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Abstract If a mathematical program has many symmetric optima, solving it via Branch-
and-Bound techniques often yields search trees of disproportionate sizes; thus, finding and
exploiting symmetries is an important task. We propose a method for automatically finding
the formulation group of any given Mixed-Integer Nonlinear Program, and for reformulat-
ing the problem by means of static symmetry breaking constraints. The reformulated prob-
lem — which is likely to have fewer symmetric optima — can then be solved via standard
Branch-and-Bound codes such as CPLEX (for linear programs) and COUENNE (for nonlin-
ear programs). Our computational results include formulation group tables for the MIPLib3,
MIPLib2003, GlobalLib and MINLPLIib instance libraries and solution tables for some in-
stances in the aforementioned libraries.
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1 Introduction

We consider Mixed-Integer Nonlinear Programs (MINLPs) in the following general form:

min f(x)

xeR?

gx) <b 1
x € [xF,aY] )

VieZ x;i €7,

where f:R" =R, g: R" = R", b€ R", x£ xV € R" and Z C {1,...,n}. Throughout the
paper, elements of groups are represented by means of permutations of either the column
or the row space; permutations on the row space are denoted by left multiplication, and
permutations on the column space by right multiplication. For a mathematical program P
we let .7 (P) be its feasible region and ¢(P) be the set of its global optima. For x € R”"
and B C {1,...,n}, we let x[B] = (x; | j € B) be the partial vector of x restricted to the
components in B. If X C R”, then X[B] = {x[B] e R?| | x € X }.
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Problems (1), be they linear or nonlinear, may be solved either heuristically or exactly.
The most widely used technique for solving (1) exactly is the Branch-and-Bound (BB) al-
gorithm. BB is a tree-based search in the variable space where each node represents a sub-
problem of (1) whose feasible region is a subset of the feasible region of (1). A node is
pruned when one of the following holds: (a) a global optimum for the node was found; (b)
the node was proved to be infeasible; (c) a lower bound for the problem at the node has
higher value than the value of the objective function evaluated at the current best solution
(the incumbent). In all other cases, the node is branched into two or more subnodes the
union of whose feasible regions is the same as the feasible region of the parent node. For
Mixed-Integer Linear Programs (MILPs), branching occurs on the integer variables only,
and BB terminates finitely [54]. Finite termination also occurs with some nonlinear prob-
lems [1,9], although in general BB applied to MINLPs — called spatial BB (sBB) — can
only terminate finitely with an €-approximate optimum for a given € > 0.

BB usually converges slowly on problems (1) whose solution set has many symmetries
because many leaf nodes in the BB tree may contain (symmetric) global optima: hence, no
node in the paths leading from the root to these leaf nodes can ever be pruned. So, in general,
we expect symmetric problems to yield larger BB trees. It is worth pointing out, however,
that we carried out a few experiments using other solution methods than BB: these provided
evidence to the effect that local-search based heuristics usually find optima faster if there
are many of them — so it may not be worth breaking symmetries when using a heuristic
method.

In this paper we describe methods to speed up the BB solution process applied to sym-
metric MILPs and MINLPs via a reformulation of the narrowing type [31].

Definition 1 Given a problem P, a narrowing Q of P is such that (a) there is a function
n: Z#(Q) — Z(P) for which n(¥(Q)) C¥4(P), and (b) Q is infeasible only if P is.

The proposed narrowing rests on adjoining some static symmetry breaking inequalities (SS-
BIs) [38] to the original formulation, i.e. inequalities that are designed to cut some of the
symmetric solutions while keeping at least one optimal one. The reformulated problem is
then solved by standard software packages such as CPLEX [22] (for MILPs) and COUENNE
[4] (for MINLPs, replaced sometimes by BARON [47] on COUENNE’s failures). In the same
spirit as [31], our reformulation is completely automatic, in the sense that given the original
problem we automatically compute the formulation group as well as the narrowing.

With respect to the existing literature about symmetry in mathematical programming,
the main contribution of this paper is that of being able to deal with symmetric MINLPs
and NLPs, and not just MILPs and Semidefinite Programs (SDPs) as was previously the
case [34,23,19,43,52]. Moreover, whereas many existing works assume that the formulation
group is known in advance, we propose a method for computing the formulation group of
a MINLP automatically. The SSBIs we employ for constructing narrowing reformulations
hold for every possible group and are well-behaved numerically. We provide computational
validation of our ideas by (a) supplying formulation group tables for most of the instances
in the MIPLib3 [6], MIPLib2003 [39], GlobalLib [10] and MINLPLib [11] (which also
contains MacMINLP [26]); (b) evaluating BB performance on the symmetric instances in
the aforementioned libraries, with and without SSBISs.

The rest of this paper is organized as follows. In Sect. 3 we perform a literature review
concerning the use of group theoretical methods in mathematical programming. We define
several groups linked to a mathematical program in Sect. 4. In Sect. 5 we introduce expres-
sion trees and DAGs for representing mathematical functions. We explain in Sect. 6 how to
compute a formulation group automatically. Sect. 7 introduces several types of SSBIs and



some ways to combine them. Computational results validating the proposed approach are
given in Sect. 8: these include formulation group tables (Sect. 8.3) as well as results tables
(Sect. 8.4).

2 Notation

Most of the groups considered in this paper act on vectors in R” by permuting the compo-
nents. Permutations act on sets of vectors by acting on each vector in the set. We denote the
identity permutation by e. We employ standard group nomenclature: S,,,C, are the symmet-
ric and cyclic groups of order n, and Dy, is the dihedral group of order  (i.e. the group of ro-
tations and reflections of a regular n-polygon in the plane). If G is a subgroup of H, we write
G < H.If G,H are groups, then the cartesian (set) product G x H can be endowed with a
group structure by defining (7,0)(n’,0’) = (z7’,60") for all (x,0),(n',0’) € Gx H. Two
groups G, H are isomorphic (denoted G = H) if there is a group homomorphism ¢ : G — H
(i.e. ¢ is such that ¢ (m7') = ¢ (m)¢(x’) for all m, ' € G) which is both injective and surjec-
tive.

For a group G < S, and a set X of row vectors, XG = {xg | x € XAge G};ifYisa
set of column vectors, GY = {gy | y € Y Ag € G}. If X = {x}, we denote XG by xG (and
similarly GY by Gy if Y = {y}). We say that G fixes X setwise if XG = X, and pointwise
if Vx € X xg = x (similarly for ¥ — if not otherwise specified, we shall refer to setwise
rather than pointwise fixing). We refer to xG as the orbit of x in G (similarly for Gy). In
computational group theory literature the notation orb(x, G) is sometimes employed instead
of the more algebraic xG. The (setwise) stabilizer stab(X,G) of a set X with respect to
a group G is the largest subgroup H of G that fixes X (i.e. such that XH = X). For any
permutation 7 € S, let I' () be the set of its disjoint cycles, so that

=[] =

tel (m)
For a group G and 7 € G let () be the smallest subgroup of G containing 7, and for a
subset S C G let (S) be the smallest subgroup of G containing all elements of S (we also use
the terminology subgroup generated by © and, respectively, S), in which case § is a set of
generators of (S). For any w € Sp,, let o(7) = |(r)| denote the order of &. If 7 is expressed as
a product of disjoint cycles, o(7) turns out to be the least common multiple of all the cycle
lengths.

Given BC {1,...,n}, Sym(B) is the symmetric group of all the permutations of elements
in B. A permutation 7 € S, is limited to B if it fixes every element outside B; 7 acts on
B C{l,...,n} as a permutation p € Sym(B) if

[IT r=»r

el (m)NSym(B)

in which case we denote p by 7[B], and call p the restriction of & to B. Because disjoint
cycles commute, it follows from the definition that for all k € N, 7¥[B] = (x[B])*. A group G
of permutations of S, with generators {g,...,gs} actson BC {1,...,n} as H if (g;[B] | i <
s) = H; in this case we denote H by G[B]. If B is an orbit of the natural action of G on the
integers, then it is easy to show that G[B] is a transitive constituent of G, defined [21] as
the set of restrictions to B of the elements of G whenever B is an orbit. In general, though,
G[B] may not even need to be a subgroup of G: take G = ((1,2)(3,4),(1,3),(4,2)) and
B ={1,2}, then G[B] = ((1,2)) £ G. Let B,D C {1,...,n} with BND = 0; if = € S, fixes
both B, D setwise, it is easy to show that 7[BU D] = n[B]x[D].



3 Literature review

We provide here an essential review of group-based methods in mathematical programming,
with the notable exceptions of SDP-related results [52] and Constraint Programming (CP)
[13] because mostly out of scope — see [38] for more information. Notwithstanding, a tech-
nique for automatic symmetry detection in CP bearing some similarity to the one proposed
here can be found in [45]. The existing work may be classified in three broad categories: (a)
the abelian group approach proposed by Gomory to write integer feasibility conditions for
Integer Linear Programs (ILPs), not reviewed here because out of scope (see [30] for de-
tails); (b) symmetry-breaking techniques for specific problems, whose symmetry group can
be computed in advance; (c) general-purpose symmetry group computations and symmetry-
breaking techniques to be used in BB-type solution algorithms.

Category (b) is possibly the richest in terms of number of published papers. Many
types of combinatorial problems exhibit a certain amount of symmetry. Symmetries are usu-
ally broken by means of specific branching techniques (e.g. [36]), appropriate global cuts
(e.g. [50]) or special formulations [25,8] based on the problem structure. The main limita-
tion of the methods in this category is that they are difficult to generalize and/or to be made
automatic.

Category (c) contains three main research streams. The first was established by Margot
in the early 2000s [34,35], and is applicable to problems in general form (1) where x* =
0,xY =1, i.e. Binary Linear Programs (BLPs). Margot [34,38] defines the relaxation group
G"P(P) of a BLP P as:

G*(P)={rmcS,|cn=cAIc €S, (6b=bNcAT=A)}, ®))

or, in other words, all relabellings of problem variables for which the objective function and
constraints are the same. The relaxation group (2) is used to derive effective BB pruning
strategies by means of isomorphism pruning and isomorphism cuts local to some selected
BB tree nodes (Margot extended his work to general integer variables in [37]). Further re-
sults along the same lines, where branching on symmetric nodes at the same level is carried
out implicitly (orbital branching), can be obtained for covering and packing problems [43,
44]: if O is an orbit of a certain subgroup of the relaxation group, at each BB node the dis-
junction (V;coxi = 1) V Ycoxi = 0 induces a feasible division of the search space; orbital
branching restricts this disjunction to x, = 1V Y ;cox; where & is an arbitrary index in O.
A method for finding the MILP relaxation group (2), based on solving an auxiliary MILP
encoding the conditions AT = A, ¢t = ¢ and b = b in the constraints, was proposed in
[29].

