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Abstract. The Discretizable Molecular Distance Geometry Problem is
a subset of instances of the distance geometry problem that can be
solved by a combinatorial algorithm called “Branch-and-Prune”. It was
observed empirically that the number of solutions of YES instances is al-
ways a power of two. We perform an etensive theoretical analysis of the
number of solutions for these instances and we prove that this number
is a power of two with probability one.
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1 Introduction

We consider the following problem arising in the analysis of Nuclear Magnetic
Resonance (NMR) data for general molecules.

Molecular Distance Geometry Problem (MDGP).
Given a simple undirected graph G = (V,E) and a function d : E → R,
decide whether there is an embedding x : V → R

3 such that

∀{u, v} ∈ E (||xu − xv|| = duv) (1)

The MDGP is a mixed-combinatorial optimization problem; it can be cast as
the global optimization problem min

∑

{u,v}∈E(||xu−xv||
2−d2uv)

2 in continuous

variables, which is generally solved using continuous search techniques [1, 2].
The generalization of the MDGP to arbitrary dimensions asks for an embedding
of G in R

K satisfying (1) and is called the Distance Geometry Problem
(DGP). The DGP is stronglyNP-hard [3]; it is related to the Euclidean Distance
Matrix Completion Problem (EDMCP) [4] (whose complexity status is currently
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unknown), the difference being that in the EDMCP the dimension K of the
embedding space is part of the output rather than part of the input.

Finding a Euclidean embedding of a weighted graph has two main applica-
tions: to molecular conformation [5] and to sensor networks [6, 7]. The results of
this paper were inspired by the application to the conformation of proteins: in
particular, chemical analysis and NMR experiments can help identify a subset of
inter-atomic distances [8]. The motivation is that the function of a protein is de-
termined by its 3D structure [9]. Since proteins are a strict subset of molecules,
it makes sense to ask whether there the restriction of the MDGP to proteins
might yield more efficient methods than those developed for the MDGP ap-
plied to general molecules. In 2005 two of the authors of this paper (CL and
LL) started working on a discrete algorithm which exploits two observations:
(i) proteins are organized in a backbone and some side chains, which can be
embedded separately, once the backbone embedding is known [10]; (ii) the dis-
tances between any atom of the backbones, seen as as a total order on the set of
atoms, to its three immediate predecessors are generally known (and by applying
certain technical devices to the order can be assumed to be precise [11]). This
algorithm, called Branch-and-Prune (BP), is based on the Sphere Intersection
Property (SIP): the intersection of K spheres in R

K generally consists of either 0
or 2 points. Here the term generally has a definite significance: it means that the
set K-tuples of spheres for which the SIP does not hold has Lebesgue measure
0 in the set of all possible K-tuples of spheres.

In the following, we identify atoms with the set V of vertices of a given graph
G, whose edge set E includes the pairs of atom for which a distance is known.
The weight of each edge {u, v} ∈ E is the value of the distance duv, and an order
on the vertices (the backbone order in the case of proteins) is given. BP exploits
the SIP by performing a binary search in the space of embeddings: under the
hypothesis that for each vertex of rank > K in the order, the distances to its
K immediate predecessors are known, the BP places a vertex v in both of the
positions guaranteed by the SIP, verifies whether these are compatible with the
distances to all adjacent predecessors of v, and then accordingly recurses the
search to the successor of v. This yields a worst-case exponential behaviour, oc-
curring when the set of adjacent predecessors of each vertex v is equal to the set
of its K immediate predecessors. In practice, however, the BP outperforms its
continuous search competitors in both efficiency and reliability [12]. One partic-
ularly useful feature of BP is that, because the search is complete, it finds the
set X of all incongruent embeddings for a given graph. In a sequence of papers
(the main ones being [13, 12, 14–18]) we developed this idea in a number of direc-
tions. In particular, we defined a new optimization problem, the Discretizable
MDGP (DMDGP) [12] as the class of all DGP instances that satisfy the con-
ditions required by the BP: the existence of a vertex order such that the K
immediate predecessors of each vertex v of rank > K are adjacent to v in G,
and the fact that d satisfies strict simplex inequalities [19, 15].

In all our computational tests on DMDGP instances, we observed that the
number of incongruent embeddings is a power of two: this comes to no surprise
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in the exponential worst case mentioned above, but there is no apparent reason
why this should be the case when adjacent predecessors also include other ver-
tices than the K immediate predecessors (and, indeed, in Sect. 6 we exhibit a set
of counterexamples to the conjecture that for all YES instances of the DMDGP
∃h ∈ N (|X| = 2h)). Yet, the computational trend remained unexplained. The
contribution of this paper is a proof that the set of YES instances of the DMDGP
such that |X| is a power of two has Lebesgue measure 1 in the set of all YES
instances of the DMDGP. The statement is based on the assumption that we
consider solutions (i.e. graph embeddings) whose components range in the un-
countable set R

K . Our result is nontrivial, and accordingly the proof, which
consists of several lemmata, propositions and theorems, is long, technical and
difficult: because of the page limit, all proofs are in the appendix. The result is
nonetheless very important insofar as it explains the behaviour of a practically
useful solution method.

The rest of this paper is organized as follows. We give a formal description of
the DMDGP in arbitrary dimensions (Sect. 2) and of the BP algorithm and some
of its theoretical properties (Sect. 3); we then study some geometrical aspects of
the BP tree (Sect. 4), and prove that the number of solutions of YES instances
of the DMDGP is a power of two with probability one (Sect. 5). We exhibit a
(zero measure) family of counterexamples to the “power of two” conjecture in
Sect. 6.

2 The formal definition of the Discretizable Molecular

Distance Geometry Problem

For a set U = {xi ∈ R
K | i ≤ K + 1} of points in R

K , let D be the symmetric
matrix whose (i, j)-th component is ‖xi − xj‖

2 for all i, j ≤ K + 1 and let

D′ be D bordered by a left (0, 1, . . . , 1)
⊤

column and a top (0, 1, . . . , 1) row
(both of size K + 2). Then the Cayley-Menger formula states that the volume

∆K(U) of the K-simplex on U is given by ∆K(U) =
√

(−1)K+1

2K(K!)2
|D′|. The strict

simplex inequalities are given by ∆K(U) > 0. For K = 3, these reduce to strict
triangle inequalities. We remark that only the distances of the simplex edges are
necessary to compute ∆K(U), rather than the actual points in U ; the needed
information can be encoded as a complete graph KK+1 on K + 1 vertices with
edge weights as the distances.

