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How to prove that ?

void main() {
i = 1; j = 10;
while (i <= j){ //1
i = i + 2;
j = j - 1; }

}

i ≤ +∞
i ≥ 1

j ≤ 10

j ≥ −∞
i ≤ j

i+ 2j ≤ 21

i+ 2j ≥ 21

(i, j) ∈ [(1, 10), (7, 7)] (exact result).
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A possible implementation of the C standard library function memcpy

int i := 0;
unsigned int n, p, q;
string dst[p], src[q];
assert p >= n && q >= n;
while i <= n-1 do
dst[i] := src[i];
i := i+1;

done;

How to prove that ?

min(len src, n) = min(len dst, n)
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Bubble sort

Variables: i, j, k, x, y, z

Program:
local t {
i:=x;
j:=y;
k:=z;
if x > y then
i:=y;

j:=x;
fi;
if j > z then
k:=j;
j:=z;

fi;
if i > j then
t:=j;
j:=i;
i:=t;

fi;
};

How to prove that ?

k = max(x,y,z);
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or even that. . .

-y = max(-k,-y); max(-k,-z) = -z; max(-j,-x,-z) = max(-x,-z);
-j = max(-j,-k); max(-y,-z) = max(-j,-y,-z); max(j,y,z) = max(y,z);
z = max(i,z); -x = max(-k,-x); max(-x,-y) = max(-j,-x,-y); -i = max(-i,-x);
max(-x,-y,-z) = max(-i,-k); x = max(i,x); max(j,x,z) = max(x,z);
max(i,y) = y; max(j,x,y) = max(x,y); j = max(i,j); k = max(x,y,z)
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Answer:

convex analysis (including generalized convexity)

and zero-sum games
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Since Cousot and Halbwachs (POPL’78), polyhedra have

been used in static analysis by abstract interpretation:

show that for any reachable state of the program, the vector

consisting of the variables at the different breakpoints belongs

to a polyhedron.

repeatedly perform some basic operations: intersection,

convex hull (e.g. of union), image by an affine map

strongly relies on convex duality

BUT the number of extreme points or faces may grow

exponentially
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→ not scalable

Some restricted classes of polyhedra have been introduced.

Miné (PADO’01) used Zones

Z = {x ∈ Rn | xi − xj ≤Mij}

a zone is coded by the matrix M ∈ (R ∪ {+∞})n×n.

by setting x0 := 0 and projecting, we see that Zones ⊃
Intervals.

S. Sankaranarayanan and H. Sipma and Z. Manna

(VMCAI’05) introduced templates:

almost as expressive as polyhedra but scalable.
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I’ll give a convex analytic view of templates.

The support function σX of X ⊂ Rn is defined by

σX(p) = supx∈X p · x

Legendre-Fenchel duality tells that σX = σY iff X and Y

have the same closed convex hull.

σX(αp) = ασX(p) for α > 0, so it is enough to know σX(p)
for all p in the unit sphere.

Idea: discretize the unit sphere and represent X by σX
restricted to the discretization points.
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So fix P ⊂ Rn a finite set of directions.

L(P) lattice of sets of the form

Z = {x | p · x ≤ γ(p), ∀p ∈ P}, γ : P → R ∪ {+∞}.

Z is coded by γ := σZ |P.

Z is a polyhedron every facet of which is orthogonal to some

p ∈ P.

Specialization: P = {±ei, i = 1, . . . , n} gives intervals,

P = {±(ei − ej), 1 ≤ i < j ≤ n} gives Miné’s templates.
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void main() {
i = 1; j = 10;
while (i <= j){ //1
i = i + 2;
j = j - 1; }

}

i ≤ +∞
i ≥ 1

j ≤ 10

j ≥ −∞
i ≤ j

i+ 2j ≤ 21

i+ 2j ≥ 21
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void main() {
i = 1; j = 10;
while (i <= j){ //1
i = i + 2;
j = j - 1; }

}

γ(e1) = +∞
γ(−e1) = −1

γ(e2) = 10

γ(−e2) = −∞
γ(e1 − e2) = 0

γ(e1 + 2e2) = 21

γ(−e1 − 2e2) = −21 .

