
A learning-based mathematical programming
formulation for the automatic configuration of

optimization solvers ?

Claudia D’Ambrosio1, Antonio Frangioni2, Gabriele Iommazzo1,2, and Leo
Liberti1

1 LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau,
France,

{dambrosio,giommazz,liberti}@lix.polytechnique.fr
2 Dip. di Informatica, Università di Pisa, Pisa, Italy,

frangio@di.unipi.it

Abstract. We propose a methodology, based on machine learning and
optimization, for selecting a solver configuration for a given instance.
First, we employ a set of solved instances and configurations in order
to learn a performance function of the solver. Secondly, we formulate a
mixed-integer nonlinear program where the objective/constraints explic-
itly encode the learnt information, and which we solve, upon the arrival
of an unknown instance, to find the best solver configuration for that
instance, based on the performance function. The main novelty of our
approach lies in the fact that the configuration set search problem is for-
mulated as a mathematical program, which allows us to a) enforce hard
dependence and compatibility constraints on the configurations, and b)
solve it efficiently with off-the-shelf optimization tools.

Keywords: automatic algorithm configuration, mathematical program-
ming, machine learning, optimization solver configuration, hydro unit
committment

1 Introduction

We address the problem of finding instance-wise optimal configurations for gen-
eral Mathematical Programming (MP) solvers. We are particularly motivated
by state-of-the-art general-purpose solvers, which combine a large set of diverse
algorithmic components (relaxations, heuristics, cutting planes, branching, . . .)
and therefore have a long list of user-configurable parameters; tweaking them can
have a significant impact on the quality of the obtained solution and/or on the
efficiency of the solution process (cf., e.g., [20]). Good solvers have effective de-
fault parameter configurations, carefully selected to provide good performances

? This paper has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement
n. 764759 “MINOA”.

2 Claudia D’Ambrosio et al.

in most cases. Furthermore, tuning tools may be available (e.g., [24, Ch. 10])
which run the solver, with different configurations, on one or more instances
within a given time limit, and record the best parameter values encountered.
Despite all this, the produced parameter configurations may still be highly sub-
optimal with specific instances. Hence, a manual search for the best parameter
values may be required. This is a highly nontrivial and time-consuming task,
due to the large amount of available parameters (see, e.g., [25]), which requires
a profound knowledge of the application at hand and an extensive experience in
solver usage. It is therefore of significant interest to develop general approaches
capable of performing it efficiently and effectively in an automatic way.

This setting is an instance of the Algorithm Configuration Problem (ACP)
[15, 33]. Our approach for addressing the ACP on MP solvers is based on a
two-fold process:

(i) in the Performance Map Learning Phase (PMLP), supervised Machine Learn-
ing (ML) techniques [31] are used to learn a performance function which
maps some features of the instance being solved and the parameter configu-
ration into some measure of solver efficiency and effectiveness;

(ii) the formal model underlying the ML methodology used in the PMLP is trans-
lated into MP terms; the resulting formulation, together with constraints
encoding the compatibility of the configuration parameter values, yields the
Configuration Set Search Problem (CSSP), a Mixed-Integer Nonlinear Pro-
gram (MINLP) which, for a given instance, finds the configuration providing
optimal performance w.r.t. the performance function.

