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Abstract. An important application of distance geometry to biochem-
istry studies the embeddings of the vertices of a weighted graph in the
three-dimensional Euclidean space such that the edge weights are equal
to the Euclidean distances between corresponding point pairs. When the
graph represents the backbone of a protein, one can exploit the natural
vertex order to show that the search space for feasible embeddings is dis-
crete. The corresponding decision problem can be solved using a binary
tree based search procedure which is exponential in the worst case. We
discuss assumptions that bound the search tree width to a polynomial
size, and show empirically that they apply to proteins.
Keywords: Branch-and-Prune, symmetry, distance geometry.

1 Introduction

The Molecular Distance Geometry Problem, which asks to find the em-
bedding in R3 of a given weighted undirected graph, is a good model for de-
termining the structure of proteins given a set of inter-atomic distances [2]. Its
generalization to RK is called Distance Geometry Problem (DGP). In gen-
eral, the MDGP and DGP implicitly require a search in a continuous Euclidean
space. Proteins, however, have further structural properties that can be exploited
to define subclasses of instances of the MDGP and DGP whose solution set is
finite [1]. These instances can be solved with an algorithmic framework called
Branch-and-Prune (BP) [1]: this is an iterative algorithm where the i-th atom
of the protein can be embedded in R3 using distances to at least three preced-
ing atoms. Since the intersection of three 3D spheres contains in general two
points, the BP gives rise to a binary search tree. In the worst case, the BP is an
exponential time algorithm, which is fitting because the MDGP and DGP are
NP-hard [Saxe, 1979]. Compared to continuous search algorithms, the perfor-
mance of the BP algorithm is impressive from the point of view of both efficiency
and reliability. In this paper we show that the BP has a polynomial worst-case
under assumptions found in proteins.



2 Liberti, Lavor, Mucherino

2 Discretizable instances and the BP algorithm

Notation
For all integers n > 0, we let [n] = {1, . . . , n}. Given an undirected graph G = (V,E)

with |V | = n, for all v ∈ V we let N(v) = {u ∈ V | {u, v} ∈ E} be the set of vertices

adjacent to v. Given a positive integer K, an embedding of G in RK is a function

x : V → RK . If d : E → R+ is a given edge weight function on G = (V,E, d), an

embedding is valid forG if ∀{u, v} ∈ E ‖xu−xv‖ = duv. For any U ⊆ V , an embedding

of G[U ] (i.e. the subgraph of G induced by U) is a partial embedding of G. If x is a

partial embedding of G and y is an embedding of G such that ∀u ∈ U (xu = yu)

then y is an extension of x. For a total order < on V and for each v ∈ V , let

ρ(v) = |{u ∈ V | u ≤ v}| be the rank of v in V with respect to <. The rank is a

bijection between V and [n], so we can identify v with its rank and extend arithmetic

notation to V so that for i ∈ Z, v + i denotes the vertex u ∈ V with ρ(u) = ρ(v) + i.

For all v ∈ V and ℓ < ρ(v) we denote by γℓ(v) the set of ℓ immediate predecessors of v.

If U ⊆ V with |U | = h such that G[U ] is a clique, let D′(U) be the symmetric matrix

whose (u, v)-th component is d2uv for u, v ∈ U , and let D(U) be D′(U) bordered by

a left (0, 1, . . . , 1)⊤ column and a top (0, 1 . . . , 1) row (both of size h + 1). Then the

Cayley-Menger formula states that the volume in Rh−1 of the h-simplex defined by

G[U ] is given by ∆h−1(U) =
√

(−1)h

2h−1((h−1)!)2
|D(U)|.

GeneralizedDiscretizable Molecular Distance Geometry Prob-

lem (KDMDGP). Given an integer K > 0, a weighted undirected graph
G = (V,E, d) with d : E → Q+, a total order < on V and an embedding
x′ : [K] → RK such that:
1. x′ is a valid partial embedding of G[[K]] (Start)
2. G contains all (K + 1)-cliques of <-consecutive vertices as induced

subgraphs (Discretization)
3. ∀v ∈ V with v > K, ∆K−1(γK(v)) > 0 (Strict Simplex Inequal-

ities),
is there a valid embedding x of G in RK extending x′?

