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1. Introduction A deep and surprising result, called the Johnson-Lindenstrauss Lemma
(JLL) [15], states that a set of high dimensional points can be projected to a much lower dimen-
sional space while keeping Euclidean distances approximately the same. The JLL was previously
exploited in purely Euclidean distance based algorithms, such as k-means [6] and k nearest neigh-
bours [14]. The JLL has rarely been employed in mathematical optimization. The few occurrences
are related to reasonably natural cases such as linear regression [25], where the error minimization
is encoded by means of a Euclidean norm. One reason for this is that the very proof of the JLL
exploits rotational invariance, naturally exhibited by sets of distances, but which feasible sets com-
monly occurring in Linear Programming (LP), such as orthants, obviously do not. In this paper
we lay the theoretical foundations of solving LPs approximately using random projections, and
showcase their usefulness in practice. More precisely, we address LPs in standard form

P ≡min{c>x |Ax= b∧x∈Rn+}, (1)

where A is an m×n matrix. For each i≤m we let Ai be the i-th row of A, and for each j ≤ n we let
Aj be the j-th column of A. If I is a set of row indices, we indicate the submatrix of A consisting of
those rows by AI ; if J is a set of column indices, we indicate the submatrix of A consisting of those
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columns by AJ . We let cone(A) be the cone spanned by the column vectors Aj (for j ≤ n), and
conv(A) be the convex hull of the column vectors Aj (for j ≤ n). We denote by v(P ) the optimal
objective function value of the problem P , and by F(P ) its feasible region. Note that determining
whether F(P ) 6= ∅ is exactly the same problem as determining whether b ∈ cone(A). Throughout
this paper, all norms will be Euclidean unless specified otherwise.

We often assume that c, b and all the column vectors of A have unit Euclidean norm. This
assumption does not lose generality: let b̃ and Ã be b,A after scaling all columns to unit norm. If
x̃ is the optimal solution of the LP with constraints Ãx= b̃, we can retrieve the optimal solution
x∗ of Eq. (1) as follows:

∀j ∈ {1, . . . , n}, x∗j =
‖b‖x̃j
‖Aj‖

.

The vector c can simply be replaced by the scaled vector c̃= c/‖c‖: the optimum will not change,
and the optimal objective function value will simply by scaled by 1/‖c‖.

A random projector is a k×m matrix T , sampled from appropriate distributions (more details
on this below), which preserves certain geometrical properties of sets of points in Rm. We denote
by

PT ≡min{c>x | TAx= Tb∧x∈Rn+} (2)

the randomly projected version of P . Our main result (Thm. 4) states that we can construct a
random projector T , with k� n, such that, for some given ε > 0, we have |v(P )− v(PT )| ≤ ε with
arbitrarily high probability (w.a.h.p.). By this we mean that the probability of the concerned event
is 1− f(k) where f(k) tends to zero extremely fast as k tends to infinity (typically, the function
f is O(e−k)). Moreover, for fixed ε, k turns out to be O(lnn). Since the complexity of solving LPs
depends on both m and n, a logarithmic reduction on m (even as a function of n) is very appealing.

So far so good; unfortunately, there are some bad news too. First, we prove that the optimum
of the projected problem PT is infeasible w.r.t. F(P ) (the original region) with probability 1
(Prop. 3), which appears to severely limit the usefulness of Thm. 4 — we address the retrieval of
an approximate solution of the original problem in Sect. 5. Second, sampling T and performing
matrix multiplications T (A,b) is time consuming, since T is a dense matrix. Third, even though
the original LP is sparse, the projected LP is dense as a result of T being dense, which means
that solving it has an added computational cost. The ill effects of density on CPU time can be
moderated in computational experiments by using sparse random projectors (see e.g. [1]). Last,
but not least, we have no idea how to estimate, much less compute, the multiplicative constant in
the term O(lnn). We know that the term 1

ε2
, which is large if we want the approximation to be

tight, plays a role; but there are other universal constants that also play a role. We also know that
the probability of the event |v(P )− v(PT )| ≤ ε approaches 1 as 1−O(e−k). All this suggests that
any practical usefulness of this methodology will come from very large and/or very dense instances.

As we shall indeed see in Sect. 7, our experience suggests that errors decrease as sizes increase.
This is true for our randomly generated test set, but also in regard to our coding application.

We have also started testing random projections on LPs coming from various other applications.
Though these results are not conclusive enough to be presented (yet), we had some positive expe-
rience with: (i) quantile regression [17]; (ii) large and dense diet problems with unit costs [9]; (iii)
LPs arising from the basis pursuit methodology for compressed sensing [8].

1.1. Differences with existing literature Randomized dimension reduction techniques are
widely used in the analysis of large data sets, but much less so in Mathematical Programming (MP).
Specifically, in the field of LP we are aware of three main results [7, 25, 12]. We set compressed
sensing [7] aside, as strictly speaking this is not a solution or reformulation method, but rather a
theoretical analysis which explains why `1-norm minimization of the error of an underdetermined
linear system is an excellent proxy for reconstructing sparse solutions. Although we are only citing
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the paper [7] for compressed sensing, this line of work gave rise to a very large number of papers
by many different authors. We shall see in Sect. 8 that compressed sensing, in the setting of our
coding application, can be “further compressed” using our methodology.

In [25], it is shown how matrix sketching (which is strongly related to random projections) can
help decrease the dimensionality of some convex quadratic minimization over an arbitrary convex
set C from a given Rm to Rk for some k ≤m. Sect. 3-4 below emphasize some of the differences
of the present work with [25]; [25, Eq. (28) §3.4], for example, encodes the problem of deciding
whether zero is in the convex hull of the columns of a given matrix B. Unlike our development, the
analysis provided in [25] requires the projected dimension k to be bounded below by a function of
several parameters before any probability estimation can be made. Another remarkable difference
is that the framework described in [25] requires a convex purely quadratic objective function: to
encode a linear objective c>x using a quadratic, the most direct way involves the introduction of
a new scalar variable y, and then rewriting min c>x as miny2 subject to y ≥ c>x and y ≥ 0. This
reformulation, however, makes the application of the method impossible, since the quadratic form
y2 = y(1)y is represented by a 1× 1 matrix, which has dimensions that obviously cannot further
reduced by sketching. Lastly, in [25] we find that the projected dimension k is of the order of
magnitude of the Gaussian width W of C. To require k�m, this implies working with convex sets
C having small Gaussian width. By contrast, our technique optimizes over orthants, which have
(large) Gaussian width O(n).

The paper [12] proposes a randomized dimensionality reduction based on PAC learning [3]: from
a small training set, it is possible to forecast some properties of large data sets while keeping
the error low. This is exploited in LPs with very few variables and huge numbers of inequality
constraints: it is found that this number can be greatly reduced while keeping the optimality error
bounded. In order to have PAC learning assumptions work, the authors focus on application cases
which have a specific structure, i.e. there is an order on the constraints which makes their slope vary
in a controlled way (an example is given by the piecewise linear approximation of a two-dimensional
closed convex curve: one can take many tangents, but few of these suffice to give almost the same
approximation). The prominent difference with the method proposed in this paper is that we make
no such assumption.

1.2. Contents The rest of the paper is organized as follows. Section 2 reports the basic
concepts about the JLL. In Sect. 3 we show that random projections approximately preserve LP
feasibility with high probability. The proof of our main theorem is offered in Sect. 4, where we argue
that random projections also preserve LP optimality with high probability. In Sect. 5 we address
the limitation referred to above, and provide a method to work out the solution of the original
LP given the solution of the projected LP. In Sect. 6 we make some remarks about computational
complexity. Sect. 7 reports some computational results, and Sect. 8 showcases an application to
error correcting codes.

2. The Johnson-Lindenstrauss lemma The JLL is stated as follows:

Theorem 1 (Johnson-Lindenstrauss Lemma [15]). Given ε∈ (0,1) and an m×n matrix
A, there exists a k×m matrix T such that:

∀1≤ i < j ≤ n (1− ε)‖Ai−Aj‖ ≤ ‖TAi−TAj‖ ≤ (1 + ε)‖Ai−Aj‖, (3)

where k is O(ε−2 lnn).

Thus, all sets of n points can be projected to a subspace having dimension logarithmic in n
(and, surprisingly, independent of the original number m of dimensions), such that no distance is
distorted by more than 1 + 2ε. The JLL can be established as a consequence of a general property
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(see Lemma 1 below) of sub-gaussian random mappings T = 1√
k
U [19]. Some of the most popular

choices for U are:
Choices of random projection:
1. orthogonal projections on a random k-dimensional linear subspace of Rm [15];
2. random k×m matrices with each entry independently drawn from the standard normal distri-

bution N(0,1) [14];
3. random k ×m matrices with each entry independently taking values +1 and −1, each with

probability 1
2

[1];
4. random k×m matrices with entries independently taking values +1, 0, −1, respectively with

probability 1
6
, 2

3
, 1

6
[1] (we call this the Achlioptas random projector).

Other, sparser projectors have been proposed in [1, 10, 16, 2]. In this paper we just limit our
attention to the normally distributed T ∼N(0,1/k) (where 1/k is the variance, not the standard
deviation) and its discrete approximation in Item 4 above. Our reasons for ignoring this issue
is that we believe that the rue bottleneck lies the unknown “large constants” referred to above.
The matrix product operation (on which the choice of random projector would have the greatest
impact) is one of the most common in scientific computing, and many ways are known to optimize
and streamline it. In our computational experiments (Sect. 7-8) we use the Achlioptas projector
and the most obvious matrix product implementation.

