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How to prove that ?

1 < 400
> 1

void main() A ,Z_
i=1; 3 = 10; J <10
while (i <= j){ //1 Jj > —00
1 =1+ 2; P
j=3j-1; % r=
} i+ 27 <21
1+ 2y > 21

(4,7) € [(1,10),(7,7)] (exact result).



A possible implementation of the C standard library function memcpy

int 1 := O;

unsigned int n, p, q;
string dst[p]l, srclql;
assert p >= n && q >= n;
while 1 <= n-1 do

dst[i] := srclil;
1 := 1i+1;
done;

How to prove that ?

min(len_src,n) = min(len_dst,n)



Bubble sort

j =X,
. ) . fi;
Variables: 1, j, k, x, y, 2z , ,
if j > z then
Program: %fijf
local t { JTE
. fi;
15X, D .
. if i > j then
J:-=Y> £o=4-
k:=z; -:_qi
if x > y then J:7
i:=vy: 1:=T;
A £i

How to prove that ?

k = max(x,y,z);



or even that. . .

-y = max(-k,-y); max(-k,-z) = -z; max(-j,-x,-z) = max(-x,-z);
-j = max(-j,-k); max(-y,-z) = max(-j,-y,-z); max(j,y,z) = max(y,z);
z = max(i,z); -x = max(-k,-x); max(-x,-y) = max(-j,-x,-y); -i = max(-i,-x);
max(-x,-y,-z) = max(-i,-k); x = max(i,x); max(j,x,z) = max(x,z);
max(i,y) = y; max(j,x,y) = max(x,y); j = max(i,j); k = max(x,y,z)



Answer:
convex analysis (including generalized convexity)

and zero-sum games



Since Cousot and Halbwachs (POPL'78), polyhedra have
been used in static analysis by abstract interpretation:

show that for any reachable state of the program, the vector
consisting of the variables at the different breakpoints belongs
to a polyhedron.

repeatedly perform some basic operations: intersection,
convex hull (e.g. of union), image by an affine map

strongly relies on convex duality

BUT the number of extreme points or faces may grow
exponentially



— not scalable

Some restricted classes of polyhedra have been introduced.
Miné (PADO'01) used Zones

Z ={xeR"| x; —x; < M;;}
a zone is coded by the matrix M € (RU {+o00})"*".

by setting xy := 0 and projecting, we see that Zones D
Intervals.

S. Sankaranarayanan and H. Sipma and Z. Manna
(VMCAI'05) introduced templates:

almost as expressive as polyhedra but scalable.



I'll give a convex analytic view of templates.

The support function ox of X C R" is defined by

UX(p) — SUPpex P&

Legendre-Fenchel duality tells that ox = oy iff X and Y
have the same closed convex hull.

ox(ap) = aocx(p) for a > 0, so it is enough to know o x (p)
for all p in the unit sphere.

|ldea: discretize the unit sphere and represent X by ox
restricted to the discretization points.



So fix P C R™ a finite set of directions.

L(P) lattice of sets of the form

Z=Ax|p-x<~(p), VpeP} 7v:P—RU{+oo}.
Z is coded by v := 0z |p.

Z is a polyhedron every facet of which is orthogonal to some
peP.

Specialization: P = {+e;, i = 1,...,n} gives intervals,
P ={£(e; —ej), 1 <1< j<n} gives Miné's templates.



void main() {
i=1; j = 10;
while (i <= j){
i=1+ 2;
j=3-11}
}

//1

i+ 25 <21
i+ 25> 21
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v(€1) = 00

void main() { y(—e1) = —1
i=1; j = 10; v(es) = 10
while (i <= j){ //1 v(—e3) = —00
i=1+ 2;
j=3- 152 e —ez) =
} v(e1 + 2e9) = 21

v(—e1 — 2eq) = =21 .

P = {tey,teq,e1 —ea, (€1 + 2¢e2)}, y: breakpoint 1.
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To show this, we must solve the fixed point problem:

v(p) = ((1,10) - p) V (3(p) + (2,—1) - p), Vp € P\ {e1 — e}
v(er —ez) =0A (=9 V (F(ex —ez) —3)), 7~ = convex hull(v)

void main() {
i=1; j = 10;
while (i <= j){ //1
i=1i+ 2;
j=3-1;}

+
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Correspondence theorem (SG, Goubault, Taly, Zennou,
ESOP'07) When the arithmetics of the program is affine (no
product or division of variables), abstract interpretation over a
lattice of templates reduces to finding the smallest fixed point
ofamap f: (RU{+o0})" — (RU{+00})™ of the form

fi(x) = inf sup (r ,?b + Mi“bx)
acA(1) beB(i,a)

with M{° .= (M), M > 0, but possibly >~ . M > 1

— game in infinite horizon with a “negative discount rate”.
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Sketch of proof.

y=Ax+b; foeZl ={z]|p z<~Y%2), Vp € P}, find
the best 72 := {2 | p- 2z < v%(2), Vp € P} such that y € Z2.

v?(p) = sup,enp - (Ar +b) = supp- (Ax +b); p-z <
v'(p), Vp € P

by the strong duality theorem

= infp -0+ qup)‘(Q)’Vl(Q)§ AMg) = 0, Alp =
qup)‘(Q)q

The inf is attained at an extreme point of the feasible set,
so this is in fact a min over a finite set.
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oxny = convex hull(inf(ox,oy)).
Convex hull reduces to a finite min by a similar argument.