The second stream was established by Kaibel et al. in 2007 [23] (also see [16]). Symme-
tries in the column space (i.e. permutations of decision variables) of binary ILPs having 0-1
constraint matrices are shown to affect the quality of the linear programming bound. Limited
only to permutations in cyclic and symmetric group, complete descriptions of orbitopes are
provided by means of linear inequalities. Let x’ be a point in {0,1}" (the solution space),
with n = pq, so that we can arrange the components of x’ in a matrix C. Given a group G and
7 € G, for all 0-1 p x g matrices C let £C be the matrix obtained by permuting the columns
of C according to 7. Let GC be the orbit of C under the action of all 7 € G, GC be the
lexicographically maximal matrix in GC (ordering matrices by rows first) and ./, I‘,‘;‘"(G) be
the set of all GC. Then the full orbitope associated with G is conv(.Z}**(G)). An automatic
symmetry detection method for certain orbitopal symmetries that works in linear time is
described in [5]. Inspired by the work on orbitopes, E. Friedman recently proposed a similar



but extended approach [19] leading to the application of fundamental domains (see [38] for
a definition of this well-known concept) to symmetry reduction: given a feasible polytope
X C [0, 1]" with integral extreme points and a group G acting as an affine transformation on
X (i.e. for all m € G there is a matrix A € GL(n) and an n-vector d such that x = Ax+d for
all x € X), a fundamental domain is a subset F' C X such that GF = X.

4 Groups of a mathematical program

Given a MINLP P as in (1), the solution group G*(P) of P is defined as stab(¥4(P),Sy),
i.e. the group of all permutations of variable indices mapping global optima into global
optima. When P is a MILP, G*(P) contains as a subgroup the symmetry group of P, defined
for MILPs in [38] as the group of permutations mapping feasible solutions into feasible
solutions with the same objective function value. Solution groups are hard to compute for a
general MINLP (1) because presumably explicit knowledge of ¢ (P) is needed a priori. We
consider the group Gp that “fixes the formulation” of P:

Gp ={m €S, | Zr=ZAVx € dom(f) f(xm) = f(x) A
Jdo €Sy (ocb=bAVx e dom(g) oglxm) =g(x))}. 3)

It is easy to show that Gp < G*(P): let & € Gp and x* € 4(P); x*1 € .7 (P) because Zx = Z,
g(x*1) = 0~ 'g(x*) and o~'b = b; and it has the same function value because f(x*m) =
f(x*) by definition. Thus ¢ (P)n = ¥ (P) and & € G*(P).

The two most problematic conditions that need testing to ascertain whether a given
permutation 7 is in Gp are:

Vxedom(f) f(xm) = f(x)
do €S, Vxedom(g) ogxm) = g(x).

Since NONLINEAR EQUATIONS (determining if a set of general nonlinear equations has a
solution) is an undecidable problem in general [55], such tests are algorithmically infeasible.
We therefore assume that for functions fi, f> : R” — R we have an oracle equal(f, f2) that,
if it returns true, then dom(f1) = dom(f>) and Vx € dom(f}) (f1(x) = f2(x)), in which case
we write f] = f». We remark that we do not ask that the equal oracle returning false should
imply fi # f: although this will make equality a stricter notion than it need be (so some
pairs of equal functions will not belong to the = relation), it will allow us to implement
the oracle efficiently by means of expression trees (see Sect. 5). We can now define the
formulation group of a MINLP P as follows:

Gp={meS, | Zrn=ZANf(xn)= f(x) Ao €S, (0glxm)=g(x)ANob=D)}. (4

The structure of Gp depends on the oracle used to implement equality testing. With respect
to a trivial oracle always returning false, for example, Gp would always only consist of the
identity. Because for any function &, h(x7) = h(x) implies h(x7) = h(x) for all x € dom(h),
it is clear that Gp < Gp. Thus, it also follows that Gp < G* (P).

Although Gp is defined for any MINLP (1), if P is a BLP, then Gp is the same group as
GLP(P), as the following result shows.

Proposition 2 Given a problem P as in (1) such that f,g are linear forms, Z={1,...,n}
and x* = 0,xYV =1, we have Gp = G'*(P).



Proof Let T € G'¥(P); then (a) c&t = ¢ and (b) 36 € S, such that 6b = b and 6Ab = A.
Let f(x) = cxin (1); then f(x7) = c¢(x7) = (c7)x, and by (a) we have f(x7) = cx = f(x).
Now let g(x) = Axin (1); then g(xm) = A(xm) = (A®)x, and by (b) there is ¢ € S, such that
ob = b and 6A7 = A. Thus 0g(x7) = 0((A7)x) = (6AT)x = Ax = g(x), and @ € Gp. The
implication Gp < GLP(P) follows directly from the definition (3) if P is a BLP. O

5 A function equality test oracle

Any mathematical expression consisting of a finite sequence of operator symbols, variable
symbols and numerical constants can be represented by an n-ary expression tree [15,14,
3]. We consider a finite set & of operators ordered according to a given order (for exam-
ple, lexicographically according to their English names); we remark that operators can be
unary (such as logarithm, exponential, sine, cosine, etc.), binary (such as fraction, differ-
ence, power) or k-ary (such as sum and product) for some positive integer k. The usual
operator precedences, modified by parentheses, apply. Given a function A(x), its expression
tree is a directed tree h = (Vj,,A;) where V), is partitioned in leaf nodes (labelled with variable
symbols from x, ..., x, and numerical constants) and non-leaf nodes (labelled with operator
symbols from &), and an arc (u,v) is in Ay, if v is an argument of the operator node u. The tree
h is constructed recursively as follows: the root of % is the lexicographically smallest opera-
tor ® of lowest precedence in h(x). Let &1 (x),. .., hg(x) be the arguments of ®. Since each
hy(x) is a mathematical expression, by induction it is represented by a tree /i = (Vj, ,Ap,)-
The vertex set V;, is then defined as {®} UUy<x Vi, and Ay, as Up<x ((®,7) UAg). In gen-
eral, expressions need not have unique trees. However, the number of trees corresponding to
a given function can be decreased by defining a set of simplification rules ([28], p. 246-247)
and an arbitrary argument ordering for each operator (e.g. constants first, then variables in
lexicographic ordering, then other operators in the ordered set &' [27]). If f : R” — R, given
a vector of values X’ € R”, the value f(x) can be obtained algorithmically by a simple recur-
sive procedure eval (f,x’) on the expression tree f ([28], p. 243), which returns the symbol
NaN (Not a Number) whenever f(x') is undefined. The equal oracle for two expression trees
f,g is defined in Algorithm 1.

Using Algorithm 1, it is easy to show that if equal (f1, f2) =true, then fi(x) = f2(x) for
all x in the domains of fi, f», whereas the converse is not true (e.g. sin(x) = cos(x+ 7/2) for
all x € R but the trees corresponding to sin(x) and cos(x + 7/2) are different). As remarked
in Sect. 4, if equal(fi, fo)=true we write fi(x) = f2(x) (in this expression there is no
need to quantify over x, as = is an equality relation between the two trees representing
fi(x), f2(x)).

Restricted to linear forms, the relation = is the same as equality.

Lemma 3 [f fi, f> are linear forms, then Vx € dom(f)) fi1(x) = fa(x) (written fi = f>)
implies fi = f>.

Proof Assume f| = f2;let f1(x) =cxand f(x) = dx, where c = (c1,...,cn), d=(di ...,dy),
x = (x1,...,x,) € R". We define the canonical expression tree for the linear form cx by:
Ve = {4, X1,y Xy Clye e oy Cny X1y e o <y X

Ae = {(+,x3), (xi,¢i), (X4,x) | i < n}s

it is easily shown that the canonical tree is unique and that there are finite deterministic
algorithms reducing any other expression tree representing cx to the canonical tree (similarly



Algorithm 1 boolean equal(fi, f2)

Input expression trees f1, f2
if f and f, are both leaf nodes then
if f1 and f, are both variable nodes and represent the same variable then
return true
else
if f; and f, are both constant nodes and represent the same constant then
return true
else
return false
end if
end if
else
if f1 and f, are both operator nodes and have the same arity k then
r«<true
fori=1tokdo
let f{, f5 be the i-th nodes in the stars of f, f>
r —equal(f],f})
if r =false then
exit for
end if
end for
return r
else
return false
end if
end if

for dx). Now let fi(x) = f2(x) for all x € R"; then Vx (cx = dx), which implies ¢ = d, and
thus the canonical expression tree for ¢ is identical to the canonical expression tree for d.
This shows that f; = f>. a

By Lemma 3 and Prop. 2, given a problem P as in (1) such that f,g are linear forms, Z =
{1,...,n}, xt =0 and xV = 1, we have Gp = G'*(P).

The functions f,g appearing in (1) have the property that their argument list x is the
same, so the trees for f,g1,...,g, can share the same variable leaf nodes. This yields a
Directed Acyclic Graph (DAG) Dp = (Vp,Ap) where Vp = VyUU;<,, Ve, and Ap = Ay U
Ui<mAg,- Dp is a DAG representing the mathematical structure of the functions of P. It is
rooted at the smallest operators of lowest precedence in f,g1,...,gu; its leaf nodes are the
problem variables and all the problem constants. More comprehensive discussions about
expression DAGs and their uses in optimization can be found in [4,42,48].

6 Automatic computation of the formulation group
6.1 Fixed subsets of DAG nodes

We emphasize the following subsets of Vp: the set .#F of all root nodes corresponding to
objective functions (in this section we generalize to multi-objective problems although in
practice we only consider single objective problems), the set .#¢ of all root nodes corre-
sponding to constraints, the set .%p of all operator nodes, the set .k of all constant nodes
and the set .#y of all variable nodes. We remark that . U .Y U Yo U %k U.% = Vp but
the union is not disjoint as . U.%¢ C .%p. For a node v € ., we denote the optimization



direction by d(v); for a node v € ., we denote the constraint sense by s(v) and the corre-
sponding constraint RHS constant by b(v). For a node v € .7y, we let £(v) be the level of v
in Dp, A(v) be its operator label (operator name) and o(v) be the rank of v in the argument
list of its parent node if the latter represents a noncommutative operator, or 1 otherwise.
We remark that for nodes in .%p the level in Dp is well-defined, as the only nodes in Dp
with more than one incoming arc are the leaf nodes, and no operator node can be a leaf. For
v € %, we let u(v) be the value of v. For v € 4 we let r(v) be the 2-vector of lower and
upper variable bounds for v and §(v) be 1 if v represents an integral variable or 0 otherwise.
We define the relation ~ on Vp as follows.

YuveVp u~v & (u,ve SrNdu)=dWv))

V (u,v e e Ns(u) =s(v) Ab(u) =b(v))

Vo (u,v € Lo Nl(u) =Lv)ANA(u) = A(v) Ao(u) =0o(v))
Vo (uv € Tk Ap(u) = p(v))

vV (

u,v €y Nr(u) =r(v)Ag(u) =E(v)).

It is easy to show that ~ is an equivalence relation on Vp, and therefore partitions Vp into K
disjoint subsets V,..., Vk.

6.2 The projection homomorphism

Let G < S, and ® be a subset of {1,...,n}. Let H = Sym(®) and define the mapping
¢:G— Hby ¢o(n) = n[w] forall # € G.

Theorem 4 ¢ is a group homomorphism if and only if G stabilizes ® setwise.

