄ p = N p/∼ to quantify over when indexing added
variables wJ . In practice, we choose an equivalence class representative for each
J ∈ N̄ p which we also denote by J . With a slight abuse of notation, if J ′ ∈ N̄ p′

and J ′′ ∈ N̄ p′′

such that p′ + p′′ = p and (J ′, J ′′) is in the equivalence class
represented by J ∈ N̄ p, we write (J ′, J ′′) = J . We also define, for all p ∈ Q,
Mp =

⋃

1<p′≤p

N̄ p′

and M1
p =

⋃

p′≤p−1

N̄ p′

.

We multiply the original linear constraints Ax = b by all monomials
∏

ℓ≤p−1

xjℓ

and replace them by the corresponding added variables w(J ′,j), where J
′ ∈ N̄ p−1.

This yields the following rRLTS:

∀p ∈ Q, J ′ ∈ N̄ p−1 A wJ ′ = bwJ ′ , (3)

where wJ ′ = (w(J ′,1), . . . , w(J ′,n)). We then consider the companion system:

∀p ∈ Q, J ′ ∈ N̄ p−1 A zJ ′ = 0. (4)

Since (4) is a linear homogeneous system, there is a matrix M such that the
companion system is equivalent to Mz = 0, the columns of which are indexed
by sequences in Mp. We let B ⊆ Mp and N ⊆ Mp be index sets for basic and
nonbasic columns of M . We define the following sets:

C = {(x,w) | Ax = b ∧ ∀p ∈ Q, J ∈ N̄ p(wJ =
∏

ℓ≤|J|

xjℓ)} (5)

RN = {(x,w) | Ax = b ∧ ∀p ∈ Q, J ′ ∈ N̄ p−1(A wJ ′ = bwJ ′) ∧
∀J ∈ N(wJ =

∏

ℓ≤|J|

xjℓ)}. (6)

Theorem 2.1. For each partition B,N into basic and nonbasic column indices
for the companion system Mz = 0, we have C = RN .

We remark that for this proof to hold, all possible nonlinear monomials must be
present in the problem, which is generally not the case. We address this problem
in Sect. 4. A different treatment of the essentially the same concepts, which only
employs a bases of A instead of the (larger) companion system, was given in [8].

Replacing C with RN for some nonbasis N effectively replaces some nonlinear
monomial terms with linear constraints, and therefore contributes to simplify the
problem. A convex relaxation for the reformulated problem is readily obtained
by applying monomial convexification methods in the literature .

4 Cafieri, Hansen, Liberti, Létocart, Messine

3 Compact convex relaxation

First, we remark that virtually no practical polynomial problem exhibits all
possible nonlinear monomials. Let M = Mn and M1 = M1

n. We introduce
two sets: β ⊆ M indexing all nonlinear monomials appearing in the original
problem (1) and β′ ⊆ M indexing all nonlinear monomials appearing in (1)
and the rRLTS (3). Reduced RLT constraints are likely to give rise to compact
yet tight convex relaxations if N (β, in view of the fact that, by Thm. 2.1,
only monomials indexed by N need appear in the formulation — so the lower
and upper relaxations to monomials outside N can be dropped. Furthermore,
the proof of Thm. 2.1 also implies that the number of monomials that can be
replaced is equal to the rank ρ of the rRLTS. If the original problem has few
monomials, N might not be a proper subset of β, and in practice this occurrence
is not rare. Limited to quadratic polynomials, we address this problem in [2]; in
Sect. 4 we propose a technique to deal with sparse polynomial programs.

In this section we discuss a choice of N whereby the monomial relaxations
that are dropped define “large volumes”, and are therefore more likely to be
dominated by the relaxations of monomials in N . Intuitively, this should yield a
compact relaxation whose bound is not far from the normal rRLT relaxation.

3.1 Convexity gap

Definition 3.1. Consider a function f : X ⊆ Rn → R. Let f(x) be a convex

lower bounding function for f and f̄(x) be a concave upper bounding function
for f . Then the set S̄ = {(x,w) | f(x) ≤ w ≤ f̄(x)} is a convex relaxation of the
set S = {(x,w) | w = f(x)}. We define the convexity gap V (S) between S and
S̄ to be the volume of the set S̄; namely,

V (S) =

∫

x∈X

(f̄(x)− f(x))dx. (7)

We denote the convexity gap for a quadratic term xixj with Vij.