Let n = |V | and m = |E|. For all v ∈ V , let N(v) = {u ∈ V | {u, v} ∈ E}
be the star of vertices around v (also called the adjacencies of v); for a directed
graphs (V,A), where A ⊆ V × V , we denote the outgoing star by N+(v) = {u ∈
V | (v, u) ∈ A}. For an order < on V , let γ(v) = {u ∈ V | u < v} be the set of
predecessors of v, and let ρ(v) = |γ(v)| + 1 be the rank of v in <. For V ′ ⊆ V ,
we denote by G[V ′] the subgraph of G induced by V ′. For a finite set M , let
P(M) be its power set. We call an embedding x of G valid if (1) holds for G.
For a sequence x = (x1, . . . , xn) and a subset U ⊆ {1, . . . , n} we let x[U ] be the
subsequence of x indexed by U . If x is an initial subsequence of y, then y is an
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extension of x. For each v ∈ V with ρ(v) > K we let Uv be the set of the K
immediate predecessors of v, and remark that Uv ⊆ N(v) ∩ γ(v).

The Generalized DMDGP. Given an undirected graph G = (V,E),
an edge weight function d : E → R+, an integer K > 0, a subset V0 ⊆ V
with |V0| = K, a partial embedding x̄ : V0 → R

K valid for G[V0], and a
total order < on V such that:

{v ∈ V | ρ(v) ≤ K} = V0; (2)

∀v ∈ V (ρ(v) > K → |N(v) ∩ γ(v)| ≥ K); (3)

∀v ∈ V r V0 (G[Uv] = KK ∧∆K−1(Uv) > 0), (4)

decide whether there is a valid extension x : V → R
K of x̄.

Conditions (2-4) allow the search for the Euclidean position of vertex v to only
depend on the K vertices of rank preceding ρ(v), as xv is the intersection of at
least K spheres centered at xu and with radius duv for all u ∈ N(v)∩γ(v). This,
in particular, implies that the predecessors of v are placed before v, so that all
of the distances between all predecessors are known when placing v. Thus, we
can also solve instances for which G[Uv] is not the full K-clique, although they
are not formally in the generalized DMDGP.

We remark that the SIP is independent of Uv, so that we could simply replace
Uv with any subset ofN(v)∩γ(v) with cardinalityK. This actually yields a larger
instance set called Discretizable Distance Geometry Problem (DDGP),
or DDGPK if K is fixed and not part of the input, discussed in [14]. We shall see,
however, that the assumption that Uv contains theK immediate predecessors of v
will be crucial in the following (this, by the way, also explains why the generalized
DMDGP is not called “DDGP” in analogy with MDGP→DGP). In the rest
of the paper we use the acronym DMDGP to actually mean the generalized
DMDGP, and we use the name DMDGP3 to name the original DMDGP in R

3.
Complexity-wise, a polynomial reduction from Subset-Sum to the DMDGP3

[12] shows that the DMDGP is NP-hard.

3 Sphere intersections and reflections

The BP algorithm for the DMDGP3, presented in [13], can easily be extended to
the DMDGP. As mentioned above, once the vertices of Uv have been embedded
in R

K , the known distances from vertices in Uv to a given v will enforce the
position of v as the intersection of K spheres. Under strict simplex inequalities,
this intersection consists of at most two distinct points. The BP exploits this
fact to recursively generate a binary search tree of height at most n where a
node at level i represents a possible placement in R

K of the vertex of G with
rank i in <. Paths of length n correspond to valid embeddings.

Let G be a DMDGP instance. Consider v ∈ V with rank ρ(v) = i > K, let
Gv = G[γ(v)∪ {v}] and x be a valid embedding of G[γ(v)]. We characterize the
number of extensions of x valid for Gv in the following lemmata (which also hold



On the number of solutions of the DMDGP 5

for the DDGP). Lemmata 3.1 and 3.2 essentially state that G[{v}∪(N(v)∩γ(v))]
are rigid and, respectively, uniquely rigid graphs.

In the following, we assume that the probability of any point of RK belonging
to any given subset of RK having Lebesgue measure zero is equal to zero. Based
on this assumption, when we state “(∀p ∈ P F (p)) with probability 1” for a
certain well-formed formula F with a free variable ranging over an uncountable
set P , we really mean that there exists a Lebesgue measurable subset Q ⊆ P with
Lebesgue measure 1 in P such that ∀q ∈ Q F (p). For example, the statement of
Lemma 3.1 should be read as follows: the set of DMDGP instances and partial
embeddings x for which the result does not hold has Lebesgue measure 0 in the
set of all DMDGP instances and partial embeddings. We remark that this is
different from the usual genericity notion employed in rigidity theory [20], which
requires distances to be algebraically independent over Z. Since our instances
come from experimental measurements over existing structures, the distances
may not be independent. One consequence is the validity of Lemma 3.2, which
would not hold with the stronger genericity requirement (the intersection ofK+1
“generic spheres” in R

K is empty).

Lemma 3.1. If |N(v)∩γ(v)| = K then there are at most two distinct extensions
of x that are valid for Gv. If one valid extension exists, then with probability 1
there are exactly two distinct valid extensions.

Lemma 3.2. If |N(v)∩γ(v)| > K then, with probability 1, there is at most one
extension of x.

Lemma 3.3. With the notation of Lemma 3.1, if x̄ is a valid embedding for
G[Uv], then z′′ is a reflection of z′ with respect to the hyperplane through the K
points of x̄.

Reflections with respect to hyperplanes are isometries, and can therefore be
represented by linear operators. If a ∈ R

K is the unit normal vector to a hyper-
plane H containing the origin, then the reflection operator R0 w.r.t. H can be
expressed in function of the standard basis by the matrix I − 2aa⊤, where I is
the K ×K identity matrix [21]. Let H be a hyperplane with equation a⊤x = a0
(with a0 6= 0) and ai, for some 1 ≤ i ≤ K, be the nonzero coefficient of smallest
index in a. Then, the reflection operator R acting on a point p ∈ R

K w.r.t. H
is given by R(p) = R0(p−

a0

ai
ei) +

a0

ai
ei, where ei ∈ R

K is the unit vector with 1
at index i and 0 elsewhere: we first we translate p so that we can reflect it using
R0 w.r.t. the translation of H containing the origin, then we perform the inverse
translation of the reflection.

3.1 Branch-and-Prune

A formal description of the BP algorithm for the DMDGP is given in Alg. 1.
It builds a binary search tree T = (V,A), directed from the root to the leaves,
whose nodes are triplets α = (x(α), λ(α), µ(α)). For α ∈ T we denote by p(α)
the unique path from the root node r of T to α; x(α) is an extension of the
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embedding x− found on p(α−), where α− is the unique parent node of α. The
symbol λ(α) ∈ {0, 1} distinguishes whether α is a “left” or a “right” subnode of
α−. More precisely, let α be a node at level i in T , v = ρ−1(i), x̄ be a partial
embedding of G[Uv], and a⊤v x = av0 be the equation of the ((K−1)-dimensional
by (4)) hyperplane through the points of x̄. Assuming u = ρ−1(i− 1), av ∈ R

K

is oriented so that av · au ≥ 0; then:

λ(α) =

{

0 if a⊤v x(α)i ≤ av0
1 if a⊤v x(α)i > av0.