Note that all the random projectors we consider have zero mean. This is necessary in order
to ensure that our randomized algorithms will yield the result we want in expectation. This also
explains why we consider LPs in standard rather than canonical form: we cannot apply the random
projection to the inequality system Ax≤ b to yield TAx≤ Tb: this is almost always false, since the
signs of the components of the matrix T are distributed uniformly.

The JLL can be derived from a more fundamental result [20].

Lemma 1 (Random projection lemma). For all ε ∈ (0,1) and all vectors y ∈Rm, let T be
a k×m random projector from one of the choices (1-4) above , then

Prob( (1− ε)‖y‖ ≤ ‖Ty‖ ≤ (1 + ε)‖y‖ )≥ 1− 2e−Cε
2k (4)

for some constant C > 0 (independent of m,k, ε).

It can be proved easily that JLL is a consequence of Lemma 1 by setting y =Ai−Aj for all pairs
of (i, j) and then applying the union bound. Moreover, Lemma 1 shows that the probability of
finding a good T is very high for large enough values of k. Indeed, from Lemma 1, the probability
that Eq. (3) holds for all i 6= j ≤ n is at least

1− 2

(
n

2

)
e−Cε

2k = 1−n(n− 1)e−Cε
2k. (5)

Therefore, if we want this probability to be larger than, say 99.9%, we simply choose any k such that
1

1000n(n−1)
> e−Cε

2k. This means k can be chosen to be k= d ln(1000)+2 ln(n)

Cε2 e, which is O(ε−2(ln(n) +

3.5) ).
Note that the distributions from which T is sampled are such that the the average of ‖Ty‖ over

T is equal to ‖y‖. Lemma 1 is a concentration of measure result, and it states that the probability
of a single sampling of T yielding a value of ‖Ty‖ very close to its mean approaches 1 as fast as a
negative exponential of k approaches zero.

We shall also need a squared version of the random projection lemma [11].

Lemma 2 (Random projection lemma, squared version). For all ε ∈ (0,1) and all vec-
tors y ∈Rm, let T be a k×m random projector from one of the choices (1-4) above, then

Prob( (1− ε)‖y‖2 ≤ ‖Ty‖2 ≤ (1 + ε)‖y‖2 )≥ 1− 2e−C(ε
2−ε3)k (6)

for some constant C > 0 (independent of m,k, ε).
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Another relevant result about the JLL is the preservation of angles (or scalar product) with high
probability. Indeed, given any x, y ∈Rn, and T a k×m random projector from one of the choices
(1-4) above, by applying Lemma 2 on two vectors x+y, x−y and using the union bound, we have

|〈Tx,Ty〉− 〈x, y〉| = 1
4

∣∣‖T (x+ y)‖2−‖T (x− y)‖2−‖x+ y‖2 + ‖x− y‖2
∣∣

≤ 1
4

∣∣‖T (x+ y)‖2−‖x+ y‖2
∣∣+ 1

4

∣∣‖T (x− y)‖2−‖x− y‖2
∣∣

≤ ε
4
(‖x+ y‖2 + ‖x− y‖2) = ε

2
(‖x‖2 + ‖y‖2), (7)

with probability at least 1− 4e−Cε
2k. We can strengthen this further to obtain the following useful

result.

Proposition 1. Let T : Rm→Rk be a k×m random projector from one of the choices (1-4)
above and let 0< ε< 1. Then there is a universal constant C such that, for any x, y ∈Rn:

−ε‖x‖‖y‖ ≤ 〈Tx,Ty〉− 〈x, y〉 ≤ ε‖x‖‖y‖

with probability at least 1− 4e−Cε
2k.

Proof . Apply Eq. (7) with x replaced by x
‖x‖ and y replaced by y

‖y‖ . This yields |〈Tx,Ty〉 −
〈x, y〉| ≤ ε; now we can multiply both sides by ‖x‖‖y‖ to obtain the desired result. 2

Lemma 2 and Proposition 1 will be used extensively throughout the paper in order to estimate
the distance between a vector and a linear combination of other vectors. In particular, we can
bound ‖Tx−

∑
i λiTyi‖2 by first expanding it and then approximating each 〈Tx,Tyi〉 by 〈x, yi〉

and 〈Tyi, T yj〉 by 〈yi, yj〉. We leverage over the weights λi to get the desired estimation. In the rest
of the paper, we will refer to a k×m random matrix from one of the choices (1-4) in Section 2 as
a “random projector”.

We remark that Lemma 1 is central to all random projection theory, and will be used again later
in Sect. 3. Prop. 1 will be used later on in Sect. 4. If Ax= b∧ x≥ 0 is infeasible, then b is not in
the cone spanned by the columns of A. By proving angle preservation w.a.h.p., Prop. 1 is key to
understanding why, when we pre-multiply Ax= b by a random projector, the resulting system is
still infeasible w.a.h.p.

3. Preserving LP feasibility Consider the Linear Feasibility Problem (LFP)

F =F(P )≡ {x∈Rn+ |Ax= b}

and its randomly projected version

TF =F(PT )≡ {x∈Rn+ | TAx= Tb}.

In this section we prove that F 6=∅ if and only if TF 6=∅ w.a.h.p.
We remark that, for any k×m matrix T , any feasible solution for F is also a feasible solution

for TF by linearity. So the real issue is proving that if F is infeasible then TF is also infeasible
w.a.h.p. This is where we exploit the fact that T is a random projector. More precisely, we prove
the following statements about linear infeasibility w.a.h.p.:
1. a nonzero vector is randomly projected to a nonzero vector;
2. if x is not feasible in F , then it is not feasible in TF ;
3. if x is not feasible in F for all x in a finite set X, then the same follows for TF ;
4. if b is not in the convex hull of A, then Tb is not in the convex hull of TA.
5. if b is not in the cone of A, then Tb is not in the cone of TA.

The first result is actually a corollary of Lemma 1. We denote by Ec the complement of an event
E.
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Corollary 1. Let T be a k×m random projector and y ∈Rm with y 6= 0. Then we have

Prob(Ty 6= 0)≥ 1− 2e−Ck. (8)

for some constant C > 0 (independent of n,k).

Proof. For any ε∈ (0,1), we define the following events:

A =
{
Ty 6= 0

}
B =

{
(1− ε)‖y‖ ≤ ‖Ty‖ ≤ (1 + ε)‖y‖

}
.

By Lemma 1 it follows that Prob(B)≥ 1− 2e−Cε
2k for some constant C > 0 independent of m,k, ε.

On the other hand, Ac ∩ B = ∅, since otherwise, for any ε ∈ (0,1) there is a mapping T1 such

that T1(y) = 0 and (1 − ε)‖y‖ ≤ ‖T1(y)‖, which altogether imply that y = 0 (a contradiction).
Therefore, B ⊆ A, and we have Prob(A)≥ Prob(B)≥ 1− 2e−Cε

2k. This holds for all 0< ε < 1, so

Prob(A)≥ 1− 2eCk. 2

The following theorem settles points 2-3 above.

Theorem 2. Let T be a k×m random projector and F ≡ {x≥ 0 | Ax= b} with A an m× n
matrix. Then for any x∈Rn, we have:

(i) If b=
n∑
j=1

xjAj then Tb=
n∑
j=1

xjTAj;

(ii) If b 6=
∑n

j=1 xjAj then Prob

[
Tb 6=

∑n

j=1 xjTAj

]
≥ 1− 2e−Ck;

(iii) If b 6=
∑n

j=1 xjAj for all x∈X ⊆Rn, where |X| is finite, then

Prob

[
∀x∈X Tb 6=

n∑
j=1

xjTAj

]
≥ 1− 2|X|e−Ck;

for some constant C > 0 (independent of n,k).

Proof. Point (i) follows by linearity of T , and (ii) by applying Cor. 1 to Ax− b. For (iii), the

union bound on (ii) yields:

Prob

[
∀x∈X Tb 6=

n∑
j=1

xjTAj

]
= Prob

[ ⋂
x∈X

{
Tb 6=

n∑
j=1

xjTAj
}]

= 1−Prob

[ ⋃
x∈X

{
Tb 6=

n∑
j=1

xjTAj
}c] ≥ 1−

∑
x∈X

Prob

[{
Tb 6=

n∑
j=1

xjTAj
}c]

[by (ii)] ≥ 1−
∑
x∈X

2e−Ck = 1− 2|X|e−Ck,

as claimed. 2

Thm. 2 can be used to project certain types of integer programs. It also gives us an indication

to why estimating the probability that Tb 6∈ cone(A) is not straightforward. This event can be

written as an intersection of uncountably many events {Tb 6=
∑n

j=1 xjTAj} where x∈Rn+. Even if

each of these occurs w.a.h.p., their intersection might still be small. As these events are dependent,

however, we shall show that there is hope yet.
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3.1. Convex hull feasibility Next, we show that if the distance between a point and a closed
set is positive, it remains positive with high probability after applying a random projection. We
consider the convex hull membership problem: given vectors b,A1, . . . ,An ∈ Rm, decide whether
b ∈ conv({A1, . . . ,An}). Although we do not use this result directly in the following, we believe it
is of independent interest.

We have the following result:

Proposition 2. Given A1, . . . ,An ∈ Rm, let C = conv({A1, . . . ,An}), b ∈ Rm such that b /∈ C,
d= min

x∈C
‖b−x‖ and D= max

1≤j≤n
‖b−Aj‖. Let T :Rm→Rk be a random projector. Then

Prob
[
Tb /∈ TC

]
≥ 1− 2n2e−C(ε

2−ε3)k (9)

for some constant C (independent of m,n,k, d,D) and ε < d2

D2 .