Convexity gap for a quadratic term x
2

i . The convex envelope of the set
ξ = {(xi, wii) | wii = x2

i , x
L
i ≤ xi ≤ xU

i } (where i ≤ n) consists of the area
between the function x2

i and the chord. The convexity gap of ξ is:

Vii =

∫ xU
i

xL
i

(

(xL
i)

2 +
(xU

i)
2 − (xL

i)
2

xU
i − xL

i

(xi − xL
i)− x2

i

)

dx =
1

6
(xU

i − xL
i)

3. (8)

Convexity gap for a bilinear term xixj. For all i < j ≤ n, the convex
envelope of the set {(xi, xj , wij) | wij = xixj , x

L
i ≤ xi ≤ xU

i , x
L
j ≤ xj ≤ xU

j } is

a tetrahedron ∆ in R3 given by the McCormick inequalities [9, 10]. The vertices

Compact relaxations for polynomial programming problems 5

of ∆ are: (xU
i , x

U
j , x

U
i x

U
j), (x

U
i , x

L
j , x

U
i x

L
j), (x

L
i , x

U
j , x

L
i x

U
j), (x

L
i , x

L
j , x

L
i x

L
j). Let

µ = xL
i − xU

i

ν = xL
j − xU

j

ξ = xL
i x

L
j − xU

i x
U
j

ζ = xL
i x

U
j − xU

i x
L
j

D̂ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 1
1 0 ν2(1 + a2) µ2(1 + c2) µ2 + ν2 + ξ2

1 ν2(1 + a2) 0 µ2 + ν2 + ζ2 µ2(1 + d2)
1 µ2(1 + c2) µ2 + ν2 + ζ2 0 ν2(1 + b2)
1 µ2 + ν2 + ξ2 µ2(1 + d2) ν2(1 + b2) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The volume Vij of ∆ can be computed using the Cayley-Menger formula in 3

dimensions [11], i.e. Vij = (xL
i , x

U
i , x

L
j , x

U
j) =

√
2D̂
24 .

Convexity gap for a multilinear monomial. By [12], the convex under- and
over-approximating envelopes of a multilinear monomial x1 · · ·xp of degree p, are
polyhedral. Therefore, the facet defining inequalities of the enveloping polytope

can be computed using the 2p polytope vertices vℓ = (xℓ1
1 , . . . , x

ℓp
p ,

∏

j≤p x
ℓj
j) in

Rn+1, for every p-sequence ℓ ∈ {L,U}p. We carry out this computation using
the Porta software [13]: although its worst-case complexity is exponential in p,
it is practically efficient for low values of p. Since our computational experiments
only address problems up to degree 4, this methodological choice is appropriate.
Standard methods to compute volumes of polytopes exist [14]. Our preliminary
implementation uses the volume of the smallest bounding box — this will be
changed later.

If J is the (ordered) sequence of p variable indices appearing in a multilinear
monomial µ(x), we let VJ denote the convexity gap for µ(x).

Convexity gap for a general monomial. By associativity, for any p ∈ Q
and a given sequence J ∈ N̄ p it is always possible to express the monomial
µ(x) =

∏

ℓ≤p

xjℓ as a product of multilinear factors (xj1 · · ·xj2) · · · (xj3 · · ·xj4).

After replacement by the appropriate added variable, the monomial is reduced
to wJ1

· · ·wJ2
, where J1 = {j1, . . . , j2} and J2 = {j3, . . . , j4}. Associativity can

then be re-applied recursively. This allows us to use the results of the preceding
sections to derive a convexity gap for µ(x). This approach, albeit simple, is simi-
lar, up to commutativity, to the standard reformulation exploited by sBB imple-
mentations [15–19] in view to obtain the convex relaxation of general monomials,
and more specifically to the approach followed in [20] for quadrilinear monomi-
als. Explicit monomial convex envelopes are also known for trilinear terms [21,
22] and univariate terms of odd degree [23].

Since we already treated the multilinear case separately, we assume that µ(x)
is not multilinear. In such cases, the recursive techniques described above yield

6 Cafieri, Hansen, Liberti, Létocart, Messine

nonlinear convex relaxations. Because our computational results only refer to
linear relaxations, however, we take a simpler approach and use interval arith-
metic [24] to compute an interval range [µL, µU] such that µL ≤ µ(x) ≤ µU

for all x ∈ [xL, xU]. If J is the (ordered) sequence of variable indices appear-
ing in the monomial µ(x), we compute VJ as the volume of the bounding box
[xL, xU]× [µL, µU].