(5)

Lastly, µ(α) = ⊞ if x is a valid extension of x−, in which case the node is said to
be feasible, and µ = ⊟ otherwise. This allows us to retrieve the set X of all valid
embeddings of G by simply traversing T backwards from the leaf nodes marked
⊞ up to r.

We remark that Alg. 1 differs from the original BP formulation [13] because
it applies to K dimensions and explicitly stores several details of the binary
search tree.

Lemma 3.4. At termination of Alg. 1, X contains all valid embeddings of G
extending x̄.

We now partition V in pairwise disjoint subsets V1, . . . ,Vn where for all i ≤ n
the set Vi contains all the nodes of V at level i of the tree T .

Proposition 3.5. With probability 1, there is no level i ≤ n having two distinct
feasible nodes β, θ ∈ Vi such that |{α ∈ N+(β) | µ(α) = ⊞}| = 1 and |{α ∈
N+(θ) | µ(α) = ⊞}| = 2.

We remark that Prop. 3.5 also holds for the DDGP provided Uv is chosen in
Alg. 1 as any subset of N(v) ∩ γ(v) satisfying the constraints of Eq. (4).

4 Geometry in BP Trees

The most important result of this section is that, for any valid embedding y ∈ X,
if the BP tree branches at level i = ρ(v) on the path to y and both branches
continue to the last level, then the embedding obtained by reflecting all the
points of y past the (i − 1)-th vertex through the hyperplane defined by y[Uv]
is also valid with probability 1. We remark that the results in this section only
apply to the DMDGP (not to the DDGP, as shown in the counterexample of
Fig. 3).

We need to emphasize those BP branchings which carry on to feasible leaf
nodes along both branches. For y ∈ X and a vertex v ∈ V rV0 we denote Υ (y, v)
the following property:

Υ (y, v): there are feasible leaf nodes β, β′ ∈ Vn such that x(β) = y,
p(β) ∩ Vρ(v)−1 = p(β′) ∩ Vρ(v)−1 and p(β) ∩ Vρ(v) 6= p(β′) ∩ Vρ(v).
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Algorithm 1 The Branch and Prune algorithm.

Require: Partial embedding x̄ of first K vertices of G
Ensure: Set X of valid embeddings of G
1: Let α = (x̄1, 0,⊞) and α′ = (x̄1, 1,⊟)
2: Initialize V = {α, α′} and A = {(r, α), (r, α′)}
3: for 1 < i ≤ K do

4: Let α = (x̄i, 0,⊞), α′ = (x̄i, 1,⊟), β = (x̄i−1, 0,⊞)
5: Let V ← V ∪ {α, α′} and A ← A∪ {(β, α), (β, α′)}
6: end for

7: BranchAndPrune(K + 1, (x̄K , 0,⊞))
8: Let X = {x(θ) | θ ∈ V ∧ |N+(θ)| = 0 ∧ µ(θ) = ⊞}
9: stop

10:
11: function BranchAndPrune(i, β):
12: if i > n ∨ µ = ⊟ then

13: return

14: end if

15: Let v = ρ−1(i)
16: Compute the equation a⊤

v x = av0 of the hyperplane through x[Uv]
17: Let Z = {z′, z′′} be extensions of x(β) to v, and Z′ = Z

18: for z ∈ Z do

19: if ∃{u, v} ∈ E ‖x(β)u − z‖ 6= duv then

20: Let Z = Z r {z}
21: end if

22: end for

23: if Z = {z′, z′′} then
24: if a⊤

v z
′ ≤ av0 then

25: Let α = (z′, 0,⊞), α′ = (z′′, 1,⊞)
26: else

27: Let α = (z′′, 0,⊞), α′ = (z′, 1,⊞)
28: end if

29: else if Z = {z} then
30: if a⊤

v z ≤ av0 then

31: Let α = (z, 0,⊞), α′ = (Z′
r {z}, 1,⊟)

32: else

33: Let α = (z, 1,⊞), α′ = (Z′
r {z}, 0,⊟)

34: end if

35: else

36: return

37: end if

38: Let V ← V ∪ {α, α′} and A ← A∪ {(β, α), (β, α′)}
39: for θ ∈ N+(β) such that µ(θ) = ⊞ do

40: BranchAndPrune(i+ 1, θ)
41: end for

42: return
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If Υ (y, v) holds, it is easy to show that p(β) ∩ Vρ(v)−1 contains a single feasible
node with two feasible subnodes. With Υ (y, v) true, we let Rv be the Euclidean
reflection operator with respect to the hyperplane through y[Uv] (as discussed in
p. 5). Define R̃v = Iρ(v)−1×(Rv)n−ρ(v), i.e. R̃vy = (y1, . . . , yi−1, R

vyi, . . . , R
vyn).

This is a partial reflection of y which only acts on vertices past rank i− 1.
We emphasize that for all ℓ ∈ {i, . . . , n} and for all α ∈ Vℓ the set p(α) ∩ Vi

has a unique element, as it contains the unique node at level i on the path from
α to the BP tree root node.

The following is a corollary to Lemma 3.3.

Corollary 4.1. Let α ∈ Vi−1 for some i > 1, v = ρ−1(i) and N+(α) = {η, β}
with µ(η) = µ(β) = ⊞. Then x(η)v = Rvx(β)v.

Remark 4.2. If Υ (y, v) holds for some y ∈ X and v ∈ V r V0, then by definition
there are feasible leaf nodes in the BP tree, which implies that the considered
DMDGP instance is YES.

An important consequence of Remark 4.2 is that all statements assuming Υ (y, v)
and claiming a result with probability 1 implicitly also assume that the proba-
bility is conditional to the event of the DMDGP instance being a YES one. In
particular, since the instance is YES, certain points must be placed at certain
distances with probability 1, for otherwise the instance would be NO. This is
evident in Prop. 4.4, Cor. 4.6, Cor. 4.7, and Thm. 4.9, where we state that cer-
tain real scalars and vectors must belong to certain finite sets with probability
1: the sense of these assertions, in this context, is that the Lebesgue measure of
the set of YES instances not satisfying the result is zero in the set of all YES
instances.

Lemma 4.3. Let α ∈ Vi−1 for some i > 1 such that N+(α) = {η′, β′}, u =
ρ−1(i); v > u with ρ(v) = ℓ, and consider two feasible nodes η, β ∈ Vℓ such
that η′ = p(η) ∩ Vi and β′ = p(β) ∩ Vi. Then, with probability 1, the following
statements are equivalent:

(i) ∀ i ≤ j ≤ ℓ, x(β′′)w = Rux(η′′)w, where η′′ = p(η) ∩ Vj, β
′′ = p(β) ∩ Vj,

and w = ρ−1(j);
(ii) ∀ i ≤ j ≤ ℓ, λ(η′′) = 1− λ(β′′), with η′′ = p(η) ∩ Vj and β′′ = p(β) ∩ Vj.

