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Abstract. The Molecular Distance Geometry Problem (MDGP) is the
problem of finding the conformation of a molecule from inter-atomic dis-
tances. In some recent work, we proposed the interval Branch & Prune
(iBP) algorithm for solving instances of the MDGP related to protein
backbones. This algorithm is based on an artificial ordering given to the
atoms of the protein backbones which allows the discretization of the
problem, and hence the applicability of the iBP algorithm. This algo-
rithm explores a discrete search domain having the structure of a tree and
prunes its infeasible branches by employing suitable pruning devices. In
this work, we use information derived from Nuclear Magnetic Resonance
(NMR) to conceive and add new pruning devices to the iBP algorithm,
and we study their influence on the performances of the algorithm.

1 Introduction

Proteins are important molecules formed by chains of smaller molecules called
amino acids. Several experimental techniques, as Nuclear Magnetic Resonance
(NMR), are able to provide some information on interatomic distances in protein
molecules which can be exploited for obtaining the three-dimensional conforma-
tion of the protein. As the protein conformation often enables to give good
clues about the protein function, the conformation determination is of funda-
mental importance. The problem of finding the protein conformation from a list
of inter-atomic distances is known in the scientific literature as the Molecular
Distance Geometry Problem (MDGP) [4]. By nature, the MDGP is a constraint
satisfaction problem, but its solution is usually attempted by employing global
optimization techniques [10]. It usually requires a search in a continuous space
which is a subset of R3n, where n is the number of atoms forming the molecule.
It has been proved that the MDGP is an NP-hard problem [16].

Since 2006 we have been working on a combinatorial reformulation of the
MDGP. Under suitable assumptions, we are able to discretize the problem and
to reduce the search on a discrete search domain. Even though the problem is still
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NP-hard after the discretization [3], it can be efficiently solved by employing a
Branch & Prune (BP) algorithm [9]. It is important to remark that this algorithm
is able to find all solutions to the problem, differently from other algorithms
based on continuous formulations and/or heuristics [10, 15].

We refer to this combinatorial reformulation of the MDGP as Discretizable
MDGP (DMDGP) [3]. Let G = (V,E, d) be a weighted undirected graph repre-
senting an instance of the problem: each vertex in V corresponds to an atom,
and there is an edge in E between two vertices if and only if the distance between
the corresponding atoms is known (the distance value is given by the associated
weight d). In order to have the combinatorial reformulation, we need two assump-
tions to be satisfied for a given ordering on the vertices in V . By Assumption 1,
the edge set E must contain all cliques on quadruplets of consecutive vertices,
that is,

∀i ∈ {4, . . . , n} ∀j, k ∈ {i− 3, . . . , i} ({j, k} ∈ E)

and, by Assumption 2, the following strict triangular inequality

∀i = 2, . . . , n− 1, di−1,i+1 < di−1,i + di,i+1,

must hold.
Assumption 1 ensures that the distances between each possible pair of atoms

in any quadruplet of consecutive atoms are known. Moreover, if Assumption 2
holds, there cannot be triplets of consecutive atoms that are perfectly aligned.
Supposing that positions for the atoms are searched by following the same or-
dering given to the vertices of V , there exist at most two possible positions in
which each atom can be placed if these two assumptions are satisfied. This leads
to the definition of a discrete search domain, which has the structure of a tree.
This tree can be constructed in the practice by exploiting distances that must
be known by Assumption 1. Moreover, the considered instance can also contain
other distances, that we can use for pruning branches of the tree in order to
focus our searches on its feasible branches only. This is the main idea behind the
BP algorithm [9].

The basic version of this algorithm has however two main limitations. First
of all, exact distances should be available in order to construct the discrete
search domain, whereas real-life NMR experiments are usually noisy, so that
lower and upper bounds on the distances are actually known. Moreover, given
any atom of the protein, there must be at least 3 distances concerning this atom,
otherwise Assumption 1 cannot be satisfied. This property is quite difficult to be
satisfied by NMR instances, because the number of available distances is usually
not sufficient, and only distances related to particular atoms, mainly pairs of
hydrogens, are actually available. Therefore, even though the BP algorithm is
extremely efficient in its basic version, it is unfortunately mainly suitable for
simulated instances of the DMDGP, and not for NMR instances.