3.2 Choosing a good basis for the companion system

Let B,N be the basic/nonbasic sets of column indices of the companion system
(4), which we write in this section as Mz = 0, or, equivalently, as MBzB +
MNzN = 0. As shown in Sect. 2, the elements of B,N are sequences J ∈ M.
For S ⊆ M and p ∈ Q we define V S,p =

∑

J∈S

|J|=p

VJ and V S =
∑

p∈Q

V S,p. If, for all

p ∈ Q, V N,p < V β,p then the total convexity gap of RN is smaller than that of
C. Thus, we aim to find N such that V N,p is minimized, or equivalently, to find
B such that V B,p is maximized for all p ∈ Q. This yields the multi-objective
problem:

∀p ∈ Q maxV B,p

MB is a basis of (4)

}

(9)

Next, we show that (9) is equivalent to a single-objective problem.

Consider a block diagonal m̄× n̄ matrix Ā with r blocks As (each a rectan-
gular, full-rank ms×ns matrix for each s ≤ r) having a basis indexed by the set
B̄ ⊆ {1, . . . , n̄}. For all s ≤ r let αs be the set of column indices corresponding
to the submatrix As of Ā. For a matrix T let span(T) be the space spanned by
the columns of T .

Lemma 3.2. Let i, j ≤ n̄ be such that i ∈ B̄, j 6∈ B̄ and π be the swap (i, j). If
i ∈ αq and j ∈ αt with q 6= t then the columns of Ā indexed by πB̄ do not form
a basis.

We remark that M is a block-diagonal matrix. Instead of showing a formal
proof of this fact, which would be long and tedious, we exhibit an example for
the case of polynomials of degree at most 3. Example 3.3 does not exploit any
specific property of the given matrix, and therefore appropriately illustrates what
happens in the general case.

Example 3.3. The companion system (4) Mz = 0 derived from the system Ax =

b with A =

(

a1 a2 a3
a4 a5 a6

)

, x ∈ R3 with Q = {2, 3} is:

Compact relaxations for polynomial programming problems 7

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

z11
z12
z13
z22
z23
z33
z111
z112
z113
z122
z123
z133
z222
z223
z233
z333

= 0

The number of monomials of n variables of degree exactly p is given in [25]

as

(

p+ n− 1
p

)

. From this, it follows that M has m
∑

p∈Q

(

p+ n− 2
p− 1

)

rows and

∑

p∈Q

(

p+ n− 1
p

)

columns.

Theorem 3.4. Any solution B of (9) maximizing V B also maximizes V B,p for
all p ∈ Q.

The single-objective problem max{vB | MB a basis of (4)} has a matroidal
structure and can therefore be solved using a greedy algorithm.

Evidently, the technique based on compact rRLT constraints is not significant
whenever the bounds are the same across all decision variables, because in this
case all the VJ ’s are equal. This, however, is rarely true if bound tightening
techniques [26, 18, 19, 27] are used as a preprocessing step; and it is never true
during sBB with rectangular partitioning schemes, as the variable ranges are
partitioned at each node. We also emphasize that the remark given in [8] p. 11
is also valid in our setting: for polynomial degrees ≥ 3, the proposed convex
relaxation might not be monotonically increasing w.r.t. following branches of the
sBB tree down from the root, thus preventing the sBB from converging. This
can be fixed at each node by adjoining those bound factor inequalities (derived
from the multiplication of different bound factors) that involve the branching
variable.

4 Dealing with sparsity

Polynomial problems are rarely dense; this might prevent the set N , introduced
in Sect. 2 to index the added variables corresponding to nonbasic columns of

8 Cafieri, Hansen, Liberti, Létocart, Messine

the companion system (4), from being a subset of β, the set indexing the added
variables corresponding to all monomials appearing in (1). We deal with this
possibility by looking for a subset ρ of rows of Ax = b to be multiplied by a
subset σ of added variables indexed by M1. The rRLTS (3) and its companion
system (4) are derived in the same way as for dense polynomial problems.