Proposition 4.4. Consider a subtree T ′ of T consisting of K + 2 consecutive
levels i − K − 1, . . . , i (where i ≥ 2K + 1), rooted at a single node η and such
that all nodes at all levels are marked ⊞. Let p = 2K+1 and consider the set
Y ′ = {yj | j ≤ p} of partial embeddings of G at the leaf nodes {αj | j ≤ p} of T ′.
Let u = ρ−1(i − K − 1) and v = ρ−1(i). Then with probability 1 there are two
distinct positive reals r, r′ such that ‖yj(αj)u − yj(αj)v‖ ∈ {r, r′} for all j ≤ p.

Fig. 1 shows a graphical proof sketch of Prop. 4.4 for K = 2. Prop. 4.4 is useful
in order to show that certain configurations of nodes within T can only occur
with probability 0.
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Fig. 1. Proof of Prop. 4.4 in R
2. The arrangement of three segments gives rise, in

general, to two distances r, r′ between root and leaves.

Example 4.5. Consider a subtree T ′ of T like the one in Fig. 1 embedded in R
2,

and suppose that all nodes at level u,w, t are marked ⊞, and further that only
one node within α1, α2 is feasible, only one node within α3, α4 is feasible, only one
node within α7, α8 is feasible, and α5, α6 are both infeasible. This must be due
to a distance du′v with u′ ≤ u. Consider now a circle C completely determined
by its center at y1(α1)u′ and its radius du′v; if C also contains the points at the
nodes α1, α4, α8 or the points at the nodes α2, α3, α7 then we must have u′ = u,
in which case also one of α5, α6 will be feasible (against the hypothesis). And the
probability that C should contain the points at the nodes α1, α3, α8 or α2, α4, α7

is zero. Hence T ′ can only occur with probability 0. ⊓⊔

We now exploit a generalization of Prop. 4.4 to build up towards the main
result of this section, i.e. that partial reflections map valid embeddings to valid
embeddings (Thm. 4.9).

Corollary 4.6. Consider a subtree T ′ of T consisting of K + q+1 consecutive
levels i−K−q, . . . , i (where i ≥ 2K+q and q ≥ 1), rooted at a single node η and
such that all nodes at all levels are marked ⊞. Let p = 2K+q and consider the
set Y ′ = {yj | j ≤ p} of partial embeddings of G at the leaf nodes {αj | j ≤ p} of
T ′. Let u = ρ−1(i−K−q) and v = ρ−1(i). Then with probability 1 there is a set
Huv = {rj | j ≤ 2q} of 2q distinct positive reals such that ‖yi(αi)u − yi(αi)v‖ ∈
Huv for all i ≤ p.

The next corollary shows that distances spanning more than K vertices must
all belong to certain finite sets of values for YES instances.
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Corollary 4.7. Let y ∈ X and v ∈ V rV0 such that Υ (y, v) holds. If {u,w} ∈ E
with u < v < w and ρ(w)− ρ(u) > K then duw ∈ Huw with probability 1.

Corollary 4.8. Let y ∈ X and v ∈ V r V0 such that Υ (y, v) holds. If u ∈ V
with u > v then Rvyu belongs to a valid extension of y[Uv].

Finally, we state the main result of the section: if a DMDGP instance has
a valid embedding y and v is a vertex where a “valid branching” (in the sense
of the Υ (y, v) assumption) takes place in the BP algorithm, then the partial
reflection of y with respect to v is also a valid embedding. We remark that the
Υ (y, v) assumption only says that at v there is a BP search tree branching one of
whose branch eventually leads to y, whilst the other ends up at any other valid
embedding. Thm. 4.9 states that in this case the partial reflection of y w.r.t. v
is also valid.

Theorem 4.9. Let y ∈ X and v ∈ VrV0 such that Υ (y, v) holds. Then R̃vy ∈ X
with probability 1.

5 Symmetry and Number of Solutions

Our strategy for proving that YES instances of the DMDGP have power of two
solutions with probability 1 is as follows. We map embeddings y ∈ X to binary
sequences χ ∈ {0, 1}n describing the “branching path” in the tree T . We define
a symmetry operation on χ by flipping its tail from a given component i (this
operation is akin to branching at level i). We show that the cardinality of the
group of all such symmetries is a power of two by bijection with a set of binary
sequences. Finally we prove that the cardinality of the symmetry group is the
same as |X|.

For all leaf nodes α ∈ V with µ(α) = ⊞ let χ(α) = (λ(β) | β ∈ p(α)); since
embeddings in X are also in correspondence with leaf ⊞-nodes of T by Alg. 1,
Step 8, χ defines a relation on X × {0, 1}n.

Lemma 5.1. With probability 1, the relation χ is a function.

Let Ξ = {χ(y) | y ∈ X}. For y ∈ X let yi be its subsequence (x1, . . . , xi).
We extend χ to be defined on all such subsequences by simply setting χi =
(χ(y)1, . . . , χ(y)i); χ(y) is valid if y is a valid embedding.

Let N = {1, . . . , n} and g be the n × n binary matrix such that gij = 1
if i ≤ j and 0 otherwise (the upper triangular n × n all-1 matrix); let gi be
its i-th row vector and Γ = {gi | i ∈ N}. Consider the elementwise modulo-
2 addition in the set F

n
2 (denoted ⊕): this endows F

n
2 with an additive group

structure with identity e = (0, . . . , 0) where each element is idempotent. Thus,
G = (Fn

2 ,⊕) ∼= Cn
2 . This group naturally acts on itself (and subsets thereof)

using the same ⊕ operation. It is not difficult to prove that Γ is a set of group
generators for G and a linearly independent set of the vector space V given by
G with scalar multiplication over F2. For all S ⊆ N , let

gS =
⊕

i∈S

gi,
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and define a mapping φ : P(N) → G given by φ(S) = gS .

Lemma 5.2. φ is injective.

The following result shows essentially that groups of partial reflections have
power of two cardinality.

Lemma 5.3. For all H ⊆ Γ , |〈H〉| = 2|H|.

Let I be the set of levels of T for which from all nodes with two valid children
there is a path going to a feasible leaf through both children. Let L = {gi ∈
Γ | i ∈ I} and Λ = 〈L〉 be the subgroup of G of “allowed partial reflections”
generated by L. In the following (the main result of this section) we relate partial
reflections to χ representations of valid embeddings. We show that any valid
embedding, in its χ representation, generates the whole set of valid embeddings
by means of the action of the group of allowed partial reflections.

Theorem 5.4. If Ξ 6= ∅, for all ξ ∈ Ξ we have ξ ⊕ Λ = Ξ with probability 1.

The main result of the paper is now simply a corollary of Thm. 5.4.

Corollary 5.5. If a DMDGP instance is YES, |X| is a power of two with prob-
ability 1.

