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Abstract

We study the problem of packing equal circles in a square from the mathemat-
ical programming point of view. We discuss different formulations, we analyse
formulation symmetries, we propose some symmetry breaking constraints and
show that not only do they tighten the convex relaxation bound, but they also
ease the task of local NLP solution algorithms in finding feasible solutions. We
solve the problem by means of a standard spatial Branch-and-Bound implemen-
tation, and show that our formulation improvements allow the algorithm to find
very good solutions at the root node.
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1. Introduction

Circle packing is a classic problem in mathematics [3, 4]. Applications in-
clude cutting problems [5, 6, 7] and container loading [8, 9]; for an application-
driven survey see [10]. We consider the following decision problem:

Packing Equal Circles in a Square (PECS). Given an integer
n > 0 and a rational radius r > 0, can n circles of radius r be packed
in a unit square in such a way that the interiors of the circles have
pairwise empty intersection?

The optimization version of the PECS asks for the maximum radius r allowing
a packing of n circles in the unit square (the acronym PECS was used in [11] to
indicate the equivalent problem of packing n unit circles in the smallest possible
square).
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1.1. Solution approaches

Many different approaches were proposed to solve PECS, stemming from
global optimization and geometry. The classical formulation of the PECS is as
a quadratically constrained problem [12, 13, 14, 15], but it can also be formu-
lated as a d.c. program [16]. A geometric Branch-and-Bound (BB) method is
introduced in [15], together with some characterizations of optimal solutions:
(i) there is an optimal solution such that at each vertex v of the square either a
circle is adjacent to both edges e1, e2 incident to v, or two adjacent circles are
adjacent to e1 and e2 respectively; (ii) there is an optimal solution such that the
maximum distance between two circle adjacency points on each edge does not
exceed 4r. An interval BB described in [4] is used to find guaranteed optimal
packings whilst verifying floating point computations. Another approach con-
sists in finding a relationship between the number of circles and the structure of
the packings (patterns): if these patterns can be found, it is easy to determine
the coordinates of the centers of the circles; some experiments in this direction
were performed in [17, 18].

Heuristics include minimization of energy function, where the circle centers
are considered as electrical charges repulsing each other [17], billiard simulation
method [18], perturbation method [19], TAMSASS-PECS (Threshold Accepting
Modified Single Agent Stochastic Search for Packing Equal Circles in a Square)
[20], some techniques based on the pattern finding [17, 18], simulation of the
movement of smooth elastic discs in a container [21]. In [11], a formulation-
based multi-start heuristic with a combinatorial element (circles get moved to
the largest vacant area of the current configuration before calling a local opti-
mization procedure) is proposed for the PECS. Monotonic basin hopping heuris-
tics have been proposed for packing equal and unequal circles in a square [22]
and in a containing circle [23]. For more information, we refer to the book [4]
and the surveys [12, 24].

1.2. Complexity: an unclear status

The PECS belongs to at least two classes ofNP-hard problems: theQuadrat-

ically Constrained Quadratic Problem (QCQP) [25] and the Circle

Packing Problem (CPP), where one is given a sequence of n radii r1, . . . , rn
and must decide whether n circles with respective radii can fit in a unit square;
the CPP was recently shown to be NP-hard [26]. The proof employs different
radii and therefore does not seem applicable to PECS. Because the YES certifi-
cates of PECS instances might involve irrational numbers, it is unclear whether
PECS is in NP.

One might wonder whether considering the contact structures of the circles
on the plane might yield a more treatable problem to reduce to, but this line
of thought does not seem promising either: let (r1, . . . , rn) be a YES instance
of the CPP, and C = ((xi, yi) | i ≤ n) be a certificate (i.e. the sequence of circle
centers). The coin graph of C is an undirected graph G = (V,E) such that V =
{1, . . . , n} and for all u, v ∈ V we have {u, v} ∈ E if

√

(xu − xv)2 + (yu − yv)2 =
ru+ rv. It is known that a graph is a coin graph if and only if it is finite, simple
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and planar [27]. Determining whether a given graph is a coin graph with unit
edge lengths is NP-hard [28, 29], but this does not take into account the PECS
constraint that all circles should be contained in a square; furthermore, the
instance for the PECS is simply a pair of numbers rather than a whole graph.