Theoretically, we should require N (β: as remarked in Sect. 3, the rRLTS
is then likely to give rise to compact yet tight convex relaxations. In practice,
in sparse problems, this requirement will often force ρ or σ to be empty, which
means that the reformulation does not take place. Following the principle that
every equation corresponds to one fewer degree of freedom, we aim to find ρ, σ
such that the size of the sparse rRLTS obtained by multiplying rows in ρ by
added variables in σ exceeds the number of new monomials (i.e. monomials not
in β) generated by these multiplications. This flexibility in the choice of ρ, σ has
a trade-off in terms of relaxation compactness. In order for Thm. 2.1 to hold,
the quantifications J ∈ N̄ p in (5) and J ′ ∈ N̄ p−1 in (6) should be replaced by
J ∈ τ , J ′ ∈ σ respectively, where τ = {(J ′, j) | J ′ ∈ σ (|J ′| = p) ∧ j ∈ N}. Since
σ ⊆ M1, fewer monomials are replaced by the rRLTS, yielding a relaxation
which might not be much more compact than the standard RLT relaxation.

We formalize the problem of finding suitable ρ, σ by considering a bipartite
graph that represents the incidence of monomials indexed by M in products
of rows aix = bi of Ax = b multiplied by monomials indexed by M1. Let
U = {(i, J ′) | i ≤ m∧J ′ ∈ M1} and define a set E such that, for (i, J ′) ∈ U and
J ∈ Mr β, {(i, J ′), J} ∈ E if there is j ∈ N such that aij 6= 0 and (J ′, j) = J .
Consider the bipartite graph G = (U,M r β,E): we want to find an induced
subgraph G′ = (U ′, V ′, E′) of G, with U ′ ⊆ U and V ′ ⊆ Mrβ, such that: |U ′| is
maximum, |U ′| > |V ′| and V ′ = NE(U

′) = {v ∈ Mr β | ∃u ∈ U ′ ({u, v} ∈ E)}.
We define this problem using a Mathematical Programming (MP) formulation:
we employ binary variables ui,J ′ for all (i, J ′) ∈ U and vJ for all J ∈ Mr β:

max
∑

(i,J ′)∈U

ui,J ′

∑

(i,J ′)∈U

ui,J ′ ≥ ∑

J 6∈β

vJ + 1

∀{(i, J ′), J} ∈ E vJ ≥ ui,J ′

u ∈ {0, 1}|U |

v ∈ {0, 1}|Mrβ|.

(10)

We can then define ρ = {i ≤ m | ∃J ′ ∈ M1 (ui,J ′ = 1)} and σ = {J ′ ∈
M1 | ∃i ≤ m (ui,J ′ = 1)}. This is a Binary Linear Program (BLP), so it
cannot be solved in polynomial time with standard MILP technology (i.e. using
a Branch-and-Bound algorithm).

4.1 Bipartite matching based algorithm for (10)

We propose an efficient algorithm based on bipartite matching for solving (10).
With respect to a matching M of G, a vertex of G is exposed if it is incident to an
edge which is not in M . For a subset of edges F ⊆ E, let U(F) = {u ∈ U | ∃e ∈

Compact relaxations for polynomial programming problems 9

F (u ∈ e)} and V(F) = {v ∈ M r β | ∃e ∈ F (v ∈ e)}. If M is a maximum
matching of G such that there exists an exposed vertex u ∈ UrU(M), the search
for an augmenting path from u which is alternating with respect to M will fail
by maximality of M [28]. A dilation rooted in u with respect to a maximum
matching M is a maximal simple alternating path pu (seen as a sequence of
edges in E) in G, from u to a vertex u′ ∈ U(M), whose even-indexed edges are
in M and odd-indexed edges are in E r M . Dilations are the certificates used
in cardinality bipartite matching algorithms to prove that the current matching
is optimal; informally, they certify the failure to find an augmenting alternating
path to increase the cardinality of the current matching in the classical bipartite
matching algorithm (see Fig. 10-3 in [29]).

Lemma 4.1. For a dilation pu from u in G w.r.t. a maximum matching M , we
have |U(pu)| = |V(pu)|+ 1.

Lemma 4.2. If p, p′ are different dilations in E, then |U(p∪ p′)| > |V(p∪ p′)|.

In order to deal with the case of isolated vertices, if u ∈ U is isolated, then it
is exposed w.r.t. the empty matching, and any empty path pu rooted at u is a
dilation; in this case, with a slight abuse of notation, we define U(pu) = {u}. A
dilation set is the set of edges in all dilations rooted at u with respect to M ;
dilation sets can be found in polynomial time using breadth first search (bfs)
from u (see [29], Sect. 10.2). By Lemma 4.2 above, dilation sets P are such that
|U(P)| > |V(P)|.