6 Counterexamples

6.1 Disproving the “power of two” conjecture

We first discuss a class of counterexamples to the conjecture that all DMDGP
instances have a number of solutions which is a power of two (also see Lemma
5.1 in [22]). All these counterexamples are hand-crafted and have the property
that two distinct embeddings x, x′ have at least a level i where xi = x′

i, which
is an event which happens with probability 0. For any K ≥ 1, let n = K + 3,
V = {1, . . . , n}, E = {{i, j} | 0 < i − j ≤ K} ∪ {{1, n}} and dij = 1 for all
{i, j} ∈ E. The first n− 2 = K + 1 points can be embedded in the vertices of a
regular simplex in dimension K; then either xn−1 = x1 or xn−1 is the symmetric
position from x1 with respect to the hyperplane through {x2, . . . , xn−2}. In the
first case, the two positions for xn are valid, in the second only xn = x2 is
possible (see Fig. 2 for the 2-dimensional case), yielding a YES instance where
|X| = 6.

6.2 Necessity of immediate predecessors

Lastly, Fig. 3 shows an example where the (ii) ⇒ (i) implication of Lemma 4.3
fails for instances in DDGP r DMDGP. This shows that any generalization of
our result to the DDGP is nontrivial. Let V = {1, . . . , 6} (the graph drawing
is the same as the embedding in R

2). The nodes 5′, 6′ linked with dashed lines
show alternative node placements. Let U5 = {3, 4} and U6 = {1, 2}. The line
through the points 3, 4 does not provide a valid reflection mapping 6 to 6′. This
happens because U6 does not consist of the two immediate predecessors of 6.
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x1 = x
(0)
4 x2 = x

(01)
5 = x

(11)
5

x3 x
(1)
4x

(00)
5

x
(10)
5

(a) Positions of the points on the plane.

x1
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x3

x
(0)
4 x

(1)
4
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5 x
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5 x

(10)
5 x

(11)
5

symmetric

(b) BP tree.

Fig. 2. The counterexample in the case K = 2. Embeddings x
(00)
5 , x

(01)
5 , and x

(11)
5 are

valid, while x
(10)
5 is not.

1

2

3

4

5

5′

6

6′

Rv

U5

U6

Fig. 3. A counterexample to Lemma 4.3 applied to DDGPrDMDGP.

7 Conclusion

In this paper we showed that YES instances of the DDGP have a number of
solutions which is a power of two with probability 1. This settles a question which
arose from an empirical observation in [22]. One of the partial results (Thm. 5.4)
leading to the proof of this fact will also have practical implications, since all
solutions can be expressed in function of one solution by means of a set of flip
operations on binary sequences; we are going to test this idea computationally
in future work.
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10. Santana, R., Larrañaga, P., Lozano, J.: Combining variable neighbourhood search
and estimation of distribution algorithms in the protein side chain placement prob-
lem. Journal of Heuristics 14 (2008) 519–547

11. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: Discrete approaches for solving
molecular distance geometry problems using nmr data. International Journal of
Computational Biosciences 2010 (2010) 88–94

12. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular
distance geometry problem. Computational Optimization and Applications (to
appear)

13. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecu-
lar distance geometry problem. International Transactions in Operational Research
15 (2008) 1–17

14. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem.
Optimization Letters (in revision)

15. Lavor, C., Lee, J., John, A.L.S., Liberti, L., Mucherino, A., Sviridenko, M.: Dis-
cretization orders for distance geometry problems. Optimization Letters (to ap-
pear)

16. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: On the computation of protein
backbones by using artificial backbones of hydrogens. Journal of Global Optimiza-
tion (to appear)

17. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry
methods: from continuous to discrete. International Transactions in Operational
Research 18 (2010) 33–51



14 Liberti et al.

18. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the dis-
cretizable molecular distance geometry problem. European Journal of Operational
Research (submitted (invited survey))

19. Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University
Press, Oxford (1953)

20. Connelly, R.: Generic global rigidity. Discrete Computational Geometry 33 (2005)
549–563

21. Brady, T., Watt, C.: On products of Euclidean reflections. American Mathematical
Monthly 113 (2006) 826–829

22. Lavor, C., Liberti, L., Maculan, N.: The discretizable molecular distance geometry
problem. Technical Report q-bio/0608012, arXiv (2006)

23. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular dis-
tance geometry problem with sparse distance data. Journal of Global Optimization
26 (2003) 321–333

24. Coope, I.: Reliable computation of the points of intersection of n spheres in
R

n. Australian and New Zealand Industrial and Applied Mathematics Journal
42 (2000) C461–C477



On the number of solutions of the DMDGP 15

A Appendix: Proofs

Lemma A.1 (3.1). If |N(v) ∩ γ(v)| = K then there are at most two distinct
extensions of x that are valid for Gv. If one valid extension exists, then with
probability 1 there are exactly two distinct valid extensions.

Proof. Since |N(v)∩γ(v)| = K, Uv = N(v)∩γ(v) and v is at the intersection of
exactly K spheres in R

K (each centered at xu with radius duv, where u ∈ Uv).
The position z ∈ R

K of v must then satisfy:

∀u ∈ Uv ‖z − xu‖ = duv ⇒ ‖z‖2 − 2xu · z + ‖xu‖
2 = d2uv. (6)

As in [23], we choose an arbitrary w ∈ Uv, say w = max< Uv, and subtract from
the Eq. (6) indexed by w the other equations of (6), obtaining the system:

∀u ∈ Uv r {w} 2(xu − xw) · z = (‖xu‖
2 − d2uv)− (‖xw‖

2 − d2wv)
‖z‖2 − 2xw · z + ‖xw‖

2 = d2wv.

}

(7)

The system (7) consists of a set of K− 1 linear equations and a single quadratic
equation in the K-vector z. We write the linear equations as the system Az = b,
where the (u, j)-th component of A is 2(xuj − xwj), the u-th component of b is
‖xu‖

2 − ‖xw‖
2 − d2uv + d2wv, A is (K − 1)×K and b ∈ R

K−1. By strict simplex
inequality, A has full rank (for otherwise

∑

u6=w λu(xu−xw) = 0 implies that xw

is in the span of {xu | u ∈ Uv}, and hence that ∆K−1(Uv) = 0); so without loss
of generality assume that the square matrix B formed by the first K−1 columns
of A is invertible. Let zB be the vector consisting of the first K−1 components of
z; then the linear part (first K − 1 equations) of (7) yields zB = B−1(b−NzK),
where N = 2(xuK − xwK | u ∈ Uv r {w}) ∈ R

K−1. After replacement of zB in
(7) with zB(zK), we obtain the following quadratic equation in zK :

(‖N̄‖2 +1)z2K − 2((b̄+ xwB)N̄ + xwK)zk + (‖xwB − b̄‖2 + x2
wK − d2wv) = 0, (8)

where b̄ = B−1b and N̄ = B−1N . If the discriminant of (8) is negative then
no extension of x̄ to v is possible and the result follows. If the discriminant
is nonnegative, (8) has solutions z′K , z′′K yielding points z′ = (zB(z

′
K), z′K) and

z′′ = (zB(z
′′
K), z′′K) ∈ R

K , which are distinct with probability 1 because the
discriminant is zero with probability 0. The extended embeddings, distinct with
probability 1, are given by (x, z′) and (x, z′′). ⊓⊔

Lemma A.2 (3.2). If |N(v) ∩ γ(v)| > K then, with probability 1, there is at
most one extension of x.

