
Journal of Machine Learning Research 24 (2023) 1-28 Submitted 7/21; Revised 9/23; Published 12/23

A Novel Integer Linear Programming Approach for Global `0

Minimization

Diego Delle Donne delledonne@essec.edu
Information Systems, Decision Sciences and Statistics department
ESSEC Business School of Paris
95021 Cergy-Pontoise Cedex, France

Matthieu Kowalski matthieu.kowalski@universite-paris-saclay.fr
Inria Saclay-Île-de-France
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Abstract

Given a vector y ∈ Rn and a matrix H ∈ Rn×m, the sparse approximation problem
P0/p asks for a point x such that ‖y − Hx‖p ≤ α, for a given scalar α, minimizing the
size of the support ‖x‖0 := #{j | xj 6= 0}. Existing convex mixed-integer programming
formulations for P0/p are of a kind referred to as “big-M”, meaning that they involve
the use of a bound M on the values of x. When a proper value for M is not known
beforehand, these formulations are not exact, in the sense that they may fail to recover
the wanted global minimizer. In this work, we study the polytopes arising from these
formulations and derive valid inequalities for them. We first use these inequalities to
design a branch-and-cut algorithm for these models. Additionally, we prove that these
inequalities are sufficient to describe the set of feasible supports for P0/p. Based on this
result, we introduce a new (and the first to our knowledge) M -independent integer linear
programming formulation for P0/p, which guarantees the recovery of the global minimizer.
We propose a practical approach to tackle this formulation, which has exponentially many
constraints. The proposed methods are then compared in computational experimentation
to test their potential practical contribution.

Keywords: Sparse Approximation, `0 minimization, Integer Programming.

1. Introduction and state of the art

The Sparse Representation of a vector y ∈ Rn in a matrix H ∈ Rn×m aims at finding
a solution x ∈ Rm to the system Hx = y, with minimum number of non-zero components,
i.e., minimizing the so-called `0 pseudonorm of x defined by ‖x‖0 := #{j | xj 6= 0}. The
Sparse Approximation problem also considers noise and model errors, relaxing the equal-
ity constraints and aiming instead at minimizing the misfit data measure ‖y − Hx‖ for a
given norm ‖ · ‖. More specifically, we address the sparse linear inverse problem, where
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the number of measurements may be fewer than the size of the signal to be recovered.
This scenario arises in various fields, such as imaging (Ribes and Schmitt, 2008), Astro-
physics (Bourguignon et al., 2011) and the deconvolution problem (Soussen et al., 2011)
and have benefited from the sparse representation. Recovering the underlying sparse signal
accurately and efficiently is a fundamental challenge in these applications. In this context,
several optimization problems may be stated as such:

1. minimize ‖x‖0 subject to a given threshold ‖y −Hx‖ ≤ α,

2. minimize the data misfit ‖y −Hx‖ subject to a given bound ‖x‖0 ≤ k, this problem
being also known as the Best Subset Selection problem (Hocking and Leslie,
1967).

3. minimize a weighted sum λ1‖y −Hx‖+ λ2‖x‖0 for some λ1, λ2 ∈ R.

One should note that while the three formulations are not equivalent, they correspond to a
classical bi-objective minimization problem (Marler and Arora, 2004; Soussen et al., 2015).

Without any assumption on the structure of the matrix H, sparse approximation prob-
lems described above are NP-hard (Natarajan, 1995). This fact has led most of the liter-
ature on the subject to focus on approximate and heuristic solution approaches. In par-
ticular, many articles are devoted to the relaxation approach that replaces the `0 sparsity
measure with the `1-norm ‖x‖1 =

