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Abstract

Modularity maximization is extensively used to detect communities in complex networks. It has

been shown however that this method suffers from a resolution limit: small communities may be

undetectable in the presence of larger ones even if they are very dense. To alleviate this defect,

various modifications of the modularity function have been proposed as well as multi-resolution

methods. In this paper we systematically study a simple model (first proposed by Pons and Latapy

[Theor. Comp. Sci. 412:892-900 (2010)] and similar to the parametric model of Reichardt and

Bornholdt [Phys. Rev. E 74:016110 (2006)]) with a single parameter α which balances the fraction

of within community edges and the expected fraction of edges according to the configuration model.

An exact algorithm is proposed to find optimal solutions for all values of α as well as the corre-

sponding successive intervals of α values for which they are optimal. This algorithm relies upon a

routine for exact modularity maximization and is limited to moderate size instances. An agglom-

erative hierarchical heuristic is therefore proposed to address parametric modularity detection in

large networks. At each iteration the smallest value of α for which it is worthwhile to merge two

communities of the current partition is found. Then merging is performed and the data updated

accordingly. An implementation is proposed with the same time and space complexity as the

well-known Clauset Newman Moore heuristic (CNM) [Phys. Rev. E 70:066111 (2004)].

Experimental results on artificial and real world problems show that (i) communities are de-

tected by both exact and heuristic methods for all values of the parameter α; (ii) the dendrogram

summarizing the results of the heuristic method provides a useful tool for substantive analysis,

as illustrated particularly on Les Misérables data set; (iii) the difference between the parametric

modularity values given by the exact method and those given by the heuristic is moderate; (iv) the

heuristic version of the proposed parametric method, viewed as a modularity maximization tool,

gives better results than the CNM heuristic for large instances.
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Shouldn't we say something like "This allows the decision maker to analyse all possible optimal solutions in function of the alpha parameter, and to make an informed choice on its setting" in order to make it clear that we're doing something useful?



I. INTRODUCTION

Networks, or graphs, are a versatile and powerful tool in the study of complex systems

arising in telecommunication, transportation, social sciences and biology, see Newman’s

recent book20 for a detailed introduction. A network G = (V,E) consists of a set V of

vertices and a set E of edges which are pairs of vertices. The number |V | of vertices of G is

usually denoted by n and called its order. The number |E| of edges of G is usually denoted

by m and called its size. The degree ki of a vertex i is equal to the number of edges to which

it is incident or, in other words, to its number of neighbors. The density d of a network G

is the ratio of its number of edges to the possible number of edges, i.e., d = 2m
n(n−1)

.

A much studied phenomenon in networks is the presence of communities, i.e., subsets

of vertices among which edges joining two vertices of that community are more dense than

edges joining a vertex from that community to a vertex of another one. In the last few

years, detection of communities in networks has been the subject of intense study, mostly

among the physics research community, see Fortunato10 for an in-depth survey with over

400 references.

A first requirement when studying communities in networks is to have a precise definition

of a community. Many proposals have been made and discussed10. The most used one

appears to be the modularity, first proposed by Newman and Girvan23. It expresses the

idea that for a network to be modular its communities should contain more inner edges

than expected. One must therefore define a null model which corresponds realistically to

the network under study. The classical Erdös-Renyi model9, in which the probability of

having an edge is uniform does not qualify as the distribution of degrees of real life networks

tend to follow a power law24. The adopted configuration model17,19 is that one where edges

are drawn at random with the same expected distribution of degrees as in G. For a given

partition of the network into communities the modularity function Q is:

Q =
∑

s

(ess − a2s) (1)

where s is the index of the community, ess denotes the fraction of the edges with both

endpoints within community s, as is the sum of the degrees of the vertices of community s

divided by the sum of degrees of the whole network, so that a2s denotes the expected fraction

of edges within that community, assuming they are drawn at random while keeping the same

3



distribution of degrees. As shown in Ref. 22 modularity can also be written as

Q =
1

2m

∑

i,j∈V

(

Aij −
kikj
2m

)

δ(Ci, Cj) (2)

where, for any entity i, Ci is the community containing that entity, Aij are the components

of the adjacency matrix of G (equal to 1 if there is an edge between vertices i and j and

0 otherwise), δ(Ci, Cj) is the Kronecker symbol, equal to 1 if Ci and Cj denote the same

community and 0 otherwise.

