Problems of optimisation and game theory in static analysis of programs

Stéphane Gaubert
INRIA

Stephane.Gaubert@inria.fr

OPTIMEO day, Palaiseau, April 42008

Joint work with: Éric Goubault, Sylvie Putot, Assale Adje (CEA/MeASI) and Xavier Allamigeon (EADS)

How to prove that?

$$
\begin{aligned}
& i \leq+\infty \\
& i \geq 1 \\
& \text { void main() \{ } \\
& j \leq 10 \\
& \text { while (i <= j) \{ //1 } \\
& j \geq-\infty \\
& \text { i = i + 2; } \\
& j=j-1 ;\} \\
& \text { \} } \\
& \text { i = 1; j = 10; } \\
& i \leq j \\
& i+2 j \leq 21 \\
& i+2 j \geq 21 \\
& (i, j) \in[(1,10),(7,7)] \text { (exact result). }
\end{aligned}
$$

A possible implementation of the C standard library function memcpy

```
int i := 0;
```

unsigned int $n, p, q ;$
string dst [p], src[q];
assert $\mathrm{p}>=\mathrm{n}$ \&\& $\mathrm{q}>=\mathrm{n}$;
while $i<=n-1$ do
dst[i] := src[i];
i $:=i+1 ;$
done;

How to prove that?

$$
\min (\text { len_src }, \mathrm{n})=\min (\text { len_dst }, \mathrm{n})
$$

Bubble sort

Variables: i, j, k, x, y, z
Program:
local t \{
i:=x;
j:=y;
k:=z;
if x > y then
i:=y;

How to prove that?
$\mathrm{k}=\max (\mathrm{x}, \mathrm{y}, \mathrm{z}) ;$

$$
\begin{aligned}
& j:=x ; \\
& \text { fi; } \\
& \text { if } j>z \text { then } \\
& k:=j ; \\
& j:=z ; \\
& \text { fi; } \\
& \text { if } i>y \text { then } \\
& \text { t:=j; } \\
& j:=i ; \\
& \text { i:=t; } \\
& \text { fi; } \\
& \text { \}; }
\end{aligned}
$$

or even that. . .

```
-y = max (-k, -y); max(-k,-z) = -z; max (-j,-x,-z) = max (-x,-z);
    -j = max(-j,-k); max(-y,-z) = max(-j,-y,-z); max(j,y,z) = max (y,z);
    z = max(i,z); -x = max (-k,-x); max (-x,-y) = max (-j,-x,-y); -i = max (-i,-x);
    max(-x,-y,-z) = max(-i,-k); x = max(i,x); max(j,x,z) = max(x,z);
    max(i,y) = y; max(j,x,y) = max(x,y); j = max(i,j); k = max(x,y,z)
```


Answer:
 convex analysis (including generalized convexity) and zero-sum games

Since Cousot and Halbwachs (POPL'78), polyhedra have been used in static analysis by abstract interpretation:
show that for any reachable state of the program, the vector consisting of the variables at the different breakpoints belongs to a polyhedron.
repeatedly perform some basic operations: intersection, convex hull (e.g. of union), image by an affine map
strongly relies on convex duality
BUT the number of extreme points or faces may grow exponentially
\rightarrow not scalable
Some restricted classes of polyhedra have been introduced. Miné (PADO'01) used Zones

$$
Z=\left\{x \in \mathbb{R}^{n} \mid x_{i}-x_{j} \leq M_{i j}\right\}
$$

a zone is coded by the matrix $M \in(\mathbb{R} \cup\{+\infty\})^{n \times n}$.
by setting $x_{0}:=0$ and projecting, we see that Zones \supset Intervals.
S. Sankaranarayanan and H. Sipma and Z. Manna (VMCAI'05) introduced templates:
almost as expressive as polyhedra but scalable.

I'll give a convex analytic view of templates.
The support function σ_{X} of $X \subset \mathbb{R}^{n}$ is defined by

$$
\sigma_{X}(p)=\sup _{x \in X} p \cdot x
$$

Legendre-Fenchel duality tells that $\sigma_{X}=\sigma_{Y}$ iff X and Y have the same closed convex hull.
$\sigma_{X}(\alpha p)=\alpha \sigma_{X}(p)$ for $\alpha>0$, so it is enough to know $\sigma_{X}(p)$ for all p in the unit sphere.