∑
j |xj |, yielding convex optimization problems such

as the Lasso (Tibshirani, 2011) that admit tractable algorithms, see for example Com-
bettes and Pesquet (2008); Bruckstein et al. (2009); Tropp and Wright (2010). One of
the most basic heuristic approaches in the literature, usually referenced as pursuit meth-
ods, resorts to greedy techniques to build a sparse solution by iteratively modifying one or
several coefficients of a current estimate for the solution vector x. The well-known Match-
ing Pursuit (MP) method, introduced by Mallat and Zhang (1993), consists in identifying
at each step the best column to “add” to the solution, and a proper coefficient for this
coordinate, until a given stopping criterion is reached. Some interesting variants of MP
include the popular orthogonal matching pursuit (Davis et al., 1997; Pati et al., 1993) and
the relaxed greedy algorithm (DeVore and Temlyakov, 1996). More sophisticated pursuit
methods were further developed, including, for example, the stagewise orthogonal match-
ing pursuit (StOMP) (Donoho et al., 2012), the regularized orthogonal matching pursuit
algorithm (Needell and Vershynin, 2009, 2010), compressive sampling matching pursuit
(CoSaMP) (Needell and Tropp, 2009) and subspace pursuit (Dai and Milenkovic, 2009).
We refer the reader to Tropp and Wright (2010) for an interesting survey on these methods.
The so-called Iterative Hard Thresholding Algorithm can easily obtain a local minimizer of
the `0 problem popularized by Blumensath and Davies (2009), and variants (Zhou et al.,
2021). Some authors studied nonconvex penalties such as the capped-L1 (Zhang, 2010) or
the Cel0 penalty (Soubies et al., 2015). The latter has the wanted properties of sharing local
and global minimizers with the original problem (Soubies et al., 2019). Other approaches
have been proposed, such as the Difference of Convex Programming Algorithm (Le Thi
et al., 2015). One can refer to the reviews on sparse approximation and algorithms done
by Bach et al. (2012), Marques et al. (2018), and Bertsimas et al. (2020)

In this work, we study mixed integer programming (MIP) formulations for the problem
stated in Item 1 above, which can be used to find a global minimizer. MIP programming for

2



A Novel Integer Linear Programming Approach for Global `0 Minimization

the sparse representation problem has been popularized by the recent works of Bourguignon
et al. (2016) and Bertsimas et al. (2016). Following the notation from Bourguignon et al.
(2016), we define these problems as

P0/p(α) : min
x
‖x‖0 s.t. ‖y −Hx‖p ≤ α,

where the parameter α represents the threshold for the misfit error. In the remaining of
this manuscript, we may write just P0/p whenever α is clear from the context and/or irrel-
evant. Also, for any natural number t, we may use [t] as a shortcut for the set {1, . . . , t}.
The chosen formulation is quite convenient, especially in a signal processing context, the
parameter α being related to the level of noise and can be set accordingly using Morozov’s
discrepancy principle (Bonesky, 2008). The first MIP formulations for sparse optimization
problems are proposed by Jokar and Pfetsch (2008) for P0/∞ and some years later in Tosic
and Drewes (2014) for P0/2. However, the computational complexity of solving these formu-
lations leads the authors of these articles to solve modified and/or relaxed versions, yielding
just approximated solutions for the original problems.

Some MIP formulations for P0/p, with p ∈ {1, 2,∞}, are proposed and empirically
compared in Bourguignon et al. (2016). These models use decision variables xj ∈ R for
each j ∈ [m] to determine the solution, and binary support variables bj to decide whether
xj is non-zero. The object of our study is this family of MIP formulations that we call
MIP0/p, which models P0/p. By way of example we explicitly show MIP0/p for p ∈ {1, 2,∞}
here below:

[MIP0/p(M)] min
∑
j∈[m]

bj (1)

∀j ∈ [m], −Mbj ≤ xj ≤Mbj (2)

∀i ∈ [n],

{
−wi ≤ yi −

∑
j∈[m] hijxj ≤ wi if p ∈ {1, 2}

−w ≤ yi −
∑

j∈[m] hijxj ≤ w if p =∞ (3)
∑

i∈[n]wi ≤ α if p = 1∑
i∈[n]w

2
i ≤ α2 if p = 2

w ≤ α if p =∞
(4)

{
w ∈ Rn

+ if p ∈ {1, 2}
w ∈ R+ if p =∞ (5)

x ∈ Rm, b ∈ {0, 1}m (6)

The objective function (1) calculates ‖x‖0 in any optimal solution as constraints (2) force
bj to take value 1 whenever xj is a non-zero component. Here, M shall be a sufficiently
large bound for the value of |xj | when bj = 1 (we further discuss on this issue in Section 2).
In the sequel, we may write just MIP0/p whenever M is clear from the context and/or
irrelevant. For p ∈ {1, 2} (resp. p = ∞), Constraints (3) ensure that wi (resp. w) is an
upper bound on the data misfit given by row i and Constraint (4) asserts that the `p norm
of these values (i.e., an upper bound on ‖y −Hx‖p) does not exceed α. We shall note that
Constraints (4) make MIP0/2 a convex Mixed-Integer Quadratically Constrained Program

3



Delle Donne, Kowalski and Liberti

(cMIQCP), in contrast to MIP0/1 and MIP0/∞ which correspond to linear formulations
(MILP).