Many papers simply declare circle packing problems to be NP-hard (some-
times without stating any reference). As an example, [21] presents a heuristic
for packing equal circles in an equilateral triangles: the authors state that the
problem is NP-hard and refer to [30, 31, 32]. The authors of [30] state in their
introduction that:

For larger combinatorial [packing] problems these [simple] techniques be-

come inefficient due to the vast number of possible solutions and the com-

putation time grows exponentially. These problems are said to be NP-

complete,

a definitely questionable definition of NP-completeness; in the conclusion they
also mention that “most packing problems are NP-complete”. Garey and John-
son [31] only discuss set and bin packing problems, but not circle packing in
the plane. The authors of [32] present polynomial-time approximation schemes
for square covering, disc covering and square packing in a rectilinear region, but
not disc packing; they cite [33, 34] for NP-completeness of the square packing
problem. The authors of [33] exhibit a proof that packing equal boxes in a
given region R of the plane is NP-complete (and they say that the proof can
be extended to the case of equal discs). However, they work under the hypoth-
esis that in R there is only a finite number of box (disc) positions which might
be required by an optimal packing. More precisely, they consider the graph R
whose vertex set is R and whose edge set includes pairs of points in R which
are closer than 2r, so that equal disc packings then correspond to stable sets in
R; but they assume R to be finite, which does not seem to be the case if R is
the unit square as in the PECS. In his NP-completeness column [34], Johnson
reports the results of [33] as packing equal squares in a rectilinear polygon such
that the squares are parallel to the axes, but omits to mention the disc packing
result.

In summary, to the best of our knowledge, there is no proof in the literature
that offers a polynomial reduction from an NP-hard problem to PECS.

1.3. Contents and contributions

In Sect. 2 we introduce two PECS formulations, the BB algorithm we use for
solving the PECS, and justify the need for breaking formulation symmetries. In
Sect. 3 we introduce some formulation symmetry concepts, determine the struc-
ture of the PECS formulation group, and describe some classes of symmetry-
breaking constraints. In Sect. 4 we discuss the impact of our symmetry-breaking
reformulation on the local NLP subsolver in the BB method. Sect. 5 discusses
computational results.

The heart of our mathematical contribution is in Sect. 3. We also regard
Sect. 4 as an important contribution: for the first time a symmetry-breaking
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reformulation is shown to have an impact on a local NLP solver (usually sym-
metry breaking techniques help tighten a relaxation bound [35, 36, 37]). Our
computational results do not improve the state of the art [4] if we run the

BB method to its completion. We are nonetheless able to emphasize the striking
root-node performance of our symmetry-breaking reformulation, which provides
an excellent score of solution quality per processed node (see column rr of Table
4).

2. The PECS formulation

We employ the following Mathematical Programming (MP) formulation for
the optimization version of the PECS:

max r (1)

∀i < j ≤ n (xi − xj)
2 + (yi − yj)

2 ≥ 4r2 (2)

∀i ≤ n xi, yi ∈ [r, 1− r] (3)

r ≥ 0. (4)

The objective function (1) aims to maximize the radius r; the distance con-
straints (2) make sure the circle interiors are pairwise disjoint; the bound con-
straints (3) make sure the circles are within the square.

The PECS formulation given above is a quadratically constrained Nonlinear
Programming (NLP) problem. The only nonconvexities are given by the reverse
convex constraints (2). A simple multi-start approach, where a local NLP solver
(such as SNOPT [38]) is deployed from a variety of randomly chosen starting
points, will quickly convince the reader that the PECS formulation has several
different local optima. The most widespread method for solving nonconvex
NLPs is the spatial Branch-and-Bound (sBB) algorithm.

2.1. Equivalent formulations and choice thereof

As remarked in [15], the PECS is equivalent to the following problem:

Point Packing in a Square (PPS). Given an integer n > 0 and
a rational α > 0, can n points be determined in the unit square in
such a way that their squared minimum pairwise distance is greater
or equal to α?

A well-known mathematical programming formulation for the optimization ver-
sion of the PPS is the following:

maxα (5)

∀i < j ≤ n (xi − xj)
2 + (yi − yj)

2 ≥ α (6)

∀i ≤ n xi, yi ∈ [0, 1] (7)

α > 0, (8)
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where α = 4r2. Here is a reduction from PPS to PECS: (a) every NO instance of
the PPS is a NO instance of the PECS; (b) if a YES instance of the PPS is such

that r ≥
√
α

2+2
√
α
then it is also a YES instance of the PECS (the inequality can

be verified easily by scaling the PPS configuration down so that it allows enough
space to arrange circles wholly contained within the square); (c) otherwise, it is
a NO instance of the PECS (Ch. 2 in [4]). Thus, given an instance of the PPS
with its YES/NO decision, a YES/NO decision can be taken in constant time
for the PECS. A similar transformation from PECS to PPS also holds.