Idea: discretize the unit sphere and represent X by σ_{X} restricted to the discretization points.

So fix $\mathcal{P} \subset \mathbb{R}^{n}$ a finite set of directions.
$L(\mathcal{P})$ lattice of sets of the form
$Z=\{x \mid p \cdot x \leq \gamma(p), \forall p \in \mathcal{P}\}, \quad \gamma: \mathcal{P} \rightarrow \mathbb{R} \cup\{+\infty\}$.
Z is coded by $\gamma:=\left.\sigma_{Z}\right|_{\mathcal{P}}$.
Z is a polyhedron every facet of which is orthogonal to some $p \in \mathcal{P}$.

Specialization: $\mathcal{P}=\left\{ \pm e_{i}, i=1, \ldots, n\right\}$ gives intervals, $\mathcal{P}=\left\{ \pm\left(e_{i}-e_{j}\right), 1 \leq i<j \leq n\right\}$ gives Miné's templates.

$$
\begin{array}{lr}
& i \leq+\infty \\
\text { void main() } & i \geq 1 \\
\text { i }=1 ; j=10 ; & j \leq 10 \\
\text { while }(i<=j)\{/ / 1 & j \geq-\infty \\
\begin{array}{l}
\text { i }=1+2 ; \\
j=j-1 ;\} \\
\text { j }
\end{array} & i \leq j \\
& i+2 j \leq 21 \\
i+2 j \geq 21
\end{array}
$$

$$
\begin{array}{lr}
& \gamma\left(e_{1}\right)=+\infty \\
\text { void main() }\{ & \gamma\left(-e_{1}\right)=-1 \\
\text { i }=1 ; j=10 ; & \gamma\left(e_{2}\right)=10 \\
\text { while }(i<=j)\{1 / 1 & \gamma\left(-e_{2}\right)=-\infty \\
\text { i }=1+2 ; & \gamma\left(e_{1}-e_{2}\right)=0 \\
\text { j }=j-1 ;\} & \gamma\left(e_{1}+2 e_{2}\right)=21 \\
\text { \} } & \gamma\left(-e_{1}-2 e_{2}\right)=-21 .
\end{array}
$$

$\mathcal{P}=\left\{ \pm e_{1}, \pm e_{2}, e_{1}-e_{2}, \pm\left(e_{1}+2 e_{2}\right)\right\}, \gamma$: breakpoint 1.

To show this, we must solve the fixed point problem:

$$
\begin{aligned}
\gamma(p) & =((1,10) \cdot p) \vee(\bar{\gamma}(p)+(2,-1) \cdot p), \forall p \in \mathcal{P} \backslash\left\{e_{1}-e_{2}\right\} \\
\gamma\left(e_{1}-e_{2}\right) & =0 \wedge\left(-9 \vee\left(\bar{\gamma}\left(e_{1}-e_{2}\right)-3\right)\right), \quad \bar{\gamma}=\operatorname{convex} \operatorname{hull}(\gamma)
\end{aligned}
$$

void main() \{

$$
i=1 ; j=10 ;
$$

while (i <= j) \{ //1

$$
i=i+2 ;
$$

$$
j=j-1 ;\}
$$

\}

Correspondence theorem (SG, Goubault, Taly, Zennou, ESOP'07) When the arithmetics of the program is affine (no product or division of variables), abstract interpretation over a lattice of templates reduces to finding the smallest fixed point of a map $f:(\mathbb{R} \cup\{+\infty\})^{n} \rightarrow(\mathbb{R} \cup\{+\infty\})^{n}$ of the form

$$
f_{i}(x)=\inf _{a \in A(i)} \sup _{b \in B(i, a)}\left(r_{i}^{a b}+M_{i}^{a b} x\right)
$$

with $M_{i}^{a b}:=\left(M_{i j}^{a b}\right), M_{i j}^{a b} \geq 0$, but possibly $\sum_{j} M_{i j}^{a b}>1$
\rightarrow game in infinite horizon with a "negative discount rate".