The object of study of this paper is the formulation presented above as MIP0/p, for the
practical resolution of P0/p. On the one side, we study the polyhedral structure of these
formulations to develop algorithms to improve the efficiency of the solution of these models.
On the other side, we address a crucial issue concerning the necessity of these models of
using a “big M” in order to relate x and b variables. This kind of formulations, widely
known as big-M formulations, usually suffers from relaxation slackness (Wolsey, 1998, §1.6)
and is consequently detrimental to solver performance. Moreover, the smallest valid values
for M are often difficult to compute in practice. To the best of our knowledge, no MIP
formulation currently exists in the literature for the P0/p problem, which eschews the “big
M” issue without introducing some nonlinearity in the formulation (Mhenni, 2020). In this
paper, we propose such a linear “big M”-free formulation for P0/p, by resorting, however,
to an exponentially sized constraint set.

In recent years, several approaches have been developed by Xie and Deng (2020); Bertsi-
mas et al. (2020); Hazimeh et al. (2022) to address the limitations of the Big-M reformulation
in solving underdetermined linear inverse problems. These methods either ensure a non-zero
minimum eigenvalue of the matrix H or introduce a ridge term to avoid the Big-M. While
these advancements have shown promise in certain problem settings, they cannot be directly
applied to the specific problem we are considering, namely P0/p for underdetermined linear
inverse problems. The unique nature of this problem necessitates a tailored approach and
alternative strategies are required to address its specific characteristics.

More precisely, in this work, we study the polytopes arising from MIP0/p formulations
and derive valid inequalities for them, i.e., inequalities satisfied by every point of these
polytopes which can be used as cutting planes (see Section 3 for more details). As a first
solution approach, we use these inequalities to design a branch-and-cut algorithm for MIP0/p.
Additionally, we prove that these inequalities are sufficient to describe the projection of
the related polytopes onto the space of the binary variables bj . Based on this result, we
introduce a novel integer linear programming (ILP) formulation for P0/p, which consists in
solving a pure combinatorial set covering formulation. To the best of our knowledge, this is
the first exact (i.e., M -independent) integer linear programming formulation for P0/p (we
give further details on this claim in Section 2). Since the proposed set covering formulation
may have exponentially many constraints, we propose a practical approach to tackle this
integer programming (IP) formulation.

The rest of this work is as follows. In Section 2 we discuss the MIP0/p formulations
and show that current approaches using these “big M” formulations cannot be considered
exact. In Section 3 we carry out a polyhedral study of the polytopes arising from MIP0/p.
In particular, we derive valid inequalities and propose a heuristic separation procedure for
these inequalities. Additionally, we propose a rounding heuristic which takes a fractional
solution of MIP0/p and attempts to find a feasible solution from it (see Section 3.2 for more
details on rounding heuristics). Finally, we develop a branch-and-cut algorithm with these
elements to tackle the solution of MIP0/p. Section 4 is devoted to the main contribution
of this paper. First, we prove that the proposed valid inequalities introduced in Section 3
are sufficient to describe the set of feasible supports of P0/p. Based on this result, we
introduce an M -independent integer linear programming (ILP) formulation for P0/p and a
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practical algorithm to tackle its solution. Section 5 presents the results of computational
experimentation comparing the proposed approaches. Section 6 concludes the paper.

In the rest of the paper, we will use the following notations. Given a set of columns
J ⊆ [m], we define HJ (resp. xJ) to be the submatrix of H (resp. subvector of x) involving
only those columns indexed by J . Additionally, we say that a vector x ∈ Rm has support
J ⊆ [m], if xj = 0, for all j /∈ J . Moreover, without loss of generality, we assume that H has
normalized columns. We say that a point satisfying every constraint of a MIP formulation
is a feasible solution for it. We may sometimes omit the term “feasible” and call it just a
solution. If no other feasible solution exists for the MIP with a better objective function
value, then the feasible solution is also optimal. If a point satisfies every constraint of a MIP
except for one or more integrality constraints, we say that it is a fractional solution (here
“fractional” refers to non-integer values on the variables). When integrality constraints on
a MIP are relaxed, the resulting formulation is known as its continuous relaxation.