Although the two problems are equivalent, the corresponding formulations
are not. Specifically, the PECS formulation involves both r and r2, whereas
the PPS formulation only involves a linear term α which replaces 4r2 (given
an optimal α, the corresponding r can be recovered in constant time). This
formulation difference has an impact on sBB performance with implementations
such as Couenne [39]: Table 1 shows that there is no clear efficiency domination
on a per-instance basis. The time to solve a node is lower for PPS, but the total
number of nodes is greater; however, the impact of the number of nodes is the
most relevant for big instances. In the rest of the paper, we shall employ the

PECS PPS
n CPU nodes CPU nodes
2 0.03 0 0.04 0
3 0.06 0 0.07 0
4 0.12 0 0.10 0
5 0.19 2 0.20 2
6 14.30 94 3.18 220
7 17.11 614 9.77 2360
8 57.25 6952 41.94 9160
9 553.62 69172 1334.82 339804

Table 1: Comparing sBB on PECS and on PPS.

PECS formulation (1)-(4).

2.2. The spatial Branch-and-Bound algorithm

The sBB algorithm is an ε-approximation algorithm for solving nonconvex
NLPs and Mixed-Integer Nonlinear Programs (MINLP); several variants exist,
among which [40, 41, 42, 43, 44, 39]. Given a constant ε > 0, the sBB recursively
generates a binary search tree, some leaf node of which contains a feasible point
(x∗, y∗, r∗) for which r∗ differs by at most ε from the globally optimal value of
r. A generic node a of the sBB tree contains a formulation restricted to some
box Ba ( [0, 1]2n+1 as well as an upper bound value r̄a relative to the parent
node. All along the sBB run, the following data are maintained:

• the search tree, encoded in some efficiently accessible form;

• the best solution (x∗, y∗, r∗) so far (also called the incumbent).
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The following steps are performed at each node a.

1. Range tightening techniques such as Optimization-Based Bounds Tighten-
ing (OBBT) [44] and Feasibility-Based Bounds Tightening (FBBT) [45] in
order to attempt to reduce the width of Ba in view to obtaining a tighter
upper bound.

2. Computation of an upper bound r̄a (given by the solution (x̄a, ȳa)) for the
restriction to Ba of the PECS formulation. This is done by means of
solving a linear relaxation thereof (see below).

3. Pruning by bound: if r̄a ≤ r∗ then the box Ba cannot contain optima
better than the incumbent. Go to Step 8.

4. Computation of a lower bounding solution (x′, y′, r′), obtained using a
local NLP solver on the problem at the node, with (x̄a, ȳa, r̄a) as a starting
point.

5. Incumbent evaluation: if r′ > r∗ then let (x∗, y∗, r∗)← (x′, y′, r′).

6. Pruning by optimality: if r̄a − r
′ < ε, then x′ is an ε-approximate global

optimum within the box Ba; further refinements will not yield better
optima. Go to Step 8.

7. Branching. Select a variable and a value for branching: this consists in
creating two subnodes a1, a2 of a, one with the subproblem where the
branching variable is constrained between its lower range end and the
branching value, and the other between the branching value and its upper
range end; several heuristics exist for selecting branching variable and
value [39].

8. Choice of next node: again, several heuristic methods exist. The most
popular seems to be the choice of the node with the highest associated
upper bound, insofar as it intuitively offers the best promise of improving
the incumbent.

A proof of finite convergence of the sBB to an ε-approximation of a global
optimum is given in [46].