Sketch of proof.
$y=A x+b ;$ If $x \in Z^{1}:=\left\{z \mid p \cdot z \leq \gamma^{1}(z), \forall p \in \mathcal{P}\right\}$, find the best $Z^{2}:=\left\{z \mid p \cdot z \leq \gamma^{2}(z), \forall p \in \mathcal{P}\right\}$ such that $y \in Z^{2}$.

$$
\gamma^{2}(p)=\sup _{x \in Z^{1}} p \cdot(A x+b)=\sup p \cdot(A x+b) ; p \cdot x \leq
$$ $\gamma^{1}(p), \forall p \in \mathcal{P}$

by the strong duality theorem
$=\inf p \cdot b+\sum_{q \in \mathcal{P}} \lambda(q) \gamma^{1}(q) ; \quad \lambda(q) \geq 0, \quad A^{T} p=$ $\sum_{q \in \mathcal{P}} \lambda(q) q$

The inf is attained at an extreme point of the feasible set, so this is in fact a min over a finite set.
$\sigma_{X \cap Y}=\operatorname{convex} \operatorname{hull}\left(\inf \left(\sigma_{X}, \sigma_{Y}\right)\right)$.
Convex hull reduces to a finite min by a similar argument.
Modelling the dataflow yields maxima, because $\sigma_{X \cup Y}=$ $\sup \left(\sigma_{X}, \sigma_{Y}\right)$

Generalization of templates (Adje, SG, Goubault, Putot, current investigation):

$$
Z=\{x \mid p(x) \leq \gamma(p), \forall p \in \mathcal{P}\}
$$

p is now a non-linear map (e.g. quadratic, e.g. Lyapunov function). The fixed point operator involves SDP relaxations (could even use SOS).

How to solve the fixed point problem ?

Classically: Kleene (fixed point iteration) is slow or may even not converge, so widening and narrowing have been used, leading to an overapproximation of the solution.

An alternative: Policy iteration.
method developed by Howard (60) in stochastic control, extended by Hofman and Karp (66) to some special (nondegenerate) stochastic games. Extension to Newton method \Longrightarrow fast. complexity still open.
extended by Costan, SG, Goubault, Martel, Putot, CAV'05) to fixed point problems in static analysis (difficulty: what are
the strategies?)
experiments: PI often yields more accurate fixed points (because it avoids widening), small number of iterations.

A strategy is a map π which to a state i associates an action $\pi(i) \in A(i)$.

Consider the one player dynamic programming operator:

$$
f_{i}^{\pi}(x):=\sup _{b \in B(i, \pi(i))}\left(r_{i}^{\pi(i) b}+M_{i}^{\pi(i) b} x\right)
$$

$$
f=\inf _{\pi} f^{\pi}
$$

and the set $\left\{f^{\pi} \mid \pi\right.$ strategy $\}$ has a selection:

$$
\forall v \in \mathbb{R}^{n}, \exists \pi \quad f(v)=f^{\pi}(v)
$$

Since f^{π} is convex and piecewise affine, finding the smallest finite fixed point of f^{π} (if any) can be done by linear programming:

$$
\min \sum_{i} v_{i} ; \quad f^{\pi}(v) \leq v
$$

Costan, SG, Goubault, Martel, Putot (CAV'05) show that the smallest fixed point of f is the infimum of the smallest fixed points of the f^{π}.

We denote by f^{-}the smallest fixed point of a monotone selfmap f of a complete lattice \mathcal{L}, whose existence is guaranteed by Tarski's fixed point theorem.

The input of the following algorithm consists of a finite set \mathcal{G} of monotone self-maps of a lattice \mathcal{L} with a lower selection. When the algorithm terminates, its output is a fixed point of $f=\inf \mathcal{G}$.

1. Initialization. Set $k=1$ and select any map $g_{1} \in \mathcal{G}$.
2. Value determination. Compute a fixed point x^{k} of g_{k}.
3. Compute $f\left(x^{k}\right)$.
4. If $f\left(x^{k}\right)=x^{k}$, return x^{k}.
5. Policy improvement. Take g_{k+1} such that $f\left(x^{k}\right)=g_{k+1}\left(x^{k}\right)$. Increment k and goto Step 2.