While Equation (1) or (2) can be used to compute the modularity of a given partition

of G into communities, they can also be used to maximize modularity, giving the optimal

modularity value, the optimal number of communities and the corresponding partition.

A few exact algorithms1,13,14,32 and many heuristics6,22,26,30,31 have been proposed for that

purpose. Exact algorithms are presently limited to instances with a few hundred entities.

Some of the heuristics, e.g. simulated annealing, are also very time consuming for large

instances; other very fast heuristics can handle instances with over a million entities. An

example is the efficient implementation by Clauset, Newman and Moore6 of the greedy

agglomerative hierarchical heuristic of Newman21.

While the modularity function has been found to be illuminating in many applications,

some criticisms have been raised5,11,12,18. The main concern appears to be the existence of

a resolution limit: in the presence of large communities, smaller ones may be undetectable

even if they are very dense. More precisely, if the total degree of a community is smaller than

the resolution limit (
√

m/2), then one cannot be sure whether this cluster is actually a single

community or the union of several ones (this phenomenon also occurs in weighted networks3

and for the more general Reichardt and Bornholdt27 function). Observe that in Equation

(2) the number of edges of G within communities, i.e.,
∑

i,j∈V Aij, is divided by twice the

size m of the network, while the expected number of edges
∑

i,j∈V kikj is divided by four

time the square of this number. Consider then increasingly large networks. If their density

remains constant, or in other words if the sum of the degrees increases quadratically with

the order, both terms remain of the same order of magnitude. If the average degree, instead

of the density, remains constant the second term becomes negligible and communities grow

even if there is no change in their neighbourhood within the network.

Several papers address the resolution problem in different ways. Arenas et al.2 propose to

add self-loops of strength r to each vertex, obtaining a modified modularity formula. They
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make a sweep in the range of r, and determine for each r the maximum modularity with

extremal optimization8 or tabu search. Meaningful cluster structures correspond to plateaus

in the plot of the number of clusters versus r. The method is able to disclose the community

structure of several benchmark graphs; as a drawback it is very slow, since the modularity

maximum has to be computed for many values of r.

Reichardt and Bornholdt27 show that it is possible to reformulate the problem of commu-

nity detection as the problem of finding the ground state of a spin glass model. The authors

introduce the following Hamiltonian

H = −
∑

i 6=j

(Aij − γpij) δ(Ci, Cj) (3)

where pij denotes the link probability between communities i and j according to the null

model and γ is a parameter. The modularity Q is related to (3) as Q = −H/m, provided

that γ = 1 and pij =
kikj

2m
. When γ → 0 the minimum energy is obtained when all nodes

are assigned into the same community; in this case H = 2m. When γ ≫ 1 communities

are broken into smaller pieces. Thus, it is possible to explore different resolution levels by

varying the value of the parameter γ.

Ronhovde and Nussinov29 present a technique based on the Potts model similar to that

of Reichardt and Bornholdt27. The main difference is the absence of a null model term. In

a subsequent paper28, the authors introduce a stability criterion for the partitions, based on

the computation of the similarity of partitions obtained for the same γ and different initial

conditions.

Pons and Latapy25 propose a method consisting of the optimization of multiscale quality

functions, including the multiscale modularity

Qα =
∑

i

αeii − (1− α)a2i .

They suggest that the length of the α-range [αmin(C), αmax(C)], for which a community

C appears in a maximum modularity partition, is a good indicator of the stability of the

community. The authors define the relevance function of a community at a scale α and use

it to reveal the most meaningful partitions.