2.2.1. Linear relaxation of the PECS formulation

The linear relaxation employed by most sBB solvers is constructed automat-
ically from the problem formulation in the following way:

• replace all nonlinear terms T (x, y) by an added variable wT ;

• compute lower and upper linear bounding functions Ť (x, y), T̂ (x, y) to
T (x, y) on the node box Ba;

• adjoin constraints Ť (x, y) ≤ wT ≤ T̂ (x, y) to the formulation.
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The distance constraints (2) are the only ones that need to be relaxed, as they
are the only nonconvex ones. The relaxation we obtain at the root node (where
B = [0, 1]2n+1) is:

max r (9)

∀i < j ≤ n (Xi +Xj − 2Wij) + (Yi + Yj − 2Zij) ≥ 4R (10)

∀i ≤ n xi, yi ∈ [r, 1− r] (11)

r ≥ 0 (12)

∀i ≤ n Xi ∈ [0, xi] (13)

∀i ≤ n Yi ∈ [0, yi] (14)

∀i < j ≤ n Wij ≤ min{xi, xj} (15)

∀i < j ≤ n Wij ≥ max{0, xi + xj − 1} (16)

∀i < j ≤ n Zij ≤ min{yi, yj} (17)

∀i < j ≤ n Zij ≥ max{0, yi + yj − 1} (18)

R ∈ [0, r], (19)

where, for each i ≤ n, Xi ∈ [0, xi] are lower/upper bounding relaxations of Xi =
x2i on xi ∈ [0, 1] (the same holds for Yi and R), and for all i < j ≤ n constraints
(15)-(16) are lower and upper bounding relaxations for xixj on [0, 1]× [0, 1] (the
same holds for constraints (17)-(18)).

Proposition 1. All optimal solutions of the PECS relaxation (9)-(18) have

r = x = y = 1
2 .

Proof. First, r = 1
2 is the globally maximal value of the PECS relaxation, as

any larger value would make (11) infeasible. Secondly, by (11), r = 1
2 implies

xi = yi =
1
2 for all i ≤ n. Any value of W,Z,R in [0, 12 ] consistent with (10)

(e.g. W = Z = R = 0) yields a feasible solution with maximum objective
function value.

Although the situation changes at lower level nodes, relaxations yielding
xi = yi for several values of i is typical for several high-level nodes.

2.3. Motivations for exploiting symmetry

The PECS has solution symmetries that stem from the geometry of the
configurations (rotations and reflections of the square), as well as from the
formulation itself (permutations of axes labels and point indices). The sBB tree
is a rooted plane binary tree whose leaves contain globally optimal solutions
(or rather, ε-approximations thereof). Intuitively, a formulation with fewer
optimal solutions yield fewer leaves, smaller sBB trees and faster convergence.
If a set of different global optima can be obtained by symmetry from just one
global optimum, we should aim to only keep one sBB branch leading to a single
optimum, whilst discarding the other (symmetric) branches. One way to do
this — the way we shall follow in this paper — consists in reformulating the
PECS so that some symmetric solutions become infeasible. In other words, we
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adjoin some constraints to the formulation which are feasible with at least one
global optimum, but might make several symmetric optima infeasible. Such
constraints are called Symmetry Breaking Constraints (SBC) [36] (also called
Static Symmetry Breaking Inequalities (SSBI) [35, 2]), and the corresponding
reformulation is called a narrowing [47]. The sBB applied to the proposed
narrowing tightens the bound in Step 2 more effectively and thus solves the
problem in less CPU time. Experiments indicate that the bound tightening
occurs relatively late in the search [36], which means that letting sBB terminate
naturally is still practically too CPU-expensive.

An important motivation for this work is based on the empirical observation
that good PECS solutions are found earlier when using an SBC-based narrowing.
Since the incumbent is found by the local NLP solver in Step 4, this means that
the narrowing somehow “eases” local ascent towards good optima. Consider the
PECS with n = 2: since the root node relaxation solution has all components
set to 1

2 by Prop. 1, at Step 4 the local NLP solver will use the central point
of the square as a starting point to perform local ascent from. Since there are
four symmetric optima at exactly the same distance from the starting point,
the local solution algorithm will have to consider four different ascent vectors
(shown as the arrows in Fig. 1) whose sum is the zero vector, making it difficult
to identify an ascent direction. Adjoining the SBC x1 ≤ x2, for example, and
assuming circle 1 is filled in Fig. 1, would make the two leftmost configurations
infeasible. This will make the sum of the ascent vectors nonzero, thereby easing
the task of the local NLP solver. The benefits brought by SBCs to local NLP
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Figure 1: Four symmetric optima with n = 2: the sum of the four ascent directions from
the central starting point towards the four optima is zero, both for solid and for dashed
coordinates. If the two leftmost optima are infeasible (e.g. by means of the constraint x1 ≤ x2)
the sum of the ascent directions becomes nonzero: positive (for the dashed coordinates) and
negative (for the solid coordinates).

solvers will be further discussed in Sect. 4.