The algorithm does terminate when at each step, the smallest fixed-point of $g_{k}, x^{k}=g_{k}^{-}$is selected.

Example. Take $\mathcal{L}=\overline{\mathbb{R}}$, and consider the self-map of \mathcal{L}, $f(x)=\inf _{1 \leq i \leq m} \max \left(a_{i}+x, b_{i}\right)$, where $a_{i}, b_{i} \in \mathbb{R}$. The set \mathcal{G} consisting of the m maps $x \mapsto \max \left(a_{i}+x, b_{i}\right)$ admits a lower selection.

Experimentally fast, but the worst case complexity is not known. Condon showed: mean payoff games is in NP \cap co-NP, same with positive discount. Much current work: (Zwick, Paterson, TCS 96), (Jurdziński, Paterson, Zwick, SODA'06), (Bjorklund, Sandberg, Vorobyov, preprint 04),

PI often more accurate than Klenne+widening/narrowwing:

0	$i=150 ;$
1	$j=175 ;$

2
while (j >= 100) \{
$\begin{array}{ll}3 & \text { i++; } \\ 4 & \text { if }(j<=\text { i) }\{ \end{array}$
5
$i=i-1 ;$
6
$j=j-2 ;$
7 \}
8 \}
9

$$
\begin{aligned}
& M_{0}=\text { context_initialization } \\
& M_{2}=\left(\text { Assignment }(i \leftarrow 150, j \leftarrow 175)\left(M_{0}\right)\right)^{*} \\
& M_{3}=\left(\left(M_{2} \sqcup M_{8}\right) \sqcap(j \geq 100)\right)^{*} \\
& M_{4}=\left(\text { Assignment }(i \leftarrow i+1)\left(M_{3}\right)\right)^{*} \\
& M_{5}=\left(M_{4} \sqcap(j \leq i)\right)^{*} \\
& M_{7}=\left(\text { Assignment }(i \leftarrow i-1, j \leftarrow j-2)\left(M_{5}\right)\right)^{*} \\
& M_{8}=\left(\left(M_{4} \sqcap(j>i)\right)^{*} \sqcup M_{7}\right. \\
& M_{9}=\left(\left(M_{2} \sqcup M_{8}\right) \sqcap(j<100)\right)^{*}
\end{aligned}
$$

IP $\left\{\begin{array}{c}150 \leq i \leq 174 \\ 98 \leq j \leq 99 \\ -76 \leq j-i \leq-51\end{array}\right.$ Mine's Octogon $\left\{\begin{array}{c}150 \leq i \\ 98 \leq j \leq 99 \\ j-i \leq-51 \\ 248 \leq j+i\end{array}\right.$

SG, Dhingra (Valuetools'06). Sparse bipartite graphs. n nodes of each kind, every node has exactly 2 successors drawn at random; , deterministic game, random weights. Number of iterations of minimizer $N_{\text {min }}$ is shown:

Difficulty

PI may return a nonminimal fixed point.
We know there is a policy yielding the minimal fixed point.
How to find it?

Theorem. Adje, SG, Goubault (MTNS'08, to appear).
If f is nonexpansive (1-Lip) in the sup-norm, i.e., if there is no negative discount rate, we can refine PI so that it always finds the smallest fixed point.

Relies on: in finite dimension, the fixed point set of a nonexpansive map is a retract of the whole space.

If negative discount is allowed, the fixed point set may be disconnected, we can always reach a locally minimal fixed point. .
finding efficiently the globally minimal one is an open question.
int x,int y,
$x=[0,2] ; y=[10,15] \quad / / 1$
while ($x<=y$) \{ //2
$x=x+1$; //3
while (5<=y) \{ $/ / 4$
$y=y-1 ; \quad / / 5$
\}
//6
\}