Proof (=) Assume ¢ is a group homomorphism and suppose there is 0 € G and i € @ such
that o(i) = j ¢ m. Take any permutation & € H such that 7(i) = k € @, k # i. Then the
action of o is to move i to j first (because of ¢), and then fix it to j (because of ), which
means that (7o) [®] simply fixes ; on the other hand, the action of 7[w]c[®] on i is to fix it
first (because of o[®]) and then move it to k (because of 7[w)]), hence ¢(no) # @(7)(0),
against the assumption. Thus (i) € o for all i € @ and ¢ € G, which implies G = .
(<) Assume Gow = w and let , 0 € G. First, for a single cycle ¥ fixing @ pointwise, we
obviously have y[®] = e. Now consider two single cycles 3, y appearing in the disjoint cycle
product representation of some permutations of G. Since G fixes @ setwise, either: (1) both
B,y € H, or (2) one is in H and the other is in S, \. H, or (3) both are in S, \. H. For case
(1), B,y € H implies Bw] = B and y[w] = ¥, which yields (B7)[w] = By = B[w]y][®]. For
(2), assuming without loss of generality § € H and y & H, then (B7)[ow] = B[] = Bw]e =
Blo]ylw]. For 3), (BY)[@] = e = ee = B[w]y]w]. Thus ¢(By) = ¢(B)¢(y). Next, notice

that:
na—(Hr)(Hr)— 1 =
tel(m) el (o) tel’(m)Ul (o)

<P(7TG)=<P< 11 T)I [T e¢0= I1 T
el (m)UI' (o)

T)U. el (m)UI' (o) te(I(7)ul(o))NH

< I1 r)( I1 r)—q)(n)w(o),
tel(m)NH el (o)NH

Hence,



which completes the proof. O

6.3 Mapping graph automorphisms onto the formulation group

For a digraph D = (V,A), its automorphism group Aut(D) is the group of vertex permuta-
tions ¥ such that (y(u),y(v)) € A for all (u,v) € A [46]. Let GPAS(P) be the largest sub-
group of Aut(Dp) fixing Vj for all k < K (i.e. containing only vertex permutations 7y such
that yV;, = Vj, for all i < K). For ease of notation, assume without loss of generality that the
vertices of Dp are ordered so that for all j < n, the j-th vertex corresponds to the leaf node
for variable x; (the rest of the order is not important), i.e. 4 = {1,...,n}.

Lemma 5 GPAG(P) fixes ./ setwise.

Proof By definition, all permutations of GDAG(P) fix all V;’s (setwise). In particular, since
(u,ve Ay Ar(u)=r(v) AN (u) = E(v)) implies u ~ v, there will be a subset % of {1,...,K}
such that .4 = Ugc ¢ V. Hence GPAS(P).#, = .7 as claimed. o

Corollary 6 The map ¢ : GPAS(P) — Sym(.#y) given by ¢(y) = Y[.#y] is a group homo-
morphism.

Proof By Lemma 5 and Thm. 4. a
Theorem 7 Im¢ = Gp groupwise.

Proof We first remark that by Cor. 6, Im¢ is endowed with a group structure, because
GPAS(P)/Kerg = Img. In particular, Im¢ is a subgroup of S,. Now let y : GPAS(P) —
Sym(.#¢) be given by w(y) = y[.-7c|. By an argument similar to that of Lemma 5, GPAG(P)
fixes .7¢ setwise, which implies that y is a group homomorphism by Thm. 4. Let o = y/(y)
and © = @(7y). Because ¥ fixes each equivalence class Vi, we have Zr = Z, f(xn) = f(x),
ob = b and og(xm) = g(x). Conversely, suppose T € Gp and there is no automorphism 7y of
Dp fixing all V;’s and such that ¢(y) = m. Then either f(x7) # f(x), or there is no ¢ € S,
such that og(xm) = g(x), or y(y)b # b, contradicting the hypothesis. Thus, Im¢ = Gp
setwise. Since both are subgroups of S,, the identity isomorphism shows that Im¢ = Gp
groupwise too. O

By Thm. 7, we can automatically generate Gp by looking for the largest subgroup of
Aut(Dp) fixing all V’s. Thus, the problem of computing Gp has been reduced to computing
the (generators of the) automorphism group of a certain vertex-coloured DAG. This is in
turn equivalent to the GRAPH ISOMORPHISM (GI) problem [2]. GI is in NP, but it is not
known whether it is in P or NP-complete. A notion of GI-completeness has therefore been
introduced for those graph classes for which solving the GI problem is as hard as solving it
on general graphs [51]. Rooted DAGs are GI-complete [7] but there is an O(N) algorithm
for solving the GI problem on trees ([46], Ch. 8.5.2).

Corollary 8 If T' is a set of group generators of GPAY(P), then T = {n[A] |m€T'} isa
set of generators for Gp.
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7 Symmetry Breaking Constraints

In this section we shall discuss the automatic generation of two types of SSBIs, one of
which is valid for symmetries in any group Gp, and the other only holds for the full sym-
metric group S,. Because of their generality and of the usual trade-off between generality
and efficacy, the general-purpose SSBIs we propose are not the tightest possible; however, it
is their generality that makes their automatic generation feasible (and easy) for all MINLPs.
We also propose tighter SSBIs that only hold for S,,, so that we can only generate them auto-
matically for those instances displaying at least one orbit whose stabilizer is the symmetric
group. Some works in the literature [50] suggest using very tight and rather general-purpose
SSBIs based on interpreting a 0-1 vector as a base-k expansion of an integer number, with
the constraints acting on the latter (also see [38], p. 667). Quite apart from the fact that these
SSBIs only hold for integer variables with values in {0, ..., k} (so they would not be applica-
ble to continuous NLPs), it is well known that such SSBIs are badly scaled; so that although
the corresponding narrowing is formally well-defined and symmetry-free, it is often much
more difficult to solve correctly, in practice, than the original problem. We therefore limit
our attention to SBCs that are numerically well behaved.

We first give a formal definition of SSBIs that makes them depend on a group rather
than a set of solutions.

Definition 9 Given a permutation 7 € S, acting on the component indices of the vectors in a
given set X C R”, the constraints g(x) < 0 (thatis, {g1(x) <0,...,g,(x) < 0}) are symmetry
breaking constraints (SBCs) with respect to  and X if there is y € X such that g(ym) < 0.
Given a group G, g(x) < 0 are SBCs w.r.t G and X if there is y € X G such that g(y) < 0.

If there are no ambiguities as regards X, we simply say “SBCs with respect to 7 (respec-
tively, G). In most cases, X = ¢ (P). The following facts are easy to prove.

1. For any w € S,,, if g(x) < 0 are SBCs with respect to 7, X then they are also SBCs with
respect to (), X.

2. Forany H < G, if g(x) < 0 are SBCs with respect to H, X then they are also SBCs with
respect to G, X.

3. Let g(x) < 0 be SBCs with respectto 7 € S,,X CR" and let BC {1,...,n}. If g(x) =
g(x[B]) (i.e., if the constraints g only involve variable indices in B) then g(x) < 0 are
also SBCs with respect to 7[B], X [B].

As regards Fact 3, if g(x) = g(x[B]) we denote the SBCs g(x) < 0 by g[B](x) < 0; if B is the
domain of a permutation @ € Sym(B), we also use the notation g[a](x) < 0.

Example 10 Lety= (1,1,—1),X = {y} and © = (1,2,3); then {x; <x2,x; < x3} are SBCs
with respect to  and X because yr satisfies the constraints. The inequalities {x; < xp,x, <
x3} are SBCs with respect to S3 and X because (—1,1,1) = y(1,2,3) € XS, but not with
respect to to ((2,3)) and X because X((2,3)) = {y,»(2,3)} = {(1,1,-1),(1,—1,1)} and
neither vector satisfies the constraints.

We use SBCs to yield narrowings of the original problem P.

Theorem 11 [f g(x) < 0 are SBCs for any subgroup G of Gp and 4 (P), then the problem
Q obtained by adjoining g(x) < 0 to the constraints of P is a narrowing of P.

Proof By Defn. 1, we must provide a map 4(Q) — ¢ (P) and show that if P is feasible then
Q is feasible. Assume .% (P) # 0; then ¢ (P) # 0. By definition of SBCs, there is y € 4(P)G
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such that g(y) < 0. Since G < Gp < G*(P) = stab(¥4(P), S,,), it follows that ¢ (P)G = ¥ (P),
so that y € 4(P). Thus, y satisfies the constraints of P and also g(y) < 0, which means that
y € Z(Q), as required. Now, let 1] be the identity map; since .7 (Q) # 0 it follows that 4 (Q)
contains at least one element x. Since .7 (Q) C .% (P) (because Q is as P with additional
constraints) and the objective functions of P,Q are equal, 11(x) = x € 4 (P). O

We now describe a way to combine SBCs. Since adjoining more constraints to a formu-
lation results into a smaller feasible region and fewer optima, combined SBCs should yield
better narrowings.

Theorem 12 Ler 0,0 C {1,...,n} be such that @ N0 = 0. Consider p,o € Gp, and let
glo](x) <0 be SBCs w.rt. p,9(P) and h[0](x) < 0 be SBCs w.r.t. 6,9 (P). If p[w],c[0] €
Gp|wU O] then the system of constraints c¢(x) < 0 consisting of g[®](x) < 0 and h[8](x) <0
is an SBC system for po.

Proof Lety € 4(P). Since g[w](x) only depends on variable indices in @, g[®](yp[w]) <0
Likewise, h[0](yo[0]) < 0. The fact that p[®], 5[0] € Gp[w U ] implies that p[w U O] =
plo] and o[@wU 8] = o[6], and in turn that p[0] = o[@] = e. Since o fixes ® pointwise, the
action of po on @ reduces to the action of p on ®, and similarly for p and 6, i.e. (po)[®] =
plo] and (po)[0] = o(6]. Thus, g[w](ypo) = g[w](y(po)[w]) = g[w](yp[@]) < 0 and
h[6](ypo) = h[6](y(po)[6]) = h[B](yo[B]) <0, hence ¢(ypo) < 0 as claimed. O

Thm. 12 can easily be extended to sets of subsets of {1,...,n} where the required conditions
hold pairwise.

7.1 SBCs from orbits

Consider the set 2 of (nontrivial) orbits of the natural action of Gp on {1,...,n}. We pave
the way for applying Thm. 12 to adjoin SBCs arising from different orbits. Since Gp acts
transitively on each orbit @ € Q, for all i # j € @ there is at least one permutation in Gp
mapping i to j. Let M/ C Gp be the set of all such permutations. Let @, 8 €  be such that:

1. Vi# j€o3p € MY s.t. ged(o(p[w]),0(p[8])) = 1; let R be the set of all such p
2. Vi# j€63oeMst ged(o(o[w]),0(c[B])) = 1; let S be the set of all such o.

Lemma 13 Forall p € Rand o € S, p[w)],0[0] € GplowU 6].
Proof Letr=o0(p[6)).

p'lwUB] = plw]p"[6] as w, 6 are (setwise fixed) orbits of Gp
= p[w]"p[B]" by definition (Sect. 2)
= plo] because r is the order of p[6)].