This proposition is based on the fact that any vector in C can be represented as a convex com-
bination of Aj for j ∈ {1, . . . , n}. Since the distance between Tb and all TAj is positive with high
probability and the total weight, i.e.

∑n

j=1 λj, is always 1, we can bound the distance between Tb
and all vectors in TC.

Proof . Let Sε be the event that both

(1− ε)‖x− y‖2 ≤ ‖T (x− y)‖2 ≤ (1 + ε)‖x− y‖2

and
(1− ε)‖x+ y‖2 ≤ ‖T (x+ y)‖2 ≤ (1 + ε)‖x+ y‖2

hold for all x, y ∈ {0, b−A1, . . . , b−An}. Assume Sε occurs. Then for all real λj ≥ 0 with
n∑
j=1

λj = 1,

we have:

‖Tb−
n∑
j=1

λjTAj‖2 = ‖
n∑
j=1

λjT (b−Aj)‖2 (by linearity of T and
∑

j λj = 1)

=
n∑
j=1

λ2
j‖T (b−Aj)‖2 + 2

∑
1≤i<j≤n

λiλj〈T (b−Ai), T (b−Aj)〉

=
n∑
j=1

λ2
j‖T (b−Aj)‖2 +

1

2

∑
1≤i<j≤n

λiλj

(
‖T (b−Ai + b−Aj)‖2−‖T (Ai−Aj)‖2

)
. (10)

Here the last equality follows from the fact that 〈x, y〉= 1
4
(‖x+ y‖2−‖x− y‖2) for all vectors x, y.

Moreover, since Sε occurs, we have

‖T (b−Aj)‖2 ≥ (1− ε)‖b−Aj‖2

and

‖T (b−Ai + b−Aj)‖2−‖T (Ai−Aj)‖2 ≥ (1− ε)
∥∥b−Ai + b−Aj

∥∥2− (1 + ε)‖Ai−Aj‖2

for all 1≤ i < j ≤ n. Therefore, the RHS in (10) is greater than or equal to

(1− ε)
n∑
j=1

λ2
j‖b−Aj‖2 +

1

2

∑
1≤i<j≤n

λiλj

(
(1− ε)

∥∥b−Ai + b−Aj
∥∥2− (1 + ε)‖Ai−Aj‖2

)
= ‖b−

n∑
j=1

λjAj‖2− ε
( n∑

j=1

λ2
j‖b−Aj‖2 +

1

2

∑
1≤i<j≤n

λiλj(‖b−Ai + b−Aj‖2 + ‖Ai−Aj‖2)

)
= ‖b−

n∑
j=1

λjAj‖2− ε
( n∑

j=1

λ2
j‖b−Aj‖2 +

∑
1≤i<j≤n

λiλj(‖b−Ai‖2 + ‖b−Aj‖2)

)
.
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From the definitions of d and D, we have ‖b−
∑n

j=1 λjAj‖2 ≥ d2 and ‖b−Ai‖ ≤D2 for all 1≤ i≤ n.
Therefore:

‖Tb−
n∑
j=1

λjTAj‖2 ≥ d2− εD2

( n∑
j=1

λ2
j + 2

∑
1≤i<j≤n

λiλj

)
= d2− εD2

( n∑
j=1

λj

)2

= d2− εD2 > 0

due to the fact that
∑n

j=1 λj = 1 and the choice of ε < d2

D2 .

Now, since ‖Tb −
n∑
j=1

λjTAj‖2 > 0 for all choices of λ ≥ 0 with
∑n

j=1 λj = 1, it follows that

Tb /∈ conv({TA1, . . . , TAn}).
In summary, if Sε occurs, then Tb /∈ conv({TA1, . . . , TAn}). Thus, by Lemma 2 and the union

bound,

Prob(Tb /∈ TC)≥ Prob(Sε)≥ 1− 2
(
n+ 2

(
n

2

))
e−C(ε

2−ε3)k = 1− 2n2e−C(ε
2−ε3)k

for some constant C > 0. 2

As an interesting aside, we remark that this proof can also be extended to show that disjoint
polytopes project to disjoint polytopes with high probability.

3.2. Cone feasibility We now deal with the last (and most relevant) result: if b is not in the
cone of the columns of A, then Tb is not in the cone of the columns of TA w.a.h.p. We first define
the A-norm of x∈ cone(A) as

‖x‖A = min
{ n∑
j=1

λj
∣∣ λ≥ 0∧x=

n∑
j=1

λjAj
}
.

For each x ∈ cone(A), we say that λ ∈ Rn+ yields a minimal A-representation of x if and only if
n∑
j=1

λj = ‖x‖A. We define µA = max{‖x‖A | x ∈ cone(A) ∧ ‖x‖ ≤ 1}; then, for all x ∈ cone(A), we

have
‖x‖ ≤ ‖x‖A ≤ µA‖x‖.

In particular µA ≥ 1. Note that µA serves as a measure of worst-case distortion when we move from
Euclidean to ‖ · ‖A norm.

For the next result, we assume we are given an estimate of a lower bound ∆ to d= min
x∈C
‖b−x‖,

and also (without loss of generality) that b and the column vectors of A have unit Euclidean norm.

Theorem 3. Given an m × n matrix A and b ∈ Rm s.t. b 6∈ cone(A). Then for any 0 <

ε< ∆2

µ2
A

+2µA

√
1−∆2+1

and any k×m random projector T (such as one in Section 2), we have

Prob(Tb /∈ cone(TA))≥ 1− 2(n+ 1)(n+ 2)e−C(ε
2−ε3)k (11)

for some constant C (independent of m,n,k,∆).

The proof to this theorem (below) is based on the fact that any vector x in the cone generated
by A can be represented as a nonnegative combination of Aj for j ∈ {1, . . . , n}. Since the distance
between Tb and all TAj is positive with high probability, so if we can bound the total weight,
i.e.

∑n

j=1 λj, it is possible to bound the distance between Tb and all vectors in TC. However,
vectors in the cone might have many different such representations. Therefore we choose a minimal
representation, which we obtain by minimizing the corresponding total weight. This motives our
definition of A-norm. With this definition, we can then estimate

‖Tb−Tx‖2 ≥ ‖b−x‖2− ε(1 + ‖x‖2A)
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with high probability. The problem is that ‖x‖A can go to infinity when ‖x‖→∞, therefore the
left-hand side might be negative. To overcome this difficulty, we argue that ‖b− x‖2 can also be
scaled up when ‖x‖→∞, so that it always dominates ε(1 + ‖x‖2A). This is the fact we prove later
in the claim that

‖b−x‖2 ≥ ‖x‖2− 2‖x‖‖p‖+ 1,

where p is the projection of b to the cone.
Proof. For any ε chosen as in the theorem statement, let Sε be the event that both

(1− ε)‖x− y‖2 ≤ ‖T (x− y)‖2 ≤ (1 + ε)‖x− y‖2

and
(1− ε)‖x+ y‖2 ≤ ‖T (x+ y)‖2 ≤ (1 + ε)‖x+ y‖2

hold for all x, y ∈ {0, b,A1, . . . ,An}. By Lemma 1, we have

Prob(Sε)≥ 1− 4

(
n+ 2

2

)
e−C(ε

2−ε3)k = 1− 2(n+ 1)(n+ 2)e−C(ε
2−ε3)k

for some constant C (independent of m,n,k, d). We will prove that if Sε occurs, then we have
Tb /∈ cone{TA1, . . . , TAn}. Assume that Sε occurs. Consider an arbitrary x∈ cone{A1, . . . ,An} and

let
n∑
j=1

λjAj be a minimal A-representation of x. Then we have:

‖Tb−Tx‖2 = ‖Tb−
n∑
j=1

λjTAj‖2

= ‖Tb‖2 +

n∑
j=1

λ2
j‖TAj‖2− 2

n∑
j=1

λj〈Tb,TAj〉+ 2
∑

1≤i<j≤n

λiλi〈TAi, TAj〉

=‖Tb‖2+
n∑
j=1

λ2
j‖TAj‖2+

n∑
j=1

λj
2

(‖T (b−Aj)‖2−‖T (b+Aj)‖2)+
∑

1≤i<j≤n

λiλj
2

(‖T (Ai+Aj)‖2−‖T (Ai−Aj)‖2)

(12)

Here the last equality follows by the fact that 〈x, y〉= 1
4
(‖x+ y‖2 − ‖x− y‖2) for all vectors x, y.