We recently overcame these two issues by introducing a hand-craft ordering
for the atoms of the protein backbones, and by proposing an extension of the
BP algorithm which is based on such an ordering. This ordering allows us to
discretize a full class of MDGPs, the one which is related to protein backbones,
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even if only noisy distances between pairs of hydrogens are available. This is
possible because all distances used in the construction of the discrete search
domain can be computed a priori by information on the chemical composition of
the protein backbones. The distances obtained by NMR are only used for pruning
purposes. We shall refer to this extension of the BP algorithm as interval BP
(iBP) [6].

The iBP algorithm is able to consider NMR instances related to protein
backbones. However, in our previous publications [5, 6], we only presented com-
putational experiments where simulated data were considered. Indeed, when we
firstly tried to solve NMR instances by iBP, we found out that the available
information on the distances was not sufficient for efficiently pruning the search
domain. For this reason, we decided to conceive new pruning devices, with the
aim of identifying sooner during the search infeasible parts of the search domain.
These new pruning devices are all based on other information (rather than dis-
tances) that NMR experiments can provide. We also analyze the influence of
each newly added pruning device on the performances of the iBP algorithm.

The rest of the paper is organized as follows. In Section 2, we give a brief
description of the iBP algorithm and of the artificial ordering for the protein
backbones which allows the discretization of the problem. New pruning devices
are presented in details in Section 3, and computational experiments on NMR
instances are given in Section 4. Conclusions are drawn in Section 5.

2 The interval Branch & Prune

In order to solve DMDGPs where interval data are considered, we recently de-
fined an artificial ordering for the atoms of the protein backbones. In this section,
we describe this particular artificial ordering and we discuss the iBP algorithm,
that is based on this ordering. For more details, the interested reader is referred
to [5, 6].

Let us start by assigning the following ordering to the atoms of the first
amino acid of the considered protein:

r1PB = {N1, H1, H0, C1
α, N

1, H1
α, C

1
α, C

1}.

Note that the superscripts indicate the amino acid to which each atom belongs.
One of the hydrogens bound to N1 (in general, there is only one hydrogen) is
indicated by the symbol H0. The carbon C1

α and the nitrogen N1 appear twice
in the sequence. This is done in order to reduce the relative distances between
pairs of atoms in the ordering, and also in order to consider the distances between
copies of the same atom (that must be equal to 0). The other carbon of the first
amino acid, the atom C1, is considered, in this case, only once. Let us now assign
the following ordering to the atoms of the second amino acid:

r2PB = {N2, C2
α, H

2, N2, C2
α, H

2
α, C

2, C2
α}.

This sequence of atoms is used for building a bridge between the first amino
acid, and the third one, from which a generic ordering is considered. In fact, the
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Fig. 1. The hand-craft artificial ordering rPB.

ordering defined on the second amino acid is quite similar to the generic one.
Atoms are considered more than once, and, in particular, the carbon C2

α appears
in the sequence 3 times. This is the ordering for the generic amino acid (from
the third to last but one):

ri
PB = {N i, Ci−1, Ci

α, H
i, N i, Ci

α, H
i
α, C

i, Ci
α}.

The nitrogenN i is considered twice, the carbon Ci
α is considered 3 times, and the

carbon Ci−1 belonging to the previous amino acid is repeated among the atoms
of the amino acid i. In total, for each amino acid, we have 4 copies of atoms that
already appeared somewhere else in the sequence. Note that hydrogen atoms are
never duplicated. Since the last amino acid contains a few atoms more, this is
the ordering that we consider:

r
p
PB = {Np, Cp−1, Cp

α, H
p, Np, Cp

α, Hα, C
p, Cp

α, O
p, Cp, Op+1}.