Proof. Consider a subset S ⊆ N(v) ∩ γ(v) such that |S| = K + 1 and S ⊇
Uv. Either there is at least one point xv such that (x, xv) is an embedding of
G[S ∪ {v}] that is valid w.r.t. the system:

∀u ∈ S
∑

k≤K

(x2
vk − 2xukxvk + x2

uk) = d2uv, (9)
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or the system has no solution. In the latter case, the result follows, so we assume
now that there is a point xv satisfying (9). Since the points xu are known for all
u ∈ S, (9) is a quadratic system with K variables and K + 1 equations. As in
the proof of Lemma 3.1, we derive an equivalent linear system from (9). Since d
satisfies the strict simplex inequalities on Uv with probability 1 and S ⊇ Uv, by
[24] {xu | u ∈ S} are not co-planar and the system has exactly one solution. ⊓⊔

Lemma A.3 (3.3). With the notation of Lemma 3.1, if x̄ is a valid embedding
for G[Uv], then z′′ is a reflection of z′ with respect to the hyperplane through the
K points of x̄.

Proof. Any sphere in R
K is symmetric with respect to any hyperplane through

its center; so the intersection of up to K spheres in R
K is symmetric with respect

to the hyperplane containing all the centers. ⊓⊔

Lemma A.4 (3.4). At termination of Alg. 1, X contains all valid embeddings
of G extending x̄.

Proof. Z exists with probability 1 by Lemma 3.1. Every embedding in X is valid
because of Steps 17 and 19-20. No other valid extension of x̄ exists because of
Lemmata 3.1-3.2. ⊓⊔

Proposition A.5 (3.5). With probability 1, there is no level i ≤ n having two
distinct feasible nodes β, θ ∈ Vi such that |{α ∈ N+(β) | µ(α) = ⊞}| = 1 and
|{α ∈ N+(θ) | µ(α) = ⊞}| = 2.

Proof. We show that for all i ≤ n the event of having two distinct nodes β, θ ∈
Vi, with ρ−1(i) = v, such that β has one feasible subnode and θ has two has
probability 0. Consider Tv = N(v) ∩ γ(v): if |Tv| = K then by Lemma 3.1 β
should have exactly two feasible subnodes with probability 1; since it only has
one, the event |Tv| = K occurs with probability 0. Since |Tv| ≥ K by (4), the
event |Tv| > K occurs with probability 1. Thus by Lemma 3.2 there is at most
one valid embedding extending the partial embedding at v, which means that the
two feasible subnodes of θ represent the same embedding, an event that occurs
with probability 0. ⊓⊔

Lemma A.6 (4.3). Let α ∈ Vi−1 for some i > 1 such that N+(α) = {η′, β′},
u = ρ−1(i); v > u with ρ(v) = ℓ, and consider two feasible nodes η, β ∈ Vℓ such
that η′ = p(η) ∩ Vi and β′ = p(β) ∩ Vi. Then, with probability 1, the following
statements are equivalent:

(i) ∀ i ≤ j ≤ ℓ, x(β′′)w = Rux(η′′)w, where η′′ = p(η) ∩ Vj, β
′′ = p(β) ∩ Vj,

and w = ρ−1(j);
(ii) ∀ i ≤ j ≤ ℓ, λ(η′′) = 1− λ(β′′), with η′′ = p(η) ∩ Vj and β′′ = p(β) ∩ Vj.

Proof. Let a0v
⊤
x = a0v0, a

1
v

⊤
x = a1v0 be the equations of the hyperplanes Hη, Hβ

defined respectively by x(η)[Uv] and x(β)[Uv], with the normals oriented as ex-
plained on page 5. We prove by induction on ℓ− i that the following assumption
is equivalent to (i) and (ii):
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(iii) for all i ≤ j ≤ ℓ, x(β′′)w = Rux(η′′)w and au · a0w = au · a1w, where
η′′ = p(η)∩Vj , β

′′ = p(β)∩Vj , w = ρ−1(j), and a0w and a1w are the normal
vectors of the hyperplanes Hη′′ and Hβ′′ oriented as usual.

If ℓ = i, then (i), (ii), and (iii) hold simultaneously. Indeed, η = η′ and β = β′,
hence x(β)v = Rux(η)v (Lemma 3.3) and λ(η) = 1 − λ(β) (Alg. 1, Steps 25
and 27). In addition, we have Hη = RuHβ , therefore |au ·a

0
v| = |au ·a

1
v|. Because

the orientation of a0v, a
1
v is such that au ·a

0
v, au ·a

1
v ≥ 0, the result holds. Assume

that the equivalence stated above holds for level ℓ − 1, we show that it is still
the case at level ℓ. In the sequel, denote t = ρ−1(ℓ− 1).

(i) ⇔ (ii). Suppose for all i ≤ j < ℓ, x(β′′)w = Rux(η′′)w and λ(η′′) = 1−λ(β′′)
(by the induction hypothesis, both statements are equivalent). Hence, Hη′′ =
RuHβ′′ holds for all j, because the K points generating the hyperplanes either
belong to Hα, or are reflections of each other. This is true in particular if we
choose η′′, β′′ ∈ Vℓ−1. In addition, if we use the induction hypothesis (i) ⇒
(iii)), we have au · a0t = au · a1t , so a0t , a

1
t are directed similarly w.r.t au, and

λ(η) = 1− λ(β) if and only if x(β)v = Rux(η)v (see Fig. 4).
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(a) a0
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⊤

x(η)v > a0
v0 and a1
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⊤

x(β)v > a1
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η

λ=0
β

λ=1

x(β)vx(η)v
reflection

Hα

Hη′′Hβ′′

η′′
β′′

au
a1
v

a0
v

(b) a0
v
⊤

x(η)v > a0
v0 and a1

v
⊤

x(β)v < a1
v0

Fig. 4. Proof of Lemma 4.3: Case (4a) shows the contradiction deriving from λ(η) =
λ(β) = 0 (or x(β)v 6= Rux(η)v), and case (4b) the situation that actually occurs.

(ii) ⇒ (iii). Suppose for all i ≤ j ≤ ℓ, λ(η′′) = 1 − λ(β′′). By the previous
result, we also know that i ≤ j ≤ ℓ, x(β′′)w = Rux(η′′)w. It remains to prove
that au · a

0
v = au · a

1
v, i.e. that the angles θ

0
v and θ1v formed by these vectors have

the same cosine. Notice once again that Hη = RuHβ . By induction, we know
that the angles θ0t , θ

1
t formed by au and respectively a0t , a

1
t , have same cosine.

With probability 1, the hyperplanes Hη, Hβ are not parallel, hence their normal
vectors cannot be identical, therefore, θ0t = −θ1t (see the illustration on Fig. 5).
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Hα

au

a0
t

θ0t

a0
v

θ0

θ0v

a1
t

θ1t

a1
v

θ1

θ1v

Fig. 5. Proof of Lemma 4.3: illustration of the fact that au · a
0
v = au · a

1
v.