Now (p[w]") = (p[®]) because gcd(o(p[®]),r) = 1 by definition. Thus there is a positive
integer ¢ such that p[@]"" = p[w], which means that p[w] = p[w]" = p"[w] =p"[wU6] €
Gp[w U 0]. The argument for 6[0)] is similar. O

Lemma 13 and Thm. 12 establish the following.

Corollary 14 Ifg[®](x) <0 are SBCsw.r.t. some p € R and h[0](x) < 0 are SBCs w.r.t. some
o €8, the union of both systems is an SBC system for po.
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We now propose general-purpose SBCs, valid for Gp, which can be derived from any of
its orbits.

Proposition 15 Let o € Q. The constraints

Vieo~{minow} xmpine <x;. 5)

are SBCs with respect to Gp.

Proof Lety € 4(P). Since all groups act transitively on each orbit, there is 7 € Gp mapping
miny[@] to ymine- Thus, y7 satisfies (5). a0

If there is w € 2 such that the action of Gp on it is the symmetric group on , stronger SBCs
than (5) hold. Let ®~ = @ \ {max @}, and for each j € ®~ let j* =min{h € @ | h > j} be
the successor of j in ®.

Proposition 16 Provided Gp[®w] = Sym(w), the following constraints:
Vieo x<xp ©)
are SBCs with respect to Gp.

Proof Lety € 4(P). Since Gp[®] = Sym(w), there is @ € Gp such that (y7)[w] is ordered
by <. Therefore, yr is feasible with respect to the constraints V j € @~ x; < x;+, which
yields the result. O

By Cor. 14, any set of SBC systems with respect to transitive constituents of Gp whose
corresponding orbits verify Conditions 1-2 (top of this subsection) pairwise is a system of
SBCs w.r.t. Gp.

Proposition 17 Let ®,6 € Q and assume Gp[® U 0] contains a subgroup H = Cjy) X Cg|
such that H[@] = C,| and H[0] = Cg|. Then ®, 0 satisfy Conditions 1-2.

Proof Let p € Gp such that p[@U 8] € H be chosen so that (p[w]) = H[w] = C|,| and
p[6] = e. Then for all i # j € @ there is an integer k such that p¥ maps i to j and fixes 6, and
hence p* € M'/; p[6] = e ensures ged(o(p[®]),0(p[0])) = 1. The argument for 6 is similar.

Proposition 18 Let w, 0 € Q and assume that Gp[® U 6] contains a subgroup H such that
H([o] = Cy and H[0] = Cjg|. If ged(|®|,|0]) = 1 then ®, 0 satisfy Conditions 1-2.

Proof Let p € Gp such that p[wU 6] € H be chosen so that: (a) (p[@]) = H[®] = C|y; (b)
there is a single cycle & € H[0] having length |8| and an integer [ such that p[8] = . Hence
s=o0(p[6]) divides |6]. Since o(p[w]) = |w| and ged(|@|,|0]) =1, (p*[®]) = (p[w]). Thus,
for all i # j € @ there is an integer k such that (p*)* = p** maps i to j, and p**[0] = p[]** =
(p[0]°)F = ¢k = e. Thus T = p** is in M"/ and ged(o(t[®]),0(1[6])) = 1. The argument for
0 is similar.

Since by Sect. 6 we can obtain the set 7' of generators of Gp, it is possible to compute the
set of orbits Q in time O(n|T |+ n?) [12]. There are polynomial-time algorithms for testing
group membership and subgroup inclusion [49]; algorithms for dealing with the transitive
constituent homomorphism ¢ usually rest on the Schreier-Sims method for computing group
generators (of which some implementations as a nearly linear-time Monte Carlo algorithm
exist). Thus, deriving SBCs as per Prop. 15 and combining them using Prop. 18 are tasks
whose algorithmic implementation is practically feasible.
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7.2 Generating SBCs automatically

We aim to test two different approaches. In the first one, we simply pick the largest orbit,
verify it contains a subgroup Cjy|, and adjoin the corresponding SBCs (5) to the original
problem. In the second, we attempt to use Prop. 17 and 18 in order to adjoin SBCs (of type
(6) if possible) from several orbits. Since (5) only impose a minimum element within a set of
values, whereas (6) imposes a whole total order, the latter should yield a tighter narrowing
than the former, and we expect a tight narrowing to be easier to solve by BB than a slack one.
This is not always true in practice, however, because narrowing constraints may have some
adverse effects too, such as making each BB node relaxation longer to solve and affecting
the choice of branching variable and/or branching point.

Asetw C{1,...,n}is ablock for Gif Vg € G (wg =0V wgNw=0). A group G is
primitive if its only blocks are trivial (i.e. 0, singletons and {1,...,n}). There are practically
fast algorithms for testing groups for primitivity. Let @ € Q be a nontrivial orbit of Gp, let
T be the set of generators of Gp constructed as per Cor. 8, and for any @ C {1,...,n} let
To] = {7[w] | * € T}. We first remark that if 7[®] contains a cycle of length |®|, then
Clo| < Gp|]; this provides a practical way of testing the hypotheses of Propositions 17 and
18. The following result can be used for testing the hypothesis of Prop. 16.

Proposition 19 If Gp[®] is primitive and T[] contains a transposition (i.e. a cycle of
length 2), Gp|w] = Sym().

Proof By [53], Thm. 13.3. O

Naturally, if Gp[®] = Sym(®) then Cj,,| < Gp[®], so Prop. 19 can also be used to test the
hypotheses of Prop. 17 and 18.

In practice, we form a subset A C Q of orbits which satisfy the hypotheses of Prop. 18
pairwise. Then, for each orbit @ in A we further verify whether Gp[®] satisfies the hypothe-
ses of Prop. 16 or not. Accordingly, for each orbit in A, we either output SBCs (6) or (5).
We attempt to construct A so that it generates as many added constraints as possible, in the
hope of yielding a significantly smaller feasible region. We adopt a greedy approach on the
orbit length (Alg. 2).

8 Computational results

We report computational results of two kinds. We first attempt to determine a closed form
description of Gp for all the considered instances (Tables 2-4). Secondly, we compare BB
performances on the original and reformulated problems. We remark that our symmetry
breaking efforts are limited to the adjoining of static constraints to the formulation (rather
than employing dynamic symmetry breaking techniques [38]): with static techniques only,
it is not so clear that the proposed approach helps in solving general MILPs, although we
have interesting results for some selected instances. The performance on NLPs/MINLPs, on
the other hand, is much better. Part of the reason for this is that MILP solvers are technically
much more advanced than their NLP/MINLP counterparts — and our MILP solver of choice
already contains some symmetry exploitation devices. The good results obtained on MILPs
using dynamic symmetry breaking techniques [34,17,44], however, point to the fact that the
type of automatic symmetry detection proposed in this paper might be complemented by
dynamic symmetry breaking techniques and applied to MILPs quite successfully. This will
make the object of further investigations.
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Algorithm 2 A greedy algorithm for constructing SBCs.

Input P
Compute Gp (Sect. 6)
Let L be the list of all nontrivial orbits of the natural action of Gp over {1,...,n}
LetA =0
while |L| > 0 do
Let w be the longest orbit in L
Let L — L~ {w}
if Clo| < Gp[w] then
Letr 1
for 6 € A do
if ged(|®|,|6]) > 1 then
Lett 0
Break
end if
end for
if # = 1 then
LetA — AU{w}
end if
end if
end while
for o € A do
if Gp[®] = Sym(w) then
Output SBCs (6)
else
Output SBCs (5)
end if
end for

We employ two types of reformulations: Narrowingl is obtained by adjoining (5) for the
longest orbit to the original formulation; Narrowing2 adjoins the SBCs returned by Alg. 2.
The BB solvers employed are: CPLEX 11.01 [22] for the MILP instances and COUENNE
[4] for NLP and MINLP instances; since COUENNE is a relatively young solver, and not
yet totally stable, BARON [47] was used whenever COUENNE failed. The solution statistics
are:

1. the objective function value of the incumbent

2. the seconds of user CPU time taken (meaningful when below the 7200s limit)
3. the gap still open at termination

4. the number of BB nodes closed and those still on the tree at termination.

A first round of tests compares the statistics after two hours of computation time (per in-
stance). In a second round of tests, we perform the same comparison with different termi-
nation criteria on a meaningful subset of instances. All results have been obtained on one
2.4GHz Intel Xeon CPU of a computer with 8 GB RAM (shared by 3 other similar CPUs)
running Linux.

8.1 Implementation

We implemented two software systems: the first, symmgroup, computes an explicit descrip-
tion of the formulation group structure. The second, reformulate, implements Alg. 2 and
produces a reformulated instance ready to be solved. The algorithm that computes the ex-
plicit description of a group structure given its generators has exponential worst-case com-
plexity and is in practice quite slow, whereas reformulating entails computing the orbits
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from the generators, computing a group action on an orbit, verifying whether a genera-
tor has a certain length, and verifying whether a given group is primitive (all polynomial-
time and also practically fast algorithms [49]). Thus, we were not always able to find the
group description although we were able to reformulate the original problem to the cor-
rect narrowing. The implementation of symmgroup and reformulate is similar up to the
stage where the group generators are computed. Both first call AMPL [18] to parse the in-
stance; the ROSE Reformulation/Optimization Software Engine [32] AMPL-hooked solver
is then called (with ROSE’s Rsymmgroup reformulator) to produce a file representation of
the problem expression DAG. This is then fed into nauty’s [41,40] dreadnaut shell to ef-
ficiently compute the generators of Aut(Dp) (see Sect. 6). A system of shell scripts and
Unix tools parses the nauty output to form a valid GAP [20] input. At this stage, symmgroup
uses GAP’s StructureDescription command to output the formulation group description,
whereas reformulate uses a purpose-built GAP code that simply outputs SBCs (5) relating
to the longest orbit (Narrowingl) or implementing Alg. 2 (Narrowing?2).

8.2 Test set

Our test set consists of almost all the instances in the best known mathematical program-
ming instance libraries: MIPLib3 [6], MIPLib2003 [39] (containing MILPs), GlobalLib [10]
(containing NLPs) and MINLPLib [11] (containing MINLPs). We have not tested some of
the largest instances (listed in Table 5) because of RAM and CPU time limitations. Our test
set consists of a grand total of 669 instances partitioned in the different libraries as given in
Table 1 — this table also reports the number of instances whose formulation have nontrivial
groups. The instance sizes can be found in the online appendix.

Library Instances | Nontrivial Gp % of library
miplib3 62 22 35.4%
miplib2003~\miplib3 20 7 35.0%
globallib 390 58 14.8%
minlplib 197 32 16.2%
Total 669 112 16.7%

Table 1 Instance libraries statistics.

8.3 Group tables

In Table 2 we report formulation groups for all (MILP) instances of the MIPLib3 and MI-
PLib2003 libraries. In Table 3 we report formulation groups for all (NLP) instances of the
GlobalLib library. In Table 4 we report formulation groups for all (MINLP) instances of the
MINLPLIb library. We remark that all group tables have been compiled with the AMPL pre-
solver disabled. Since the group depends on the formulation rather than the problem itself,
the AMPL presolver has an impact on the group structure. This raises an interesting question
for future research: determining the exact reformulation of P yielding the formulation group
with tightest associated SBCs (a meaningful simplification might call for the reformulation
yielding the largest formulation group). An equally interesting question is that of deciding
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whether a given problem instance has a formulation whose group is equal to the solution
group.