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) & =([0,2],[10,15]) \\
x_{2} & =\left(x_{1} \cup x_{6}\right) \cap\left[-\infty,\left(y_{1} \cup y_{6}\right)^{+}\right] \\
y_{2} & =\left(y_{1} \cup y_{6}\right) \cap\left[\left(x_{1} \cup x_{6}\right)^{-},+\infty\right] \\
\left(x_{3}, y_{3}\right) & =\left(x_{2}+[1,1], y_{2}\right) \\
\left(x_{4}, y_{4}\right) & =\left(x_{3},\left(y_{3} \cup y_{5}\right) \cap[5,+\infty]\right) \\
\left(x_{5}, y_{5}\right) & =\left(x_{4}, y_{4}+[-1,-1]\right) \\
\left(x_{6}, y_{6}\right) & =\left(x_{5},\left(y_{3} \cup y_{5}\right) \cap[-\infty, 4]\right) \\
x_{7} & =\left(x_{1} \cup x_{6}\right) \cap\left[\left(y_{1} \cup y_{6}\right)^{-}+1,+\infty\right] \\
y_{7} & =\left(y_{1} \cup y_{6}\right) \cap\left[-\infty,\left(x_{1} \cup x_{6}\right)^{+}-1\right]
\end{aligned}
$$

The monotone nonexpansive piecewise affine map f for the bounds of these intervals is:

$$
f\binom{x}{y}=f\left(\begin{array}{l}
x_{2}^{-} \\
x_{2}^{-} \\
x_{7}^{-} \\
x_{7}^{+} \\
y_{2}^{-} \\
y_{2}^{+} \\
y_{4}^{-} \\
y_{4}^{+} \\
y_{6}^{-} \\
y_{6}^{+} \\
y_{7}^{-} \\
y_{7}^{+}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \vee & \left(x_{2}^{-}-1\right) \\
2 \vee\left(x_{2}^{+}+1\right) & \wedge & \frac{15 \vee y_{6}^{+}}{} \\
0 \vee\left(x_{2}^{-}-1\right) & \wedge & \frac{\left(-10 \vee y_{6}^{-}\right)}{}-1 \\
0 & \vee & \left(x_{2}^{+}+1\right) \\
0 \vee\left(x_{2}^{-}-1\right) \\
15 & \wedge & -10 \vee y_{6}^{-} \\
y_{2}^{-} \vee\left(y_{4}^{-}+1\right) & \wedge & y_{6}^{+} \\
y_{2}^{+} & \vee & y_{4}^{-5} \\
y_{2}^{-} & \vee & y_{4}^{-}+1 \\
y_{2}^{+} \vee\left(y_{4}^{+}-1\right) & \wedge & \underline{4} \\
-10 & \vee & y_{6}^{-} \\
15 \vee y_{6}^{+} & \wedge & \underline{\left(2 \vee\left(x_{2}^{+}+1\right)\right)-1}
\end{array}\right)
$$

The underlined terms represent the initial Policy. We find $(\bar{x}, \bar{y})=$ $(0,15,-1,16,0,15,-5,15,0,4,0,15)$: it is a fixed point of f, and so policy iteration terminates in one step.

We calculate the semidifferential at (\bar{x}, \bar{y}) in the direction $(\delta x, \delta y)$.

$$
f_{(\bar{x}, \bar{y})}^{\prime}(\delta \bar{x}, \delta \bar{y})=\left(0,0, \delta \bar{x}_{2}^{-} \wedge \delta \bar{y}_{6}^{-}, \delta \bar{x}_{2}^{+}, 0 \wedge \delta \bar{y}_{6}^{-}, 0,0, \delta \bar{y}_{2}^{+}, \delta \bar{y}_{2}^{-}, 0, \delta \bar{y}_{6}^{-}, 0 \wedge \delta \bar{x}_{2}^{+},\right)
$$

The power algorithm gives us $h=(0,0,-1,0,-1,0,0,0,-1,0,-1,0)$ (computed from the iterates of the vector with all coordinates equal to -1). We know that there is an integer $t<0$ such that $(\bar{x}, \bar{y})-t h$ is a fixed point of f.