P = {±e1,±e2, e1 − e2,±(e1 + 2e2)}, γ: breakpoint 1.
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To show this, we must solve the fixed point problem:

γ(p) = ((1, 10) · p) ∨ (γ̄(p) + (2,−1) · p), ∀p ∈ P \ {e1 − e2}
γ(e1 − e2) = 0 ∧ (−9 ∨ (γ̄(e1 − e2)− 3)), γ̄ = convex hull(γ)

void main() {
i = 1; j = 10;
while (i <= j){ //1
i = i + 2;
j = j - 1; }

}
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Correspondence theorem (SG, Goubault, Taly, Zennou,

ESOP’07) When the arithmetics of the program is affine (no

product or division of variables), abstract interpretation over a

lattice of templates reduces to finding the smallest fixed point

of a map f : (R ∪ {+∞})n→ (R ∪ {+∞})n of the form

fi(x) = inf
a∈A(i)

sup
b∈B(i,a)

(rabi +Mab
i x)

with Mab
i := (Mab

ij ), Mab
ij ≥ 0, but possibly

∑
jM

ab
ij > 1

→ game in infinite horizon with a “negative discount rate”.
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Sketch of proof.

y = Ax+ b; If x ∈ Z1 := {z | p ·z ≤ γ1(z), ∀p ∈ P}, find

the best Z2 := {z | p · z ≤ γ2(z), ∀p ∈ P} such that y ∈ Z2.

γ2(p) = supx∈Z1 p · (Ax + b) = sup p · (Ax + b); p · x ≤
γ1(p), ∀p ∈ P

by the strong duality theorem

= inf p · b +
∑
q∈P λ(q)γ1(q); λ(q) ≥ 0, ATp =∑

q∈P λ(q)q

The inf is attained at an extreme point of the feasible set,

so this is in fact a min over a finite set.
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σX∩Y = convex hull(inf(σX, σY )).

Convex hull reduces to a finite min by a similar argument.

Modelling the dataflow yields maxima, because σX∪Y =
sup(σX, σY )
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Generalization of templates (Adje, SG, Goubault, Putot,

current investigation):

Z = {x | p(x) ≤ γ(p), ∀p ∈ P}

p is now a non-linear map (e.g. quadratic, e.g. Lyapunov

function). The fixed point operator involves SDP relaxations

(could even use SOS).
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How to solve the fixed point problem ?

Classically: Kleene (fixed point iteration) is slow or may

even not converge, so widening and narrowing have been used,

leading to an overapproximation of the solution.

An alternative: Policy iteration.

method developed by Howard (60) in stochastic control,

extended by Hofman and Karp (66) to some special

(nondegenerate) stochastic games. Extension to Newton

method =⇒ fast. complexity still open.

extended by Costan, SG, Goubault, Martel, Putot, CAV’05)

to fixed point problems in static analysis (difficulty: what are
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the strategies?)

experiments: PI often yields more accurate fixed points

(because it avoids widening), small number of iterations.
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A strategy is a map π which to a state i associates an

action π(i) ∈ A(i).

Consider the one player dynamic programming operator:

fπi (x) := sup
b∈B(i,π(i))

(rπ(i)b
i +M

π(i)b
i x)

f = inf
π
fπ
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and the set {fπ | π strategy } has a selection:

∀v ∈ Rn, ∃π f(v) = fπ(v) .

Since fπ is convex and piecewise affine, finding the smallest

finite fixed point of fπ (if any) can be done by linear

programming:

min
∑
i

vi; fπ(v) ≤ v .
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Costan, SG, Goubault, Martel, Putot (CAV’05) show that

the smallest fixed point of f is the infimum of the smallest

fixed points of the fπ.

We denote by f− the smallest fixed point of a monotone self-

map f of a complete lattice L, whose existence is guaranteed

by Tarski’s fixed point theorem.

The input of the following algorithm consists of a finite set

G of monotone self-maps of a lattice L with a lower selection.

When the algorithm terminates, its output is a fixed point of

f = inf G.
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1. Initialization. Set k = 1 and select any map g1 ∈ G.

2. Value determination. Compute a fixed point xk of gk.

3. Compute f(xk).

4. If f(xk) = xk, return xk.

5. Policy improvement. Take gk+1 such that f(xk) = gk+1(xk).

Increment k and goto Step 2.