We denote by X the set of embeddings solving a KDMDGP instance; X is a
finite set [1]. The KDMDGP is NP-hard by reduction from the DMDGP [1]. For
a partial embedding x of G and {u, v} ∈ E let Sx

uv be the sphere centered at
xu with radius duv. The BP algorithm, used for solving the KDMDGP and its

Algorithm 1 BP(v, x̄, X)

Require: A vtx. v ∈ V r [K], a partial emb. x̄ = (x1, . . . , xv−1), a set X.
1: P =

⋂

u∈N(v)
u<v

Sx̄

uv;

2: ∀p ∈ P ( (x← (x̄, p)); if (ρ(v) = n) X ← X ∪ {x} else BP(v + 1, x, X) ).

restrictions, is BP(K+1, x′, ∅) (see Alg. 1). By Strict Simplex Inequalities,
|P | ≤ 2. At termination, X contains all embeddings extending x′ [1].
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3 BP tree geometry

Since the definition of the KDMDGP requires G to have at least those edges
used to satisfy the Discretization axiom, we partition E into the sets ED =
{{u, v} | |ρ(v)− ρ(u)| ≤ K} and EP = E rED. With a slight abuse of notation
we call ED the discretization distances (guaranteeing that a DGP instance is in
KDMDGP) and EP the pruning distances (used to reduce the search space by
pruning the BP tree). Pruning distances might make the set P in Alg. 1 empty
or a singleton.

Let G be a YES instance of the KDMDGP, GD = (V,ED, d) and let XD

be the set of embeddings of GD; since GD has no pruning distances, the BP
search tree for GD is a full binary tree and |XD| = 2n−K . The discretization
distances arrange the embeddings so that, at level ℓ, there are 2ℓ−K possible
embeddings xv for the vertex v with rank ℓ. Furthermore, when P = {xv, x

′

v}
and the discretization distances to v only involve the K immediate predecessors
of v, we have that x′

v = Rv
x(xv) [3], the reflection of xv w.r.t. the hyperplane

through xv−K , . . . , xv−1. This also implies that the partial embeddings encoded
in two BP subtrees rooted at reflected nodes ν, ν′ are reflections of each other.
This situation is shown in the picture below.
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More precisely, with probability 1 we have ∀v > K, u < v − K ∃ Huv ⊆ R

s.t. |Huv| = 2v−u−K and ∀x ∈ X ‖xv − xu‖ ∈ Huv; also ∀x ∈ X ‖xv − xu‖ =
‖Ru+K

x (xv)−xu‖ and ∀x′ ∈ X (x′

v 6∈ {xv, R
u+K
x (xv)} → ‖xv−xu‖ 6= ‖x′

v−xu‖).

4 BP search trees with bounded width

Consider the BP tree for GD and assume that there is a pruning distance {u, v} ∈
EP ; at level u there are max(2u−K , 1) nodes, each of which is the root of a subtree
with 2v−max(u,K) nodes at level v. By the above remarks, for each such subtree
only two nodes will encode a valid embedding for v (we call such nodes valid).
Thus the number of valid nodes at level v > K is 2max(u−K+1,1).

Consider the following Directed Acyclic Graph (DAG) Duv, used to compute
the number of BP nodes in function of pruning distances {u, v} with u < v−K.
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Nodes, arranged vertically, show the number of BP nodes in function of the rank
of v w.r.t. u (first line). An arc is labelled with i1, . . . , ih if one of {u + ij , v}
(for j ≤ h) is a pruning distance, and is unlabelled if no such pruning distance
exists. A path p in this DAG represents the set of pruning distances between
u and v: each node pℓ in this path shows the number of valid nodes in the BP
search tree at level ℓ. For example, following unlabelled arcs corresponds to no
pruning distance between u and v and leads to a full binary BP search tree
with 2v−K nodes at level v. Each set of pruning distances EP corresponds to a
longest path in D1n. BP trees have bounded width when these paths are below
a diagonal with constant node labels. For example, if ∃v0 ∈ V r [K] s.t. ∀v > v0
∃!u < v − K with {u, v} ∈ EP then the BP search tree width is bounded by
2v0−K . This situation is pictured below (left). Another polynomial class of cases
is shown on the right.
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Out of a set of 16 protein instances from the Protein Data Bank (PDB), all
yield BP trees of bounded width (with v0 = 4). This empirically illustrates the
polynomiality of BP on real proteins.
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