The smallest such t is -4 . find a new fixed point $(\tilde{u}, \tilde{v})=$ $(0,15,-5,16,-4,15,-5,15,-4,4,-4,15)$ for f. The semidifferential at (\tilde{u}, \tilde{v}) is then:

$$
f_{(\tilde{u}, \tilde{v})}^{\prime}(\delta \tilde{u}, \delta \tilde{v})=\left(0,0, \delta \tilde{v}_{6}^{-}, \delta \tilde{u}_{2}^{+}, \delta \tilde{v}_{6}^{-}, 0,0, \delta \tilde{v}_{2}^{+}, \delta \tilde{v}_{2}^{-} \vee \delta \tilde{v}_{4}^{-}, 0, \delta \tilde{v}_{6}^{-}, 0 \wedge \delta \tilde{u}_{2}^{+}\right)
$$

The power algorithm returns 0 (again with iterates of the vector identically equal to -1), we conclude that (\bar{x}, \bar{y}) is the smallest fixed point of f.

Exotic domains in static analysis . . .

max-plus or tropical convex sets
(Allamigeon, SG, Goubault, SAS'08 to appear)

A subset C of $(\mathbb{R} \cup\{-\infty\})^{n}$ is max-plus convex if

$$
x, y \in C, \lambda, \mu \in \mathbb{R} \Longrightarrow \sup (\lambda+x, \mu+y) \in C .
$$

Considered by U. Zimmermann (77), Cohen, SG, Quadrat (00), Sturmfels, Develin (04), +recent: Katz, Horvath, Sergeev, Meunier, . . .

Separation theorem, projection, minimisation of distance, discrete convexity (Helly, Carathéodory), Minkowski, KreinMilman, or Choquet theory (generation by extreme points) carry over.

Ex. Separation of two convex sets, SG \& Sergeev (07):

A max-plus polyhedron is the sum of a max-plus polytope and a max-plus polyhedral cone, or equivalently, the intersection of finitely many half-spaces

$$
H=\left\{x \mid \max _{i} a_{i}+x_{i} \leq \max _{i} b_{i}+x_{i}\right\}
$$

Fourier-Motzkin type algorithms work.
As for classical polyhedra, passing from generators to constraints and vice versa is simply exponential.

In Allamigeon, SG, Goubault (SAS'08, to appear), we handle max-plus polyhedra coded by constraints: Kleene iteration with Cousot's widening. This is how we got:

$$
j:=x
$$

Variables: i, j, k, x, y, z

```
Program:
local t {
i:=x;
j:=y;
k:=z;
if x > y then
        i:=y;
```

fi;
if $j>z$ then
k:=j;
j:=z;
fi;
if i > j then
$\mathrm{t}:=\mathrm{j}$;
j:=i;
i: =t;
fi;
\};
$-\mathrm{y}=\max (-\mathrm{k},-\mathrm{y}) ; \max (-\mathrm{k},-\mathrm{z})=-\mathrm{z} ; \max (-\mathrm{j},-\mathrm{x},-\mathrm{z})=\max (-\mathrm{x},-\mathrm{z})$;
$-j=\max (-j,-k) ; \max (-y,-z)=\max (-j,-y,-z) ; \max (j, y, z)=\max (y, z) ;$
$\mathrm{z}=\max (\mathrm{i}, \mathrm{z}) ;-\mathrm{x}=\max (-\mathrm{k},-\mathrm{x}) ; \max (-\mathrm{x},-\mathrm{y})=\max (-\mathrm{j},-\mathrm{x},-\mathrm{y}) ;-\mathrm{i}=\max (-\mathrm{i},-\mathrm{x})$;
$\max (-\mathrm{x},-\mathrm{y},-\mathrm{z})=\max (-\mathrm{i},-\mathrm{k}) ; \mathrm{x}=\max (\mathrm{i}, \mathrm{x}) ; \max (\mathrm{j}, \mathrm{x}, \mathrm{z})=\max (\mathrm{x}, \mathrm{z})$;

$$
\max (i, y)=y ; \max (j, x, y)=\max (x, y) ; j=\max (i, j) ; k=\max (x, y, z)
$$

Concluding remarks

- Open complexity/algorithmic issue: smallest fixed point of a Shapley operator, with negative discount.
- Optimal complexity for handling max-plus polyhedra not yet known.
- General use of nonconvex domains in static analysis, with SDP or SOS relaxations: to be done (see already work by Feron, also current work by Monniaux).

That's all. . .