Critical failures were due to excessive RAM or CPU usage on the part of nauty. Non-
critical failures, due to GAP excessive RAM requirements, imply that an explicit description
of the group structure is missing but the group generators are provided (so it is possible to
reformulate the problem nonetheless). Computational times are not reported in Tables 2-4
because a large share of the total CPU time taken to compute the group structure was taken
by GAP’s StructureDescription command. Since this was only necessary to compute the
tables, but not to reformulate the instances, CPU times at this stage would not be indicative
(the CPU time taken to reformulate the instances is reported in Tables 6-9). Just to give a
rough idea, compiling all the tables took 7 days of computation, with a significant fraction
of the CPU time being taken by all the arki- instances.

MIPLib3 1/2 MIPLib3 2/2
Instance Gp Instance Gp
2ir03 (C2)13 qiu Cy X Sy
arki001 | Sy rgn Ss
blend2 | Sy rout | Ss
enigma G seymour® | (216 generators)
fiber G stein27 | ((C3)° x PSL(3,3)) x C,
gen C swath® (461 generators)
mas74 (Cy)? All other 1
mas76 (¢2)?
misc03 S3 MIPLib2003~ MIPLib3
misc06 (S5)3 Instance Gp
misc07 S3 glass4 C,
mitre )’ mzzvil (C)1
mkc? (193 generators) mzzv42z (Cy)M0
noswot (&) opt1217 G
p0201 (©)? protfold | (C)?
p2756 | (C2)* timtabl | C
timtab2 G
“ GAP RAM failure. All other 1

Table 2 MILP instances and formulation groups. The group labelled PSL(3,3) is the projective special linear
group of order 3 on F3.

It is worth mentioning (thanks to one of the referees for pointing this out) that the
stein4b instance in MIPLib3 has a trivial symmetry group due to an input error of its con-
tributor J. Gregory, as verified by our code. The real Steiner triple incidence matrix actually
has significant symmetry.

8.4 Results tables

In this section we present comprehensive results tables. Their purpose is to show that break-
ing symmetry in general helps, specially on NLP/MINLPs. As explained above, we compare
the performance of various BB algorithms solving the original problem and two types of nar-
rowings (Narrowingl, adjoining SBCs (5) for the longest orbit; and Narrowing2, adjoining
the SBCs output by Alg. 2).

The kind of pattern we notice from the first round of tests (Tables 6-9 — symmetric in-
stances solved with a 2h CPU time limit) is twofold. Firstly, more instances are solved faster
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GlobalLib 1/2 Glaballih 22

Instance Gp d
- 7 ex8_2_5¢ (602 generators)
arki0002 (S(,) ex8.3.10 SS
arki0003 | G, ex8.3 11 S5
arki0008 S50 ex873712 S.
arkio009 | (S5)!%x S x Sy ex8.3.13 | St
arki0010 | (Ss5)° x So x Sy ex8.3_14 si
arki0011 | (C2)13 x 83 x (89)3 x Sao ex8.3.1 Ss
arki0012 | (C3)" x 83 x (89)% x Sy ex8.3.2 Ss
arki0013 | (C2)'® x 83 x (S9)? x Sao ex8.3.3 Ss
arki0014 | (C2)'® x 83 x (S9)? x Sao ex8.3_4 Ss
arki0016 | Ss ex8.3.5 Ss
elec100 S3 ex8.3.6 Ss
elec25 S3 ex8.3.7 Ss
elec50 S3 ex8.3.8 Ss
ex14.15 S4 ex8.3.9 Ss
ex2.1.3 C, ex8.4.6 S3
ex5.2.5 S3 ex9.1.10 C
ex6.1.1 C ex9.1.8 C
ex6_1_3 C ex9.2_6 Cy X Dg
ex6.2.10 | ¢ ganges (C2)® x (83)?
ex6.2.12 | &y gangesx (C2)0 % (S3)
ex6.2.13 | G, korcge (C2)?
ex6._2_14 Cy maxmin C
ex625 | O st_el8 (G)?
ex6.2.7 S3 st_e39 (¢2)?
ex6.2.9 @) st_fp3 (Cy)?
ex8.1.6 G st_rv9 (Cy)10
4 2
ex8.2_1 (Sq)* x Sg torsion50 | C,
ex8.2.2¢ (465 generators) turke 4
4 y (CZ)

ex8.2.4 (84)7 x S All other 1

¢ GAP RAM failure.

“ GAP RAM failure.

Table 3 NLP instances and formulation groups.

MINLPLib 1/2

MINLPLib 2/2

Instance Gp

nuclearva | S3
nuclearvb | S3
nuclearvc | S3
nuclearvd | S3
nuclearve | S3
nuclearvf | S3
nvs09 S10

Instance Gp
cecil 13 (C)%
deb7 S10
deb8 S10
deb9 S10
elf S3
gastrans (Cr)?
gear Dy
gear2 Dg
gear3 Dg
gear4 Dy
hmittelman | C,
lop97ic (C2)?
lop97icx (C2)7 X S762
nucleari14 Se
nuclear24 Se
nuclear25 Ss
nuclear49 S7

product

(150 generators)

product2 (561 generators)

risk2b (C2)° x (S3)M x S5 x (S6)2 % (813)°
superl (C)® x (83)

super2 (C2)10 x (83)?

super3 (G2)? x (83)?

super3t (G2)? x (83)?

synheat Sa

All other 1

¢ GAP RAM failure.

Table 4 MINLP instances and formulation groups.
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Library Instances
MIPLib3 -

MIPLib2003 | ds, momentum3, msc98-ip, sp97ar, stp3d

arki0005, arki0006, arki0007, arkiO018,
GlobalLib arki0023, arki0024, elec200, ex8.2.3,
jbearing100, minsurf100, torsion100

detfl, dosemin2d, dosemin3d, eg-all_s,
MINLPLib egdisc_s, egdisc2.s, eg.int.s, mbtd,
nuclear104, nuclear10b, gap

Table 5 Excessively large instances (nauty RAM or CPU failures during reformulation).

in the narrowing SBC reformulations than in the original problem. Secondly, whereas those
instances that are solved faster without SBCs only scrape off a minor CPU time advantage,
those that are solved faster with SBCs often have a marked CPU time advantage (or, if not
run to completion, a noticeable optimality gap or total/unexplored nodes ratio advantage).
For MILPs and Narrowingl, for example (see Table 6), the cumulated CPU time advantage
in favour of the original problem is 275s, whereas that in favour of the SBC narrowing is
9861s. The trend seems to be that the beneficial effect of SBCs is mainly felt for medium
to large-sized instances with long BB runs. Even though the optimal solution is often found
later on in the BB run when solving SBC narrowings, the BB tree explorations are in general
shorter. For those instances not solved to optimality, the ratios of total/unexplored nodes at
termination are often larger (fewer unexplored nodes) and the open optimality gaps often
smaller. This is what promtped us to run a second round of tests with no time limit for some
selected difficult instances (see Table 11), on which these effects are even more remarkable.

Table 6 refers to MILPs (MIPLib3 and MIPLib2003), Table 7 refers to NLPs (Global-
Lib) and Table 9 refers to MINLPs (MINLPLib). All tables have the same core structure
recording the following indicators at termination:

1. incumbent value (f*)
2. seconds of user CPU time (CPU)

3. open gap (gap — we use the CPLEX definition (%) %, where f* is the objective

function value of the incumbent and f is the best overall lower bound)
4. total nodes (nodes)
5. unexplored nodes (tree)

for the original problem and each SBC narrowing. The last column (R.z.) contains the refor-
mulation time expressed as seconds of user CPU time taken to reformulate the instance (this
refers to Narrowingl; the values for Narrowing2 are practically identical, the bottleneck be-
ing the computation of the group structure by nauty). Tables 7 and 9 also have a column
(SIv) which indicates the solver name: “C” stands for COUENNE [4], and “B” for BARON
[47]. Although COUENNE was our NLP/MINLP global solver of choice, because of its rel-
atively young age it still shows some rough spots, which sometimes hamper the solution
process. COUENNE failed on all instances whose results in the table are marked BARON.
NLP and MINLP instances where both solvers failed are recorded in Tables 8 and 10: all
these are well known to be difficult instances, and most of them are very large in size. We
remark that for many of them the reason for failure was the absence of meaningful variable
ranges, which makes the construction of the lower bounding problem inherently difficult.
In all tables, data marked in boldface signals an advantage: in general, lower values for in-
cumbent, CPU times, open gap, total and unexplored nodes at termination are considered
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an advantage. However, for those instances not solved to optimality within the 2h CPU time
limit, the higher values of the ratios total/unexplored nodes marks an advantage (meaning
that more of the tree has been explored in the allotted time).

Original problem Narrowing1 Narrowing2
) nodes ‘ r* nodes rF nodes
Instance CPU gap tree CPU gap tree CPU gap tree Rt
MIPLib3
340160 0 40160 0 40160 0
air03 1.14 0% 0 1.10 0% 0 0.98 0% 0 161.94
7.58¢+6 93340 7.58¢+6 93340 7.58¢+6 93340
arkiO01 114.31 0% 0 125.03 0% 0 108.5 0% 0 78.56
759 957 59 969 59 96
blend2 0.94 0% 0 0.87 0% 0 0.91 0% 0 1.43
0 0 0 133 0 153
enigma 0.00 0% 0 0.05 0% 0 0.05 0% 0 1.22
405e+5 71 4.05e+5 T 405e+5 8T
fiber 0.26 0% 0 0.27 0% 0 0.26 0% 0 4.96
T.12e+5 0 T.12e+3 0 T.12e+5 0
gen 0.04 0% 0 0.04 0% 0 0.04 0% 0 257
T.T8c+4 2405600 T.T8e+4 2558400 T.T8c+4 2558400
mas74 529 0% 0 466 0% 0 426 0% 0 1.41
Ae+d 305500 Aetd 305500 Aetd 305500
mas76 43.42 0% 0 43.62 0% 0 41.97 0% 0 1.41
3360 160 3360 656 3360 700
misc03 0.30 0% 0 0.29 0% 0 1.07 0% 0 1.35
0 7 0 17 0 17
misc06 0.13 0% 0 0.13 0% 0 0.13 0% 0 11.63
2810 T62TT 2810 12317 2810 20395
misc07 18.41 0% 0 12.72 0% 0 21.28 0% 0 1.57
15155 0 15155 0 15155 0
mitre 0.83 0% 0 0.80 0% 0 0.82 0% 0 1304.41
-563.732 156803 -563.846 136200
mkc 7200 0.17% 75392 7200 0.15% 36654 - - - 2712.33
4T 629594 4T 7852302 4T 7852302
noswot 7200 4.88% 1581600 7200 3.56% 817466 7200 3.56% 817466 1.27
7615 103 7615 295
p0201 0.24 0% 0 0.35 0% 0 - - 3.44
3124 T 3124 I1 3124 11
p2756 0.40 0% 0 0.39 0% 0 0.37 0% 0 25.61
-132.87 8375 -13287 5500
qiu 45.01 0% 0 36.38 0% 0 - - - 6.22
2.2 361 V) 55 2.2 505
rgn 0.13 0% 0 0.15 0% 0 0.12 0% 0 1.36
1077.21 5800 1077.56 6700 1077.56 17700
rout 11.99 0% 0 15.28 0% 0 53.86 0% 0 2.39
73 T03097 423 T0T576 73 T0548T
seymour 7200 1.58% 84949 7200 1.58% 83701 7200 1.57% 86941 5.95
T 1582 T 637
stein27 0.27 0% 0 0.07 0% 0 - - 1.30
492.45 215100 486.18 194400 484.09 196200
swath? 1534 14.60% 200293 1773 13.83% 165017 1550 17.55% 182289 325.10
MIPLib2003~ MIPLib3
T4et9 2240022 12e+9 392600 T2e+9 392600
glass4 7200 21.43% 944291 1180.69 0% 0 1186.57 0% 0 1.62
2171 543 21718 588 27T 588
mzzvil 112.87 0% 0 129.35 0% 0 161 0% 0 213.76
20540 237 20540 223 20540 223
mzzv42z 40.94 0% 0 46.42 0% 0 59.76 0% 0 244.76
16 0 -16 0 -16 0
opt1217 0.09 0% 0 0.09 0% 0 0.10 0% 0 1.37
-19 12936 -19 14050
protfold 7200 90.71% 11563 7200 91.58% 12760 - - - 592.14
64e+5 576200 7.64e+5 973700 64e+5 973700
timtabl 5317.42 0% 0 1554.20 0% 0 1555.74 0% 0 1.37
T12e+6 T115428 T.T4c+6 1002113 T.T4c+6 959893
timtab2 7200 31.74% 745016 7200 33.23% 647515 7200 33.32% 619402 1.38