Multi-resolution versions of modularity like (3) and (I) are still affected by

resolution limit. Indeed, they are subject to two conflictual effects: the tendency

to merge small communities, and the tendency to split large communities. Real
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networks are characterized by the coexistence of clusters of very different sizes,

well described by power law distributions. Thus, a single value of the parameter

α able to capture all the structure of the network might not exist. For this

reason we propose a method to solve parametric modularity maximization for

all values of the parameter, in order to identify relevant communities at different

resolution levels.

The paper is organized as follows: in Section II we study the model proposed by Pons

and Latapy25 and present an exact algorithm to find optimal solutions for all values of α as

well as an agglomerative hierarchical heuristic to address parametric modularity detection

in large networks; in Section III computational experiments on artificial and real world

networks are presented. Finally in Section IV we draw some conclusions.

II. ALGORITHMS FOR PARAMETRIC MODULARITY

We consider the following parametric modularity function, as done by Pons and Latapy25.

Qα =
∑

i

αeii − (1− α)a2i , (4)

where 0 ≤ α ≤ 1. The parameter α balances the number of edges within communities and

the expected number of edges within those communities in the null model. The value α = 1
2

corresponds to usual modularity. Brandes et al.4 have proved that modularity maximization

is NP -hard. This immediately implies that the parametric modularity maximization con-

sidered in this paper is also NP -hard. Exact algorithms for modularity maximization1,4,32

are easily extended to the maximization of the parametric modularity Qα for any fixed value

of α. For instance, expressing modularity maximization as a clique partitioning problem,

following1,4,13,14, leads to:

max
∑

i<j∈V

1

m

(

αAij − (1− α)
kikj
2m

)

xij −
∑

i∈V

(1− α)
kiki
2m

s.t. xij + xjk − xik ≤ 1 ∀1 ≤ i < j < k ≤ n

xij − xjk + xik ≤ 1 ∀1 ≤ i < j < k ≤ n

− xij + xjk + xik ≤ 1 ∀1 ≤ i < j < k ≤ n

xij ∈ {0.1} ∀1 ≤ i < j ≤ n

(5)
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where the binary variables xij are associated with the edges of the network and equal to 1 if

and only if the endpoints vi and vj of the corresponding edge belong to the same community.

The set of feasible solutions of (5) corresponds exactly to all partitions into cliques of the

vertex set V . Each such partition corresponds to an equivalence relation on the entities.

Indeed, the corresponding relation satisfies reflexivity (we can assume xii = 1 for each entity

i as the xii do not appear in (5)), symmetry (similarly since (5) only mentions indices i, j with

i ≤ j, we may set xij = xji for i > j, as we consider undirected networks) and transitivity

(encoded by the constraints of (5)). This problem is an Integer Linear Program (ILP) with

one parameter in the objective function.

All optimal solutions of (5) are integer. So at least one optimal solution of (5) is

the result of the maximization of a parametric linear function on the (unknown)

convex hull C of its integer solutions: in other words, a linear program on C,

which is a polyhedron with integer extreme points. It is well known7 that linear

programs always attain at least one of their optima at extreme points of the

polyhedron defined by their constraints. If we fix the variables of (5) to an integer

extreme point vector x̄ of C, the objective function of (5) becomes a linear function of α:

to each extreme point there corresponds therefore a linear function Qα(x̄) in α. For any α,

the optimal solution of (5) is on the upper envelope of this set of linear functions; i.e., on

a convex piecewise linear function. Moreover, this function is monotonically increasing in α

because the derivative of Qα with respect to α is strictly positive (see Fig. 1).

It follows that there is a sequence of consecutive intervals of α (possibly reduced to a

point) such that, for each successive interval, there is a solution of (5) which is optimal in

the whole interval. The problem is then to determine all breakpoints of the curve Qα in

function of α, i.e., the highest points of intersection of the lines Qα(x̄) as functions of α for

a given partition x̄, as α ranges between 0 and 1.