Algorithm 1 Matching-based algorithm for solving (10).

Require: A bipartite graph G = (U,Mr β,E)
Ensure: A nontrivial subgraph G′ = (U ′, V ′, E) solving (10), or ∅ if none exists
1: Let G′ = ∅

2: while |U | > 0 do

3: Let M ⊆ E be a maximum matching in G

4: if |U(M)| < |U | then
5: Find u ∈ U exposed and a corresponding dilation set Pu

6: Let H = (U(Pu),V(Pu), Pu)
7: Update G′ ← G′ ∪H

8: Update G← GrH

9: else

10: break

11: end if

12: end while

13: return G′

Proposition 4.3. In polynomial time, Alg. 1 finds a subgraph G′ = (U ′, V ′, E′)
of G such that |U ′| is maximum, |U ′| > |V ′| and V ′ = NE(U

′), or determines
that no such subgraph exists.

10 Cafieri, Hansen, Liberti, Létocart, Messine

5 Computational results

The best practical indication of the importance of rRLT techniques for linear
equality constrained polynomial programming is best observed by the compu-
tational results given in [2], where the presence or absence of rRLT yields dif-
ferences of up to five orders of magnitude on a class of pooling problems (these
are sparse polynomial problems of degree 2) from the oil industry. Those re-
sults are limited to quadratic programs and employ a restricted version of the
results for sparsity given in Sect. 4. We are currently in the process of extending
our code to deal with polynomial programming, so in this paper we only show
empirically that the compact rRLT-C formulation generally takes less time to
solve and yields bounds that are not much worse than those given by the rRLT
formulation.

We generate two sets of random polynomial programming instances of degree
2,3 and 4 with varying numbers of variables and linear equality constraints (all
the monomials are in the objective function, weighted by random scalars). Set
1 consists of 10 instances of degrees 2 and 3 with random variable ranges whose
widths follow a Gaussian distribution. Set 2 consists of 8 instances of degrees 3
and 4 with random variable ranges whose widths follow a superposition of two
Gaussian distributions (n/2 ranges have width of order 1, the other n/2 have
width of order 10); set 2 is designed to simulate the typical sBB node after a
few levels of branching, where some of the variable ranges have become small
whereas others are still at their original bounds.

For all these instances we construct and solve a linear relaxation with no
rRLT constraints (column labeled “simple” in Table 1), the rRLT linear re-
laxation (column labeled “rRLT”) and the rRLT-C linear relaxation (column
labeled “rRLT-C”). We recall that rRLT-C is like rRLT without the constraints
relaxing monomial terms corresponding of basic columns of the companion sys-
tem (4). We record bound value and CPU time. Notice some of the generated
instances are infeasible: this is consistent with the fact that in a typical sBB
search tree some of the nodes represent infeasible subproblems. Since the infea-
sibility is determined by the linear relaxation, performance on infeasible LPs is
also an important factor. These results were obtained using CPLEX 11 [30] on
a Pentium Xeon 2.4GHz CPU with 8 GB of RAM running Linux. The results in
Table 1 show that rRLT brings considerable benefits to bound tightness within
polynomial optimization, and that the (significant) CPU time reduction yielded
by rRLT-C is not offset by an excessive loss in bound quality with respect to
rRLT: the cumulative bound worsening is 0.07% against a time im-
provement of nearly 40%. The CPU time taken by the simple relaxation is
of course much lower than those of the rRLT relaxations, but already for the
quadratic case it was shown in [2] that this time difference is not sufficient to
offset the benefits of the bound improvement — hence the corresponding values
do not appear in Table 1. We remark that rRLT-C does not always yield better
CPU time results. This is simply because the relationship between CPU time
and number of constraints in solving an LP is neither regular nor monotonic.