Moreover, since Sε occurs, we have

‖Tb‖2 ≥ (1− ε)‖b‖2, ‖TAj‖2 ≥ (1− ε)‖Aj‖2 for all 1≤ j ≤ n

and

‖T (b−Aj)‖2−‖T (b+Aj)‖2 ≥ (1− ε)
∥∥b−Aj∥∥2− (1 + ε)‖b+Aj‖2

‖T (Ai+Aj)‖2−‖T (Ai−Aj)‖2 ≥ (1− ε)‖Ai+Aj‖2− (1 + ε)‖Ai−Aj‖2

for all 1≤ i < j ≤ n. Therefore, the RHS in (12) is greater than or equal to

(1− ε)‖b‖2 + (1− ε)
n∑
j=1

λ2
j‖Aj‖2 +

n∑
j=1

λj
2

((1− ε)‖b−Aj‖2− (1 + ε)‖b+Aj‖2)

+
∑

1≤i<j≤n

λiλj
2

((1− ε)‖Ai +Aj‖2− (1 + ε)‖Ai−Aj‖2). (13)

Since we have assumed that ‖b‖= ‖A1‖= . . .‖An‖= 1, it can then be rewritten as

‖b−
n∑
j=1

λjAj‖2− ε
(

1 +
n∑
j=1

λ2
j + 2

n∑
i=j

λj + 2
∑
j 6=i

λiλj

)
= ‖b−

n∑
j=1

λjAj‖2− ε
(
1 +

n∑
j=1

λj
)2

= ‖b−x‖2− ε
(
1 + ‖x‖A

)2
(by the definition of A-norm).
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In summary, we have proved that, when the event Sε occurs, then

‖Tb−Tx‖2 ≥ ‖b−x‖2− ε
(
1 + ‖x‖A

)2
. (14)

Denote by α= ‖x‖ and let p be the orthogonal projection of b to cone{A1, . . . ,An}, which means
‖b− p‖= min{‖b−x‖ | x∈ cone{A1, . . . ,An}}. We will need to use the following claim:

Claim. For all b,x,α, p given above, we have ‖b−x‖2 ≥ α2− 2α‖p‖+ 1.
By this claim (proved later), from inequality (14), we have:

‖Tb−Tx‖2 ≥ α2− 2α‖p‖+ 1− ε
(
1 + ‖x‖A

)2

≥ α2− 2α‖p‖+ 1− ε
(
1 +µAα

)2
(since ‖x‖A ≤ µA‖x‖)

=
(
1− εµ2

A

)
α2− 2

(
‖p‖+ εµA

)
α+ (1− ε).

The last expression can be viewed as a quadratic function with respect to α. We will prove this
function is positive for all α∈R. This is equivalent to1(

‖p‖+ εµA
)2−

(
1− εµ2

A

)
(1− ε)< 0

⇔
(
µ2
A + 2‖p‖µA + 1

)
ε < 1−‖p‖2

⇔ ε <
1−‖p‖2

µ2
A + 2‖p‖µA + 1

=
d2

µ2
A + 2‖p‖µA + 1

,

which holds for the choice of ε as in the hypothesis. In conclusion, if the event Sε occurs, then
‖Tb−Tx‖2 > 0 for all x∈ cone{A1, . . . ,An}, i.e. Tx /∈ cone{TA1, . . . , TAn}. Thus,

Prob(Tb /∈ TC)≥ Prob(Sε)≥ 1− 2(n+ 1)(n+ 2)e−c(ε
2−ε3)k

as claimed. The result follows since ‖p‖22 + d2 = 1 by Pythagoras’ theorem, and ∆≤ d.

Proof of the claim that ‖b−x‖2 ≥ α2− 2α‖p‖+ 1:
If x= 0 then the claim is trivially true, since ‖b−x‖2 = ‖b‖2 = 1 = α2−2α‖p‖+1. Hence we assume
x 6= 0. First consider the case p 6= 0. By Pythagoras’ theorem, we must have d2 = 1− ‖p‖2. We
denote by z = ‖p‖

α
x, then ‖z‖= ‖p‖. Set δ= α

‖p‖ , we have

‖b−x‖2 = ‖b− δz‖2
= (1− δ)‖b‖2 + (δ2− δ)‖z‖2 + δ‖b− z‖2
= (1− δ) + (δ2− δ)‖p‖2 + δ‖b− z‖2
≥ (1− δ) + (δ2− δ)‖p‖2 + δd2

= (1− δ) + (δ2− δ)‖p‖2 + δ(1−‖p‖2)
= δ2‖p‖2− 2δ‖p‖2 + 1 = α2− 2α‖p‖+ 1.

Next, we consider the case p= 0. In this case we have bT (x)≤ 0 for all x∈ cone{A1, . . . ,An}. Indeed,
for an arbitrary δ > 0,

0≤ 1

δ
(‖b− δx‖2− 1) =

1

δ
(1 + δ2‖x‖2− 2δbTx− 1) = δ‖x‖2− 2bTx

which tends to −2bTx when δ→ 0+. Therefore

‖b−x‖2 = 1− 2bTx+ ‖x‖2 ≥ ‖x‖2 + 1 = α2− 2α‖p‖+ 1,

which proves the claim. 2

Since cone membership is the same as LP feasibility, Thm. 3 establishes that LFPs can be
randomly projected accurately w.a.h.p.

1 Here we use the fact that a quadratic function ax2 + bx+ c > 0 for all x∈R if and only if a> 0 and b2− 4ac < 0.



Vu, Poirion and Liberti: Random projections for linear programming
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 11

4. Preserving optimality In this section we show that, if the projected dimension k is large
enough, v(P )≈ v(PT ) w.o.p (Thm. 4). We assume all along, and without loss of generality, that
b, c and the columns of A have unit Euclidean norms.

The proof of Thm. 4 is divided into two main parts.
• In the first part, we write v(P )≈ v(PT ) formally as “given δ > 0 there is a random projector T

such that v(P )−δ≤ v(PT )≤ v(P ) w.a.h.p.”, formalize some infeasible LFPs which encode v(P )−δ
and v(PT ), and emphasize their relationship.
• In the second part, we formally argue the “overwhelming probability” by means of an ε > 0 (in

function of δ) which ensures that the probability of v(P )− δ≤ v(PT ) approaches 1 fast enough (as
a function of ε). This ε refers to the projected (infeasible) LFP of the first part, but for technical
reasons we cannot simply “inherit it” from Thm. 3. Instead, from the cone of the infeasible LFP
we carefully construct a new pointed cone which allows us to carry out a projected separation
argument based on inner product preservation (Prop. 1).
Our proof assumes that the feasible region of P is non-empty and bounded. Specifically, we assume
that a constant θ > 0 is given such that that there exists an optimal solution x∗ of P (see Eq. (1))
satisfying

n∑
j=1

x∗j < θ. (15)

For the sake of simplicity (and without loss of generality), we assume further that θ ≥ 1. This
assumption is used to control the excessive flatness of the involved cones, which is required in the
projected separation argument.

4.1. A cone transformation operation Before introducing Thm. 4 and its proof, we explain
how to construct a pointed cone from the cone of the LFP in such a way as to preserve a certain
membership property.

Given a polyhedral cone

K=

{∑
j≤n

xjCj

∣∣∣∣ x∈Rn+
}

in which C1, . . . ,Cn are column vectors of an m×n matrix C, in other words K= cone(C). For any
u∈Rm, we consider the following transformation φu,θ, defined by:

φu,θ(K) :=

{
n∑
j=1

xj

(
Cj −

1

θ
u

) ∣∣∣∣ x∈Rn+
}
.

In particular, φu,θ moves the origin in the direction u by a step 1/θ (see Figure 1). For θ defined
in Eq. (15), we also consider the following set

Kθ =

{
n∑
j=1

xjCj

∣∣∣∣ x∈Rn+ ∧ n∑
j=1

xj < θ

}
.

Kθ can be seen as a set truncated from K (in particular, it is not a cone anymore). We shall show
that φu,θ preserves the membership of the vector u in the “truncated cone” Kθ.

Lemma 3. For any u∈Rm, we have u∈Kθ if and only if u∈ φu,θ(K).

Proof. First of all, let denote by t= 1− 1
θ

n∑
j=1

xj.
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Figure 1. The effect of φu when u does not belong to the cone (left) and when it does (right).

(⇒) If u ∈ Kθ, then there exists x ∈ Rn+ such that u =
n∑
j=1

xjCj and
n∑
j=1

xj < θ. Then u can be

written as
n∑
j=1

x′j
(
Cj − 1

θ
u
)

with x′ = 1
t
x. Indeed,

n∑
j=1

x′j
(
Cj −

1

θ
u
)

=
1

t

n∑
j=1

xj
(
Cj −

1

θ
u
)

=
1

t

n∑
j=1

xjCj −
1

t

( n∑
j=1

1

θ
xj
)
u

=
1

t
u− 1

t

( n∑
j=1

1

θ
xj
)
u

=
1

t

(
1− 1

θ

n∑
j=1

xj
)
u

= u (by definition of t).

Moreover, due to the assumption that
n∑
j=1

xj < θ, we have x′ ≥ 0. It follows that u∈ φu,θ(K).

(⇐) If u ∈ φu,θ(K), then there exists x ∈ Rn+ such that u =
n∑
j=1

xj
(
Cj − 1

θ
u
)
. It is equivalent to(

1 + 1
θ

n∑
j=1

xj)u=
n∑
j=1

xjCj. Thus u can also be written as
n∑
j=1

x′jCj, where x′j =
xj

1+ 1
θ

n∑
i=1

xi

. Note that

n∑
j=1

x′j < θ because

n∑
j=1

x′j =

n∑
j=1

xj

1 + 1
θ

n∑
j=1

xj

< θ,

which implies that u∈Kθ. 2
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Note that this result is still valid when the transformation φu,θ is only applied to a subset of
columns of C. Given any vector u and an index set J ⊆ {1, . . . , n}, we define ∀j ≤ n:

CJu
j =

{
Cj − 1

θ
u if j ∈ J

Cj otherwise.

We extend φu,θ to

φJu,θ(K) =

{
n∑
j=1

xjC
Ju
j

∣∣∣∣ x∈Rn+
}

= cone(CJu
j | 1≤ j ≤ n), (16)

and define

KJθ =

{
n∑
j=1

xjCj

∣∣∣∣ x∈Rn+ ∧∑
j∈J

xj < θ

}
.