Note that this is the only case in which oxygen atoms appear. The two oxygens
Op and Op+1 present in the last residue rp

PB correspond to the two oxygens of
the C-terminal carboxyl group COO− of the protein.

Let us indicate by the symbol rPB the defined artificial ordering on the whole
protein backbone:

rPB = {r1PB, r
2
PB , . . . , r

i
PB , . . . , r

p

PB}.

Fig. 1 shows the hand-craft ordering for a small protein backbone formed by
3 amino acids. It is constructed so that, for each atom v ∈ V , the three edges
(v− 3, v), (v− 2, v) and (v− 1, v) are always contained in E. The corresponding
distances are obtained from known bond lengths and bond angles, that only
depend from the kind of bound atoms. The two edges (v − 2, v) and (v − 1, v)
are always associated to exact distances, whereas only the edge (v − 3, v) may
be associated to an interval distance. In particular, there are three different
possibilities. If d(v−3, v) = 0, then v represents a duplicated atom, and therefore
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Algorithm 1 The iBP algorithm.

1: iBP(j, r, d,D)
2: if (rj is a duplicated atom) then

3: iBP(j + 1, r, d, D);
4: else

5: if (d(rj − 3, rj) is exact) then

6: b = 2;
7: else

8: b = 2D;
9: end if

10: for k ∈ {1, . . . , b} do

11: compute the k-th atomic position xk
rj

for the rj-th atom;

12: check the feasibility of position xk
rj

using pruning devices;

13: if (xk
rj

is feasible) then

14: if (j = |r|) then

15: a solution x is found, print it;
16: else

17: iBP(j + 1, r, d, D);
18: end if

19: end if

20: end for

21: end if

the only feasible coordinates for v are the same of its previous copy. If d(v−3, v)
is an exact distance, the standard discretization process can be applied, and two
possible positions for v can be computed. Finally, if d(v − 3, v) is represented
by an interval, we discretize the interval and take D sample distances from it.
For each sample distance, we apply the standard discretization process. In this
case, 2×D possible atomic positions can be computed for v. As a consequence,
the discrete search domain is a tree, which is not necessarily binary (this would
require that all distances d(v − 3, v) are exact) [5].

Algorithm 1 is a sketch of the interval BP (iBP) [6]. It essentially requires 4
input arguments: the index j (in the ordering given to V ) of the current atom
to be placed, the artificial ordering r, the set of distances d (which can be either
exact or represented by intervals), and the number D of sample distances used
for discretizing interval distances. The main focus of this paper is on line 12 of
Algorithm 1: the pruning devices that are used for discovering infeasible atomic
positions.

3 Pruning devices

Pruning devices can be used in the iBP algorithm for pruning away infeasible
branches of the discrete search domain. In this work, we study the influence
of pruning devices on the performances of the algorithm. Each of such prun-
ing devices is based on a different kind of information which can be obtained
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through NMR experiments. The Direct Distance Feasibility (DDF) device (see
Section 3.1) considers the available lower and upper bounds on the distances
between hydrogen atoms. The Torsion Angle Feasibility (TAF) device (see Sec-
tion 3.2) considers instead the lower and upper bounds on the protein backbone
torsion angles. Finally, the Secondary Structure Feasibility (SSF) device (see
Section 3.3) is based on the so-called chemical shift index of spin nuclei of the
atoms Cα and Hα of each amino acid. Indeed, as shown in [11, 18], these in-
dices are strongly related to the secondary structures to which each amino acid
belongs. The technique described in [17], for example, is able to compute tor-
sion angle restraints in secondary structures from chemical shift indices, with a
precision of about 10◦.