At a generic iteration t of our algorithm, we have a value αt; we solve (5) to find an

optimal partition xt and the corresponding modularity value Qt optimal for αt. Next, we

determine whether αt is the next breakpoint after αt−1: we compute the intersection α∗ of

the two lines at αt−1 and αt defined respectively by Qα(x
t−1) and Qα(x

t) (see Fig. 2, left)

and a corresponding optimal partition x∗ with modularity Q∗, using (5) for α = α∗. Now

there are three cases for Q∗: (a) it is at the top end of the interval of possible values; (b) it

is at the bottom end; (c) it lies between the two interval endpoints (see Fig. 2, right).
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Figure 1. Qα is a monotonically increasing convex piecewise linear function of α.

bottom

top

α

α1 = 0
αt−1 αtα∗ α4 = 1

0

1

Qα

Q0

P ossible positions

of Q∗ at the next

iteration

Figure 2. Finding the next breakpoint. The optimal modularity value must be on the emphasized

segment in the right hand side frame.

In case (a), α∗ is not a breakpoint, so αt is the next breakpoint after αt−1: for, suppose it

is not, then the next breakpoint after αt−1 would be smaller than αt, say α̃ with associated

optimal modularity value Q̃. This breakpoint would define a nonconvex piecewise linear

function Qα, as shown in Fig. 3.

In case (b), α∗ is the next breakpoint after αt−1 and αt is the next breakpoint after

α∗: for suppose there were a different breakpoint α̃ between αt−1 and α∗, then its optimal

modularity value Q̃ would be smaller than Q′ = Qα̃(x
t−1); this would mean that xt−1 is a

better partition than the one corresponding to Q̃, contradicting optimality of Q̃ (see Fig. 4).
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nonconvexity

α̃

Q̃

α∗

αt−1

αtQ∗

Figure 3. A proof sketch for case (a).

The argument when α̃ lies between α∗ and αt is similar.

α̃

Q̃

α∗

αt−1

αt

Q∗
Q0

Figure 4. A proof sketch for case (b).

In case (c), α∗ may or may not be a breakpoint. In such cases, we update αt = α∗

and repeat. The process terminates in finite time because there can only be finitely many

breakpoints.

In general, in order to find a value αt > αt−1, corresponding to a putative breakpoint,

at the next iteration, we use an agglomerative approach: we find the smallest value of α

for which it is worthwhile to merge two communities with at least an inter-community edge

(merging non-adjacent communities cannot improve modularity). This implies finding α

such that:

α = min
rs

{

2aras
ers + 2aras

}

, (6)

where ers is the fraction of edges joining communities r and s, ar and as are the expected

fractions of edges with one endpoint at least in these communities. Indeed, merging com-
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munities r and s gives a larger community with a fraction err + ers+ ess of the edges and an

expected fraction a2r+a2s+2aras of the edges. This is worthwhile for a change in modularity

∆Qα ≥ 0 i.e., ∆Qα = (αers − 2(1− α)aras) ≥ 0, then the equality case leads to (6).

The steps of the exact algorithm are as follows:

1. Initialization. Set t = 1 and αt = 0. Consider the initial solution xt with n commu-

nities each containing one entity and its value Qt = Q0 = −
∑

i

k2i
2m2 . Let the expected

fraction of edges with one entity in community i be equal to ai =
ki
2m

for all commu-

nities i = 1 . . . n. Set eij = 1
m

if an edge joins vertex i to vertex j, with i < j, and

eij = 0 otherwise.

2. Tentative optimal solution. If xt has a single community, print all values of αt, Q
t

and the corresponding partitions xt, then stop. Otherwise, increase t by 1. Consider

the set of all pairs (Cr, Cs) of adjacent communities in the previous partition xt−1.

Compute the new tentative value αt using (6). Let Cr∗ and Cs∗ be the two communities

to be merged at level αt. Obtain xt by replacing Cr∗ and Cs∗ by their union in xt−1

and compute the new value Qαt
(xt) =

∑

s αtess − (1− αt)a
2
s.

3. Optimality test. Find the next breakpoint αt after αt−1 using the arguments above,

and update xt and Qt. Then return to 2.