Modelling the dataflow yields maxima, because oxyy =

sup(ox,0y)
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Generalization of templates (Adje, SG, Goubault, Putot,
current investigation):

Z ={z | p(x) <~v(p), Vp € P}

p is now a non-linear map (e.g. quadratic, e.g. Lyapunov
function). The fixed point operator involves SDP relaxations

(could even use SOS).

16



How to solve the fixed point problem ?

Classically: Kleene (fixed point iteration) is slow or may
even not converge, so widening and narrowing have been used,
leading to an overapproximation of the solution.

An alternative: Policy iteration.

method developed by Howard (60) in stochastic control,
extended by Hofman and Karp (66) to some special

(nondegenerate) stochastic games.  Extension to Newton
method =— fast. complexity still open.

extended by Costan, SG, Goubault, Martel, Putot, CAV'05)
to fixed point problems in static analysis (difficulty: what are
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the strategies?)

experiments: Pl often yields more accurate fixed points
(because it avoids widening), small number of iterations.
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A strategy is a map m which to a state 7 associates an
action (i) € A(7).

Consider the one player dynamic programming operator:

fr@)y= sup (7" 4+ M)
beB(i,m(1))

f=inf f7
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and the set {f™ | w strategy } has a selection:

Vo € R", dmr f(v) = f"(v) .

Since f™ is convex and piecewise affine, finding the smallest
finite fixed point of f™ (if any) can be done by linear
programming:

minZv@-; ff(v) <w .
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Costan, SG, Goubault, Martel, Putot (CAV'05) show that

the smallest fixed point of f is the infimum of the smallest
fixed points of the f7.

We denote by f~ the smallest fixed point of a monotone self-
map [ of a complete lattice £, whose existence is guaranteed
by Tarski's fixed point theorem.

The input of the following algorithm consists of a finite set
G of monotone self-maps of a lattice £ with a lower selection.
When the algorithm terminates, its output is a fixed point of

f=infG.
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Initialization. Set k = 1 and select any map ¢; € G.

Value determination. Compute a fixed point =" of gs.

. Compute f(x).

If f(2F) = 2%, return x*.

Policy improvement. Take g1 such that f(2%) = gp1(2").
Increment k and goto Step 2.

ok

The algorithm does terminate when at each step, the

smallest fixed-point of g, i g, s selected.

22



Example. Take L = R, and consider the self-map of L,
f(x) = inf1<;<,, max(a; + x,0;) , where a;,b; € R. The
set G consisting of the m maps = — max(a; + x,b;) admits a

lower selection.
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Experimentally fast, but the worst case complexity is not
known. Condon showed: mean payoff games is in NP N co-NP,

same with positive discount. Much current work: (Zwick,
Paterson, TCS 96), (Jurdzinski, Paterson, Zwick, SODA'06),
(Bjorklund, Sandberg, Vorobyov, preprint 04),

Pl often more accurate than Klenne+widening/narrowwing:
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150;
175;

-
I

.
[

while (j >= 100){

-
I

.
|

1++;

)

if (<= i){

context_initialization

(Assignment (i «— 150, j < 175)(Mg))*
(M2 LU Mg) M (j > 100))*

(Assignment (i «— i + 1)(M3))*

(Mg 11 (5 < 4))°

(Assignment (i — i — 1, j «— j — 2)(M5))"

(Mg (5> 1)) UMy
(M2 U Mg) M (j < 100))*
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IP <

\

150 < <174
98 < 7 <99 Mine's Octogon
—76 <73 —1< =51

‘

150 < i
98 < j < 99
j—i< 51

| 248 <+
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SG, Dhingra (Valuetools'06). Sparse bipartite graphs. n nodes of each kind,
every node has exactly 2 successors drawn at random; , deterministic game, random
weights. Number of iterations of minimizer N, is shown:

60

T T T T T T T T T T
200000 250000 300000

T T T T
0 50000 100000 150000 350000 400000
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Difficulty
Pl may return a nonminimal fixed point.
We know there is a policy yielding the minimal fixed point.

How to find it?
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Theorem. Adje, SG, Goubault (MTNS'08, to appear).

If f is nonexpansive (1-Lip) in the sup-norm, i.e., if there is
no negative discount rate, we can refine Pl so that it always
finds the smallest fixed point.

Relies on: in finite dimension, the fixed point set of a
nonexpansive map is a retract of the whole space.