Compact relaxations for polynomial programming problems 11

instance simple rRLT rRLT-C

name p n m q bound bound time bound time

1 1 20 10 2 2864.8 2982.63 0.20 2982.63 0.17

2 1 30 10 2 5286.23 5517.85 2.56 5517.85 1.29

3 1 10 3 3 48.6115 478.184 0.25 478.184 0.30
4 1 10 3 3 infeas infeas 0.23 infeas 0.22

5 1 20 3 3 infeas infeas 14.81 infeas 12.92

6 1 10 5 3 infeas infeas 0.11 infeas 0.10

7 1 10 5 3 infeas infeas 0.16 infeas 0.16
8 1 20 5 3 infeas infeas 29.01 infeas 31.41
9 1 10 7 3 infeas infeas 0.19 infeas 0.15

10 1 20 7 3 infeas infeas 65.22 infeas 46.98

11 2 10 3 3 130.693 1546.4 0.20 1542.39 0.13

12 2 10 3 3 18.8459 772.417 0.09 772.417 0.09
13 2 15 5 3 17.3797 701.723 10.13 701.588 11.03
14 2 16 8 3 infeas infeas 488.05 infeas 287.38

15 2 7 2 4 infeas infeas 0.17 infeas 0.17
16 2 8 3 4 47.4445 3468.56 1.26 3458.4 0.85

17 2 10 3 4 26.2698 4038.69 250.88 4038.68 131.95

18 2 12 3 4 56.9232 13127.5 166.62 13118.6 109.95

Table 1. Comparing bound strength and CPU time for linear relaxations.

References

1. Liberti, L.: Linearity embedded in nonconvex programs. Journal of Global Opti-
mization 33(2) (2005) 157–196

2. Liberti, L., Pantelides, C.: An exact reformulation algorithm for large nonconvex
NLPs involving bilinear terms. Journal of Global Optimization 36 (2006) 161–189

3. Liberti, L.: Compact linearization of binary quadratic problems. 4OR 5(3) (2007)
231–245

4. Sherali, H., Alameddine, A.: A new reformulation-linearization technique for bi-
linear programming problems. Journal of Global Optimization 2 (1992) 379–410

5. Sherali, H., Tuncbilek, C.: A global optimization algorithm for polynomial pro-
gramming problems using a reformulation-linearization technique. Journal of
Global Optimization 2 (1991) 101–112

6. Sherali, H., Wang, H.: Global optimization of nonconvex factorable programming
problems. Mathematical Programming 89 (2001) 459–478

7. Sherali, H., Tuncbilek, C.: New reformulation linearization/convexification relax-
ations for univariate and multivariate polynomial programming problems. Opera-
tions Research Letters 21 (1997) 1–9

8. Sherali, H., Dalkiran, E., Liberti, L.: Reduced rlt representations for nonconvex
polynomial programming problems. Journal of Global Optimization (submitted)

9. McCormick, G.: Computability of global solutions to factorable nonconvex pro-
grams: Part I — Convex underestimating problems. Mathematical Programming
10 (1976) 146–175

10. Al-Khayyal, F., Falk, J.: Jointly constrained biconvex programming. Mathematics
of Operations Research 8(2) (1983) 273–286

12 Cafieri, Hansen, Liberti, Létocart, Messine

11. Jiao, Y., Stillinger, F., Torquato, S.: Geometrical ambiguity of pair statistics I.
point configurations. Technical Report 0908.1366v1, arXiv (2009)

12. Rikun, A.: A convex envelope formula for multilinear functions. Journal of Global
Optimization 10(4) (1997) 425–437

13. Christof, T., Löbel, A.: The porta manual page. Technical Report v. 1.4.0, ZIB,
Berlin (1997)

14. D. Avis: User’s Guide for lrs. (2009)
15. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound al-

gorithm for the global optimisation of nonconvex MINLPs. Computers & Chemical
Engineering 23 (1999) 457–478

16. Adjiman, C., Dallwig, S., Floudas, C., Neumaier, A.: A global optimization
method, αBB, for general twice-differentiable constrained NLPs: I. Theoretical
advances. Computers & Chemical Engineering 22(9) (1998) 1137–1158

17. Sahinidis, N., Tawarmalani, M.: BARON 7.2.5: Global Optimization of Mixed-
Integer Nonlinear Programs, User’s Manual. (2005)

18. Liberti, L.: Writing global optimization software. In Liberti, L., Maculan, N., eds.:
Global Optimization: from Theory to Implementation. Springer, Berlin (2006)
211–262

19. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds
tightening techniques for non-convex MINLP. Optimization Methods and Software
24(4) (2009) 597–634

20. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. Journal
of Global Optimization 47 (2010) 661–685