3.1 Direct Distance Feasibility (DDF)

NMR experiments are able to provide a list of lower and upper bounds on some
distances between pairs of hydrogen atoms of the molecule. The Direct Distance
Feasibility (DDF) pruning device is based on the idea of pruning atomic positions
for which these lower and upper bounds are not satisfied. DDF has been widely
used in our previous publications: even though it represents a very basic test, and
it is easy to implement, DDF allows us to discard large parts of the discrete search
domain very efficiently on sets of artificial instances [5, 7, 8, 12, 14]. However,
when we tried to consider real NMR data, we noticed that the range defined
by these lower and upper bounds is so large that DDF is not able anymore
to sufficiently prune branches of the tree. This causes the multiplication of the
solutions found by iBP, where some infeasible solutions are also contained. This
is the reason why we needed to add new pruning devices in order to consider
NMR instances.

3.2 Torsion Angle Feasibility (TAF)

Along with the list of lower and upper bounds on the distances, NMR experi-
ments can also provide information on the torsion angles of protein backbones.
Three different torsion angles can be defined along the backbone main chain
N − Cα − C −N − . . . :

φ ≡ {C,N,Cα, C},
ψ ≡ {N,Cα, C,N},
ω ≡ {Cα, C,N,Cα}.

The angle φ, for example, is the angle defined by the two planes {C,N,Cα}
and {N,Cα, C}. The torsion angle ω is usually very close to π, because there
is a peptide bond that does not allow this subset of atoms to take any other
configuration. The other two angles φ and ψ, instead, can vary in larger ranges.

Even if the iBP algorithm is not based on the torsion angle representation
of the protein backbone, but rather on an atomic representation, the torsion
angles φ and ψ can be easily computed every time the four atoms needed for
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their computation are available. As soon as the value for one of these angles is
obtained, we can check if it satisfies the known lower and upper bounds pro-
vided by NMR: the last positioned atom can be pruned if the computed angle
does not satisfy this constraint. We shall call this pruning device Torsion Angle
Feasibility (TAF). Note that it is useless to consider the torsion angle ω because,
by construction, our artificial backbone always satisfies the constraint ω = π.

3.3 Secondary Structure Feasibility (SSF)

Subsets of atoms of a protein can fold in local structures which are very typical
in proteins. Such local structures are referred to as secondary structures, and
they are mainly represented by α-helices and β-sheets. In both cases, these sec-
ondary structures are stabilized through hydrogen bonds between pairs of amino
acids. More precisely, given a pair (ai, aj) of amino acids belonging to the same
secondary structure, there is a hydrogen bond between the hydrogen H (the one
bound to N) of amino acid ai and the oxygen O (bound to C) of amino acid aj .
This hydrogen bond forces the involved atoms, and in particular the hydrogen
H of ai and the oxygen O of aj, to be very close to each other.

As a consequence, the torsion angles φ and ψ are constrained to vary in
predefined ranges when the corresponding amino acids fold in α-helix or β-
sheet. The bounds on the torsion angles can therefore be refined by using this
information. Moreover, in the case of α-helices, it is known that the amino acid
aj is always ai+4. Therefore, the two atoms which need to be closer than a
certain threshold are known a priori: a new distance (between the hydrogen H
of ai and the oxygen O of ai+4) can be added to the list of known distances. The
possibility to add this new distance for each amino acid in α-helices reflects the
strong regularity of this secondary structure; β-sheets are instead less regular:
for each ai, we do not know a priori the corresponding aj .

In order to reject conformations which do not satisfy the restrictions given
by the protein secondary structures, we use the chemical shift index described
above to predict the subset of amino acids that are supposed to fold in α-helix
or in β-sheet. As mentioned above, the technique described in [17] is able to
find good estimates of the torsion angles related to amino acids having a given
chemical shift index. However, since we do not need in general tight bounds on
the torsion angles, we just consider intervals that are centered in −60◦ for both
φ and ψ (typical values for α-helices), or centered in 135◦ and −120◦ (typical
values for φ and ψ, respectively, in β-sheets) [1].

