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Abstract

Branch-and-Bound is one of the most widely used technique for performing global optimization of
Nonlinear Programs (NLPs) and Mixed-Integer Nonlinear Programs (MINLPs). In most implemen-
tations of this technique the lower bound is obtained by solving a convex relaxation of the original
problem. As shown in [9, 10, 11] the convex relaxation can be formed by replacing the nonconvex
terms with their convex relaxations. Tight convex underestimators are already available for many
types of nonconvex terms, including bilinear and trilinear products, linear fractional terms, and con-
cave and convex univariate functions. However, terms which are piecewise concave and convex are not
explicitly catered for. A frequently occurring example of such a term is the monomial of odd degree.
We propose a novel convex nonlinear envelope for odd power terms of the form 2***' (k € N), where
z € [a,b] and a < 0 < b; the derived relaxation is continuous and differentiable everywhere in [a, b].
We then make a comparison with an existing convex relaxation for odd power monomials where we
show that the novel convex relaxation gains better results in a Branch-and-Bound implementation.

1 Introduction

In this paper, we address NLPs in the following formulation:
a <g@)< B (1)
b

where x are the problem variables, a, 8 are the lower and upper bounds of the constraints, a,b are the
lower and upper bounds of the variables. f is the (possibly nonlinear) objective function and g is a set
of (possibly nonlinear) constraints.

The most effective deterministic methods for the global solution of MINLPs in the general formulation
(1) are spatial Branch-and-Bound algorithms. The whole search space is iteratively partitioned into
progressively smaller regions. For each region, lower and upper bounds to the objective functions are
computed, and the lowest upper bound is stored as the current best solution to the problem. A region is
fathomed and discarded when the bounds are close enough or when the objective function lower bound
for the region is higher than the current best solution. The algorithm terminates when there are no more
regions to examine, at which point the current best solution is the solution of the problem.

One of the most critical steps in the algorithm is the generation of the lower bound: a good lower
bound means rapid fathoming of regions, and as a consequence a lot less regions to examine during the
algorithm run. There are many methods to provide a lower bound to the objective function. Lagrangian
relaxation, either applied directly [4, 1] or as part of an altogether different algorithm (e.g. Generalized
Benders Decomposition), relies on a reformulation of the problem so that it becomes box-constrained:

max,,, inf{f(x)+u(g—B)+vla—g)|a<z<b) }
u,v >0

(2)
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Another method to provide lower bounds (esp. with respect to bilinear terms) is the RLT (Reformulation-

Linearization Technique), proposed in [8]. By this method, new constraints are obtained by multiplying
existing linear constraints by problem variables and other problem constraints and substituting the result-
ing bilinearities so that the new constraint becomes linear. On solving this linear problem to optimality,
we find a lower bound to the original problem. One of the most common methods for providing lower
bounds, however, is that of forming and locally solving a convex relaxation of the original problem
[7, 2, 11]. The fact that the relaxation is convex implies that the local solution is also the global one, and
hence a guaranteed underestimator of the objective function value.

The convex relaxation of any MINLP can be formed by isolating the nonconvex terms and replacing
them with the respective convex relaxations. Tight convex underestimators are already available for
many types of nonconvex term, including bilinear and trilinear products, linear fractional terms, and
concave and convex univariate functions. However, terms which are piecewise concave and convex are
not explicitly catered for. A frequently occurring example of such a term is z2¥*! where k € N and the
range of z includes zero. In this article, we propose two convex relaxations for such terms: one nonlinear
and one linear. We then briefly compare these relaxations to another possible relaxation of the monomial
of odd degree, based on reformulating it to a bilinear product, and we show that our proposed relaxation
is tighter. Finally, we present some numerical results that highlight this point.

2 Novel Convex Relaxation

Consider the monomial 2?1 in the range x € [a, b] where a < 0 < b. Let ¢,d be the z-coordinates of the
points C, D where the tangents from points A and B respectively meet the curve (see fig. 1 below). The
shape of the convex underestimator of 2t depends on the relative magnitude of b and c. In particular,
if ¢ < b (as in fig. 1), a convex underestimator can be formed from the tangent from z = a to z = ¢
followed by the curve 22t from 2 = ¢ to £ = b. On the other hand, if ¢ > b (cf. fig. 2), a convex
underestimator is the straight line passing through A and B (similarly for the concave overestimator of
2?k*1 in the range z € [a,b]). If d > a, the overestimator is given by the upper tangent from B to D
followed by the curve z2**1 from D to A, as in fig. 1. If d < a the overestimator is the straight line from
A and B. Note that onditions ¢ > b and d < a cannot both hold simultaneously.

Figure 1: Tightest (nonlinear) convex envelope of z2*+1,

In order to build the convex envelope of 22¥*! we therefore require the equations of the tangents that

pass through points A, C and B, D. We do this by equating the slope of the line AC to the gradient of

22kt at =
2hH1 _ g2k+1 o
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Figure 2: The case when ¢ > b.

Hence c is a root of the polynomial:
Pk (z,a) = (2k)2?* 1 — a(2k + 1)2%* + o?FH! (4)
It can be shown by induction on k that:

PH(z,a) = ™ (@ — a)’Q*(2) (5)

where the polynomial Q*(z) is defined as:
2%k
Q) =14 iz (6)
=2

Thus, the roots of P*(x,a) can be obtained from the roots! of Q*(x). However, generally, polynomials of
degree higher than 4 cannot be solved by radicals. In fact the Galois group of Q*(z) = 6z° + 5z* + 42% +
322 4+ 2z + 1 is isomorphic to S5 which is not solvable. For details on Galois theory and the solvability
of polynomials, see [12]. Notice further that Q*(x) does not depend on the range of x; moreover, Q*(x)
has exactly one real root, ry, for any k£ > 1, and this lies in [-1 + 1/2k, —0.5] [5]. Hence, the roots of
Q*(z) for different k can be computed a priori to arbitrary precision using simple numerical schemes
(e.g. bisection). A table of these roots is presented in table 1 for k£ < 10.