3. Detection and exploitation of PECS symmetry

A method for automatically detecting formulation symmetries of MINLPs
was described in [36] (a more compact explanation was provided in [1]). It
basically consists in encoding the MINLP instance as a Directed Acyclic Graph
(DAG) and in finding the graph automorphisms group of this DAG. The group
generators can then be “projected” on the set of variable indices, thus obtaining
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a set of generators for the group GP of variable permutations which keep the
formulation of the MINLP P invariant.

The following group structures were (automatically) obtained for the PECS
formulation:

n GPECS

2 C2 × S2

3 C2 × S3

4 C2 × S4

5 C2 × S5

(the experiments were conducted on many more instances than are listed here).
This allowed us to conjecture that the group of the PECS formulation is C2×Sn.
Intuitively, this is reasonable: C2 corresponds to permuting the symbols x with
the symbols y, and Sn corresponds to permuting the variable indices. The
hardest part of proving the conjecture consists in showing that there are no
other formulation symmetries for a generic n. Let G(P) be the set of global
optima of problem P.

Theorem 1. The formulation group of the PECS is isomorphic to C2 × Sn.

Proof. Let GPECS be the formulation group of PECS. For all i < j ≤ n call
the constraints (xi − xj)

2 + (yi − yj)
2 ≥ 4r2 the distance constraints (2). Let

(x, y, r) ∈ G(PECS); the following claims are easy to establish.

1. The permutation τ =
∏

i≤n(xi, yi) is in GPECS; (〈τ〉 ∼= C2).

2. For any i ≤ n − 1, the permutation σi = (xi, xi+1)(yi, yi+1) is in GPECS;
notice that 〈σi | i < n〉 ∼= Sn.

3. Any permutation moving r to one of the variables /∈ GPECS.

4. If π ∈ GPECS such that π(xi) = yi for some i ≤ n then π(xi) = yi for
all i ≤ n, as otherwise the term xixj + yiyj (appearing in the distance
constraints) would be mapped to a term not appearing in the problem.

5. For any i < n, if π ∈ GPECS such that π(xi) = xi+1 or π(yi) = yi+1, then
π(xi) = xi+1 and π(yi) = yi+1; if not the term xixi+1 + yiyi+1 (appearing
in some of the distance const.) would be mapped to a term not appearing
in the problem.

Let K = 〈τ〉 and Hn = 〈σi | i ≤ n− 1〉. Claims (1)-(2) imply that K,Hn ≤
GPECS. It is tedious but not too hard to check that KHn = HnK; it follows
that KHn ≤ GPECS and hence K,Hn are normal subgroups of KHn. Since
K ∩Hn = {e}, we have KHn

∼= K ×Hn
∼= C2 × Sn ≤ GPECS.

Now suppose π ∈ GPECS with π 6= e. By Claim (3), π cannot move r so it
must map xi to yj for some i < j ≤ n; the action i→ j on the circles indices can
be decomposed into a product of transpositions i→ i+1, . . . , j − 1→ j. Thus,
by Claim (5) (resp. 4), π involves a certain product γ of τ and σi’s; furthermore,
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since by definition γ maps xi to yj , any permutation in GPECS (including π) can
be obtained as a product of these elements γ; hence π is an element of KHn,
which shows GPECS ≤ KHn, implying GPECS

∼= C2 × Sn.

3.1. Breaking symmetries

Once GPECS is known, we aim to find a narrowing Q which ensures that at
least one symmetric optimum of PECS is in G(Q). An SBC for a problem P
with respect to a permutation π ∈ GP is a system of constraints h(x) ≤ 0 such
that there is a global optimum y ∈ G(P ) with h(πy) ≤ 0. This definition simply
ensures that a narrowing does not make all global optima of P infeasible, but
does not attempt to quantify the extent of the symmetry breaking; definitions
in this sense, but limited to Integer Linear Programs (ILP) can be found in [48].
Adjoining SBCs to P yields a narrowing of P [36].

We present three different narrowings of the PECS obtained by using three
different classes of SBCs.

1. Weak SBCs:
∀i ≤ n x1 ≤ xi. (20)

These SBCs are based on the fact that we can always choose a an arbitrary
index (e.g., 1) such that the circle corresponding to that index is leftmost.
One might alternatively choose to employ ∀i ≤ n y1 ≤ yi.