21. Meyer, C., Floudas, C.: Trilinear monomials with positive or negative domains:
Facet s of the convex and concave envelopes. In Floudas, C., Pardalos, P., eds.:
Frontiers in Global Optimization. Kluwer Academic Publishers, Amsterdam (2003)
327–352

22. Meyer, C., Floudas, C.: Trilinear monomials with mixed sign domains: Facets
of the convex and concave envelopes. Journal of Global Optimization 29 (2004)
125–155

23. Liberti, L., Pantelides, C.: Convex envelopes of monomials of odd degree. Journal
of Global Optimization 25 (2003) 157–168

24. Moore, R., Kearfott, R., Cloud, M.: Introduction to Interval Analysis. SIAM,
Philadelphia (2009)

25. Katzman, M.: Counting monomials. Journal of Algebraic Combinatorics 22 (2005)
331–341

26. Messine, F., Lagouanelle, J.: Enclosure methods for multivariate differentiable
functions and application to global optimization. Journal of Universal Computer
Science 4(6) (1998) 589–603

27. Belotti, P., Cafieri, S., Lee, J., Liberti, L.: Feasibility-based bounds tightening via
fixed points. In Du, D.Z., Pardalos, P., Thuraisingham, B., eds.: Combinatorial
Optimization, Constraints and Applications (COCOA10). Volume 6508 of LNCS.,
New York, Springer (2010) 65–76

28. Berge, C.: Two theorems in graph theory. Proceedings of the National Academy
of Science of the U.S. 43 (1957) 842–844

29. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Dover, New York (1998)

30. ILOG: ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France. (2008)

Compact relaxations for polynomial programming problems 13

A Appendix: Proofs

Theorem A.1 (Thm. 2.1). For each partition B,N into basic and nonbasic
column indices for the companion system Mz = 0, we have C = RN .

Proof. Since (3) is implied by Ax = b and N ⊆ Mp, it follows that C ⊆ RN .
Conversely, for all p ∈ Q and J ∈ N̄ p we define:

zJ = wJ −
∏

ℓ≤p

xjℓ . (11)

The definition of RN implies (3). We consider the companion system (4): since
B,N form a partition of the columns of Mz = 0 we can write the latter as
MBzB + MNzN = 0. By (11) and the fact that the definition of RN imposes
the condition ∀J ∈ N(wJ =

∏

ℓ≤|J|

xjℓ), it follows that ∀J ∈ N(zJ = 0), and

hence MNzN = 0. Since B is a basic index set, we have MBzB = 0; since MB is
invertible, Mz = 0 has the unique solution z = 0. This, in turn, again by (11),
implies ∀J ∈ N̄ p(wJ =

∏

ℓ≤|J|

xjℓ) as in the definition of C. Hence, the conditions

defining RN imply the conditions defining C. ⊓⊔

Lemma A.2 (Lemma 3.2). Let i, j ≤ n̄ be such that i ∈ B̄, j 6∈ B̄ and π be
the swap (i, j). If i ∈ αq and j ∈ αt with q 6= t then the columns of Ā indexed
by πB̄ do not form a basis.

Proof. Let A′ be the (square) m̄ × m̄ invertible matrix corresponding to the
basis indexed by B̄. Since span(Ā) = span(A′) and B̄ ⊆ {1, . . . , n̄}, A′ is a
block-diagonal matrix with r full-rank, square ms × ms blocks A′

s such that
span(As) = span(A′

s) for all s ≤ r, and such that span(A′) =
⊕

s≤r span(A
′
s).

Suppose π = (i, j) where i ∈ αq, j ∈ αt for some q 6= t ≤ r; let A′′
q be the matrix

A′
q without column i, and let A′′

t be the matrix A′
t with column j adjoined.

Since A′
q, A

′
t are square, A′′

q , A
′′
t are rectangular with span(A′′

q) (span(A′
q) and

span(A′′
t) = span(A′

t). Thus, letting A′′
s = A′

s for all s ∈ B̄ r {q, t}, we have
⊕

s≤r span(A
′′
s) (

⊕

s≤r span(A
′
s) = span(Ā), which implies that πB̄ does not

index a basis of Ā. This concludes the proof. ⊓⊔

Theorem A.3 (Thm. 3.4). Any solution B of (9) maximizing V B also max-
imizes V B,p for all p ∈ Q.