The following corollary can be proved in the same way as Lemma 3, in which φu,θ is replaced by
φJu,θ.

Corollary 2. For any vector u∈Rm and any index set J ⊆ {1, . . . , n}, we have u∈KJθ if and
only if u∈ φJu,θ(K).

4.2. The main theorem Given an LFP instance Ax= b∧x≥ 0, where A is an m×n matrix
and T is a k×m random projector. By Thm. 3, we know that,

∃x≥ 0 (Ax= b) ⇔ ∃x≥ 0 (TAx= Tb)

w.a.h.p. We remark that this also holds for a (k+h)×m random projector of the form(
Ih 0
T

)
,

where T is a k×m random matrix. This allows us to claim the feasibility equivalence w.a.h.p. even
when we only want to project a subset of rows of A. In the following, we will use this observation to
handle constraints and objective function separately. In particular, we only project the constraints
while keeping objective function unchanged.

If we add the constraint
n∑
j=1

xj ≤ θ to the problem PT (defined in Eq. (2)), we obtain the following:

PT,θ ≡min

{
c>x

∣∣∣∣ TAx= Tb∧
n∑
j=1

xj ≤ θ∧x∈Rn+

}
. (17)

So we come to our main theorem, which asserts that the optimal objective value of P can be
well-approximated by that of PT,θ.

Theorem 4. Assume F(P ) is bounded and non-empty. Let y∗ be an optimal dual solution of
P of minimal Euclidean norm. Given 0< δ≤ |v(P )|, we have

v(P )− δ≤ v(PT,θ)≤ v(P ), (18)

with probability at least p= 1− 4ne−C(ε
2−ε3)k, where ε=O( δ

θ2‖y∗‖).
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First, we will informally explain the idea of the proof. Since v(P ) is the optimal objective value of
problem P , for any positive δ, the problem

Ax= b∧x≥ 0∧ c>x≤ v(P )− δ.

is infeasible (because we can not obtain a lower objective value than v(P )). That problem can now
be projected in such a way that it remains infeasible w.a.h.p. By rewriting this original problem
in the standard form as (

c> 1
A 0

)(
x
s

)
=

(
v(P )− δ

b

)
, where

(
x
s

)
≥ 0, (19)

and applying a random projection of the form
1 0 . . . 0
0
. . . T
0

 , where T is a k×m random projector,

we will obtain the following problem, which is supposed to be infeasible w.a.h.p.

cx+ s = v(P )− δ
TAx = Tb

s ≥ 0
x ≥ 0

 . (20)

The main idea is that, the prior information about the optimal solution x∗ (i.e. the condition
n∑
j=1

x∗j ≤ θ), can now be added into this new projected problem. This does not change its feasibility,

but later can be used to transform the corresponding cone into the one which is easier to deal with.
Therefore, w.a.h.p., the problem

cx ≤ v(P )− δ
TAx = Tb
n∑
j=1

xj ≤ θ

x ≥ 0

 (21)

is infeasible. Hence we deduce that cx≥ v(P )− δ holds w.a.h.p. for any feasible solution x of the
problem PT,θ, and that proves the LHS of Eq. (18). For the RHS, the proof is trivial since PT is a
relaxation of P with the same objective function. We now turn to the formal proof.

Proof. Let

Ã=

(
c> 1
A 0

)
, x̃=

(
x
s

)
and b̃=

(
v(P )− δ

b

)
Furthermore, let

T̃ =


1 0 . . . 0
0
. . . T
0

 , where T is a k×m random projector.

In the rest of the proof, we prove that b̃ 6∈ cone(Ã) if and only if T b̃ 6∈ cone(TÃ) w.a.h.p.
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Let J be the index set of the first n columns of Ã. Consider the transformation φJ
b̃,θ′

as defined

above, using a step 1
θ′ instead of 1

θ
, in which θ′ ∈ (θ, θ+ 1). We define the following matrix:

A′ =
(
Ã1− 1

θ′ b̃ · · · Ãn−
1
θ′ b̃ Ãn+1

)
Since Eq. (19) is infeasible, it is easy to verify that the system:

Ãx̃ = b̃
n∑
j=1

x̃j < θ′

x̃ ≥ 0

 (22)

is also infeasible. It is equivalent to

b̃ 6∈

{
n∑
j=1

x̃jÃj

∣∣∣∣ x̃∈Rn+ ∧∑
j∈J

x̃j < θ
′

}
.

Then, by Cor. 2, it follows that b̃ 6∈ cone(A′).
Let y∗ ∈Rm be an optimal dual solution of P of minimal Euclidean norm. By the strong duality

theorem, we have y∗A≤ c and y∗ b= v(P ). We define

ỹ=

(
1
−y∗

)
.

We will prove that ỹ A′ > 0 and ỹ b̃ < 0. Indeed, since ỹ Ã=

(
1
−y∗

)>(
c> 1
A 0

)
=

(
c− y∗A

1

)
≥ 0 and

ỹ b̃= v(P )− δ− y∗ b=−δ < 0, then we have

ỹ A′ =

(
c− y∗A+ δ

θ′

1

)
≥ δ

θ′
1≥ δ

θ+ 1
1 and ỹ b̃=−δ (23)

(where 1 is the all-one vector), which proves the claim.
Now we can apply the scalar product preservation property. By Proposition 1 and the union

bound, we have that

∀j ≤ n | ((T̃ ỹ) (T̃A′)− ỹ A′)j | ≤ εη (24)

| (T̃ ỹ) (T̃ b̃)− ỹ b̃ | ≤ εη (25)

hold with probability at least p= 1− 4ne−C(ε
2−ε3)k. Here, η is the normalization constant (to scale

vectors to unit norm)

η= max

{
‖ỹ‖‖b̃‖, max

1≤j≤n
‖ỹ‖‖Aj ′‖

}
,

in which we can easily estimate η = O(θ‖y∗‖) (the proof is given at the end). Let us now fix
ε= δ

2(θ+1)η
. It is easy to see that

ε=
δ

2(θ+ 1)η
=O(

δ

θ2‖y∗‖
).

Then with this choice of ε, by (23), (24) and (25), we have, with probability at least p,

(T̃ ỹ) (T̃A′) ≥ ỹ A′− εη1≥
(

δ

θ+ 1
− εη

)
1≥ 0

(T̃ ỹ) (T̃ b̃) ≤ ỹb̃+ εη≤−δ+ εη < 0,
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which then implies that the problem

T̃A′x̃ = T̃ b̃
x̃ ≥ 0

is infeasible (by Farkas’ Lemma). By definition, T̃A′x̃= T̃ Ãx̃− 1
θ′

n∑
j=1

xjT̃ b̃, which implies that the

system
T̃ Ãx̃ = T̃ b̃
n∑
j=1

x̃j < θ′

x̃ ≥ 0


is also infeasible with probability at least p (the proof is similar to that of Corollary 2). Therefore,
with probability at least p, the following optimization problem:

inf

{
c>x

∣∣∣∣ TAx= Tb∧
n∑
j=1

xj < θ
′ ∧x∈Rn+

}
.

has its optimal value greater than v(P )− δ. Since θ′ > θ, it follows that with probability at least
p, we have v(PT,θ)≥ v(P )− δ, as claimed. The proof is done.

Proof of the claim that η=O(θ‖y∗‖): We have

‖b̃‖2 = ‖b‖2 + (v(P )− δ)2 (by the definition of b̃)
≤ ‖b‖2 + 2(v(P ))2 + 2δ2 (using the inequality (x− y)2 ≤ 2x2 + 2y2 for all x, y.)
≤ ‖b‖2 + 4(v(P ))2 (by assumption that |δ| ≤ |v(P )|)
= 1 + 4|c>x∗|
≤ 1 + 4‖c‖∞ ‖x∗‖1 (by Hölder inequality)
≤ 1 + 4θ (since ‖c‖∞ ≤ ‖c‖2 = 1 and

∑
x∗i ≤ θ)

≤ 5θ (by the assumption that θ≥ 1).

Therefore, we conclude that

η= max

{
‖ỹ‖‖b̃‖, max

1≤j≤n
‖ỹ‖‖Aj ′‖

}
=O(θ ‖y∗‖)

2

5. Solution retrieval In this section we explain how to retrieve an approximation x̃ of the
optimal solution x∗ of problem P . Let δ > 0, by Theorem 4, we can build a vector x′ ∈ Rn+ such
that v(P )− δ≤ cx′ ≤ v(P ) and TAx′ = Tb for some k×m projection matrix T .

5.1. Infeasibility of projected solutions We first prove that Ax′ 6= b almost surely, which
means that the projected problem directly gives us an approximate optimal objective function
value, but not the optimum itself. Let 0≤ ν ≤ δ such that v(PT ) = v(P )− ν.

Let Ã=

(
c
A

)
, b̃=

(
v(P )− ν

b

)
, and T̃ =

(
1
T

)
. We assume here that the projected solution x′

(s.t. cx′ = v(P )−ν) is found uniformly in the projected solution set F ′ = {x∈Rn+ | T̃ Ãx= T̃ b̃}. We

denote F = {x∈Rn+ | Ãx= b̃}.

Proposition 3. Assume that cone(A) is full dimensional in Rm and that any optimal solution
of P has at least m non-zero components. Let x′ be uniformly chosen in F ′. Then, almost surely,
Ãx′ = b̃ does not hold.
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Proof. If ν > 0 then obviously Ãx′ = b̃ does not hold, because otherwise, it would contradict
the minimality of v(P ). Hence we assume in the rest of the proof that ν = 0, i.e, the value of the
projected problem is the same than the value of the original one.