2. Strong SBCs:
∀i ∈ {2, . . . , n} xi−1 ≤ xi. (21)

These SBCs are based on the fact that the circles can be ordered on the
horizontal axis. Again, one might alternatively choose to employ ∀i ∈
{2, . . . , n} yi−1 ≤ yi.

3. Mixed SBCs: designed to constrain both sets of coordinates at the same
time. These are discussed in more depth in Sect. 3.2.

3.2. Mixed SBCs

In the mixed SBCs, we remove some of the strong SBCs in x and replace
them with compatible SBCs in y. More precisely, let L ∈ {1, . . . ,

⌊

n
2

⌋

}, and

consider the strong SBCs. For each i ∈
{

1, 2, . . . ,
⌈

n
L

⌉

− 1
}

we replace the
constraints xiL ≤ xiL+1 with y1+(i−1)L ≤ y1+iL.

In order to show that the mixed constraints are SBCs, we prove that the
PECS formulation with the mixed constraints adjoined is a narrowing of the
PECS formulation. We define the following index sets:

• N = {1, . . . , n}

• N ′ = {1, . . . , n− 1}

• N ′′ = {1, L+ 1, 2L+ 1, . . . , (⌈n/L⌉ − 2)L+ 1},
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the following sets of constraints (intended as list of symbolic expressions repre-
senting the constraints, rather than sets of real vectors feasible with the con-
straints):

• S = {xi ≤ xi+1 | i ∈ N ′}

• ∀i ∈ N ′′ Ai = {xh ≤ xh+1 | h ∈ N ′ r {i+ L− 1}}

• ∀i ∈ N ′′ Ci = {yi ≤ yi+L},

and the following formulations:

• PECS′ ≡ PECS ∪S (i.e. the PECS formulation with strong constraints)

• ∀i ∈ N ′′ PECSi ≡ PECS ∪Ai ∪ Ci,

• PECS′′ ≡ PECS ∪
⋃

i∈N ′′(Ai ∪ Ci).

Proposition 2. For all i ∈ N ′′, PECSi is a narrowing of PECS.

Proof. Let i ∈ N ′′ and (x̄, ȳ, r̄) ∈ G(PECS). For a permutation π ∈ Sn we
assume π(x̄, ȳ, r̄) = (πx̄, πȳ, r̄) where π acts on a vector in Rn by permuting
the indices of its components; notice that since π is simply a reindexing of
the circles, π(x̄, ȳ, r̄) ∈ G(PECS). Furthermore, since PECS′ is known to be a
narrowing of PECS, we can assume WLOG that (x̄, ȳ, r̄) satisfies S . If ȳi ≤
ȳi+L the result holds, otherwise assume ȳi > ȳi+L. Consider the permutation

σi =
∏L−1

ℓ=0 (i + ℓ, i + L + ℓ) in Sn; σi(x̄, ȳ, r̄) has the following properties: (a)
by the action of the 2-cycle (i, i + L) (appearing in σi when ℓ = 0) we have
ȳi < ȳi+L; (b) ∀ℓ ∈ {0, . . . , L − 2} we have σix̄i+ℓ = x̄i+L+ℓ ≤ x̄i+L+ℓ+1 =
σix̄i+ℓ+1 and σix̄i+L+ℓ = x̄i+ℓ ≤ x̄i+ℓ+1 = σix̄i+L+ℓ+1; (c) ∀h ∈ N

′ such that
h 6∈ Hi = {i, . . . , i + 2L − 1} we have σix̄h = x̄h ≤ x̄h+1 = σix̄h+1 because σi
fixes all h 6∈ Hi. Thus σi(x̄, ȳ, r̄) ∈ G(PECS) and satisfies the constraints of
PECSi.

Lemma 1. Let t = ⌈n/L⌉ − 1 and Σ = {σi | i ∈ N
′′}. Then 〈Σ〉 ∼= St.

Proof. Notice N ′′ = {(j− 1)L+1 | 1 ≤ j ≤ t}, and define a map ϕ((j − 1)/L+
1) = j, under which ϕ(Σ) = {(1, 2), (2, 3), . . . , (t − 1, t)}. This map induces a
group homomorphism ϕ̄ : 〈Σ〉 → St given by ϕ̄(σi) = (ϕ(i), ϕ(i)+1), which can
be verified to be injective and surjective.