The algorithm does terminate when at each step, the

smallest fixed-point of gk, xk = g−k is selected.
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Example. Take L = R, and consider the self-map of L,

f(x) = inf1≤i≤mmax(ai + x, bi) , where ai, bi ∈ R. The

set G consisting of the m maps x 7→ max(ai + x, bi) admits a

lower selection.

g2

g1

x2 x1 x

y

x2 x3 x11
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Experimentally fast, but the worst case complexity is not

known. Condon showed: mean payoff games is in NP ∩ co-NP,

same with positive discount. Much current work: (Zwick,

Paterson, TCS 96), (Jurdziński, Paterson, Zwick, SODA’06),

(Bjorklund, Sandberg, Vorobyov, preprint 04),

PI often more accurate than Klenne+widening/narrowwing:
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0 i = 150;
1 j = 175;
2

while (j >= 100){
3 i++;
4 if (j<= i){
5

i = i - 1;
6

j = j - 2;
7 }
8 }
9

M0 = context initialization
M2 = (Assignment (i← 150, j ← 175)(M0))∗

M3 = ((M2 tM8) u (j ≥ 100))∗

M4 = (Assignment (i← i+ 1)(M3))∗

M5 = (M4 u (j ≤ i))∗

M7 = (Assignment (i← i− 1, j ← j − 2)(M5))∗

M8 = ((M4 u (j > i))∗ tM7

M9 = ((M2 tM8) u (j < 100))∗
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IP


150 ≤ i ≤ 174
98 ≤ j ≤ 99

−76 ≤ j − i ≤ −51
Mine’s Octogon


150 ≤ i

98 ≤ j ≤ 99
j − i ≤ −51
248 ≤ j + i
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SG, Dhingra (Valuetools’06). Sparse bipartite graphs. n nodes of each kind,

every node has exactly 2 successors drawn at random; , deterministic game, random

weights. Number of iterations of minimizer Nmin is shown:

0 50000 100000 150000 200000 250000 300000 350000 400000
0

10

20

30

40

50

60
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Difficulty

PI may return a nonminimal fixed point.

We know there is a policy yielding the minimal fixed point.

How to find it?
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Theorem. Adje, SG, Goubault (MTNS’08, to appear).

If f is nonexpansive (1-Lip) in the sup-norm, i.e., if there is

no negative discount rate, we can refine PI so that it always

finds the smallest fixed point.

Relies on: in finite dimension, the fixed point set of a

nonexpansive map is a retract of the whole space.

If negative discount is allowed, the fixed point set may

be disconnected, we can always reach a locally minimal fixed

point. . .

finding efficiently the globally minimal one is an open

question.
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int x,int y,
x=[0,2];y=[10,15] //1
while (x<=y) { //2
x=x+1; //3
while (5<=y) { //4
y=y-1; //5

} //6
} //7

(x1, y1) = ([0, 2], [10, 15])

x2 = (x1 ∪ x6) ∩ [−∞, (y1 ∪ y6)
+

]

y2 = (y1 ∪ y6) ∩ [(x1 ∪ x6)
−
,+∞]

(x3, y3) = (x2 + [1, 1], y2)

(x4, y4) = (x3, (y3 ∪ y5) ∩ [5,+∞])

(x5, y5) = (x4, y4 + [−1,−1])

(x6, y6) = (x5, (y3 ∪ y5) ∩ [−∞, 4])

x7 = (x1 ∪ x6) ∩ [(y1 ∪ y6)
−

+ 1,+∞]

y7 = (y1 ∪ y6) ∩ [−∞, (x1 ∪ x6)
+ − 1]
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The monotone nonexpansive piecewise affine map f for the bounds of these intervals is:

f

„
x
y

«
= f

0BBBBBBBBBBBBBBBBBBBBB@

x−2
x+

2
x−7
x+

7
y−2
y+

2
y−4
y+

4
y−6
y+

6
y−7
y+

7

1CCCCCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBBBBBBB@

0 ∨ (x−2 − 1)

2 ∨ (x+
2 + 1) ∧ 15 ∨ y+

6

0 ∨ (x−2 − 1) ∧ (−10 ∨ y−6 )− 1

0 ∨ (x+
2 + 1)

0 ∨ (x−2 − 1) ∧ −10 ∨ y−6
15 ∨ y+

6
y−2 ∨ (y−4 + 1) ∧ −5

y+
2 ∨ y+

4 − 1

y−2 ∨ y−4 + 1

y+
2 ∨ (y+

4 − 1) ∧ 4

−10 ∨ y−6
15 ∨ y+

6 ∧ (2 ∨ (x+
2 + 1))− 1

1CCCCCCCCCCCCCCCCCCCCCCCA
The underlined terms represent the initial Policy. We find (x̄, ȳ) =
(0, 15,−1, 16, 0, 15,−5, 15, 0, 4, 0, 15): it is a fixed point of f , and so policy iteration terminates in
one step.