In order to aim at a contradiction, we assume that

Prob(x′ ∈ F ) = p> 0.

For each ε∈ ker(T ), let

Fε = {x≥ 0 | Ãx− b̃= ε}∩F ′.

We will prove that there exists d > 0 and a family V of infinitely many ε ∈ ker(T̃ ) such that

Prob(x′ ∈ Fε)≥ d> 0. Since (Fε)ε∈V is a family of disjoint sets, we deduce that Prob

(
x′ ∈

⋃
ε∈V

Fv

)
≥∑

ε∈V
d= +∞, leading to a contradiction.

Claim: b̃ belongs to the relative interior of a facet of the m+ 1 dimensional cone, cone(Ã).
Proof of claim. Notice first that if b̃ belongs to the relative interior of cone(Ã) then we can
find a feasible solution for P with a smaller cost. Hence b̃ belongs to a face of dimension at
most m. Assume now, to aim at a contradiction, that b̃ belongs to the relative interior of a face
of dimension d≤m−1 of cone(Ã). Then, we could write b̃ as a positive sum of d extreme rays,
Ãj, j ∈ J . Hence there exists an optimal solution x∗ of P with d non-negative components.
Since d<m there is a contradiction.

Hence 0 belongs to a facet of {Ãx− b̃ | x≥ 0}, and since dim(ker(T̃ ))≥ 2 (w.l.o.g.), then there exists
a segment [−u,u] (for ‖u‖ small enough) that is contained in the intersection ker(T̃ )∩{Ãx− b̃ | x≥
0}.

Let Ãj, j ∈ J be the rays of cone(Ã) that belong to the same facet of cone(Ã) as b̃. There
exists x̄≥ 0 such that Ax̄= b and x̄j > 0, ∀j ∈ J (because b̃ belongs to the relative interior of this
facet). Since [−u,u] belongs to this facet, there exits x̂ ∈ Rn such that Ax̂ = −u and such that
x̂j = 0, ∀j /∈ J . We can hence compute N̄ > 0 large enough such that 2x̂≤ N̄ x̄.

For all N ≥ N̄ and for all x∈ F , we denote x′N = x̄+x
2
− 1

N
x̂. Then we have Ãx′N = b̃− 1

N
Ãx̂= b̃+ u

N

and x′N = x
2

+ ( x̄
2
− x̂

N
)≥ 0. Therefore,

x̄+F

2
− 1

N
x̂⊆ F u

N

which implies that, for all N ≥ N̄ ,

Prob(x′ ∈ F u
N

) = µ(F u
N

)≥ µ(
x̄+F

2
)≥ αµ(F ) = αp> 0

for some constant α> 0, where µ is a uniform measure on F ′. 2

5.2. Approximate solution retrieval Let us consider y∗ to be an optimal solution of the
following dual problem:

D≡max {b>y | y>A≤ c∧ y ∈Rm} (26)

and let yT be an optimal solution of the dual of the projected problem:

DT ≡max {(Tb)> y | y> TA≤ c∧ y ∈Rk}. (27)

Let define yprox = T>yT . It is easy to see that yprox is also a feasible solution for the dual problem
D in (26).
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In this section we will assume that the vector b ∈ Rm belongs to the relative interior of the
normal cone at some vertex of the dual polyhedron. Under this assumption, the dual solution y∗

is uniquely determined.
Let Ct(y

∗) be the tangent cone of the dual polyhedron F(D)≡ {y ∈Rm| y>A≤ c} at y∗, which
is defined as

Ct(y
∗) = closure

({
d : ∃λ> 0 such that x+λd∈F(D)

})
In other words, Ct(y

∗) is the closure of the set of all feasible directions of the dual polyhe-
dron F(D) at y∗. Moreover, it is a convex cone generated by a set of vectors vi = yi − y∗ where
yi are the neighboring vertices of y∗ for i≤ p. Notice that by the previous hypothesis, we have:

b>vi < 0 for all i≤ p.

For each 1≤ i≤ p, let αi denote the angle between the vectors −b and vi. Let denote by

α∗ ∈ arg min
αi,...,αp

cos(αi)

We first prove the following lemma, which states that yprox is approximately close to y∗.

Lemma 4. For any ε > 0, there is a constant C such that:

‖y∗− yprox‖2 ≤
Cθ2ε

cos(α∗)‖b‖2
‖y∗‖2 (28)

with probability at least p= 1− 4ne−C(ε
2−ε3)k

Proof. By definition, yprox is also a feasible solution for the dual problem D. Furthermore, by
Theorem 4, there is a constant C such that:

b>yprox ≥ b>y∗−Cθ2ε‖y∗‖2 (29)

with probability at least p= 1− 4ne−C(ε
2−ε3)k.

Since yprox−y∗ belongs to the tangent cone Ct(y
∗), there exists non-negative scalars λi (for i≤ p)

such that yprox− y∗ =
p∑
i=1

λiv
i. Hence

‖y∗− yprox‖2 = ‖
p∑
i=1

λiv
i‖2 ≤

p∑
i=1

λi‖vi‖2.

By equation (29), we have also

Cθ2ε‖y∗‖2 ≥ b>(y∗− yprox) =

p∑
i=1

λi(−b>vi) (we recall that −b>vi > 0 for all i) .

Let us consider the following LP:

max
p∑
i=1

λi‖vi‖2
p∑
i=1

λi(−b>vi)≤Cθ2ε‖y∗‖2
λ≥ 0.

 (30)

The LP above is a simple continuous knapsack problem whose solution can be computed easily by

a greedy algorithm: let j be such that ‖vj‖2
−b>vj ≥

‖vi‖2
−b>vi for all i∈ {1, . . . , p}, then

‖vj‖2
−b>vj

Cθ2ε‖y∗‖2 =
1

cos(α∗)‖b‖2
Cθ2ε‖y∗‖2

is the optimal value of (30). The lemma is proved. 2
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We consider the following algorithm which retrieves an approximate solution for the original LP
from an optimal basis of the projected problem.

Algorithm 1 Retrieving an approximate solution of P

Let yT be the associated basic dual solution of the projected dual problem (DT ).
Define yprox = T>yT
for all 1≤ j ≤ n do

zj :=
cj−A>j yprox
‖Aj‖2

Let B be the set of indices j corresponding to the m smallest values of zj.
return x :=A−1

B b.

Notice that, for all 1≤ j ≤ n, zj :=
cj−A>j yprox
‖Aj‖2

is the distance between yprox and the hyperplane

defined by A>j y= cj. Hence, Algorithm 1 searches for the m facets of the dual polyhedron that are
the closest to yprox and return the corresponding basis.

Let B∗ be the optimal basis. We consider the shortest distance from y∗ to any hyperplane
A>j y= cj for j /∈B∗:

d∗ = min
j /∈B∗

cj −A>j y∗

‖Aj‖2

Proposition 4. Assume that the LP problem P satisfies the following two assumptions:
(a) there is no degenerated vertex in the dual polyhedron.
(b) the vector b ∈ Rm belongs to the relative interior of the normal cone at some vertex of the

dual polyhedron.
If

Cθ2ε

cos(α∗)‖b‖2
‖y∗‖2 <

d∗

2
,

where C is the universal constant in Lemma 4, then with probability at least p= 1− 4ne−C(ε
2−ε3)k,

the Algorithm 1 returns an optimal basis solution.

Proof. By Lemma 4, we have that with probability at least p= 1− 4ne−C(ε
2−ε3)k,

‖y∗− yprox‖2 ≤
Cθ2ε

cos(α∗)‖b‖2
‖y∗‖2

Let B∗ be the optimal basis. Since ‖y∗− yprox‖2 < d∗

2
, We deduce that for all j ∈ B∗, zj ≤ ‖y∗−

yprox‖2 < d∗

2
.

Now, let us consider j /∈ B∗. We have zj ≥ d
2
, otherwise y∗ would be at a distance less than d∗

from A>j y= cj. Since y∗ is non-degenerated we have d∗ > 0. This ends the proof. 2

Note that both assumptions (a)-(b) in Prop. 4 hold almost surely for random instances.

6. Computational complexity The main aim of this paper is that of proving that random
projections can be applied to the given LP P with some probabilistic bounds on feasibility and
optimality errors. The projected LP PT can be solved by any method, e.g. simplex or interior point.
Formally, we envisage the following the solution methodology:

1. sample a random projection matrix T ;
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2. perform the multiplication T (A,b);
3. solve PT (Eq. (2));
4. retrieve a solution for P ,

where (A,b) is the m× (n+ 1) matrix consisting of A with the column b appended.
A very coarse computational complexity estimation is as follows: we assume computing each

component of T takes O(1), so computing T is O(km). The best practical algorithm for serial
matrix multiplication is only very slightly better than the naive algorithm, which takes O(kmn) =
O(mn logn), but more efficient parallel and distributed algorithms exist. For solution retrieval,
Alg. 1 runs in time O(km+mn+n logn+m2) =O(n(m+ logn)). The complexity O(mn logn) of
matrix multiplication therefore dominates the complexity of sampling.

The last step, solution retrieval, is essentially dominated by taking the inverse of the m×m
matrix AB in Alg. 1, which we can assume to have complexity O(m3).