¢ Termination on out of memory.

Table 6 MILP results (MIPLib3 and MIPLib2003 solved by CPLEX 11). Lower values are best in general;
in instances not solved to optimality (CPU=7200), higher ratios nodes/tree are best. Values marked ‘-’ denote
Narrowing2=Narrowingl.

Some of the results for MILPs are very encouraging: the glass4 instance, for example,
is known to be a hard one: [24] reports solving this instance using XPRESS 2006B in 7 hours
on a 2 processor Xeon system with the following settings: no cuts, best first node selection,
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heavy strong branching, and variable selection based on up/down pseudocosts. Although it is
hard to compare with our results, what with the solver, hardware and version date difference,
solving it in less than 20 minutes on a default configuration is worthy of note; even more
so considering that the symmetry group is only C,. The timtab1 instance solution time is
reduced to less than a third by adjoining the SBCs. It is interesting that arki001, mas76 and
p2756 have the same number of nodes to completion but different CPU times. The CPLEX
output log files of original/reformulated instances being equal for all but the partial CPU
times, the only cause of this difference lies in the LP being solved at each node: although
most of the times an LP with more constraints takes more time to solve, CPLEX employs
several preprocessing techniques which might exploit the SBCs present in the reformulation
(but absent in the original formulation) to yield the observed improvements.

On average, with a 2h user CPU time limit, it is slightly more advantageous to solve an
SBC narrowing than the original problem. We reported total user CPU time, number of times
the solution yielded best optima in the set (Best), and total number of BB nodes. The total
closed gap averaged over original problem and Narrowingl and Narrowing2 reformulations
is 22661.35% with a standard deviation of 0.14, which effectively means that within the 2h
CPU time limit, symmetry breaking had no effect with respect to the closed gap (without
the 2h limit the story is different, see Table 11). It appears evident that, on average, breaking
symmetry is beneficial when using BB-type solution algorithms.

The results referring to the second round of tests, involving selected (difficult) instances
solved without the 2h user CPU time limit, are in Table 11. As before, data marked in
boldface signals an advantage. The most meaningful indicators at termination are:

1. the objective function value of the incumbent (the lower the better);
2. the open gap (the lower the better);

3. the amount of explored nodes per second, i.e. % (the higher the better).

With extended CPU time limits, Narrowing2 provides a significant computational advantage
over the original problem, and a slight advantage over Narrowingl.

We remark also that results worthy of note were obtained on the protfold (open gap
reduced by almost half) and seymour (given the problem structure, even a minor reduction
in open gap is impressive) MILP instances.

It appears that adding SBCs sometimes has an adverse effect (albeit slighter than the
beneficial observed effect). This occurrence may be explained by any one of the following
facts: (a) SBCs have an element of arbitrary user choice in them, e.g. the natural variable
index order 1,2,3.. .. (constraints enforcing other orders would also be valid); (b) SBCs may
change branching decisions; (c) best choices for breaking symmetries may change during
the BB tree exploration, locally to each node (it might be advantageous to change narrowing
at select nodes rather than just at the root node). These issues will hopefully be addressed
in future works (in particular, it might be a good idea to employ orbital branching [43,44]
instead of a static narrowing as a symmetry-breaking device).

9 Conclusion

This paper discusses methods for automatically exploiting symmetries in MILPs, noncon-
vex NLPs and MINLPs. We construct the formulation group, then derive static Symmetry-
Breaking Constraints from its generators, and finally reformulate the given problem to a
narrowing where some of the symmetric solutions are likely to be infeasible. The reformu-
lated problem can then be solved by standard Branch-and-Bound solvers such as CPLEX
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Original problem Narrowing | Narrowing2
Vi nodes F nodes i nodes
Instance Sty cPU gap tree cPU gap tree CPU sap ‘ tree R
0 0 0 0 0 0
ex14.1.5 [¢ 0018 0% 0 0.013 0% 0 0.020 0% 0 1.4
BE) 0 B 0 BE] 0
ex2.1.3 [¢ 0013 0% 0 0.010 0% 0 0.018 0% 0 141
3500 040274 3500 | 63595 3500 1580366
ex5.2.5 [¢ 7200 0.32% 503850 7200 027% | 18733 7200 0.22% 402117 1.40
20062 T4276 200602 | 10027 200602 0027
ex6.1-1 [¢ 61 0% 0 37 0% 0 45 0% 0 143
333607 T3660 33301 7659 35301 7659
ex6.1.3 [¢ 135 0% 0 97 0% 0 111 0% 0 1.40
3052 75300 30 88300 3052 T700
ex6-2-104 [¢ 4754 0.37% 19397 7200 0.01% | 16228 7200 0.014% 15898 1.40
7.89¢-01 15827 78901 3477 7.89¢-01 3477
ex6.2.12 [¢ 205 0% 0 85 0% 0 85 0% 0 141
216607 65461 2 T6e-0T 77569 216601 73670
6x6-2-13 [¢ 7200 0.09% 27773 7200 0.03% 29202 7200 0.03% 28580 138
6.96¢-07 195 6.96e-01 92 6.96e-01 92
ex6.2.14 [¢ 29 0% 0 19 0% 0 178 0% 0 1.37
77073 T3500 770,75 | 68600 7075 68600
ex6.2.5¢ [¢ 3017 6.85% 18094 4920 0.90% | 27187 5240 0.90% 27187 143
0,161 7500 0.161 17500 0161 T6600
ex6.2.7% [¢ 1874 48.35% 10900 1884 39.92% 7894 1323 32.07% 8008 142
33Te02 IR7TT 336c-02 §522 346602 3522
ex6.2.9” [¢ 699 0% 0 184 0% 0 191 0% 0 1.42
5.065 0 5065 0 5065 T
ex8.1.6 [¢ 0.03 0% 0 0.03 0% 0 0.046 0% 0 136
0 20045 0 4191
ex8.3.1¢ B 7200 -10 12299 7200 -10 8099 - - - 227
04123 OFTT 04123 3004
ex8.3.2 B 7200 2325% 6566 7200 2325% 5445 - - - 205
04166 9205 04166 TAT6
ex8.3.3 B 7200 2393% 5770 7200 2393% 5065 - - - 1.36
358 6597 3358 7985
ex8.3.4 B 7200 2695% 4484 7200 2695% 3347 - - - 2.10
0.069 7843 ~0.068 770
ex8.3.5 B 7200 14371% 47127 7200 14434% 5597 - - - 207
0 5197 0 21532
ex8.3.11¢ B 7200 -10 8393 7200 510 | 13344 - - - 151
0 21881 0 20566
ex8.3.12¢ B 7200 -10 12515 7200 <10 | 13000 - - - 1.37
0 13662 0 11038
x8.3.13¢ B 7200 -10 9015 7200 -10 7179 - - - 1.91
0.66 0 0.66 0 0.66 T
ex8.4-6 [¢ 0.08 0% 0 1.53 0% 0 0.13 0% 0 140
333 0 335 0 375 0
ex9-1-10 [¢ 4.68 0% 0 93 0% 0 93 0% 0 1.77
333 0 333 0 373 0
ex9-1-8 [¢ 4.7 0% 0 93 0% 0 93 0% 0 143
99.99 2 99.99 2 99.99 2
ex9.2.2 [¢ 0.16 0% 0 0.15 0% 0 0.17 0% 0 231
T 0 T 0
€x9.2.6 [¢ 0.1 0% 0 0.1 0% 0 - - - 1.38
0366 31653 0366 28973 0366 31177
maxmin B 7200 157.55% 20122 7200 157.38% | 18300 7200 156.87% 19659 129
283 0 283 0 283 0
st_el8 [¢ 0.01 0% 0 0.01 0% 0 001 0% 0 1.38
5.065 0 5065 0 3065 0
st_e39 [¢ 0.03 0% 0 0.03 0% 0 0.04 0% 0 141
B 0 TS 0 T3 T
st_fp3 [¢ 0.015 0% 0 0.015 0% 0 0.017 0% 0 202
T20.15 714 T20.15 208 T20.15 208
strv9 [¢ 10.3 0% 0 9.5 0% 0 9.3 0% 0 1.44
3716 97 83716 125 383716 75
turkey [¢ 2749 0% 0 3724 0% 0 3831 0% 0 7.24

¢ CPU < 7200 and gap> 0% because of COUENNE’s segmentation fault during computation.
b Some AMPL warnings might be the cause of the objective function value discrepancy (both were
certified optimal by COUENNE).

¢ When f* = 0 the open gap is (almost) ill defined, thus the value of the best LP bound is reported
instead.

Table 7 NLP results (GlobalLib solved by COUENNE or BARON). Lower values are best in general; in
instances not solved to optimality (CPU=7200), higher ratios nodes/tree are best. Values marked ‘-’ denote
Narrowing2=Narrowing1.