If negative discount is allowed, the fixed point set may
be disconnected, we can always reach a locally minimal fixed
point. . .

finding efficiently the globally minimal one is an open
question.
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int x,int vy,
x=[0,2];y=[10,15]
while (x<=y) A
x=x+1;
while (6<=y) {
y=y-1;
+
}

//1
/]2
//3
//4
//5
//6
/T

(1, 91)
T2
Y2
(73, y3)
(4, Y4)
(x5, Y5)
(z6, Y6)
7

yr

([0, 2], [10, 15])

(1 U zg) N [—00, (y1 Uyg) ]

(y1 Uye) N [(z1 Uzg) , +00]

(o + [1,1],y2)

(z3, (y3 U ys) N[5, +00])

(x4, y4 + [-1,—1])

(75, (y3 U ys) N [—o0, 4])
(x1Uxg) N [(y1 Uys) + 1,400]

(y1 Uye) N[00, (z1 Uzg) ™ — 1]
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The monotone nonexpansive piecewise affine map f for the bounds of these intervals is:

— 0 Vv (x5 — 1)
/wi\ ( oV (zd +1) A 15V gt \
Ty 2 19V g
o OV (zy —1) A (=10Vygs)—1
x}" 0 Vv (x; + 1)
y%: OV (zy — 1) A —10V y4
f( v ) — | Y2 — 15 Vv Ya
y Uy vy Vyr +1) A -5
y4_ y;_ V yi_ —1
Yg y2_ V y4_ + 1
+
Ye y;_ V (yi_ —-1) A é_
y?|- —10 V Ye
\ vl / | vyl A @V(F+1) -1 )
The  underlined  terms  represent  the  initial  Policy. We find (Z,y) =

(0,15,—1,16,0,15, —5,15,0,4,0,15): it is a fixed point of f, and so policy iteration terminates in
one step.

We calculate the semidifferential at (&, ) in the direction (dx, dy).
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flzq) (0%,00) = (o, 0,82, ASy;,625,0 A 875 ,0,0,895,695,0,50;,0 A 5:@3,)
The power algorithm gives us h = (0,0,—1,0,—1,0,0,0,—1,0, —1,0) (computed from the iterates

of the vector with all coordinates equal to —1). We know that there is an integer ¢ < 0 such that
(Z,y) — th is a fixed point of f.

(—10vit)—1

—10Vvt

f((z,y) —th) =f =

—5 tv —4 —5

—4

0

15

A\

16

N

15 15
A\

15

Vv

4

12 —10 Y
15
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The smallest such ¢t is -4 We find a new fixed point (a,0) =
(0,15, —5,16,—4,15,—5,15,—4,4, —4,15) for f. The semidifferential at (%@, v) is then:

U,V

f(C 5 (6,60) = (o, 0,89 , 8y , 605 ,0,0,8%,, 80,5 V 60, ,0,80;,0A &aj)

The power algorithm returns 0 (again with iterates of the vector identically equal to -1) , we conclude
that (Z, y) is the smallest fixed point of f.
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Exotic domains in static analysis . . .

max-plus or tropical convex sets

(Allamigeon, SG, Goubault, SAS'08 to appear)

34



A subset C of (RU {—o00})" is max-plus convex if

r,y € C, , u € R = sup(A+x,u+y)eC .

Considered by U. Zimmermann (77), Cohen, SG, Quadrat (00),
Sturmfels, Develin (04), +recent: Katz, Horvath, Sergeev, Meunier, . . .
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Separation theorem, projection, minimisation of distance,
discrete convexity (Helly, Carathéodory), Minkowski, Krein-
Milman, or Choquet theory (generation by extreme points)
carry ovetr.

Ex. Separation of two convex sets, SG & Sergeev (07):
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A max-plus polyhedron is the sum of a max-plus polytope
and a max-plus polyhedral cone, or equivalently, the intersection
of finitely many half-spaces

H ={x | maxa; + r; < maxb; + x;} .
7 1

Fourier-Motzkin type algorithms work.

As for classical polyhedra, passing from generators to
constraints and vice versa is simply exponential.
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In Allamigeon, SG, Goubault (SAS'08, to appear), we handle max-plus polyhedra
coded by constraints: Kleene iteration with Cousot’s widening. This is how we got:

ji=x;
. . . fi;
Variables: i, j, k, x, y, z _ .
if j > z then
k:=17;
Program: .._Ji
local t { .J'_Z’
. fi;
i:=x;
. if 1 > j then
ji=y; e
k:=z; -:_qi
if x > y then J:7s
P 1:=t;
s
-y = max(-k,-y); max(-k,-z) = -z; max(-j,-x,-z) = max(-x,-z);
-j = max(-j,-k); max(-y,-z) = max(-j,-y,-z); max(j,y,z) = max(y,z);
z = max(i,z); -x = max(-k,-x); max(-x,-y) = max(-j,-x,-y); -i = max(-i,-x);

max(-x,-y,-z) = max(-i,-k); x = max(i,x); max(j,x,z) = max(x,z);
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max(i,y) = y; max(j,x,y)

max(x,y); j = max(i,j); k = max(x,y,z)

39



Concluding remarks

- Open complexity/algorithmic issue: smallest fixed point of
a Shapley operator, with negative discount.

- Optimal complexity for handling max-plus polyhedra not
yet known.

- General use of nonconvex domains in static analysis, with
SDP or SOS relaxations: to be done (see already work by
Feron, also current work by Monniaux).

That's all. . .
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