The algorithm terminates when either αt = 1 or all entities are in the same community.

Termination is guaranteed because αt ≥ αt−1, there is only a finite number of breakpoints

and in case αt = αt−1 one can apply a perturbation technique to avoid cycling.

The algorithm just described uses frequently a routine for clique partitioning, which is an

NP -hard problem. This currently limits the size of instances that can be solved in reasonable

time to a few hundred entities. As many community detection problems are larger, or even

much larger, a heuristic variant is in order. In fact it suffices to remove the optimality test

of the previous algorithm and iterate the tentative optimal solution test until the stopping

condition is satisfied. The resulting heuristic, which we call α-aggregation, is close to the

greedy heuristic proposed by Clauset Newman and Moore6. The objective at each step is

the minimum increase in the value of α which justifies merging in the proposed heuristic,

instead of the maximum increase in modularity in the CNM heuristic. It is important to

note that similar data structures may be used:
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1. A sparse matrix containing eij for each pair i, j of communities with at

least one edge between them. Each row is memorized as a balanced binary

tree.

2. A sparse matrix ᾱ containing the minimum value of α which justifies merg-

ing for each pair i, j of communities with at least one edge between them.

3. A max-heap containing the largest element of each row of the matrix ᾱ and

the labels i, j of the corresponding communities.

4. An ordinary vector array with elements ai.

Hence, the time complexity of the α-aggregation heuristic is O(ml log n), where l

is the depth of the dendrogram describing the community structure.

III. EXPERIMENTS

A. Artificial examples

We have first tested the two version of our algorithm on three well known artificial

examples from the literature. The first one11 consists in a ring of cliques each one joined to

the next by a single edge. Specifically, we consider a ring of 30 cliques with 5 vertices each.

The functions Q∗(α) for the exact algorithm and the α-aggregation heuristic are presented

in Figure 5 and are seen to coincide. The dendrogram of the heuristic is given in Figure

6. While the usual modularity ( which corresponds to α = 1
2
) merges cliques by pairs

of consecutive ones, a partition into 30 cliques is clearly apparent on the dendrogram for

0.031 ≤ α ≤ 0.423.

The second example11 is a graph consisting of two cliques with 20 vertices joined by an

edge plus two small cliques of 5 vertices also joined by an edge and both joined by an edge

to one of the large cliques, see Figure 7. The functions Q∗(α) are presented in Figure 8 and

again coincide. The dendrogram, given in Figure 9, clearly displays the 4 clique partition

for 0.331 ≤ α ≤ 0.375.

The third example2 is a graph represented in Figure 10 which consists of a clique on 10

vertices followed by a chain of stars. The functions Q∗(α) are given in Figure 6 and once

again coincide. There is no value of α for which the optimal partition into 5 communities
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Figure 5. Optimal and heuristic parametric curves of modularity values for the ring of cliques

network.
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Figure 6. Dendrogram generated by the α-aggregation heuristic for the ring of cliques network

(colors online).

is obtained. For α = 0.5 there are 4 communities. However, it is clearly seen that for

0.063 ≤ α ≤ 0.343 one of these communities splits into two.

B. Real world examples

We first consider the classical karate club example of Zachary33. The vertices correspond

to the 34 members of a karate club and the edges to friendship relations between them as

observed over a two year period by Zachary. Moreover, at one stage following a dispute

between the club administrator and the karate teacher, the club split into two. Since then
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-0.5

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Q
*(

α)

α 

optimal parametric curve
heuristic parametric curve

Figure 8. Optimal and heuristic parametric curves of modularity values for the second artificial

network.

Zachary’s data has been very often used to see how well communities detection methods

are able to predict the split. The two Q(α) curves are represented in Figure 13. This

time the heuristic is not always accurate: optimal values are obtained for α ≤ 0.26, i.e.,

in 25 out of 33 cases. The absolute error never exceeded 0.0341 with an average of 0.0042.