The main novelty of our approach lies in the fact that we explicitly model and
optimize the CSSP using the mathematical description of the PMLP technique.
This is in contrast to most of the existing ACP approaches, which instead em-
ploy heuristics such as local searches [2, 22], genetic algorithms [3], evolutionary
strategies [9] and other methods [30]. Basically, most approaches consider the
performance function as a black box, even when it is estimated by means of some
ML technique, and therefore cannot reasonably hope to find a global minima
when the number of parameter grows. Rather, we can exploit the mathematical
structure of the CSSP solving it with sophisticated, off-the-shelf MP solvers.
Moreover, formulating the CSSP by MP allows the seamless integration of the
compatibility constraints on the configuration parameters, which is something
that other ACP methods may struggle with. The idea of using a ML predictor
to define the unknown components (constraints, objective) of a MP has been al-
ready explored in data-driven optimization. In general, it is possible to represent
the ML model of a mapping/relation as a MP (or, equivalently, a Constraint Pro-
gramming model) and optimize upon this [29]. However, while this is in principle
possible, the set of successful applications in practice is limited. Indeed, using
this approach in the ACP context is, to the best of our knowledge, new; it also
comes with some specific twists. We tested this idea with the following com-
ponents: we configured nine parameters of the IBM ILOG CPLEX solver [24],
which we employed to solve instances of the Hydro Unit Commitment (HUC)

Learning-based MP formulation for the configuration of optimization solvers 3

problem [8], we chose Support Vector Regression (SVR) [34] as the PMLP learn-
ing methodology, and we use the off-the-shelf MINLP solver Bonmin [6] to solve
the CSSP.

The paper is structured as follows: in Sec. 2 we will review existing work
on algorithm configuration; in Sec. 3 we will detail our approach and provide
the explicit formulation of the CSSP with SVR; in Sec. 4 we will discuss some
computational results.

2 Background

2.1 The algorithm configuration problem

The ACP [33] is defined as follows: given a set of instances of a problem class, a
target algorithm to solve them, its set of parameters, and a measure of the per-
formance of the target algorithm on a pair (instance, algorithmic configuration),
find the parameter configuration providing optimal algorithmic performance ac-
cording to the given measure, on a specific instance or instance set.

Most algorithmic solvers have a very high number of configurable parameters
of various types (boolean, categorical, integer, continuous), which usually makes
the ACP very hard to solve in practice. Notably, this issue significantly affects
MP solvers: they are highly complex pieces of software, embedding several com-
putational components that tackle the different phases of the solution process;
the many available algorithmic choices are exposed to the user as a long list of
configurable parameters (for example, more than 150 in CPLEX [25]).

Approaches to the ACP can be compared based on how they fit into the
following two categories: Per-Set (PS) or Per-Instance (PI); offline or online.

In PS approaches, the optimal configuration is defined as the one with the
best overall performance over a set of instances belonging to the same problem
class. Therefore, PS approaches first find the optimal configuration for a problem
class and then use it for any instance pertaining to that class. The exploration
of the configuration set is generally conducted by means of heuristics, such as
various local search procedures [2, 22, 4], genetic algorithms [3] or other evolu-
tionary algorithms [32], racing methods [30]. In this context, an exception is, e.g.,
the approached described in [21], which predicts the performance of the target
algorithm by random forest regression and then uses it to guide the sampling in
an iterative local search.

PS approaches, however, struggle when the target algorithm performance
varies considerably among instances belonging to the same problem class. In
these cases, PI methodologies, which assume that the optimal algorithmic con-
figuration depends on the instance at hand, are likely to produce better con-
figurations. PI approaches typically focus on learning a good surrogate map of
the performance function: this approximation is used to direct the search in the
configuration set. Some of them perform regression. In [23], for example, linear
basis function regression is used to approximate the target algorithm runtime,
which is defined as a map of both features and configurations; then, for a new

4 Claudia D’Ambrosio et al.

instance with known features, the learnt map is evaluated at all configuration
points in an exhaustive search, to find the estimated best one. However, other
approaches may be used: in [9], for example, a map from instance features to
optimal configuration is learnt by a neural network and then employed by an
evolutionary algorithm in order to explore the configuration set upon the arrival
of a new instance; in [7] the ACP is restricted to a single binary parameter of
CPLEX, and a classifier is then trained to predict it. In [27], instead, CPLEX is
run on a given instance for a certain amount of computational resources, then
a learning-to-rank [31] ML model is trained, on-the-fly, to learn the ordering
of branch and bound variables, and it is then used to predict the best branch-
ing variable, at each node, for the the rest of the execution. Another approach,
presented in [26], relies instead on a PS methodology to find a good PI configura-
tion: first, it performs clustering on a set of instances, then, it uses the algorithm
described in [3] to find one good algorithmic configuration for each cluster. A
different attempt at using clustering is detailed in [37], where instances are au-
tomatically clustered in the leaves of a trained decision tree, which also learns
the best configuration for each leaf; at test time, a new instance is assigned to a
leaf based on its features, and it receives the corresponding configuration.