Similarly, for all h < k ∈ N ′′ we have 〈Σhk〉 = 〈{σi | h ≤ i < k}〉 ∼=
Sym(Ihk), the symmetric group on the set Ihk = {ϕ(h), . . . , ϕ(k)}. Thus, for

all h, k ∈ N ′′, the permutation τhk =
∏L−1

ℓ=0 (h + ℓ, k + ℓ) can be obtained
as a certain product of the σi’s for i ∈ ϕ−1(Ihk). More precisely, we have
τhk = (ϕ(k) − 1, ϕ(k))(ϕ(k) − 2, ϕ(k) − 1) · · · (ϕ(h), ϕ(h) + 1)(ϕ(h) + 1, ϕ(h) +
2) · · · (ϕ(k)− 1, ϕ(k)).

Theorem 2. PECS′′ is a narrowing of PECS.
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Proof. Let (x̄, ȳ, r̄) ∈ G(PECS), and consider the set V of all constraints Ci ≡
{yi ≤ yi+L} violated by (x̄, ȳ, r̄). Let ψ be the (invertible) map given by ψ(Ci) =
(ϕ(i), ϕ(i)+1); then ψ(V ) is a set of transpositions that can be partitioned into
maximal non-disjoint subsets Shk = {(ϕ(h), ϕ(h)+ 1), . . . , (ϕ(k)− 1, ϕ(k))}; let
T be the set of pairs (h, k) for which Shk is in the partition of ψ(V ). It is easy to
verify that if πhk =

∏

ℓ∈Ihk

h+ℓL<k−ℓL

τh+ℓL,k−ℓL then πhkȳ satisfies the constraints

in ψ−1(Shk). Furthermore, by maximality of the Shk, the permutations πhk
are disjoint. Now, if π =

∏

(h,k)∈T
πhk, π(x̄, ȳ, r̄) is such that πȳ satisfies all

constraints in V and πx̄ satisfies all constraints in
⋃

i∈N ′′ Ai by Prop. 2. Thus
π(x̄, ȳ, r̄) ∈ G(PECS′′).

4. Why SBCs are good for the local solver

As mentioned in Sect. 2.3, we partially motivate this work on the experi-
mental observation that good feasible solutions were found earlier in the search
with SBCs rather than without.

All our experiments are conducted using theCouenne [39] sBB solver, which
employs the IpOpt [49] subsolver as the local NLP solver used to find incum-
bents in Step 4 of the sBB algorithm given in Sect. 2.2. IpOpt actually solves
the following PECS reformulation:

−min−r (22)

∀i < j ≤ n (xi − xj)
2 + (yi − yj)

2 − 4r2 − sij = 0 (23)

∀i ≤ n xi − r − L
x
i = 0 (24)

∀i ≤ n yi − r − L
y
i = 0 (25)

∀i ≤ n xi + r − 1 + Ux
i = 0 (26)

∀i ≤ n yi + r − 1 + Uy
i = 0 (27)

x, r, s, L, U ≥ 0, (28)

obtained by introducing slack variables for each inequality. The natural starting
point for solving (22)-(28) in Step 4 is the solution of the relaxation in Step 2,
which is x = y = r = 1

2 at the root node by Prop. 1. Since this is infeasible
w.r.t. (23), IpOpt starts with a feasibility restoration phase, converging to the
starting point x = y = 1

2 , r = 0. It is long and tedious, but easy, to check
that linear independence constraints qualification (LICQ) conditions [50] hold
at this starting point, and that it is actually a KKT point. Thus, IpOpt simply
confirms is as a local optimum — this is consistent with the results in Table 2
(column r in “no SBCs”).

If, on the other hand, we adjoin SBCs to the formulation, positive ascent
directions are found using IpOpt’s Second Order Corrections (SOC) [49], as
shown by the locally optimal r values in column r (“strong SBCs”) of Table 2.
This is consistent with the intuitive explanation given in Sect. 2.3. Another
interesting phenomenon occurs: the CPU time taken by IpOpt is reduced for
the PECS with SBCs (Table 2, CPU columns). This is due to the fact that

12



no SBCs strong SBCs
n r CPU r CPU
4 4.5e-5 1.9 0.25 0.07
5 4.5e-5 2.1 0.196 0.02
6 5e-5 0.05 0.187 0.04
7 5e-5 0.06 0.174 0.04
8 5e-5 0.05 0.169 0.06
9 5e-5 0.06 0.166 0.04
10 5e-5 0.06 0.148 0.06
20 4.95e-5 0.24 0.109 0.27
50 4.89e-5 48.91 0.068 4.82

Table 2: IpOpt with starting point x = y = 0.5, r = 0 with and without strong SBCs.

interior point methods require primal variables to be have strictly positive values
at each iteration [49], and r = 0 obviously fails to satisfy this requirement. A
different local NLP solver, snopt, which is based on a Sequential Quadratic
Programming (SQP) method, converges a local optimum in roughly the same
CPU time both with and without SBCs, but fails to find ascent directions for
r, because it is a first-order method and does not exploit SOC.