The dendrogram summarizing the resolution is given in Figure 14. The partition in two

communities is obtained for 0.5478 ≤ α ≤ 0.7797. It misclassifies two entities, i.e., 10 and

29. Both communities split into two at high level of α, i.e., 0.5301 and 0.5478. The partition

into four communities obtained for α = 1
2
has a modularity value of 0.3893 while the optimal

one is 0.4198. It misclassifies four entities, i.e., 1, 10, 12, 29. Pons and Latapy25 suggest to

consider, among the more general formulas, the length of the interval αmax − αmin between

values of α at which a community is absorbed into a larger one and at which it is formed as

an indicator of its relevance. Following that criterion one observes that in addition to the
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Figure 9. Dendrogram generated by the α-aggregation heuristic for the second artificial network

(colors online).

Figure 10. The third artificial network

four communities obtained for α = 1
2
several other ones are relevant: {1, 5, 6, 7, 11, 12, 17}

which is clearly visible on the network as 1 is a cut vertex and has αmax − αmin = 0.5301−

0.3036 = 0.2265, {2, 18, 20, 22} with αmax − αmin = 0.4507 − 0.2000 = 0.2507, {9, 31}

with αmax − αmin = 0.3936 − 0.1136 = 0.2800, {14} with αmax − αmin = 0.2778 − 0 =

0.2778, {27, 30} with αmax − αmin = 0.2676 − 0.0488 = 0.2188 and {24, 25, 26, 28, 32} with

αmax − αmin = 0.5478− 0.2571 = 0.2907.

Our second example is the Les Misérables data set as compiled by Knuth15. This author

listed the 77 interacting characters in Victor Hugo’s masterpiece. They are represented by

vertices. Two vertices are joined by an edge if and only if the two corresponding characters

interact in at least one of the many, usually short, chapters of the book. The functions Q∗(α)

obtained by both versions of our algorithm are presented in Figure 15. Once again the error

of the heuristic is moderate, i.e., null or negligible in 43 cases out of 76, never larger than

0.0251 and equal to 0.0015 on average. The number of communities as a function of α is

represented in Figure 17: it appears that most mergings take place for a value of α ≤ 0.3.

There are 9 communities for α = 0.3. In order to evaluate if these communities correspond
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Figure 11. Optimal and heuristic parametric curves of modularity values for the third artificial

network.
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Figure 12. Dendrogram generated by the α-aggregation heuristic for the third artificial network

(colors online).

to observable groups of characters in the novel we examine them in turn, seeing also how

they have been obtained.

A first community is obtained for 0.0912 ≤ α ≤ 0.7602 and includes the first 10 characters.

These are bishop Myriel, his servants Mlle Baptistine and Mme Magloire and various persons

encountered at some time during his long life: Napoleon, the countess Delo, Geborand, the

marquise de Champtercier, Cravatte, the count and an old man. The vertices corresponding

to these characters form a star centered around bishop Myriel with the exception of vertices

associated with his servants which are also joined together and to one entity from another
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Figure 13. Optimal and heuristic parametric curves of modularity values for the Zachary network.
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Figure 14. Dendrogram generated by the α-aggregation heuristic for the Zachary network (colors

online).

community. Consequently they merge with the other members of the group at a higher level,

i.e., α = 0.0912.

A second community is obtained for 0.2203 ≤ α ≤ 0.3618. It consists of 9 vertices

corresponding to the former convict (and hero) Jean Valjean, and to characters he meets

just after being released from jail, which often do not treat him well: the innkeeper Labarre,

the marquise de R, the baker Isabeau, a small boy Petit Gervais and the horse merchant

Scaufflaire. The next three characters are met later: the aged notary Fauchelevent, the

gravedigger Gribier and mother Innocent, prioress of a convent.

A third community is obtained for 0.1749 ≤ α ≤ 0.3618 and regroups 5 characters:
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the young heroin Cosette, the three servants appointed by Jean Valjean to protect her

(Toussaint, woman 1, woman 2) and Valjean’s archenemy the policeman Javert, always hot

on his tracks.