! Although P*(z,a) also has £ = a as a root, this is not of practical interest.
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Tk k Tk
-0.5000000000 | 6  -0.7721416355
-0.6058295862 | 7 -0.7921778546

8
9
1

-0.6703320476 -0.8086048979
-0.7145377272 -0.8223534102
-0.7470540749 | 10 -0.8340533676

U W N~ 3

Table 1: Numerical values of the roots of Q*(z) for k = 1,..,10 (to 10 significant digits).

If the roots shown in the second column of table 1 are denoted by ry, then the tangent points ¢ and
d in fig. 1 are simply ¢ = rya and d = rb. The lower and upper tangent lines are given respectively by:

2k+1 _ o 2k+1

C
a’htt 4 ?(x —a) (7)
k41 d2k+1 _ b2k+1

Hence, the convex envelope for z = 22+ when z € [a,b] and a < 0 < b

() < 2z Lug(z) 9)
is as follows:
o If ¢ < b, then:
a? 1 (1+ Ry (2 -1 ifr<e
hw) = { G TG TD) S (10)

otherwise:
p2h+1 _ g2k+1

lk(z) = a® 1t + —_

(z —a) (11)

o If d > a, then:

Falan ifz<d
ur(@) = { PHL(L+ R, (2 1)) ifz>d (12)
otherwise: kel -
up(z) = a2+t 4 %(w —a) (13)
P2kl
where we have used the constant Ry = "

We can relax the nonlinear convex envelope to a linear one by dropping the “follow the curve”
requirements on either side of the tangency points, and using the lower and upper tangent as convex
underestimator and concave overestimator respectively, as follows:

(e (2 0) <es o en () i

We can tighten the envelope further by also considering the tangents to the curve at the endpoints
A, B:

(2k + 1)b%*z — 2kb** M <2< (2k +1)a**z — 2ka® 1. (15)

A similar idea for producing the convex envelope of 2* was discussed in [7] (p. 159), but the treatment
was limited to one demonstrative example.
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3 Alternative Convex Relaxation

One common way to derive a convex relaxation for the monomial of odd degree x2#*! is to reformulate it
to wz and add a constraint w = z?*. The bilinear term z = wz can then be relaxed via the McCormick’s
convex under- and over-estimators [7]

z > whz + 2tw — wlal

z 2 wYz + 2w —wYz?
z < wYz + 2w — wYat
z < whz + 2%w — wlaV.

where w! < w < wY,z? < x < zY; whereas the term z2* is convex and hence an envelope is given by

the function itself and the secant. Thus the reformulation is:

z = wzx
w = 2
a< z <b
0< w <wY =max{a®* b**}

and the convex relaxation is:

aw < 2z <bw
we+bw—w'b< 2z <wYz+aw-wYa
. b2k_a2k
< w <a®+ (x —a)
b—a
a< z <b
0< <wY

After some algebraic manipulation, we can eliminate w to obtain the following nonlinear convex envelope
for z:

wYa wYb
— <z< — 1
a—b(w b) <z< b—a(x a) (16)
br*t +wY(xz—b) <2< ar® +wY(z—a) (17)
L 2K — a2k o bPF — a2k
ala +ﬁ(x—a) <z< bla +ﬁ(x—a) (18)

4 Numerical Results

We have generated some numerical results that illustrate the difference between the two convex envelopes
described above for 22#¥*1. We solved the problem

ming, T —y
y =2kt (19)

to global optimality using the spatial Branch-and-Bound algorithm described in [11] within the 00OPS
implementation [6], both with the novel convex (linear) relaxation and with the alternative convex relax-
ation. Table 2 lists the number of iterations taken by the algorithm when k varies. The first column lists
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k || Tterations Tterations k Tterations Tterations
(novel rel.) | (alternative rel.) (novel rel.) | (alternative rel.)

1 11 43 10 || 15 59

2|7 63 9 11 59

3| 19 55 8 19 59

4| 15 59 11 || 19 59

5| 11 63 12 || 19 9

6 || 11 55 13 || 15 9

71 19 55 14 || 15 59

Table 2: Numerical results from the simple test problem.

reform. bilin. prod.

bilin. rel. min

wction of decreasing o.f.

Figure 3: Graphical description of simple test problem (in 2D).

the results relative to the novel convex relaxation (section 2), the second those relative to the alternative
convex relaxation (section 3).

The results clearly substantiate the theory: the novel convex relaxation gives better performance in
comparison to the alternative relaxation based on reformulation to bilinear product. In the case of 23 we
can see why this happens in fig. 3, 4. The direction of minimization of the objective function = — y is
such that the minimum over the original feasible region is very near the minimum over the novel convex
relaxation. However, the minimum over the alternative convex relaxation is further away. Hence the
performance gain.

5 Conclusion

We have proposed a tight novel convex envelope for monomials of odd degree when the range of the
defining variable includes zero, i.e. when they are piecewise convex and concave. We have then compared
it with another possible relaxation (based on reformulation to bilinear product) and shown that the
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Figure 4: Graphical description of simple test problem (in 3D).

former performs better than the latter when tested in a Branch-and-Bound algorithm.
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