Solving the ACP requires sampling the performance function. This involves
expensive and, generally, repeated executions of the target algorithm. PI method-
ologies usually build a large training set all at once. On the other hand, PS
methodologies focus on sampling only a small set of points at each iteration
of the search and execute the target algorithm on them; the procedure learns
which candidates must be discarded and where to focus the sampling at the
next iteration. However, they potentially perform many more iterations than PI
approaches.

The purpose of an ACP approach is to provide a good algorithmic configura-
tion upon the arrival of an unseen instance. We call a methodology offline if the
learning happens before that moment, which is the case for all the approaches
cited above. Otherwise, we call an ACP methodology online; these approaches
normally use reinforcement learning [35] techniques (see, e.g., [16, 13]) or other
heuristics [5].

In our approach, we define the performance of the target algorithm as a
function of both features and controls, in order to account for the fact that the
best configuration of a solver may vary among instances belonging to the same
class of problems; this makes our approach PI. Moreover, we perform the PMLP
only once and then apply the resulting CSSP to all new instances. What makes
our approach stand out from other methodologies is that the learning phase is
treated as white-box: the prediction problem of the PMLP is formulated as a
MP. This allows the explicit embedding of the a mathematical encoding of the
estimated performance into the CSSP, as its objective/constraints, as opposed to
treating the learned predictor as a black-box, and therefore using as an oracle in
brute-force searches or similar heuristics, that typically do not scale well. Lastly,
we chose to implement an offline approach because, since the exploration phase
in our specific application must be solved quickly for each instance, and since

Learning-based MP formulation for the configuration of optimization solvers 5

the learning part can be very computationally heavy, the PMLP needs to be
performed before solving the CSSP.

3 The PMLP and the CSSP

Let A be the target algorithm, and:

– CA be the set of feasible configurations of A. We assume that each configu-
ration c ∈ CA can be encoded into a vector of binary and/or discrete values
representing categorical and numerical parameters, and CA can be described
by means of linear constraints;

– Π be the problem to be solved, consisting of an infinite set of instances, and
Π ′ ⊂ Π be the (finite) set of instances used for the PMLP phase;

– FΠ be the set of feature vectors used to describe instances, encoded by
vectors of continuous or discrete/categorical values (in the latter case they
are labelled by reals);

– pA : FΠ × CA −→ R be the performance function which maps a pair (f, c)
(instance feature vector, configuration) to the outcome of an execution of A
(say in terms of the integrality gap reported by the solver after a time limit,
but other measures are possible).

With the above definitions, the PMLP and the CSSP are detailed as follows.

3.1 Performance Map Learning Phase

In the PMLP phase we use a supervised ML predictor, e.g., SVR, to learn the
coefficient vector θ̄ providing the parameters of a prediction model p̄A(·, ·, θ) :
FΠ × CA → R of the performance function pA(·, ·). The training set for the
PMLP is

S =
{

(fi, ci, pA(fi, ci)) | i ∈ {1 . . . s}
}
⊆ FΠ′ × CA × R, (1)

where s = |S| and the training set labels pA(fi, ci) are computed on the training
vectors (fi, ci).