Denote θ0, θ1 the angles formed respectively by a0t and a0v, and by a1t and a1v.
We also have, Hη′′ = RuHβ′′ , where η′′, β′′ ∈ Vℓ−1, hence the normal vectors of
these 4 hyperplanes are also symmetric, which implies θ0 = −θ1 or θ0 = π− θ1.
By the definition of a0v and a1v (page 5), since the scalar products are positive,
−π/2 ≤ θ0, θ1 ≤ π/2, thus θ0 = −θ1. Therefore, θ0v = θ0t + θ0 = −θ1t − θ1 = −θ1v,
which concludes this part of the proof. (iii) ⇒ (i). Obvious. ⊓⊔

Proposition A.7 (4.4). Consider a subtree T ′ of T consisting of K + 2 con-
secutive levels i−K − 1, . . . , i (where i ≥ 2K +1), rooted at a single node η and
such that all nodes at all levels are marked ⊞. Let p = 2K+1 and consider the
set Y ′ = {yj | j ≤ p} of partial embeddings of G at the leaf nodes {αj | j ≤ p} of
T ′. Let u = ρ−1(i−K−1) and v = ρ−1(i). Then with probability 1 there are two
distinct positive reals r, r′ such that ‖yj(αj)u − yj(αj)v‖ ∈ {r, r′} for all j ≤ p.

Proof. Fig. 1 shows a graphical proof sketch for K = 2. With a slight abuse of
notation, for a vertex w ∈ V in this proof we denote by Rw the set of all reflec-
tions at level w. We order the αj nodes so that the action of Rv on (α1, . . . , αp)
is the permutation

∏

j mod 2=1(j, j + 1). Let t = ρ−1(i − 1). Since all nodes
are feasible, ‖yj(αj)v − yj(αj)t‖ = dtv and ‖yj(αj)u − yj(αj)t‖ = dut for all
j ≤ p (we remark that {t, v} and {u, t} must be in E by the definition of the
DMDGP). With probability 1, the segments through yj(αj)u and yj(αj)t (where
j ≤ p) do not respectively lie within the hyperplanes defining the reflections Rv;
and the same holds for the segments through yj(αj)t and yj(αj)v. Thus, there
is a set Q of positive reals r1, . . . , rp s.t. for all j ≤ p with j mod 2 = 1 we
have ‖yj(αj)u − yi(αj)v‖ = rj and ‖yj+1(αj+1)u − yj+1(αj+1)v‖ = rj+1, which
shows |Q| ≤ p = 2K+1. By Lemma 4.3 the action of Rt on (α1, . . . , αp) is the
permutation

∏

j mod 4=1(j, j + 3)(j + 1, j + 2): this implies that rj = rj+3 and

rj+1 = rj+2 for all j mod 4 = 1, which shows |Q| ≤ p/2 = 2K . Inductively, for
a vertex w s.t. i−K ≤ ρ(w) ≤ i− 1 the action of Rw is

∏

j mod 2j−ρ(w)+1(j, j +

2i−ρ(w)+1 − 1)(j + 1, j + 2i−ρ(w)+1 − 2) · · · (j + 2i−ρ(w) − 1, j + 2i−ρ(w)), which
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implies that |Q| ≤ 2K+1−i+ρ(w). Therefore ρ(w) = i − K proves that |Q| ≤ 2.
The case |Q| = 1 can only occur if yj(αj)u, yj(αj)t and yj(αj)v are collinear for
all j ≤ p, an event that occurs with probability 0. ⊓⊔

Corollary A.8 (4.6). Consider a subtree T ′ of T consisting of K + q+1 con-
secutive levels i−K − q, . . . , i (where i ≥ 2K + q and q ≥ 1), rooted at a single
node η and such that all nodes at all levels are marked ⊞. Let p = 2K+q and
consider the set Y ′ = {yj | j ≤ p} of partial embeddings of G at the leaf nodes
{αj | j ≤ p} of T ′. Let u = ρ−1(i − K − q) and v = ρ−1(i). Then with proba-
bility 1 there is a set Huv = {rj | j ≤ 2q} of 2q distinct positive reals such that
‖yi(αi)u − yi(αi)v‖ ∈ Huv for all i ≤ p.

Proof. The proof of Prop. 4.4 can be generalized to span an arbitrary number
of levels by induction on q. Two distances rj1 , rj2 ∈ Huv can only be equal by
collinearity of some subsets of points, an event occurring with probability 0. ⊓⊔

Corollary A.9 (4.7). Let y ∈ X and v ∈ V r V0 such that Υ (y, v) holds. If
{u,w} ∈ E with u < v < w and ρ(w) − ρ(u) > K then duw ∈ Huw with
probability 1.

Proof. Since Υ (y, v) holds, then the DMDGP instance is YES and there must
exist at least two feasible nodes at level ρ(w) in T . If duw 6∈ Huw the probability
that a completely determined sphere contains two arbitrary points in R

K is zero.
Since the instance is a YES one, however, the BP algorithm does not prune all
feasible nodes due to duw. By Cor. 4.6 the only remaining possibility (which
therefore occurs with probability 1) is that duw ∈ Huw. ⊓⊔

Corollary A.10 (4.8). Let y ∈ X and v ∈ V r V0 such that Υ (y, v) holds. If
u ∈ V with u > v then Rvyu belongs to a valid extension of y[Uv].

Proof. If there is no edge {w, u} ∈ E with ρ(u)−ρ(w) > K the result follows by
Cor. 4.1. Otherwise, by Cor. 4.7, dwu ∈ Hwu. As in the proof of Prop. 4.4, all
pairs of points that are feasible w.r.t. dwu are reflections of each other w.r.t. Rv.

⊓⊔

Theorem A.11 (4.9). Let y ∈ X and v ∈ V rV0 such that Υ (y, v) holds. Then
R̃vy ∈ X with probability 1.