2. Dealing with MIP0/p

Formulation MIP0/p requires a bound M for the value of |xj |, in order to impose the binding
constraints (2) between variables xj and bj . Models of these kind are widely known as big-M
formulations. It is well-known that they usually suffer from relaxation slackness (Wolsey,
1998, §1.6), which leads to degraded solver performance, in particular when the value of
M is high (hence, setting bj = ε � 1 when solving the continuous relaxation would allow
xj to be almost unrestricted, while bj is almost zero). Using a different value Mj for each
coordinate may help reduce this relaxation slackness – however, the problem of finding
proper values for Mj remains. Moreover, the smallest valid values for M are often difficult
to compute in practice. Obtaining this value may be, in general, NP-hard by itself (Kleinert
et al., 2020).

The non-zero coordinates of the global solution of the MIP0/2 problems can be written as

xJ = (HJT
HJ)

−1
HJT

y, where J is an optimal subset. The smallest M can then be upper

bounded using the inverse of the smallest eigenvalue of HJT
HJ for any subset J ⊂ [m].

Cauchy’s interlace Theorem (Hwang, 2004) implies that the smallest eigenvalue of HTH
lower bounds this eigenvalue. However, such a result is useless in the underdetermined
setting (m > n) and not tight enough as soon as the matrix HTH is too poorly conditioned
in the over-determined setting (m ≤ n).

In Bourguignon et al. (2016), an iterative procedure is proposed to tackle this issue
within the solution of MIP0/p. The algorithm starts by setting M to an initial value of

1.1x1
max, where x1

max = ‖HT y‖∞ corresponds to the maximum amplitude of 1-sparse solu-
tions estimated by least-squares (the columns of H being normalized). Then MIP0/p(M) is
solved. If the obtained solution is tight on the given M (i.e., |xj | = M for some column
j ∈ [m]), then M is increased by a certain proportion (authors use 10%) and the process is
repeated. Otherwise, the solution is considered optimal, and the process is ended.

Unfortunately, no proof of optimality can be given for the obtained solution. Moreover,
there exist examples in which the proposed algorithm fails to find an optimal solution. We
illustrate this possibility with the following simple examples:
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Figure 1: Some simple examples illustrate the incremental algorithm’s potentially subopti-
mal behavior to solve MIP0/p.

• Example 1: H =

(
1 2
2 1

)
, y =

(
7
15

)
, α = 10, p = 1, initial M = 3.5

• Example 2: H =

(
1 2
2 1

)
, y =

(
15
15

)
, α = 10, p = 2, initial M = 4

The set of feasible solutions for Examples 1 and 2 are depicted in Figure 1 (left and
right, respectively), where the bound given by the initial M is represented with a dotted
line. Optimal solutions lie on the intersection of the feasible region with the coordinate
axis (i.e., where ‖x‖0 = 1). However, when restricted to the initial value for M , every
feasible solution has ‖x‖0 = 2; hence all these solutions are equally optimal for such M .
Therefore, it is possible to obtain a solution that is slack w.r.t. M (that is, for which the
procedure would end) but suboptimal for the original problem. Furthermore, we note that
these examples may be extended to be valid for any initial value of M by replacing vector
y by y+ λ(1, 2)T , for a proper λ > 0 (which is equivalent to “moving” the feasible region λ
units in the direction of the positive horizontal axis).

We shall note that when the feasible set for x is bounded, then a proper value for M may
be obtained beforehand by solving a sequence of linear programs (two for each coordinate
xj). Nevertheless, it is not hard to find examples, in which the set of feasible solutions
is unbounded, e.g., as soon as the system is underdetermined. One of these examples is
depicted in Figure 2, where the set of feasible solutions corresponds to the instance in which
H =

(
1 1

)
, y = 10, α = 1 and p ∈ {1, 2,∞} (and M = 8). As in the previous cases, all

optimal solutions lie on the axis, however the process may end with suboptimal solutions
(for the same reasons as before).