3.2 Configuration Space Search Problem

For a given instance f and parameter vector θ, CSSP(f, θ) is the problem of
finding the configuration with best estimated performance p̄A(f, c, θ):

CSSP(f, θ) ≡ min
c∈CA

p̄A(f, c, θ) . (2)

The actual implementation of CSSP(f, θ) depends on the MP formulation se-
lected to encode p̄A, which may require auxiliary variables and constraints to
define the properties of the ML predictor. If p̄A yields an accurate estimate of pA,
we expect the optimum c̄ of CSSP(f, θ) to be a good approximation of the true
optimal configuration c∗ for solving f . However, we remark that a) CSSP(f, θ)
can be hard to solve, and b) it needs to be solved quickly (otherwise one might as
well solve the instance f directly). Achieving a balance between PMLP accuracy
and CSSP cost is one of the challenges of this research.

6 Claudia D’Ambrosio et al.

4 Experimental results

We tested our approach on 108 instances of the HUC problem and on 9 parame-
ters of CPLEX, version 12.7. The PMLP and CSSP experiments were conducted
on an Intel Xeon CPU E5-2620 v4 @ 2.10GHz architecture, while CPLEX was
run on an Intel Xeon Gold 5118 CPU @ 2.30GHz. In the following, we detail the
algorithmic set-up that we employed.

4.1 Building the dataset

1. Features. The HUC is the problem of finding the optimal scheduling of a
pump-storage hydro power station, where the commitment and the power
generation of the plant must be decided in a short term period, in which
inflows and electricity prices are previously forecast. The goal is to maximize
the revenue given by power selling (see, e.g., [1]). The time horizon is fixed to
24h and the underlying hydro system is also fixed, so that all the instances
have the same size. Thus, only 55 elements that vary from day to day are
features: the date, 24 hourly prices, 24 hourly inflows, initial and target water
volumes, upper and lower bound admitted on the water volumes. We encode
them in a vector f of 55 continuous/discrete components. All the instances
have been randomly generated with an existing generator that accurately
reproduces realistic settings.

2. Configuration parameters. Thanks to preliminary tests, we select a subset
of 9 discrete CPLEX parameters (fpheur, dive, probe, heuristicfreq,
startalgorithm and subalgorithm from mip.strategy; crossover from
barrier; mircuts and flowcovers, from mip.cuts), for each of which we
consider between 2 and 4 different values. We then combine them so as
to obtain 2304 parameter configurations. A configuration is encoded by a
vector c ∈ { 0 , 1 }23, where each categorical parameter is represented by its
incidence vector.

3. Performance measure. We use the integrality gap to define p(f, c). It has been
shown that MIP solvers can be affected by performance variability issues
(see, e.g., [28]), due to executing the solver on different computing platforms,
permuting rows/columns of a model, adding valid and redundant constraints,
performing apparently neutral changes to the solution process, etc. In order
to tackle this issue, first we sample three different random seeds. For each
instance feature vector f and each configuration c, we then carry out the
following procedure: (i) we run CPLEX (using the Python API) 3 times on
the instance, using the different random seeds, for 60 seconds; (ii) we record
the middle out of the three obtained performance values, to be assigned to
the pair (f, c). At this point, our dataset contains 108 × 2304 = 248832
records, each with dimension 55 + 23 + 1 = 79. The performance measure
%(f, c), thus, obtained from CPLEX output usually contains some extremely
large floating point values (e.g., whenever the CPLEX gap has a value close
to zero in the denominator), which unduly bias the learning process. We deal
with this issue as follows: we compute the maximum %̄ over all values of (the

Learning-based MP formulation for the configuration of optimization solvers 7

range of) % lower than a given threshold (set to 1e+5 in our experiments),
re-set all values of % larger than the threshold to %̄ + 100, then rescale % so
that it lies within the interval [0 , 1].

4. Feature engineering. We process the date in order to extract the season, the
week-day, the year-day, two flags called isHoliday and isWeekend, and we
perform several sine/cosine encodings, that are customarily used to treat
cyclical features. Moreover, we craft new features by computing statistics on
the remaining 52 features. This task takes around 12 minutes to complete
for the whole data set.