The Secondary Structure Feasibility (SSF) pruning device is therefore based
on the idea of refining bounds for the torsion angles and/or adding new distances
to the considered instance. This is done by exploiting information obtained by
NMR on the chemical shift index of each amino acid. When the secondary struc-
ture is an α-helix, the oxygen O bound to the carbon C is needed for verifying
the hydrogen bond distance. Note that this oxygen is not included in our artifi-
cial ordering (see Fig. 1). However, we can easily compute its coordinates when
the positions for the atom C (which is bound to O), for the atom N (which is
bound to C) and for the atom H (which is bound to N) are known. Because of
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Fig. 2. Distances and angles that allow to compute the distance between the oxygen
O bound to C and the hydrogen H bound to N . The angle β can be computed from

known information regarding the triangle ÔCN . α is instead a bond angle. The distance

between O and H can be computed by solving the triangle ÔNH , where the angle in
N is α + β. Note that the four atoms must lie on the same plane. The same procedure
can also be applied for the other possible configuration, when the torsion angle is 0.

the presence of a peptide bond (the same which forces the torsion angle ω to be
equal to π), the four atoms O, C, N and H lie on the same plane. Bond lengths
are known, and, since bond angles are also known, the distance between O and
N , as well as the distance between C and H , can be computed. Finally, Fig. 2
shows how to compute the distance between O and H . By exploiting all these
distances and the coordinates for the atoms C, N and H , the coordinates for O
can be uniquely computed.

The coordinates of the oxygen O can be computed by intersecting three
spheres which are centered in the three atoms C, N and H , and having as
radii the corresponding distances from O. This intersection of spheres can be
computed by solving two linear systems: this same idea is also exploited in a
generalization of the DMDGP presented in [13], and the interested reader can
find many details about this procedure in the reference paper. We just remark
that the procedure can provide in general two possible sets of coordinates for
the oxygen O. Because of numerical errors, this may happen even if only one
position for O is actually feasible. In our implementation, the pruning device SSF
is applied only if the computed coordinates of O are not affected by numerical
errors.
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instance name naa n D iBP calls #DDF #TAF #SSF CPU time

2jmy 15 134 15 4724652 2356670 - - 39
2jmy 15 134 15 10482 5244 2695 - 1
2jmy 15 134 15 31986247 15206046 - 6189223 248
2jmy 15 134 15 33709275 16017742 1069321 5156934 298

2ppz 36 323 20 98807 48586 - - 1
2ppz 36 323 20 91466 43568 41600 - 2
2ppz 36 323 20 414926692 142727215 - 70158539 10263
2ppz 36 323 20 58296108 18941155 10111249 615926 1471

2jwu 56 503 22 6528633 6715391 - - 117
2jwu 56 503 22 11159985 28183553 1029437 - 396
2jwu 56 503 22 20119294 14742376 - 1601915 432
2jwu 56 503 22 44795676 19494850 9450743 5313997 1363

Table 1. Experiments on NMR instances. #DDF, #TAF and #SSF provide the num-
ber of times each pruning device found and discarded an infeasible atomic position.
The symbol “–” indicates that the corresponding pruning device was not used in the
experiment.

4 Computational experiments

The iBP algorithm has been implemented in C programming language and com-
piled by the GNU C compiler v.4.1.2 with the -O3 flag. We performed the ex-
periments presented in this section on an Intel Core 2 CPU 6400 @ 2.13 GHz
with 4GB RAM, running Linux.

For the first time since we started to work on this topic, we are able to present
computational experiments where real data from NMR are managed by using
an algorithm based on a discrete search. The data related to protein conforma-
tions having different features (number of amino acids, secondary structures)
have been downloaded from the Protein Data Bank (PDB) [2], along with the
corresponding conformations already obtained by other methods. For each in-
stance, we study the influence of the implemented pruning devices on the iBP
algorithm. We point out that, in general, NMR instances may not contain the
necessary information for applying all three pruning devices. Distances are al-
ways available, and therefore the pruning device DDF can always be considered.
Bounds on torsion angles and chemical shift indices might be omitted. In the
following, we consider instances where all necessary information is supposed to
be available.