The presented examples show that the procedure stated in Bourguignon et al. (2016)
could not be considered to be an exact method to solve P0/p unless proof is given that
the initial value for M includes an optimal solution (in which case the iterative procedure
will not be necessary). Additionally, other simple examples are proposed in Mhenni (2020,
§1.4.2), in the context of the problem P2/0, which represents the minimization of the data
misfit ‖y − Hx‖2 subject to a given bound on ‖x‖0. We shall remark that these exam-
ples reflect a deficiency of one specific method for calibrating M , that is, the procedure
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Figure 2: A simple example illustrates the incremental algorithm’s potentially suboptimal
behavior to solve MIP0/p when the feasible set of solutions is unbounded.

from Bourguignon et al. (2016), rather than a proper deficiency of big-M formulations per
se.

We conclude this section with technical remarks on the formulation MIP0/p. For imple-
mentation purposes when p = ∞, variable w and Constraint (4) can be omitted by just
replacing w with α in Constraints (3). In turn, when p = 2, variables wi can also be omitted
by replacing constraints (3) and (4) with the following non-linear quadratic (convex) set of
constraints:

xTHTHx− 2yTHx ≤ α2 − yT y. (7)

After some preliminary experimentation, we could verify that the difference in the computa-
tional hardness on solving these variants of MIP0/p instead of the one presented in Section 1
seems to be negligible. Nevertheless, we shall use these variants for our computational com-
parison in Section 5, as these are the formulations used in the existing literature. We also
remark that the “big M” related issues are still present in these variants of MIP0/p.

3. A branch-and-cut algorithm for MIP0/p

Given a set of points X ⊆ Rd (e.g., the set of feasible solutions of MIP0/p), a valid inequality
for X is an inequality satisfied by every point of X. Within the context of a branch-and-
bound algorithm to solve a MIP formulation, valid inequalities may be used as cutting planes
to separate non-feasible solutions (e.g., a fractional solution coming from the continuous
relaxation of the MIP) from the set of feasible solutions; this approach is widely called
branch-and-cut . Additionally, generating feasible solutions during the branch-and-bound
process may severely reduce the size of the branching tree by pruning whole branches
before even exploring them, when the lower bound for the branch is worse than the current
incumbent (i.e., the best feasible solution known).

In this section, we introduce a family of valid inequalities for MIP0/p, and we show how
these inequalities can be used as cutting planes in a branch-and-cut scheme (by proposing
a separation procedure) to improve the performance of the solution of these models. Addi-
tionally, we propose a rounding heuristic that helps the branch-and-cut algorithm in finding
feasible solutions during the solution process. In the rest of the paper, we may indistinctly
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use the concepts of column and column index, whenever the context is clear, to refer to a
column position in the matrix H or a position in the solution vector x.

3.1 Forbidden support inequalities as cutting planes

We first define a forbidden support.

Definition 1 (Forbidden support) A set of columns J ⊆ [m] is a forbidden support
for P0/p(α) if there exist no solutions for P0/p(α) with J as support. Equivalently, if

min
x∈Rm

{‖y −HJxJ‖p} > α.

We note that for p ∈ {1, 2,∞}, we can efficiently determine whether a fixed set of columns
J ⊆ [m] is a forbidden support or not, and in the latter case, find a feasible solution x̂
having support J . To this end, we need to minimize ‖y −HJxJ‖p and compare this value
with α. When p ∈ {1,∞}, this minimum can be found by solving a linear program (i.e.,
minimizing the left hand side of (4) subject to (3), for the given columns J) and when p = 2,
this is simply realized by solving a least squares problem (i.e., minimizing ‖y − HJxJ‖2).
We shall remark that in any case, it is not necessary to use a bound M on the values of x,
as the set J is fixed.

Remark 2 For a fixed set of columns J ⊆ [m], we can efficiently determine whether J is
a forbidden support for P0/p or not, in the latter case finding a feasible solution x̂ for P0/p

with support J . This decision does not depend on any bound M for the values of x.

Proposition 3 If J ⊆ [m] is a forbidden support for P0/p, then the forbidden support
inequality ∑

j∈[m]\J

bj ≥ 1 (8)

is valid for MIP0/p.

Proof If (8) is not satisfied by a feasible solution (x̂, ŵ, b̂), then b̂j = 0 for each j ∈ [m]\J .
Therefore, ‖y −Hx̂‖p = ‖y −HJ x̂J‖p > α, as J is a forbidden support, thus contradicting

the fact that (x̂, ŵ, b̂) is a feasible solution.