We focus our discussion on the most computationally costly step, i.e. that of solving the pro-
jected LP PT . Exact polynomial-time methods for LP, such as the ellipsoid method or the inte-
rior point method, have complexity estimates ranging from O(n4L) to O( n3

logn
L), where L =∑m

i=0

∑n

j=0dlog(|aij|+ 1) + 1e, ai0 = bi for all i≤m, and a0j = cj for all j ≤ n [26].
Obviously, these LP complexity bounds are impacted by replacing the number m of rows in P by

the corresponding number k=O(lnn) in PT . Also note that, since m≤ n, the complexity of solving
an LP always exceeds (asymptotically) the complexity of the other steps. So the overall worst-case
asymptotic complexity of our solution methodology does not change with respect to solving the
original LP. On the other hand, m appears implicitly as part of L. If we assume we can write L as
mL′ for some L′, then the complexity goes from O( n3

logn
mL′) to O( n3

logn
(lnn)L′) =O(n3L′).

The simplex method has exponential time complexity in the worst case. On the other hand, its
average complexity is O(mn4) [5, Eq. (0.5.15)] in terms of the number of pivot steps, each taking
O(m2L̃) in a naive implementation [24], where L̃ represents a factor due to the encoding length
(assumed multiplicative). This yields an overall average complexity bound O(m3n4L̃). Replacing
m by O(lnn) yields an improvement O(n4(lnn)3L̃).

7. Computational results A sizable majority of works on the applications of the JLL are
theoretical in nature (with some exceptions, e.g. [27, 28]). In this section we provide some empirical
evidence that our ideas show a rather solid promise of practical applicability.

We started our empirical study by considering the NetLib public LP instance library [23], but it
turns out that its instances are too small and sparse to yield any CPU improvement. We therefore
decided to generate and test a set of random LP instances in standard form. Our test set consists of
360 infeasible LPs and 360 feasible LPs. We considered pairs (m,n) as shown in Table 1. For each

m
500 1000 1500
600 1200 1800

n 700 1400 2100
800 1600 2400

Table 1. Instance sizes.

(m,n) we test constraint matrix densities in dens ∈ {0.1,0.3,0.5,0.7}. For each triplet (m,n,dens)
we generate 10 instances where each component of the constraint matrix A is sampled from a
uniform distribution on [0,1]. The objective function vector is always c = 1. Infeasible instances
are generated using Farkas’ lemma: we sample a dual solution vector y such that yA≥ 0 and then
choose b such that by < 0. Feasible instances are generated by sampling a primal solution vector x
and letting b=Ax.
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We employ Achlioptas random projectors in order to decrease the density of the projected
constraint matrix. One of the foremost difficulties in using random projections in practice is that
the theory behind them gives no hint as regards the “universal constants”, e.g. C and the constant
implicit in the definition of k as O( 1

ε2
lnn). In theory, one should be able to work out appropriate

values of ε and of the number σ of samplings of the random projector T for the problems at
hand. In practice, following the theory will yield such small ε and large σ values that the smallest
LPs where our methodology becomes efficient will be expected to have billions of rows, defying
all computation on modest hardware such as today’s laptops. In fact, we are defending the point
of view that random projections are useful in day-to-day work involving large but not necessarily
huge LPs and common hardware platforms. For such LPs, a lot of guesswork and trial-and-error
is needed. In our computational results we use k= 1.8

ε2
lnn after an indication found in [27], ε= 0.2

after testing some values between 0.1 and 0.3, and σ= 1 again after some testing. The choice σ= 1
implies that, occasionally, a few pairwise distances might fall outside their bounds; but enforcing
every pairwise distance to satisfy the JLL requires excessive amounts of samplings of T . Besides,
concentration of measure ensures that very few pairwise distances will be projected wrong w.a.h.p.

All results are obtained using a Julia [4] JuMP [18] script calling the CPLEX [13] barrier solver
(without crossover) on four virtual cores of a dual core Intel i7-7500U CPU at 2.70GHz with 16GB
RAM (we remark that Julia is a just-in-time compiled language, so aside from a small lag to initially
compile the script, CPU times should be similar to compiled rather than interpreted programs).
The CPLEX barrier solver is, in our opinion, the solver of choice when solving very large and
possibly dense LPs — our preliminary tests with the simplex method showed repeated failures
due to excessive resource usage (both CPU and RAM), and high standard deviations in evaluating
the computational advantage between original and projected problems. Eliminating the crossover
phase is a choice we made after some experimentation with these instances. Some preliminary
results show that this choice may need to be re-evaluated when solving problems with different
structures.

7.1. Infeasible instances We benchmark infeasible instances on CPU time and accuracy.
The latter is expressed in terms of mismatches: i.e., an infeasible original LP that is mapped into
a feasible projected LP (recall that the converse can never happen by linearity). The results are
shown in Table 2. Each line is obtained as an average over the 10 instances with same m,n,dens.
We denote by m the number of rows, by n the number of columns, and by dens the properties
of the constraint matrix A. We then report the number of rows k in the projected problem, the
time orgCPU taken to solve the original LP, the time prjCPU taken to solve the projected LP,
and the accuracy acc (“zero” means that no instance was incorrectly classified as feasible in the
projection). While for smaller instances the proposed methodology is not competitive as regards
the CPU time, the trend clearly shows that the larger the size of the orginal LP, the higher the
chances of our methodology being faster, in accordance with theory. We remark that prjCPU is the
sum of the times taken to sample T , to perform the matrix multiplication TA, and to solve the
projected problem.

7.2. Feasible instances Feasible instances are benchmarked on CPU time as well as on three
discrepancy measures to ascertain the quality of the approximated solution x∗ of the projected
LP. In particular, we look at feasibility with respect to both Ax= b and x≥ 0, as well as at the
optimality gap between the approximate and the guaranteed optimal objective function value.
Unfortunately, we found very high errors in the application of the solution retrieval method in
Alg. 1, which at this time we are only able to justify by claiming our test LPs are “too small” (but
we are looking for a more detailed reason — for example, numerical errors leading to values close
to zero might yield an invalid basis). We therefore also tested a different solution retrieval method
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m n dens k orgCPU prjCPU acc
500 600 0.1 289 2.40 2.66 0.0
500 600 0.3 289 2.15 2.80 0.0
500 600 0.5 289 2.48 2.95 0.0
500 600 0.7 289 2.91 3.12 0.0
500 700 0.1 296 2.46 2.99 0.0
500 700 0.3 296 2.24 2.93 0.0
500 700 0.5 296 2.72 3.34 0.0
500 700 0.7 296 3.49 3.38 0.0
500 800 0.1 302 2.01 3.11 0.0
500 800 0.3 302 2.35 3.17 0.0
500 800 0.5 302 2.95 3.58 0.0
500 800 0.7 302 3.60 3.95 0.0

1000 1200 0.1 321 5.47 4.50 0.0
1000 1200 0.3 321 6.92 5.76 0.0
1000 1200 0.5 321 9.54 6.87 0.0
1000 1200 0.7 321 13.75 7.79 0.0
1000 1400 0.1 327 5.34 5.40 0.0
1000 1400 0.3 327 7.89 6.48 0.0
1000 1400 0.5 327 12.02 8.47 0.0
1000 1400 0.7 327 20.93 9.73 0.0
1000 1600 0.1 333 5.64 6.29 0.0
1000 1600 0.3 333 8.26 8.23 0.0
1000 1600 0.5 333 13.20 10.15 0.0
1000 1600 0.7 333 20.26 13.34 0.0
1500 1800 0.1 339 7.40 8.04 0.0
1500 1800 0.3 339 14.38 10.84 0.0
1500 1800 0.5 339 24.83 13.97 0.0
1500 1800 0.7 339 41.98 19.02 0.0
1500 2100 0.1 346 7.98 10.05 0.0
1500 2100 0.3 346 17.27 12.20 0.0
1500 2100 0.5 346 33.35 16.27 0.0
1500 2100 0.7 346 66.81 19.72 0.0
1500 2400 0.1 352 8.52 13.54 0.0
1500 2400 0.3 352 20.00 17.78 0.0
1500 2400 0.5 352 39.01 24.75 0.0
1500 2400 0.7 352 65.85 31.95 0.0

Table 2. Results on infeasible instances.

based on the pseudoinverse: it consists in replacing ABx= b (see last line of Alg. 1) by the reduced
system A>HAHx=A>Hb, where H is a basis of the projected problem PT (the reconstruction of the
full solution from the projected basic components is heuristic). Accordingly, we present two sets
of statistics for feasible instances: one labelled “1”, referring to Alg. 1, and the other labelled “2”,
referring to the pseudoinverse variant.

The results on the feasible instances are given in Table 2. Again, each line is obtained as an
average over the 10 instances with same m,n,dens. The CPU time comparison takes three columns:
orgCPU refers to the time taken by CPLEX to solve the original LP; prjCPU1 is the sum of the
times taken to sample T , multiply T by A, solve the projected LP, and retrieve the original solution
by Alg. 1; and prjCPU2 is the same as prjCPU1 but using the solution retrieval method based
on the pseudoinverse. The solution quality is evaluated in the six columns feas1, feas2 (verifying
feasibility with respect to Ax= b using the two retrieval methods), neg1, neg2 (verifying feasibility
with respect to x≥ 0 using the two retrieval methods), and obj1, obj2 (evaluating the optimality
gap using the two retrieval methods), defined as follows:
• feas= 1

‖b‖1

∑
i≤m
|Aix∗− bi|;
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• neg= 1
‖x∗‖1

∑
x∗j<0

|x∗j |;

• obj= |v(P )−v(PT )|
|v(P )| .