A fourth community is obtained for 0.0863 ≤ α ≤ 0.4730 and corresponds to the 6 protag-

onists of the Champmathieu affair: the juror Bamatabois, the judge, the thief Champmath-

ieu wrongly believed to be Jean Valjean and the convicts Brevet, Chenildieu and Cochepaille.

A fifth community is obtained for 0.2263 ≤ α ≤ 0.6015 and corresponds to the 10 mem-

bers of the circle of the evil innkeeper Thenardier: himself, his family (Mme Thenardier and

their daughters Anzelma and Eponine) and the bandits with which he associates (Boulatru-

elle, Gueulemer, Montparnasse, Brujon, Babel and Claquesous).

A sixth community is obtained for 0.2480 ≤ α ≤ 0.7404 and regroups the heroin Fantine,

her friends Favourite, Dahlia and Zephine, the four Parisian students Tholomyes, Listolier,

Fameuil and Blacheville who love them and then abandon them, as well as three women who

help Fantine after her downfall (Mme Marguerite and the sisters Perpetue and Simplice).

A seventh community is obtained for 0.1732 ≤ α ≤ 0.6129 and regroups members of

the noble family of the hero Marius (Pontmercy, Mme Pontmercy, Mme Gillenormand, Mlle

Gillenormand, Lt Gillenormand) their friends (Mlle Vaubois and baroness T), and their

servant Magnon.

An eighth community is obtained for 0.1331 ≤ α ≤ 0.3935 and regroups the street urchin

Gavroche, his father Jondrette, two (unnamed) children and the landlady Mme Burgon.

Finally, a ninth community is obtained for 0.2761 ≤ α ≤ 0.3935 and corresponds to mem-

bers of the friends of the ABC society (Enjolras, Combeferre, Pouvaire, Feuily, Courfeyrac,

Bahorel, Grantaire and Joly), the innkeeper Mme Hucheloup, and their friends (the church

prefect Mabeuf and his maid Mother Plutarch).

These nine communities are shown in Fig. 19.

The second and third communities join to form a tenth community at level α =

0.3618 with 14 members due to interactions such as Jean Valjean saving Cosette from

the Thenardiers. The eighth and ninth communities merge into an eleventh community at

level α = 0.3935 due to Gavroche meeting the friends of the ABC during the days on the

barricades of the 1830 revolution. The tenth community merges with the fourth one at level

α = 0.4730 to form a twelfth community, notably due to Jean Valjean intervening in the

Champmathieu trial under the name of Monsieur Madeleine. The twelfth community merges
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with the fifth one at level α = 0.6015 due to Jean Valjean fighting with the Thenardier

bandits. The eleventh community merges with the seventh one at level α = 0.6128 to form a

thirteenth community due to Marius joining the revolutionaries. The first community joins

the twelfth community at level α = 0.7602 to form a fourteenth community due to the char-

itable attitude of bishop Myriel, which leads Jean Valjean on the path to redemption. The

fourteenth community joins the sixth one at level α = 0.7904 to form a fifteenth community

due to Jean Valjean helping Fantine. Finally the fifteenth community joins the thirteenth

one to form a single community with all characters at level α = 0.8293.

The dendrogram for the CNM heuristic applied to the same data set is presented in

Figure 18. Here the ordinates represent the number of steps of the algorithm rather than

the values of α. We compare the nine last communities to be merged in the results of both

heuristics. While the 9 communities obtained for α = 0.3 with the α-aggregation heuristic

appear to be fairly well balanced, with a number of characters between 5 and 11, a similar

result does not hold for the 9 last communities obtained with CNM and represented in

Fig. 20. Indeed, their cardinalities are: 24, 1, 1, 15, 12, 1, 6, 2 and 15. So on the one hand

three isolated individuals and a cluster of only two are obtained and on the other hand some

large non homogeneous communities with up to 24 individuals are found. There are just

a few similitudes between the communities obtained by both heuristics. For instance the