5. Splitting the dataset. We randomly divide the instances into 81 In-Sample
(IS) and 27 Out-of-Sample (OS), and split the dataset rows accordingly
(186624 IS and 62208 OS). We use the IS data to perform Feature Selection
(FS) and to train the SVR predictor; then, we assess the performance of
the PMLP-CSSP pipeline both on OS instances, to test its generalization
capabilities to unseen input, and on IS instances, to evaluate its performance
on the data that we learn from, as detailed below.

6. Feature selection for the PMLP. We use Pearson’s Linear Correlation (LC),
decision trees’ Feature Importance (FI) and Mutual Information (MI) to get
insights on which features contribute the most to yield accurate predictions.
A detailed explanation of the employed FS techniques falls outside of the
scope of this document, but the interested reader can refer to [18] (for MI
and LC), [19, Ch. 10.13,15.3] (for FI) and [11, Ch. 2] (for MI), among many
others. In the following, we use the shorthand “attributes” to refer to the
whole list of columns of the learning dataset. In order to perform FS, we
use a dedicated subset of the IS dataset, composed of 27994 records and
only employed for this task; performing the selected FS techniques on this
dataset takes around 8 minutes, and reduces f to 21 components. For the
configuration vectors we consider two FS scenarios: fewC, where FS is applied
more aggressively, and manyC, yielding c vectors with, respectively, 14 and
18 components. We then filter the PMLP dataset according to the selected
attributes. For each instance: a) we delete all the dataset rows where the
components eliminated from c vectors by FS are not set to their default

value, and b) for each subset of remaining duplicates, we compute the average
p keeping only one row. Lastly, we delete the dataset columns that we singled
out by FS. At this point, the fewC PMLP dataset is composed of 26658
records and the manyC one has 106325, but in both scenarios we only use 8k
points for the PMLP.

4.2 PMLP experimental setup

The PMLP methodology of choice in this paper is SVR. Its advantages are:
(a) the PMLP for training an SVR can be formulated as a convex Quadratic
Program (QP), which can be solved efficiently; (b) even complicated and possibly
nonlinear performance functions can be learned by using the “kernel trick” [34];
(c) the solution of the PMLP for SVR provides a closed-form algebraic expression
of the performance map p̄A, which yields an easier formulation of CSSP(f, θ). We

8 Claudia D’Ambrosio et al.

use a gaussian kernel during SVR training, which is the default choice in absence
of any other meaningful prior [12]. We assess the prediction error of the predictor
by Nested Cross Validation (NCV) [10, 36]; furthermore, our training includes a
phase for determining and saving the hyperparameters and the model coefficients
of the SVR. These two task take approximately 1h in the fewC scenario and 1.5h
in the manyC one.

A common issue in data-driven optimization is that using customary ML
error metrics may not lead to good solutions of the optimization problem (see,
for example, [14, 17]). We tackled this issue by comparing the classical Mean
Absolute Error, MAES =

∑
i∈S |pi− p̄i|, where pi = pi(f, c) and p̄i = p̄i(f, c), to

the custom metric cMAES(δ) =
∑
i∈S lossi, where

lossi =


(p̄i − pi) · (1 + 1

1+exp(pi−p̄i)) if pi ≤ δ, p̄i > pi
(pi − p̄i) · (1 + 1

1+exp(p̄i−pi)) if pi ≥ 1− δ, p̄i < pi
(pi − p̄i) if δ ≤ pi ≤ 1− δ
0 otherwise.

We remark that we prefer the MAE to the mean squared error
∑
i∈S(pi − p̄i)2

because it is less sensitive to outliers. Moreover, we want p̄ to accurately predict
the points around the global minimum/maximum of p. In order to achieve this, at
δ-minima (i.e., points s.t. pi ≤ δ), the cMAE penalizes prediction overestimates
while allowing any underestimates, and viceversa at δ-maxima; at points s.t. δ ≤
pi ≤ 1− δ, instead, the cMAE behaves exactly like the MAE.