The results are presented in Table 3. Again, we see an encouraging trend showing that the

m n dens k orgCPU prjCPU1 prjCPU2 feas1 feas2 neg1 neg2 obj1 obj2
500 600 0.1 289 2.42 9.97 6.76 0.000 0.000 0.437 0.033 0.079 0.055
500 600 0.3 289 2.41 10.24 7.08 0.000 0.000 0.442 0.035 0.029 0.027
500 600 0.5 289 3.06 10.53 7.37 0.000 0.000 0.444 0.037 0.023 0.020
500 600 0.7 289 3.89 10.81 7.72 0.000 0.000 0.454 0.036 0.042 0.014
500 700 0.1 296 2.53 10.41 7.11 0.000 0.000 0.467 0.039 0.246 0.050
500 700 0.3 296 2.46 10.72 7.58 0.000 0.000 0.453 0.045 0.068 0.025
500 700 0.5 296 3.43 11.10 7.97 0.000 0.000 0.475 0.043 0.065 0.017
500 700 0.7 296 4.45 11.40 8.45 0.000 0.000 0.468 0.038 0.028 0.012
500 800 0.1 302 2.01 10.67 7.58 0.000 0.000 0.472 0.059 0.102 0.045
500 800 0.3 302 2.55 11.10 8.02 0.000 0.000 0.463 0.060 0.053 0.023
500 800 0.5 302 3.69 11.60 8.48 0.000 0.000 0.474 0.061 0.068 0.015
500 800 0.7 302 5.03 12.03 9.02 0.000 0.000 0.473 0.054 0.044 0.011

1000 1200 0.1 321 6.49 14.03 10.04 0.000 0.000 0.466 0.012 0.036 0.067
1000 1200 0.3 321 9.16 15.82 11.61 0.000 0.000 0.468 0.012 0.054 0.030
1000 1200 0.5 321 14.71 17.52 13.46 0.000 0.000 0.487 0.013 0.277 0.021
1000 1200 0.7 321 26.89 19.45 14.44 0.000 0.000 0.464 0.013 0.092 0.014
1000 1400 0.1 327 6.88 15.54 11.50 0.000 0.000 0.484 0.013 0.222 0.058
1000 1400 0.3 327 10.34 17.05 12.91 0.000 0.000 0.495 0.016 0.411 0.026
1000 1400 0.5 327 22.80 19.85 16.23 0.000 0.000 0.488 0.013 0.144 0.016
1000 1400 0.7 327 34.73 21.64 16.47 0.000 0.000 0.484 0.013 0.111 0.012
1000 1600 0.1 333 7.16 16.98 12.93 0.000 0.000 0.487 0.021 0.857 0.056
1000 1600 0.3 333 11.39 20.11 15.93 0.000 0.000 0.480 0.016 0.102 0.021
1000 1600 0.5 333 25.44 22.42 18.73 0.000 0.000 0.486 0.017 0.073 0.014
1000 1600 0.7 333 40.84 26.31 21.28 0.000 0.000 0.483 0.016 0.066 0.010
1500 1800 0.1 339 9.77 21.64 15.68 0.000 0.000 0.479 0.005 0.069 0.064
1500 1800 0.3 339 20.81 26.33 18.89 0.000 0.000 0.477 0.004 0.042 0.027
1500 1800 0.5 339 42.95 29.95 22.36 0.000 0.000 0.473 0.004 0.054 0.018
1500 1800 0.7 339 74.23 35.63 27.82 0.000 0.000 0.472 0.005 0.016 0.013
1500 2100 0.1 346 10.38 24.78 19.02 0.000 0.000 0.485 0.007 0.095 0.057
1500 2100 0.3 346 25.74 29.22 21.88 0.000 0.000 0.487 0.007 0.156 0.022
1500 2100 0.5 346 52.21 34.06 26.06 0.000 0.000 0.483 0.007 0.046 0.015
1500 2100 0.7 346 90.18 36.81 29.58 0.000 0.000 0.487 0.005 0.064 0.010
1500 2400 0.1 352 11.26 27.90 22.12 0.000 0.000 0.485 0.006 0.121 0.050
1500 2400 0.3 352 29.85 35.97 28.58 0.000 0.000 0.485 0.006 0.134 0.019
1500 2400 0.5 352 61.25 42.47 34.99 0.000 0.000 0.489 0.006 0.253 0.011
1500 2400 0.7 352 104.58 49.98 43.00 0.000 0.000 0.492 0.006 0.126 0.008

Table 3. Results on feasible instances.

CPU time for creating and solving the projected LP becomes smaller than the time taken to solve
the original LP as size and density increase. According to our theoretical development, increasing
size/density further will give a definite advantage to our methodology based on random projections.
It is clear that feasibility w.r.t. Ax= b is never a problem. On the other hand, feasibility w.r.t. non-
negativity is an issue, expected with the pseudoinverse-based solution retrieval method, but not
necessarily with Alg. 1. After checking it (and its implementation) multiple times, we came to two
possible conclusions: (i) that our arbitrary choice of universal constants is wrong for Alg. 1, which
would require larger instances than those we tested in order to work effectively; (ii) that the choice
of the basis B in Alg. 1 is heavily affected by numerical errors, and therefore wrong. We have been
unable to establish which of these reasons is most impactful, and delegate this investigation to
future work. For the time being, we propose the pseudoinverse variant as the method of choice.
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8. An application to error correcting codes In this section we showcase an application
of our methodology to a problem of error correcting coding and decoding [21, §8.5].

A binary word w of length m can be encoded as a word z of length n (with m< n) such that
z =Qw where Q is an n×m real matrix, which we assume to have rank m. After transmission on
an analogue noisy channel the other party receives z̄. We assume z̄ = z+ x̄, where the transmission
error x̄j on the j-th character is uniformly distributed in [−δ, δ] for some given δ > 0 with some
given (reasonably small) probability ε > 0, and x̄j = 0 with probability 1− ε. In other words, x is
a sparse vector with density ε.

The decoding of z̄ into w is carried out as follows. We find an m×n matrix A orthogonal to Q
(so AQ= 0), we compute b=Az̄ and note that

b=Az̄ =A(z+x) =A(Qw+x) =AQw+Ax=Ax.

If the system Ax = b can be solved, we can find z′ = z̄ − x, and recover w using the projection
matrix (Q>Q)−1Q> followed by rounding:

w= b(Q>Q)−1Q>z′e.

The protocol rests on finding a sparse solution of the under-determined linear system Ax= b.
Minimizing the number of non-zero components of a vector that also satisfies Ax= b is known as
“zero-norm minimization”, and is NP-hard [22]. In a celebrated discovery later called compressed
sensing, Candès, Rohmberg, Tao and Donoho discovered that the zero-norm is well approximated
by the `1-norm. We therefore consider the following problem

min{‖x‖1 |Ax= b},

which can be readily reformulated to the LP

min{
∑
j

sj | − s≤ x≤ s∧Ax= b}. (31)

We propose to compare the solution of Eq. (31) with that of its randomly projected version:

min{
∑
j

sj | − s≤ x≤ s∧TAx= Tb}, (32)

where T is an Achlioptas random projector. The computational set-up for this test is similar to
that of Sect. 7, except that we enable the crossover in the CPLEX barrier solver.

We compare Eq. (31) and Eq. (32) on the sentence that the Sybilla of Delphos spoke to the
hapless soldier who asked her whether he would get back from the war or die in it: Ibis redibis non
morieris in bello [Alberico delle Tre Fontane, Chronicon], at which the soldier rejoiced. When the
wife heard her husband had actually died in the war, she contacted the Sybilla for a full refund.
The Sybilla, unperturbed, pointed out that the small print in the legal terms attributed her the
right of inserting commas in sentences as she saw fit, which made her prophecy into the more
reality-oriented Ibis redibis non, morieris in bello. We test here the comma-free version: much more
cryptic, ambiguous, and therefore worthy of the Sybilla.

The original sentence is encoded in ASCII-128 and then in binary without padding (1001001
1100010 1101001 1110011 1000001 1100101 1001011 1001001 1010011 1000101 1010011 1100111
0000011 0111011 0111111 0111010 0000110 1101110 1111111 0010110 1001110 0101111 0010110
1001111 0011100 0001101 0011101 1101000 0011000 1011001 0111011 0011011 0011011 11). The
binary string has m= 233 characters, is encoded into n= 256 characters (assuming an error rate
of 10%, typical of the Sybilla muttering incantations with a low and guttural voice), and is then
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projected into k= 61 characters. We modified the parameter of the Achlioptas projector from 1/6
down to 1/100 after verifying with many examples that this particular application is extremely
robust to random projections.

While the original LP took 0.296s to solve, the projected LP only took 0.028s. The accuracy in
retrieving the original text was perfect. In fact, in this application it is very hard to make mistakes
in the recovery; so much so, that we could set the JLL ε at 0.3. This might be partly due to
the fact that the LP in Eq. (31) does not include nonnegativity constraints, which are generally
problematic because of their large Gaussian width, see Sect. 1.1.

We also tested a slightly longer word sequence from a well-known poem about aviary permanence
on greek sculptures: Once upon a midnight, dreary, while I pondered, weak and weary. The 421
characters long binary string is encoded into 463 characters and projected into 67. The original LP
took 1.332s and the projected LP took 0.064s to solve; again, the retrieval accuracy was perfect.

9. Conclusion This paper is about the application of random projections to LP in standard
form. We prove that feasibility and optimality are both approximately preserved by sub-gaussian
random projections. Moreover, we show how to retrieve solutions of the original LPs from those
of the projected LPs, using duality arguments. These findings make it possible to approximately
solve very large scale LPs with high probability, as showcased by our computational results and
application to error correcting codes.
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