Proof. We have to show that R̃vy is a valid embedding for G = (V,E). Partition
E into three subsets E1, E2, E3, where E1 = {{t, u} ∈ E | t, u < v}, E2 =
{{t, u} ∈ E | t, u ≥ v} and E3 = {{t, u} ∈ E | t < v ∧ u ≥ v}. For E1, by
definition ‖(R̃vy)t−(R̃vy)u)‖ = ‖Iyt−Iyu‖ = ‖yt−yu‖ = dtu as claimed. For E2,
‖(R̃vy)t−(R̃vy)u)‖ = ‖Rvyt−Rvyu‖ = ‖yt−yu‖ = dtu becauseRv is an isometry.
For E3, we aim to show that ‖Iyt − Rvyu‖ = dtu. Since y ∈ X, by Lemma 3.4
there is a feasible leaf node α with x(α) = y. Because Υ (y, v), ∃η ∈ Vρ(v)−1

such that x(η) = y[γ(v)] and N+(η) = {β, β′} with µ(β) = µ(β′) = ⊞; we can
assume without loss of generality that p(α) ∩ Vρ(v) = {β}; furthermore, again
by Υ (y, v), there is at least one feasible leaf node α′ such that p(α′) ∩ Vρ(v) =
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{β′}. Let {ω} = p(α) ∩ Vρ(u) and {ω′} = p(α′) ∩ Vρ(u). Because ω′ is feasible,
‖x(ω′)t−x(ω′)u‖ = dtu; because η is an ancestor of both α and α′ at level ρ(v)−1
and t < v, p(α′) ∩ Vρ(t) = p(α) ∩ Vρ(t), which implies that x(ω′)t = x(ω)t = yt.
Thus, ‖yt − yu‖ = dtu = ‖yt − x(ω′)u‖. Furthermore, because β′ ∈ p(ω′)∩Vρ(v),
x(ω′) extends x(β′). By Alg. 1, Steps 25 and 27, λ(β) = 1− λ(β′). Because α is
feasible, at every level ρ(u′) ∈ V such that v ≤ u′ < u the node θ ∈ p(α)∩Vρ(u′)

has f ∈ {1, 2} feasible subnodes; by Prop. 3.5, the node θ′ ∈ p(α′) ∩ Vρ(u′) also
has f feasible subnodes. If f = 2, by Cor. 4.8 it is possible to choose α′ so that
λ(θ′) = 1 − λ(θ) with probability 1; if f = 1 then by Alg. 1, Steps 31 and 33,
all feasible nodes inherit the same λ value as their parents, so λ(θ′) = 1− λ(θ).
By Lemma 4.3, x(ω′)u = Rvyu with probability 1. Hence ‖yt − Rvyu‖ = dtu as
claimed. ⊓⊔

Lemma A.12 (5.1). With probability 1, the relation χ is a function.

Proof. For χ to fail to be well-defined, there must exist an embedding x which is
in relation with two distinct binary sequences χ′, χ′′, which corresponds to the
discriminant of the quadratic equation in the proof of Lemma 3.1 taking value
zero at some rank > K, which happens with probability 0. ⊓⊔

Lemma A.13 (5.2). φ is injective.

Proof. We show that for all S, T ⊆ N , if gS = gT then S = T .

gS = gT

⇒
⊕

i∈S

gi =
⊕

i∈T

gi

⇒
⊕

i∈S

gi ⊕
⊕

i∈T

g−1
i = e

idempotency ⇒
⊕

i∈S

gi ⊕
⊕

i∈T

gi = e

gi ⊕ gi = g2i ⇒
⊕

i∈S△T

gi ⊕
⊕

i∈S∩T

g2i = e

idempotency ⇒
⊕

i∈S△T

gi = e

linear independence ⇒ S△T = ∅

⇒ S = T.

This concludes the proof. ⊓⊔

Lemma A.14 (5.3). For all H ⊆ Γ , |〈H〉| = 2|H|.

Proof. The restriction of function φ to P(H) is injective by Lemma 5.2. Further-
more, each element g of 〈H〉 can be written as

⊕

i∈S

gi for some S ⊆ H because H

is a spanning set for the vector space H over F
n
2 , which is setwise equal to the

group 〈H〉. Thus φ is surjective too. Hence φ is a bijection between P(H) and
〈H〉, which yields the result. ⊓⊔

Theorem A.15 (5.4). If Ξ 6= ∅, for all ξ ∈ Ξ we have ξ ⊕ Λ = Ξ with
probability 1.
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Proof. (⇒) We show that ξ ⊕ Λ ⊆ Ξ with probability 1; because 〈L〉 = Λ it
suffices to show that ξ ⊕ gi ∈ Ξ for an arbitrary gi ∈ L, i.e. that there exists a
valid embedding w ∈ X such that χ(w) = ξ⊕ gi. Let y ∈ χ−1(ξ) and v = ρ−1(i)
such that Υ (y, v), and define w = R̃vy (where R̃v is defined in Thm. 4.9 above);
by Thm. 4.9, w ∈ X. Let α′ be the leaf node of T such that x(α′) = y; by
Lemma 3.4, there is a leaf node β′ such that x(β′) = w. We have to show that
for all ℓ ≥ i the node β ∈ p(β′) ∩ Vℓ is such that λ(β) = 1 − λ(α), where α is
the node in p(α′) ∩ Vℓ. We proceed by induction on ℓ. For ℓ = i this holds by
Lemma 3.3. For ℓ > i, the induction hypothesis allows us to apply Lemma 4.3
and conclude that the event λ(α) = 1− λ(β) occurs with probability 1.

(⇐) Now we show that Ξ ⊆ ξ ⊕ Λ with probability 1, i.e. for any η ∈ Ξ
there is g ∈ Λ with ξ⊕ g = η. We proceed by induction on n, which starts when
n = K+1: if K+1 6∈ I then |Ξ| = 1, L = ∅ and the theorem holds; if K+1 ∈ I
then |Ξ| = 2, L = {gK+1} and the theorem holds. Now let n > K + 1; for all
j ∈ {K+1, . . . , n−1} define Ξj = {ξj | ξ ∈ Ξ} and Lj = {gℓ ∈ Γ | ℓ ∈ I∧ℓ ≤ j}.
By the induction hypothesis, for all ξ′ ∈ Ξj (ξ′ ⊕ 〈Lj〉 = Ξj). Now, either n 6∈ I
or n ∈ I; by Prop. 3.5, with probability 1 if n 6∈ I then nodes in Vn−1 can
only have zero or one feasible subnode (let Bn

1 be the set of all such feasible
subnodes), and if n ∈ I then nodes in Vn−1 can only have zero or two feasible
subnodes β (let Bn

2 be the set of all such feasible subnodes). In the former
case we let Ξn = {ξ(x(β)) | β ∈ Bn

1 } and Ln = Ln−1; in the latter we let
Ξn = {ξ(x(β)) | β ∈ Bn

2 } and Ln = Ln−1∪{gn}. In both cases it is easy to verify
that the theorem holds for Ξn, Ln: in the former case it follows by the induction
hypothesis, and in the latter case it follows because gn = (0, . . . , 0, 1), namely,
if η ∈ Ξ and n ∈ I then take ξ = η ⊕ gn (the result follows by idempotency of
gn). ⊓⊔

Corollary A.16 (5.5). If a DMDGP instance is feasible, |X| is a power of two
with probability 1.

Proof. By Lemma 5.1 χ is a function with probability 1. Let x, x′ ∈ X be distinct;
then by Alg. 1, Steps 25, 27, 31, and 33, the map χ : X → Ξ is injective. By
definition of Ξ it is also surjective, hence |X| = |Ξ|. By Thm. 5.4 |Ξ| = |χ⊕ Λ|
for all χ ∈ Ξ with probability 1. It is easy to show that |χ ⊕ Λ| = |Λ|, so by
Lemma 5.3 |X| is a power of two with probability 1. ⊓⊔