(for linear problems) and COUENNE (for nonlinear problems). We exhibit computational
results validating the approach.
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Instance Rt Instance R.1. Instance R.t.
. Instance R.t.
arki0002 82.36 %10012 5200.03 elec25 5.32 ex8._3_6 1.45
arki0003 10813 arss bty elecs50 | 228.67 ex8.3.7 1.62
. arkiO013 5268.54
arki0008 92.15 Ki0014 5695.04 ex8.2_1 1.43 ex8.39 1.41
arki0009 | 401.10 ark?oo 16 14> 34 ex822 | 21080 ex8.3_10 1.28
arki0010 65.46 allr + 100 | 1308236 ex8.2.4 1.64 ex8.3.14 1.48
arkio011 | 5715.02 e-ec > ex825 | 17172 torsion50 | 6122
Table 8 NLP instances where both COUENNE and BARON failed.
Original problem Narrowing| Narrowing?
fF nodes ‘ fr ‘ nodes e ‘ nodes
Instance Sy CPU gap tree CPU gap tree CPU gap tree R.1.
~T.Tde+> 106074 -T.14e+3 T06074 -T.T4e+3 TOTT3:
cecil.13 C 6181 0% 0 6248 0% 0 7200 0% 2084 2.64
0.1916 34T 0.19T6 326 0.1916 87
elf B 11.86 0% 0 7.35 0% 0 2.9 0% 0 1.43
89.1 227 891 109 89.1 109
gastrans C 9 0% 0 5.2 0% 0 5.7 0% 0 1.39
0 8 0 0
gear C 0.08 0% 0 0.01 0% 0 - - - 1.27
0 6 0 21
gear2 C 0.34 0% 0 0.51 0% 0 - - - 1.38
0 26 0 25
gear3 C 0.14 0% 0 0.19 0% 0 - - - 1.30
T968 3239 T968 1739
gear4 B 0.62 0% 0 0.48 0% 0 - - - 1.28
13 0 3 0 3 0
hmittelman C 0.16 0% 0 0.18 0% 0 0.20 0% 0 1.25
449248 9106 44935 10146 445755 3254
lop97icx B 7200 40.65% 5537 7200 39.9% 6296 7200 40.23% 2026 24.96
43713 0 43713 0 -4313 0
nvs09 C 5.1 0% 0 2.4 0% 0 1.7 0% 0 1.24
-55.87 0 -55.87 0 358 0
risk2b? C 13.26 0% 0 14.77 0% 0 14.28 0% 0 248
T35e+3 33T6 I.5e+5 1775 T3e+5 9509
synheat B 127 0% 0 92 0% 0 566 0% 0 1.27

¢ This instance is unbounded [33], so the objective function value is not a meaningful indicator.

Table 9 MINLP results (MINLPLib solved by COUENNE or BARON). Lower values are best in general; in
instances not solved to optimality (CPU=7200), higher ratios nodes/tree are best. Values marked ‘-’ denote
Narrowing2=Narrowing1.

Instance R.1. Instance R.1. Instance R.1. Instance R.1.
deb7 26.0 nuclear24 15.22 nuclearvc 1.88 product2 292.39
deb8 26.1 nuclear25 19.46 nuclearvd 2.26 superl 10.12
deb9 259 nuclear49 | 457.88 nuclearve 2.03 super2 10.60
lop97ic 202.85 nuclearva 1.83 nuclearvf 2.03 super3 10.15
nuclearl4 15.49 nuclearvb 1.73 product 13.88 super3t 6.09

Table 10 MINLP instances where both COUENNE and BARON failed (the deb instances are reported infea-
sible).

Symmetry-Breaking Constraints practically help finding exact optima by Branch-and-
Bound algorithms: in general, the more symmetry-breaking constraints we adjoin to the
original formulation, the fewer nodes we might hope the BB search tree will have. Further-
more, these constraints are generated by the nontrivial orbits of the formulation group action
on the set of variable indices. Therefore, in general, the larger the formulation group, the
better. Since different exact reformulations of the same problem often yield different formu-
lation groups (all of which are subgroups of the solution group associated to the problem),
a very interesting question for future research is that of looking for the exact reformula-
tion maximizing the number (and length) of nontrivial orbits. It must be said, however, that
our symmetry-breaking constraints are rather general-purpose, hence they undergo the usual
trade-off between generality and efficiency. This suggests that breaking symmetries at the
modelling level (static symmetry breaking) should also be complemented by breaking sym-
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Original problem Narrowing] Narrowing2
f* nodes nodes jj nodes
Instance Sty cPU gap ‘ tree cPU gap ‘ tree cPU gap ‘ tree Rt
MILPLib(s)
563846 | 1945500 563846 | 2104500
mkc? 146850 0.13% 1479080 133924 0.13% 1449867 271233
26 592000 9 536100
protfold’ 300000 3051% 458813 300000 16.54% 353823 - - 592.14
3 3992700 3 7343500 73 3960700
seymour? 262817 09% | 3026077 283311 0.83% | 3038821 233643 10% | 3064665 5.95
GlobalLib ]
3500 5452500 3500 | 7373700 3500 FA75A00
ex5.2.5 c 19805 28.14% | 1259853 82320 18.5% 747262 18151 | 1741% | 1076927 140
0366 237100 0366 238000
maxmin® B 58643 145% 150803 57762 144% 150355 129
[ MINLPLib ]
EXDB] 44858 935 7397 129 23416
’ 10p97icx? B H 26903 ‘ 382% ‘ 27824 H 30772 ‘ 39.14% ‘ 27189 H 42926 ‘ 31.97% ‘ 14708 H 24.96 ‘

¢ Termination on out of memory.
b Termination after 5000 minutes

Table 11 Some results without the 2h CPU time limit. Lower values are best in general; in instances not
solved to optimality, higher ratios nodes/(treex CPU) are best.

metries at the branching level of the BB algorithm (dynamic symmetry breaking). This will
make the object of further investigations.

The tabulation of the formulation groups for all instances in the best known mathemat-
ical programming libraries suggests that although symmetry is not all-encompassing, it is
nonetheless pervasive enough to merit more attention than is currently attributed to it by the
mathematical programming community. Current efforts are limited to Mixed-Integer Lin-
ear and Semidefinite Programming only (this is the first work reaching into Mixed-Integer
Nonlinear Programming) and often assume prior knowledge of (subgroups of) the solution
group. If efficient symmetry detection and breaking devices are to make their way into main-
stream MINLP solvers, more techniques are needed to address the issues arising in treating
symmetry in mathematical programming.
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Online appendix: Instance size tables

MIPLib3 1/2
Instance n Bin. Int. m
10teams 2025 1800 0 230
air03 10757 10757 0 124
air04 8904 8904 0 823
air05 7195 7195 0 426
arki001 1388 415 123 1048
bell3a 133 39 32 123
bells 104 30 28 91
blend2 353 231 33 274
cap6000 6000 6000 0 2176
dano3mip 13873 552 0 3202
danoint 521 56 0 664
demulti 548 75 0 290
dsbmip 1877 160 0 1182
egout 141 55 0 98
enigma 100 100 0 21
fiber 1298 1254 0 363
fixnet6 878 378 0 478
£lugpl 18 0 11 18
gen 870 144 6 780
gesa2 1224 240 168 1392
gesa2.0 1224 384 336 1248
gesa3 1152 216 168 1368
gesa3.o 1152 336 336 1224
gt2 188 24 164 29
harp2 2993 2993 0 112
khb05250 1350 0 101
11521av 1989 1989 0 97
1seu 89 89 0 28
marksharel 62 50 0 6
markshare2 74 60 0 7
mas74 151 150 0 13
mas76 151 150 0 12
misc03 160 159 0 96
misc06 1808 112 0 820
misc07 260 259 0 212
mitre 10724 10724 0 2054
mkc 5325 5323 0 3411
mod008 319 319 0 6
mod010 2655 2655 0 146
modglob 422 98 0 291
noswot 128 75 25 182
nw04 87482 87482 0 36
p0033 33 33 0 15

Table 12 MILP instance statistics.

MIPLib3 2/2
Instance n Bin. Int. m
p0201 201 201 0 133
p0282 282 282 0 241
p0548 548 548 0 176
p2756 2756 2756 0 755
pki 86 55 0 45
PpO8aCUTS 240 64 0 246
Pppo8a 240 64 0 136
qnetl 1541 1288 129 503
gneti_o 1541 1288 129 456
rgn 180 100 0 24
rentacar 9557 55 0 6803
rout 556 300 15 291
setlich 712 240 0 492
seymour 1372 1372 0 4944
stein27 27 27 0 118
steindb 45 45 0 331
swath 6805 6724 0 884
vpml 378 168 0 234
vpm2 378 168 0 234
MIPLib2003 ~. MIPLib3
Instance n Bin. Int. m
alclsl 3648 192 0 3312
aflow30a 842 421 0 479
aflow40b 2728 1364 0 1442
atlanta-ip 48738 46667 106 21731
disctom 10000 10000 0 399
glass4 321 302 0 396
Iiu 1154 1087 0 2178
manna81 3321 18 3303 6480
momentuml 5174 2349 0 42680
momentum2 3732 1808 1 24237
mzzvil 10240 9989 251 9499
mzzv42z 11717 11482 235 10460
net12 14115 1603 0 14021
nsrand-ipx 6621 6620 0 735
opt1217 769 768 0 64
protfold 1835 1835 0 2112
10113000 1166 246 492 2294
timtabl 397 64 107 171
timtab2 675 113 181 294
tr12-30 1080 360 0 750