Given a fractional solution (x̂, ŵ, b̂) of MIP0/p (e.g., an optimal solution of its linear

relaxation with fractional values on b̂), the so-called separation problem aims at finding a
valid inequality for MIP0/p not satisfied by (x̂, ŵ, b̂). Depending on the families of valid
inequalities to be used as cutting planes, the separation problem is likely to be NP-hard.

We present here a heuristic separation routine for the forbidden support inequalities (8).
Our procedure, shown in Algorithm 1, starts by looking for a set of columns J̄ ⊆ [m] such
that

∑
j∈J̄ b̂j < 1. We include as many columns as possible in J̄ (Lines 2-8). This results

in a set J := [m] \ J̄ , as small as possible, aiming to maximize the possibility for J to be
a forbidden support, hence yielding a violated forbidden support inequality which may be
added as a cutting plane (Line 12). We recall that checking whether a set J is a forbidden
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Algorithm 1 Separation routine for forbidden support inequalities

Require: a fractional solution (x̂, ŵ, b̂).
1: J̄ ← {}
2: for all b̂j ∈ b̂ in non-decreasing order do
3: J̄ ← J̄ ∪ {j}
4: if

∑
j∈J̄ b̂j ≥ 1 then

5: J̄ ← J̄ \ {j}
6: break loop
7: end if
8: end for
9: J ← [m] \ J̄

10: if J is a forbidden support then
11: Extend J to a wider forbidden support (using Algorithm 2 on J̄).
12: Use forbidden support inequality (8) associated with J to cut off (x̂, ŵ, b̂)
13: end if

support or not (Line 10) can be done efficiently by checking if there exists a solution x̂ such
that ‖y −HJ x̂J‖p ≤ α or not (Remark 2).

We observe that the forbidden support J obtained at Line 10 (if any) can be expected to
be small (by construction), hence, the forbidden support inequality associated with J may
include too many variables bj (specifically, all the columns in J̄). Although this inequality
would serve as a cutting plane as such, it may also be strengthened by extending J to a
wider (preferably maximal) forbidden support before adding the cut. We do this in Line 11
by applying Algorithm 2, which we describe next.

3.1.1 Extension of a forbidden support.

If a forbidden support J ⊆ [m] is not a maximal one (i.e., J∪{j} is also a forbidden support
for some j ∈ [m] \ J), then the obtained inequality (8), may be strengthened by adding
columns to J , thus removing variables from the associated inequality. This extension of a
set J can be done in several ways, resulting in different (maximal) forbidden supports.

In our implementation, shown in Algorithm 2, we consider the complement J̄ of the
forbidden support J and we iteratively move columns from J̄ to J until achieving maximality
of J . The computational cost of this procedure is mostly incurred when checking if J is still
a forbidden support after adding columns to this set. To reduce the number of times this
check is needed, we perform the following steps. First, we copy the elements of J̄ into an
array A. Then, at each iteration we apply a binary search on A to find the biggest index
i such that J ∪ {A[1], . . . , A[i]} is still a forbidden support, where A[j] is the j-th element
of array A (Line 4). If such index exists, we add elements A[1], . . . , A[i] to J and remove
them from A. Finally, we remove the first element of the current vector A (if it is not yet
empty), and we iterate this process until A is empty.

We remark that the elements of J̄ are copied into A in the order in which they appear
in J̄ . This detail is important, since different orderings may produce different results. We
remark also that when Algorithm 2 is called from Algorithm 1, the elements of J̄ are sorted
according to the values b̂j in the corresponding fractional solution, in a non-increasing order.
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Algorithm 2 Extension of a forbidden support

Require: an ordered list with the complement J̄ of a forbidden support.
1: J ← [m] \ J̄ (i.e., the forbidden support associated to J̄)
2: A← array with elements of J̄ (sorted as in J̄)
3: while A is not empty do
4: i← biggest index i such that J ∪ {A[1], . . . , A[i]} is a forbidden support, or 0 if such

i does not exist
5: if i > 0 then
6: J ← J ∪ {A[1], . . . , A[i]}
7: Remove A[1], . . . , A[i] from A
8: end if
9: Remove the first element from A, if any.

10: end while
11: return J

We make this remark, because later, in Section 4.2, we resort again to Algorithm 2 (in a
slightly different context) but sorting J̄ differently.