Although the above discussion only holds at the root node, further experi-
ments with random variable bounds have shown that SBCs yield better values
for r at lower nodes too (although the marked difference in CPU time disap-
pears).

5. Computational results

The computational results reported in [1] show (empirically) that the strong
SBCs provide a narrowing whose convex relaxation at nodes in the lower sBB
tree levels is tighter with respect to the weak SBCs. In turn, the computational
results reported in [2] show that the mixed SBCs provide a better narrowing than
the strong SBCs. In the sequel, we are only going to consider PECS narrowings
derived using mixed SBCs. All our computational results have been obtained
on one 2.4GHz Intel Xeon CPU of a computer with 24 GB RAM running Linux.

5.1. Choice of L for the mixed SBCs

The techniques given in Sect 3.2 rely on an arbitrary choice for the integer
L. Fig. 2 shows the number of sBB tree nodes in function of L for the instances
from n = 4 to n = 9. These experiments indicate that L = 2 is the best choice.

5.2. Effect of the narrowing on the upper bound

We first provide empirical evidence that the proposed SBCs tighten the
upper bound in Step 2 of Sect. 2.2 by solving a set of small PECS instances to
global optimality using the Couenne [39] solver. Table 3 reports the instance
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Figure 2: sBB tree nodes in function of L.

(n), the globally maximum possible radius r∗ allowing a packing of n circles in
the unit square, the number of sBB nodes and seconds of user CPU time taken
by Couenne running to termination on the original formulation and on the
narrowing.

5.3. Effect of the narrowing on the lower bound

We now exhibit the core of our results, i.e. the performance of the Couenne

on the mixed SBC based narrowing with early termination based on two hours
of user CPU time. In Table 4 we report the number of circles, the best known
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Original formulation Mixed SBC Narrowing
n r∗ sBB nodes CPU time sBB nodes CPU time
2 0.292893 2 0.04 0 0.02

3 0.254333 2 0.15 0 0.08

4 0.25 282 1.85 0 0.08

5 0.207113 68710 69.24 541 2.02

6 0.187707 3087798 6176.05 42850 90.84

Table 3: sBB running to termination on small PECS instances.

solution r∗ (from http://www.packomania.com), the solution found at the root
node rr, the largest radius r′ found by our method within the time limit, the
tightest upper bound r̄ on r′ (which gives an idea of the optimality gap), the
time t(r′) at which the solution r′ was found and the number of nodes explored
within the time limit.

n r∗ rr r′ r̄ t(r′) sBB nodes
20 0.111382 0.111382 0.111382 0.322063 16.45 441828
25 0.1 0.096852 0.1 0.250133 553.68 125632
30 0.091671 0.091671 0.091671 0.316273 86.24 90230
35 0.084290 0.082786 0.083766 0.351545 1495.31 46162
40 0.079186 0.078913 0.078913 0.2501 19.68 17116
45 0.074727 0.07444 0.07444 0.353325 357.90 12915
50 0.071377 0.070539 0.070539 0.250121 5429.88 2

Table 4: sBB running on large PECS instances.

Although we were not able to improve r for any tested PECS instance,
our results show the validity of the proposed approach as a heuristic that finds
excellent quality solutions already at the root node; since sBB always provides a
relaxation bounds, this heuristic also has the merit of yielding an approximation
bound.

6. Conclusion

In this paper we discuss the use and impact of static symmetry breaking
constraints in the problem of packing equal circles in a square. Our method
exploits the formulation group of the problem in order to derive symmetry
breaking constraints which both tighten the problem relaxation and — rather
unexpectedly — ease the work of the local solver deployed at each node.
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[20] L. Casado, I. Garcia, P. Szabó, T. Csendes, Equal circles packing in square
ii: new results for up to 100 circles using the tamsass-pecs algorithm, in:
F. Giannessi, P. Pardalos, T. Rapcsak (Eds.), Optimization Theory: Recent
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