Table 1 shows the results of our experiments for a selected subset of in-
stances. The instance name is the PDB code of the molecule. 2jmy is a small
peptide completely folded in α-helix. 2ppz is a protein containing only α-helices
as secondary structure, whereas 2jwu contains both secondary structures. All
considered instances contain information on distances and torsion angles. Only
distances regarding the hydrogens H and Hα of each amino acid have been
considered: all others (mainly related to the amino acid side chains) have been
discarded. The information regarding the secondary structures have been ob-
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tained from the conformations downloaded from the PDB (we plan to include
a procedure to automatically interpreting the chemical shift index associated to
each amino acid in future versions of iBP, see for example [17]). In the table,
naa is the number of amino acids forming the protein, whereas n is the length
of the artificial ordering rPB (hence, it consists of the number of atoms in the
protein backbone, including duplicated atoms). The number D of sample dis-
tances which are considered for discretizing intervals is also specified for each
experiment. The behavior of the iBP algorithm is evaluated through the number
of times the algorithm recursively calls itself before finding the first solution, and
through the number of times each pruning device is able to identify and prune
an infeasible atomic position. If this information is absent (the symbol “–” is
used in the table), it means that the pruning device was not applied in the given
experiment. For each protein, we performed 4 experiments, where the following
combinations of pruning devices were considered: DDF, DDF+TAF, DDF+SSF,
DDF+TAF+SSF. The iBP algorithm is stopped as soon as the first solution is
found. For each experiment, we provide the CPU time in seconds.

We consider the number of iBP calls as a valid measure of the influence of
the newly added pruning devices. When the number of iBP calls decreases, the
added pruning devices were able to discard infeasible atomic positions that DDF
was not able to recognize, and lead the search towards feasible positions sooner.
In this case, the CPU time decreases. Moreover, when the number of iBP calls
instead increases, atomic positions previously considered as feasible are declared
infeasible by the new pruning devices, and therefore the search is focused on
different parts of the search domain. In this case, the CPU time may increase,
but there is a gain on the quality of the obtained solution.

Both situations can be seen in Table 1. For the helix 2jmy, the number of
iBP calls decreases of two orders of magnitude when the pruning device TAF is
added to the standard DDF. Indeed, #DDF decreases, because TAF was able
to recognize infeasible atomic positions earlier during the search and was able to
prune larger parts of the search domain. This also happens when TAF is added
to DDF alone or DDF+SSF in the experiments related to the protein 2ppz.
Otherwise, the second situation is more common in these experiments: when a
new pruning device is added, the number of atomic positions pruned by these
devices while working in cooperation increases. Therefore, they are able to lead
the search towards better solutions, i.e. towards solutions where the constraints
related to all pruning devices are satisfied.

We remark that only one solution to the problem is computed in these ex-
periments. At this stage of our work, we cannot analyze yet the influence of the
pruning devices on the whole set of solutions, because the considered pruning
devices, even if they are used all together, are not able to keep under control the
combinatorial explosion due to the recursive calls to iBP. For the same reason,
we cannot judge yet on bio-related aspects of the found solutions in comparison
to the employed pruning devices. We plan to do so in the future by including
the amino acid side chains in our artificial backbone.
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5 Conclusions

The iBP algorithm for the MDGP is the first algorithm implementing a discrete
search which is able to manage interval data. It can be currently applied to
MDGPs related to protein backbones, for which we identified a particular arti-
ficial ordering for their atoms that allows us to discretize the problem. In this
work, we studied the influence of pruning devices on a set of NMR instances,
i.e. instances where real data from NMR are contained. The pruning devices are
based on different information that can be obtained through NMR experiments:
a list of bounds on the distances between pairs of atoms of the molecule, a list of
bounds on the torsion angles of the protein backbones, and finally information
regarding the protein secondary structures. The presented experiments showed
that the newly added pruning devices are actually able to prune away large parts
of the discrete search domain, so that the search can be focused on feasible parts
of the domain. Next step is to consider information regarding the amino acid
side chains. This could allow us to identify only a few feasible solutions for each
considered instance.
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