We calculate the semidifferential at (x̄, ȳ) in the direction (δx, δy).

31



f ′(x̄,ȳ) (δx̄, δȳ) =
“

0, 0, δx̄−2 ∧ δȳ
−
6 , δx̄

+
2 , 0 ∧ δȳ

−
6 , 0, 0, δȳ

+
2 , δȳ

−
2 , 0, δȳ

−
6 , 0 ∧ δx̄

+
2 ,
”

The power algorithm gives us h = (0, 0,−1, 0,−1, 0, 0, 0,−1, 0,−1, 0) (computed from the iterates
of the vector with all coordinates equal to −1). We know that there is an integer t < 0 such that
(x̄, ȳ)− th is a fixed point of f .

f((x̄, ȳ)− th) = f

0BBBBBBBBBBBBBBBBBBB@

0
15

−1 + t
16
t

15
−5
15
t
4
t

15

1CCCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBBB@

0
15

0 ∧ (−10 ∨ t)− 1
16

0 ∧ −10 ∨ t
15

t ∨ −4 ∧ −5
15

t ∨ −4
4

−10 ∨ t
15

1CCCCCCCCCCCCCCCCCCCA
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The smallest such t is -4. We find a new fixed point (ũ, ṽ) =
(0, 15,−5, 16,−4, 15,−5, 15,−4, 4,−4, 15) for f . The semidifferential at (ũ, ṽ) is then:

f ′(ũ,ṽ) (δũ, δṽ) =
“

0, 0, δṽ−6 , δũ
+
2 , δṽ

−
6 , 0, 0, δṽ

+
2 , δṽ

−
2 ∨ δṽ

−
4 , 0, δṽ

−
6 , 0 ∧ δũ

+
2

”

The power algorithm returns 0 (again with iterates of the vector identically equal to -1) , we conclude
that (x̄, ȳ) is the smallest fixed point of f .
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Exotic domains in static analysis . . .

max-plus or tropical convex sets

(Allamigeon, SG, Goubault, SAS’08 to appear)
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A subset C of (R ∪ {−∞})n is max-plus convex if

x, y ∈ C, λ, µ ∈ R =⇒ sup(λ+ x, µ+ y) ∈ C .

u1

v1

u2

v2

u3

v3

z

v1

v2

v3

v4

Considered by U. Zimmermann (77), Cohen, SG, Quadrat (00),

Sturmfels, Develin (04), +recent: Katz, Horvath, Sergeev, Meunier, . . .
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Separation theorem, projection, minimisation of distance,

discrete convexity (Helly, Carathéodory), Minkowski, Krein-

Milman, or Choquet theory (generation by extreme points)

carry over.

Ex. Separation of two convex sets, SG & Sergeev (07):
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A max-plus polyhedron is the sum of a max-plus polytope

and a max-plus polyhedral cone, or equivalently, the intersection

of finitely many half-spaces

H = {x | max
i
ai + xi ≤ max

i
bi + xi} .

Fourier-Motzkin type algorithms work.

As for classical polyhedra, passing from generators to

constraints and vice versa is simply exponential.
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In Allamigeon, SG, Goubault (SAS’08, to appear), we handle max-plus polyhedra

coded by constraints: Kleene iteration with Cousot’s widening. This is how we got:

Variables: i, j, k, x, y, z

Program:
local t {
i:=x;
j:=y;
k:=z;
if x > y then

i:=y;

j:=x;
fi;
if j > z then
k:=j;
j:=z;

fi;
if i > j then
t:=j;
j:=i;
i:=t;

fi;
};

-y = max(-k,-y); max(-k,-z) = -z; max(-j,-x,-z) = max(-x,-z);
-j = max(-j,-k); max(-y,-z) = max(-j,-y,-z); max(j,y,z) = max(y,z);
z = max(i,z); -x = max(-k,-x); max(-x,-y) = max(-j,-x,-y); -i = max(-i,-x);
max(-x,-y,-z) = max(-i,-k); x = max(i,x); max(j,x,z) = max(x,z);
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max(i,y) = y; max(j,x,y) = max(x,y); j = max(i,j); k = max(x,y,z)
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Concluding remarks

- Open complexity/algorithmic issue: smallest fixed point of

a Shapley operator, with negative discount.

- Optimal complexity for handling max-plus polyhedra not

yet known.

- General use of nonconvex domains in static analysis, with

SDP or SOS relaxations: to be done (see already work by

Feron, also current work by Monniaux).

That’s all. . .
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