4.3 CSSP experimental setup

The choice of a gaussian kernel in the SVR formulation makes the CSSP a
MINLP with a nonconvex objective function p̄A. More precisely, our CSSP is:

min
c∈CA

∑s
i=1 αi exp

(
−γ‖(fi, ci)− (f̄ , c)‖22

)
(3)

where, for all i ≤ s, (fi, ci) belong to the training set, αi are the dual solu-
tions of the SVR, γ is the scaling parameter of the Gaussian kernel, and CA is
defined by mixed-integer linear programming constraints encoding the depen-
dences/compatibility of the configurations. We use the nonlinear solver Bonmin
[6], manually configured and with a time limit of 60 seconds, to solve CSSP;
then we retrieve, for each instance f , the Bonmin solution CSSPsol. Since we
have enumerated all possible configurations, we can also compute the “true”
global optimum CSSPglobMin = arg min{p̄(f, c), c ∈ CA} for sake of comparison.
In Table 1, we report the percentage of cases where CSSPsol = CSSPglobmin,
(“%glob. min. found”) and, for all the instances where this is not true, the av-
erage distance between p̄(CSSPsol) and p̄(CSSPglobmin), over all the instances
of the considered set (“avg. dist. from glob. min”).

The fewC scenario achieves better results than the manyC one: the percentage
of global optima found is higher and the average errors are lower. This is probably

Learning-based MP formulation for the configuration of optimization solvers 9

set type %glob. min. found avg. dist. from glob. min

fewC

cMAE
IS 76.54 1.7849E-02
OS 74.07 1.8602E-02

MAE
IS 69.14 3.0438E-02
OS 85.19 1.0607E-02

manyC

cMAE
IS 61.73 3.7913E-02
OS 55.56 4.7817E-02

MAE
IS 61.73 3.9297E-02
OS 70.37 3.2590E-02

Table 1. Quality of Bonmin’s CSSP solutions

motivated by the fact that the fewC formulation has less variables and, therefore,
may be easier to solve. Thus, devising more efficient techniques to solve the CSSP
(say, reformulations, decomposition, . . .) might be necessary if our approach is
scaled to considerably more algorithmic parameters. However, in both cases the
errors are fairly small, i.e., the local optima found by Bonmin are quite good
ones.

4.4 Results

In order to assess the performance of the approach, we retrieve p(CSSPsol)
and p(CPXdefault) (CPLEX default configuration, where all parameters are
set to “auto”) from the filtered dataset, for every IS and OS instance. Table 2
shows: the number of times that p(CSSPsol) is less than, equal to or greater
than p(CPXdefault), by the first four decimal digits of p in scientific notation
(“w-d-l”, for wins-draws-losses); the percentage of “w” (“%wins”); the average
difference between p(CPXdefault) and p(CSSPsol), over all the considered in-
stances, in case of win (“avg wins”); the average difference between p(CSSPsol)
and p(CPXdefault), over all the considered instances, in case of loss (“avg loss”).

set type w-d-l %wins avg wins avg loss

fewC

cMAE
IS 66-10-5 81.48 5.0193E-01 2.2005E-01
OS 14-6-7 51.85 4.7891E-01 2.6643E-01

MAE
IS 64-10-7 79.01 5.4334E-01 2.8343E-01
OS 12-6-9 44.44 4.6950E-01 1.6058E-01

manyC

cMAE
IS 65-10-6 80.25 5.4402E-01 2.7065E-01
OS 17-6-4 62.96 5.0012E-01 1.5118E-01

MAE
IS 65-11-5 80.25 5.2016E-01 2.4697E-01
OS 12-6-9 44.44 4.2594E-01 2.6081E-01

Table 2. Pipeline quality with CSSPsol

The percentage of wins on IS instances varies between 79% and 82%, while the
non-worsenings (i.e., wins and draws, over the total) vary between 91% to 94%.