Proof. Let M be the matrix of the companion system (4) and B′ be a solution of
(9) for which, for a given p ∈ Q, we have V B′,p > V B,p. We remark that B′ can
be obtained from B by applying a sequence of t pivots. These correspond to a
column index permutation π that can be expressed as the product of transposi-
tions π =

∏

k≤t(I
k, Jk), where Ik indexes an exiting column and Jk an entering

column of M for all k ≤ t: thus, B′ = B r {Ik | k ≤ t} ∪ {Jk | k ≤ t}. Since
M is block diagonal, then as in the proof of Lemma 3.2 we have that MB ,MB′

are block diagonal. Furthermore, by Lemma 3.2, for all k ≤ t we have that the

14 Cafieri, Hansen, Liberti, Létocart, Messine

column indices Ik, Jk are in the same block of M . Furthermore, each block cor-
responds to the subsystem of (4) given by ∀J ′ ∈ N̄ p−1 A zJ ′ = 0 for a fixed
p > 1: in other words, each block corresponds to a given p > 1. Thus, for a given
k ≤ t, in order for B̃ = (Ik, Jk)B to correspond to a basis of M , then Ik, Jk

must index columns of M indexed by monomials with the same degree p: this

implies that V B̃,p′

= V B,p′

for all p′ 6= p. Hence, if V B̃,p > V B,p then V B̃ > V B ,
contradicting the maximality of B. Induction on t concludes the proof. ⊓⊔

Lemma A.4 (Lemma 4.1). For a dilation pu from u in G w.r.t. a maximum
matching M , we have |U(pu)| = |V(pu)|+ 1.

Proof. This follows because a dilation pu is alternating w.r.t. M and starts and
ends in U .

Lemma A.5 (Lemma 4.2). If p, p′ are different dilations in E, then |U(p ∪
p′)| > |V(p ∪ p′)|.

Proof. Since all dilations are alternating w.r.t. M , p ∪ p′ is incident to as at
least many vertices of U as of Mrβ; but because p, p′ are also incident to their
exposed root vertices, which are not themselves incident to M , the result follows
by Lemma 4.1.

Proposition A.6 (Prop. 4.3). In polynomial time, Alg. 1 finds a subgraph
G′ = (U ′, V ′, E′) of G such that |U ′| is maximum, |U ′| > |V ′| and V ′ = NE(U

′),
or determines that no such subgraph exists.

Proof. Assume G′ = ∅. This means that U(M) = U at the first iteration, which
implies that NE(U) = M r β, therefore making G an infeasible instance. Now
assume G′ 6= ∅; then it is the union of different dilation sets found in different
iterations of the while loop, and by Lemma 4.2 is such that |U ′| > |V ′|. We
have to show that V ′ = NE(U

′), so let {u, v} ∈ E with u ∈ U ′. Suppose
v ∈ (Mr β)r V ′; then {u, v} was never part of a dilation set at any iteration,
and the only way v 6∈ V ′ might occur is because u was removed from U at a
certain iteration i whilst v was never removed. Consider the iteration (call it i)
where u is removed: v is not removed, so v is not incident to any edge in the
dilation set P found at itn. i. Let u′ be the root node of P ; since u is incident
to P , there is a dilation p ⊆ P from u′ to which u is incident (i.e. there is an
alternating path p′ from u′ to u), which implies that u is incident to M . Since
p ⊆ P , v is not in p, which means that {v, u} 6∈ M . Now, either v is incident
to M or not. If it is, then there is an edge {v, u′′} ∈ M , which means that
p′ ∪ {u′′, v} is an alternating path longer than p′, which can be extended to a
dilation using bfs, against the assumption that v is not adjacent to edges in
P . If it is not, then v is an exposed vertex; but then p′ can be extended to an
augmenting alternating path from u′ to v by simply adding {u, v} to p′ as the
last edge, contradicting the maximality of M . Maximality of |U ′| follows because
all dilations (including isolated vertices) are considered. The worst-case running
time is O(|U |min(|U |, |Mrβ|)|E|): a factor O(|U |) for the while loop, a factor

Compact relaxations for polynomial programming problems 15

O(min(|U |, |M r β|)) for updating the data structures (the cardinality of M
is bounded above by min(|U |, |M r β|)), and a factor O(|E|) in order to find
maximum matchings and dilation sets (which are in the data structures used to
find the matching in Step 3).

We remark that a more careful running time analysis of Alg. 1 would consider
that |U |, |Mr β| and |E| decrease at each iteration, and would therefore yield
considerably lower worst-case complexity order.