27

GlobalLib 3/3

GlobalLib 2/3

GlobalLib 1/3

5 [megesrerrsssnsssmeegonn o R i R e
3 T B e N S S M = & IRFFITAST BRT= S AT TORS e S
=T 84q FEBSTH (St = San - =
L= 228
peat
S [ I O I S O O O OO TS O = A= I 0 — S IO SH0 S S O — OIS In S O S S O S R00N00IG0 ORI S = F SO TNONAIINAINS S SO ey =T}
g Aenenel 00000%%51 RS e AT AT == 22 SESSTERPNERESR & Ca=
BBET A &
= |cooooowmantINIaInE S OOt <t e <+ ~ I MO IO AT IR0 OIS SNt OO OO O OOOOM0RR OO
T e = = = = CeEERERRRd =CORR e TERRRIR TEEETE T8
—ayeesIa F==2 @
—eNF
S iy x
™ ~ O 900
o000 ©a ) E SBBOY wow
9938 35922 i) T HHAA Xu9d EE T 2 B
M SRS TNTB S O AN S ©0 0T 0 2808, HNOHNMSD O N T LI I—Nmo EEE] )
MEEY S AN Rt im Al R R OOOMI- Ao SESOTHDo QAN 80 0 0 0 0 oML AuamEOe 999 =g
£(39 MMMMMtEﬁ?@aﬂ.PM.PPPPPPsSS Tboo0S0000! NG + TITI0°0 yeioy PP PR RGeS o
S| e B R 88 e B O g g g g g g g A aaaa AT T  AeARRRReRRRARggTodiglig h RN ARENS S
2| 555 886008080 0d dbisdddddddtntn st e st r s s R e s e s papedR s s s e dd e da sl sl e s s p e e s e s 88 SR AT S
~ | A HHHHHHNAHHODUNONDNDNDNRNRNRNANNNNNRNRNRNRNNNNNNNNNNRNNNNNNRNNNNNDNNRNNNNNNNNENRNNNRNANANNNDNNRNRNNNANNNNNRNRNNNNNNNNRNRNPRPPPPEEE
&~ |oa=a S+ OONNOTS SOOI SO SIS <t <+ =00 I~ s At =<t \ooocoowe <+
B B e S e A IR R S AR R R R R alaiA T R e N N S At = > BBBBRR g
B IR S S SRR g e e Tt B A v e GERTAE TRTS T CNERER R
ACEA S EERT AR ==8 =3 PRSI STE SENGEESieS
EE-A e = ) =50 S92
B s P CS OO 1 o o o < T O O O IOy T N 200900119090 9090 N AN T~ Ny 20— P SO S 2 O S S S S S I = I S 9 SOOI OISO ISISISII O —
TSR NS i e ) R g FRERCLRERFZZBI SSS) Y R N NN
A N A AT R A AN F BB F22S 2332 QRIS “Ansas
2T25E Gee B = i 2R3 AZES
= [orrinonicomin—inoto—inonow: N e T e aTerars ORI S SN OISV NI
AN e T AR =T SERTH < CLEARES S S SR ARG PG BRI = RN g S EER T2 SRR TSR e AR
T R e Ve Yo At Rt BB AMBRT AT F= FS24 = =2 == SaTe
SCER Q4G AFRETTERLENER &S =& L 28T SA& BEEE
200 200
° 3330 wow 3330 oo
£ EaEE 88808380 o ey B = Dt i1 S8wo KI]E3
ool 88 8882 .88, ,Snan ' FEEE] AFDS By A L S99, BREE HOS0e dtwihu Modqw FE=sE
<™ i i 1 i i IR O S e A A A e e e A N N L] N ONTNEN N hEs g nHAAA N HH NS M M e 05 rooooppppnawmu“ AHHHD V00O OLO DO
] SUTTLETTIIEEEES SuATTe oghEE NG, HARSHO00EAS vASEEEaSdEdah s EsE0003
S| i i J i i LN R N N R I I e s e e i i) P aa i i1 140 B 0E 12 60b00 0 0 0T TTT 1 keamm52r o CuseessSShhhhmMhhhhd.lSSSMOdEEEElVﬁQdddbbbb
3 000088 unanmnr e n ~a EESOdE QR oL Bt L L LR R NN e SRR AR AR £ 2 8 RS RARR0 00D
M BB B " B B4 Ba B4 b4 b B b b B4 B4 bd B4 b4 b B D B Bd B4 BA B4 B4 b b4 b B DA B4 Bd Bd B4 B b B B B B4 B B M M A ﬂaaaallllsn aqm.l.losy 00000V AAAAAACUECCOVO VLA AL AAAdd000000MNMNN
£ |5003355660000600000600000660000600000000000060000660600006060 Sia0e0a06060508 2288 EEEEEEEEEEEEEEEED BAE
& |Coracovatanaoo—timoonccooe— oo NOOT Ot N SINTOIN = oBAINDS WAcneIt <t DI ON SR TOBOABIIFAN—TN
3 SRR R AR R RS SR E S CERS: B S R NS S A N E R 3 e R SRR IR SR A=Y T RAG IR =
= A BRI C AR N AR BAIAT I 1A AN A BN F B F BB ZRCGFEE —UREREE
LA CRARRRFBF 2T LenmtadEIETR
£ |FormenesmoTonsetnnNNEE RGeS SooS O IS O O S I AT NN S — IS OO OO T I — IO 0N OSSOSO
S RSN e RRRRESY, Sonon i = === 225002 A
B e e =] SFBoNTHo—a T
ER S  aa s = =
= [ootovmatt—o—nrnaIcas oo enaIeIcIcInIe R N SIS O RO SO0 O S S SO (IO NN 0N 00 RO O O NI\ GE000 T AT — I
B o e 2 N = Vi SN s S SR8ER e
B e ATy e R AR AR ST T ==
e N A T e EAMEA

Instance

0000

] 3333

8 cooo 28380000

2 HNNRROHNNHDON DO NS 2990558500 o el

T 000083 mriarr o ARNA 11 bt AARAnS Swoo 0

5 3883385333300 00000NNNN A4 0 T T TG XK AINNIBIO Lo SO O]

1133333333333333333Nn n u-rip 608 &S S A A S HE O _ B ® @

Aedagagagagagaa o 0000 Rk O R GG e e E EEREREY | 1NN

e R L L CLEEEEEELLEEED
2 Hgag

800 ddddddddddddI I IS d.000880555858858868TTTTTTTuT 3300

Table 13 NLP instance statistics. NLT is the number of nonlinear terms in the problem; AMPL errors on

fct, worst.
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MINLPLib 1/2 _ MINLPLIb 2/2

Instance n Bin. Int. m NLT Instance n Bin. Int. m NLT
4stufen 149 8 0 98 [ va05 0 T 0 30
alan 3 4 0 7 8 nvsio 2 2 16
batchdes 20 9 0 20 13 nvsii 3 3 44
batch 46 24 0 73 28 nvsi2 3 4 4 92
beuster 157 52 0 114 155 nvsi2 2 5 5 158
cecil-13 840 162 18 898 540 nela 3 3 25
contvar 296 87 1 284 799 msie 3 i ]
cschedl 77 63 0 23 16 nvsi6 2 0 3
csched? 401 308 0 138 141 nvsig Z 9 108
deb10 182 11 11 129 940 nvsit 6 6 53
deb6 475 20 0 507 3108 nvsls 8 H 536
deb7 813 10 10 897 6144 sl 16 g 122
deb8 823 10 10 897 6144 avs20 3 5 i1
de 813 10 10 917 60144 s 3 ] 5 48
du-opt5 20 0 13 2336 nvs23 9 9 762
du-opt 20 13 2336 nvs24 10 1 10 1020
elf b 24 0 3 27 072 114 4 211 14
eniplac 141 24 0 18 920 o7 114 4 211 14
enprod§ 154 9 0 215 35 ol er § 3 7 3
en] 128 7. 0 192 31 0il?2 937 927 1981
ex N 0 2 0il 1535 1 1546 2871
ex 3 9 3 ortez 87 18 74 37
s a 7 9 9 parallel 205 25 113 280
ex1223b 7 9 7 prob02 4 0 19 8 s
ex 11 Q 1 17 Prob03 2 0 2 1
ex 11 0 3 probi0 3 0 1 3 9
ex 8 0 1 procsel 10 3 0 7 3
ex N 0 8 product?2 2842 128 0 3125 2112
ex 52 1 9 g g8 product 1553 107 0 1933 52
ex 6 1 9 9 32 pump 24 0 0 3 7
ex 2 0 12 46 Gapw 450 225 0 255 22,
ex1252a 6 3 73 Hhen 112 53 1 186 Ll
ex 1 0 4 IR Tisk2b 463 12 2 380
ex1263a 4 20 3 16 saa.2 07 400 0 6205 14369
ox 7 0 35 16 Sepl 29 2 0 31
ex1264a 4 20 3 16 space25a 383 240 0 201 10
ex 6! 0 2 16 space25 893 750 0 235 10
e a 30 44 2 spaced60 5537 0 960 6497 374
ex 13 10 0 e 2 spectra2 0 30 0 73 504
ex1266a 13 6 42 5 36 Spect: 7 9 1 H 19
ex, 180 138 0 9 36 SPro% 5 1 0 3 1
ex 32 8 9 3 7 stleld 11 1 0 13 17
ex 7 25 Q 3 254 stiels 5 3 0 5 2
fac 0 | 4 stle27 bt 2 0 6 2
e i 0 3 ¢ R 10 23 0 134

a 3
feedtray2 3 0 28 88> R 35 0 19 I 9
feedtray Q 92 917 st_e35 3 7 0 39 5
o7 1 4 0 211 14 st 0 1 3 3
fo 1 4 0 211 14 stese 0 0 3 i
fo 1 5 0 273 16 Steio 4 0 3 H 24
fo! 182 7. 0 343 1 st migpl 5 0 1 1
fuel 15 0 15 12 stmiqp2 P 2 2 3 4
fuzzy 896 12 0 105 72 Staideg 3 5 i
gasnet 9 10 0 69 163 Sthiaes ¢ 0 1
gastrans 10 21 0 14 4 Stmidps 7 0 13 h
bd 3 0 i stockcycle 48 43 0 97 4
gear2 2 24 9 b st_testl 5 3 0 1
gear3 0 4 st test2 1 2 1
geard 0 4 4 st_test3 13 1 3 10 10
car . Q g g st_testd . 12 3 1? 13

0C1. 3 0 st-testb

a 72 13 9 g 48 St_test6 10 1 0 5 20
hmittelman 1 15 0 7 238 St_test8 24 24 20 48
johnall 19 188 0 192 1786 Hai 0l % 9 %
op97icx 98 67 783 &7 S st_testgra 2 20 20 10
m3 2 6 0 43 st_testphd 3 0 6
né 8 30 0 157 12 Sipert 130 44 0 1659 2545
n7 11 42 0 211 1 super2 130! 44 0 1659 2545
meanvarx 35 14 0 44 3 super3 130 44 0 1659 2545
nous1 3 0 Q 43 o super3t 105 44 0 1343 2169
nous2 50 0 0 43 0 synheat 5 1 0 4 82
nucleari0a | 13010 10920 0 3339 3198 Ynthest 0 6 11
nuclearida 92 600 0 633 398 synthes2 1 0 14 9
nuclearidb 156! 600 0 1783 340 Synthess 1 0 23 16
nuclear 1562 576 0 1226 1272 oo 168 1 156 T 144
nuclear2da 9 600 0 633 3084 t1n3 2 4
nuclear24b 136, 600 0 1783 340 Hn2 24 ] 20 1 16
nuclear: 156 576 0 1226 4272 £In5 35 3 0 25
nuclear25a 105 650 0 639 4215 e i 0 36 3
nuclear2sb 168 630 0 1909 3590 e &3 5 1 19
nuclear 167 625 0 1303 590 e % 6 b 3 36
nucleard9a 334 2450 0 1231 10826 tloss s 6560 12 38% 288
nuclear49b 5742 2450 0 6233 25 £1s2 37 3] 2 24 8
nuclear 5735 2401 0 383 12541 tis2 105 s 7 4 35
nuclearva 3 168 0 317 64 bipe] 161 13 3 0 50
nuclearvb 33 168 0 317 1628 He2 205 7 8 120 7
nuclearvc 3 168 0 317 1628 Hee 343 28 7 154 98
nuclearvd 5 168 0 317 04 tltr 48 1 36 54 27
nuclearve 33 168 9 317 2204 uselinear 6792 H 0 7030 9549
nuclearvi 3 168 0 317 2504 usel 148 3 0 168
nvs 0 2 3 13 var-coni0 573 I 2 464 4368
nvs02 0 5 3 23 var_conb 573 | 2 464 368
nvs03 9 ! 2 4 waste 2484 40 0 1991 1368
nvs04 0 2 9 4 waterd 193 12 0 137 32
nvs05 0 2 9 48 waterx 70 14 0 34 102
nvs06 9 2 9 3 waterz 199 12 9 137 2
nvs 3 3
nvs07 3 g 2 3 i windfac 3

Table 14 MINLP instance statistics. NLT is the number of nonlinear terms in the problem. AMPL errors
on blendgap, meanvarxsc, water3, waterful2, watersbp, waters, watersyml, watersym2
(MINLPLib).