10 Claudia D’Ambrosio et al.

From this we gather that p̄ provides an accurate approximation p’s global minima
at points belonging to the training set. Although the percentage of wins on OS
instances lowers to 44%-63% and also shows higher variability, our approach still
outperforms CPXdefault on more than half of the cases, and has 67% to 86%
of non-worsenings. The fewC scenario presents worse “%wins” results than the
manyC one. Moreover, we observe that cMAE-based PMLP models provide lower
“avg wins” than MAE-based models on IS instances but higher on OS instances,
and lower “avg losses” on both IS and OS instances. Furthermore, they have a
better performance than MAE-based PMLP models, in terms of “avg wins”, on
OS instances in the fewC scenario; they always dominate, however, in the fewC

one.
All in all, the results show that our approach is promising, in that it pro-

vides configurations that are, generally speaking, better than these provided by
the heuristics inside CPLEX. The results also show that a number of important
details have to be properly accounted for before the approach can deliver good
performances. In particular, it is interesting that the custom cMAE error metric
has higher generalization capabilities than the classical MAE, which it outper-
forms on OS instances. Since the choice of the PMLP error metric determines
the quality of the CSSP solution, this can be expected. Yet, this indicates that
applying ML techniques to the ACP requires taking into account the specific
aspects of the problem.

References

1. van Ackooij, W., D’Ambrosio, C., Liberti, L., Taktak, R., Thomopulos, D.,
Toubaline, S.: Shortest path problem variants for the hydro unit commitment
problem. Electronic Notes in Discrete Mathematics 69, 309 – 316 (2018), joint
EURO/ALIO International Conference 2018 on Applied Combinatorial Optimiza-
tion (EURO/ALIO 2018)

2. Adenso-Dı́az, B., Laguna, M.: Fine-tuning of algorithms using Fractional Experi-
mental Design and Local Search. Operations Research 54(1), 99–114 (2006)

3. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming. pp. 142–157.
CP’09, Springer-Verlag, Berlin, Heidelberg (2009)

4. Audet, C., Orban, D.: Finding optimal algorithmic parameters using Derivative-
Free Optimization. SIAM Journal on Optimization 17(3), 642–664 (2006)

5. Battiti, R., Brunato, M.: Reactive Search: machine learning for memory-based
heuristics. Tech. rep., University of Trento (2005)

6. Bonami, P., B., L.T., Conn, A.R., CornuéJols, G., Grossmann, I.E., Laird, C.D.,
Lee, J., Lodi, A., Margot, F., Sawaya, N., WäChter, A.: An algorithmic framework
for convex mixed integer nonlinear programs. Discrete Optimization 5(2), 186–204
(2008)

7. Bonami, P., Lodi, A., Zarpellon, G.: Learning a classification of mixed-integer
quadratic programming problems. In: van Hoeve (eds), W. (ed.) Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research. CPAIOR
2018. Lecture Notes in Control and Information Sciences, vol. vol. 10848, pp. 595–
604. Springer, Cham (2018)

Learning-based MP formulation for the configuration of optimization solvers 11

8. Borghetti, A., D’Ambrosio, C., Lodi, A., Martello, S.: An MILP approach for short-
term hydro scheduling and unit commitment with head-dependent reservoir. IEEE
Transactions on Power Systems 23(3), 1115–1124 (2008)

9. Brendel, M., Schoenauer, M.: Instance-based parameter tuning for Evolutionary AI
Planning. In: Proceedings of the 13th Annual Conference Companion on Genetic
and Evolutionary Computation. pp. 591–598. GECCO ’11, ACM (2011)

10. Cawley, G.C., Talbot, N.L.: On over-fitting in model selection and subsequent
selection bias in performance evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010)

11. Cover, T.M., Thomas, J.A.: Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, USA (2006)

12. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines:
And Other Kernel-based Learning Methods. Cambridge University Press (2000)

13. Degroote, H., Bischl, B., Kotthoff, L., De Causmaecker, P.: Reinforcement Learning
for automatic online algorithm selection - an empirical study. In: Proceedings of
the 16th ITAT Conference Information Technologies - Applications and Theory.
pp. 93–101 (2016)