17th rightmost characters on the dendrogram correspond to the union of the two rightmost

communities obtained by the two heuristics. The best modularity partition obtained by

CNM has five communities with 26, 15, 13, 6 and 17 entities and a modularity value of

0.5006

C. Classical modularity

As a final test, we compared the values for the classical modularity given by CNM and

by the α-aggregation heuristic for α = 1
2
on 10 test problems for which the optimal value of

modularity is known1 and on 5 larger networks. Results are reported in Table I. The

new heuristic gives a better solution than CNM in 11 cases out of 15 and the difference in

performance appear to increase with the size of the large networks. The average modularity

of CNM is 0.6064 and 0.6198 for our heuristic. Note that both heuristics never found the

optimal solution which was to be expected as they are simple greedy procedures. As they
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Figure 15. Optimal end heuristic parametric curves of modularity values for Les Misérables net-

work.
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Figure 16. Dendrogram generated by the α-aggregation heuristic for Les Misérables network (colors

online).

are very quick one might run them both and take the best solution: this raises the average

modularity to 0.6240. We also tested the stability of the α-aggregation heuristic

against small modifications of the graphs. For each test problem, 10 new graphs

have been generated by a single rewire. Average results are displayed in the last
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Figure 19. The nine communities identified by the α-aggregation heuristic for the Les misérables

network (colors online).

Figure 20. The nine communities identified by the CNM heuristic for Les Misérables network

(colors online).
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CNM α-aggregation single rewire

File n m Best known Q Q time (s) Avg. ∆Q % Avg. time

Zachary 34 78 0.4198 0.3807 0.3893 0.00 2.28 0.00

Dolphins 62 159 0.5285 0.4954 0.5178 0.00 1.71 0.00

Les Misérables 77 254 0.5600 0.5006 0.5524 0.00 0.94 0.00

protein p53 104 226 0.5351 0.5227 0.5065 0.00 0.80 0.00

books about US politics 105 441 0.5272 0.5019 0.5036 0.00 0.51 0.00

American College Football 115 613 0.6046 0.5497 0.5690 0.00 1.32 0.00

A01 main 249 635 0.6329 0.6071 0.5695 0.01 0.57 0.00

USAir97 332 2126 0.3682 0.3190 0.3435 0.02 0.11 0.01

netscience main 379 914 0.8486 0.8386 0.8364 0.01 0.14 0.01

Electronic circuit (s838) 512 819 0.8194 0.7976 0.7905 0.00 0.33 0.01

Erdos02 6927 11850 0.7162 0.6703 0.6850 2.18 0.03 2.27

PGPgiantcompo 10680 24316 0.8841 0.8521 0.8628 18.04 0.01 17.94

as-22july06 22936 48436 0.6750 0.6351 0.6418 80.48 0.00 80.20

DIC28 main 24831 71014 0.8468 0.7887 0.8069 147.61 0.03 146.93

cond-mat-2003 main 27519 116181 0.8146 0.6362 0.7220 205.59 0.01 207.36

Table I. Classical modularity. Optimal or best known solution, CNM solution, α-aggregation heuristic solution and computational time for

15 real-world networks; average difference in modularity and average computational time for small modifications of the network.
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α values for which they are optimal. We also propose an agglomerative hierarchical heuris-

tic, with the same time and space complexity as the Clauset Newman Moore heuristic6,

to address large networks. It iteratively merges communities for increasing values of α.

Experimental results show that (i) both the exact algorithm and the α-aggregation heuris-

tic effectively detect communities for all values of the parameter α; (ii) the dendrogram

produced by the heuristic method provides a useful tool for substantive analysis; (iii) the

difference between the parametric modularity values given by the exact algorithm and by the

α-aggregation heuristic is moderate; (iv) for large instances the heuristic version of the pro-

posed parametric method gives better results than the CNM heuristic for the maximization

of the classical modularity.

1 D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, S. Perron, and L. Liberti. Column generation

algorithms for exact modularity maximization in networks. Phys. Rev. E, 82:046112, Oct 2010.
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