14. Demirović, E., Stuckey, P., Bailey, J., Chan, J., Leckie, C., Ramamohanarao, K.,
Guns, T.: An investigation into prediction + optimisation for the knapsack prob-
lem. In: CPAIOR. pp. 241–257 (2019)

15. Eggensperger, K., Lindauer, M., Hutter, F.: Pitfalls and best practices in algorithm
configuration. CoRR abs/1705.06058 (2017)

16. Gagliolo, M., Schmidhuber, J.: Algorithm selection as a Bandit problem with un-
bounded losses. In: Blum, C., Battiti, R. (eds.) Learning and Intelligent Opti-
mization: 4th International Conference, LION 4, 2010. Selected Papers, pp. 82–96.
Springer Berlin Heidelberg (2010)

17. Grimes, D., Ifrim, G., O’Sullivan, B., Simonis, H.: Analyzing the impact of elec-
tricity price forecasting on energy cost-aware scheduling. Sustainable Computing:
Informatics and Systems (SUSCOM) 4, 276–291 (2014)

18. Guyon, I.: An introduction to variable and feature selection. Journal of Machine
Learning Research 3, 1157–1182 (2003)

19. Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning:
data mining, inference, and prediction, 2nd Edition. Springer series in statistics,
Springer (2009)

20. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed in-
teger programming solvers. In: Proceedings of the 7th International Conference on
Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems. pp. 186–202. CPAIOR’10, Springer-Verlag, Berlin,
Heidelberg (2010)

21. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential Model-based Optimization
for general algorithm configuration. In: Proceedings of the 5th International Con-
ference on Learning and Intelligent Optimization. pp. 507–523. LION’05, Springer-
Verlag (2011)

22. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic al-
gorithm configuration framework. Journal of Artificial Intelligence Research 36(1),
267–306 (2009)

23. Hutter, F., Youssef, H.: Parameter adjustment based on performance prediction:
Towards an instance-aware problem solver. Tech. rep., In: Technical Report: MSR-
TR-2005125, Microsoft Research (2005)

24. IBM: IBM ILOG CPLEX Optimization Studio, CPLEX 12.7 User’s Manual. IBM
(2016)

12 Claudia D’Ambrosio et al.

25. IBM: IBM ILOG CPLEX Optimization Studio CPLEX Parameters Reference
(2016)

26. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC: Instance Specific Al-
gorithm Configuration. In: Proceedings of the 2010 Conference on ECAI 2010: 19th
European Conference on Artificial Intelligence. pp. 751–756. IOS Press, Amster-
dam, The Netherlands (2010)

27. Khalil, E.B., Bodic, P.L., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch
in mixed integer programming. In: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. pp. 724–731. AAAI’16, AAAI Press (2016)

28. Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming.
Tutorials in Operations Research, Vol. 10 pp. 1–12 (2013)

29. Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Arti-
ficial Intelligence 244, 343–367 (2017)

30. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Opera-
tions Research Perspectives 3, 43–58 (2016)

31. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
The MIT Press, 2nd edn. (2018)

32. Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolution-
ary algorithm parameters. In: Proceedings of the 20th International Joint Confer-
ence on Artifical Intelligence. pp. 975–980. IJCAI’07, Morgan Kaufmann Publishers
Inc. (2007)

33. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976)

34. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and
Computing 14(3), 199–222 (2004)

35. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, 2nd edn. (2018)

36. Varma, S., Simon, R.: Bias in error estimation when using cross-validation for
model selection. BMC Bioinformatics 7(91) (2006)

37. Vilas Boas, M.G., Gambini Santos, H., de Campos Merschmann, L.H., Van-
den Berghe, G.: Optimal decision trees for the algorithm selection problem: Integer
programming based approaches. CoRR abs/1907.02211 (2019)