3.2 A rounding heuristic

In the context of a branch-and-cut algorithm for a MIP, it is essential to find reasonable, fea-
sible integer solutions as soon as possible, as this helps to cut branches off on the branching
tree before even exploring them. To this end, a classical technique called rounding heuristic
consists in taking the optimal solution of the continuous relaxation of the model (usually
a fractional solution) and trying to obtain a feasible integer solution from it by rounding
the fractional values up or down in some “intelligent” way (which usually depends on the
problem being solved). Note that this heuristic can be applied to every subproblem of the
branch-and-bound tree whenever a fractional solution is found on the continuous relaxation.

We developed a rounding heuristic that takes a fractional solution (x̂, ŵ, b̂) and attempts
to build from it a better integer solution than the incumbent. The idea of the procedure
lies in the presumption that a higher value of variable bj indicates a stronger influence of

column j in the solution. Hence, the algorithm sorts the elements of b̂ in a non-increasing
order and takes the first k columns for which a feasible solution can be found. As far as
the selection of these k columns is concerned, even when we can efficiently test whether a
given set of columns can yield a feasible solution or not (by Remark 2), this testing may
be required several times in order to find these columns. To minimize the number of these
tests, we consider a lower bound lb and an upper bound ub for the support of the desired
solution, and we perform a binary search to find k in the interval [lb, ub], thus achieving our
goal with a logarithmic number of required tests. The lower bound is given by the lower
bound of the current branch in the branching tree, while the upper bound is given by the
size of the incumbent.

10



A Novel Integer Linear Programming Approach for Global `0 Minimization

4. An ILP formulation for P0/p

Section 3 shows that forbidden support inequalities (8) can be used as cutting planes to help
in the solution of MIP0/p. In this section, we explore further these valid inequalities, and
we show that they suffice to describe the projection of the feasible solutions of MIP0/p onto
the space of the binary variables b. Based on this fact, we introduce a novel integer linear
programming formulation for P0/p, with exponentially many constraints, and we propose
a practical algorithm to tackle its solution. We conclude the section with a discussion on
the combinatorial structure of the proposed new formulation and its implications for some
potential improvements for both this formulation and MIP0/p.

4.1 On the projection of MIP0/pon the binary variables space

The projection of the feasible solutions of MIP0/p onto the space of variables b is the set
of all vectors b ∈ {0, 1}m characterizing feasible supports, i.e., all those supports for which
a feasible solution of MIP0/p exists. To be precise, as MIP0/p depends on the value for the
bound M , we define S(M) := {b ∈ {0, 1}m | (x, b, w) is a feasible solution to MIP0/p(M)
for some (x,w)}. It is trivial to see that S(M1) ⊆ S(M2) whenever M1 < M2, and that
for a sufficiently large value for M , the set S(M) is the set of all feasible supports for P0/p.
Therefore, we get the following.

Remark 4 The set S := lim
M→∞

S(M) is the set of all feasible supports for P0/p.

In light of Remarks 2 and 4, we can find an optimal solution for P0/p by finding a support
b ∈ S of minimum size and then obtaining a proper solution x with support b. However,
to find such vector b, we need a proper characterization of S. The following theorem shows
that such characterization can be obtained by using the forbidden support inequalities (8).

Theorem 5 For a sufficiently large value of M , the projection on the variables bj of all
feasible solutions of formulation MIP0/p(M) is described by the forbidden support inequali-
ties (8). Formally, the set

S := lim
M→∞

S(M)

is equal to the set

Ŝ := {b ∈ {0, 1}m | b satisfies (8) for each forbidden support J ⊆ [m]}.

Proof The fact that S ⊆ Ŝ is clearly given by Proposition 3. In order to prove the converse,
we take an arbitrary solution b̂ ∈ Ŝ and its support J = {j ∈ [m] | b̂j 6= 0}. Clearly, J is

not a forbidden support for P0/p as
∑

j∈[m]\J b̂j = 0 and b̂ satisfies (8) for each forbidden

support. Therefore, by taking x̂ := arg minx∈Rm{‖y −HJxJ‖p} (with x̂j = 0 for j /∈ J) we

get a feasible solution of MIP0/p(‖x̂‖∞), hence b̂ ∈ S(‖x̂‖∞), thus proving that b̂ ∈ S.

11
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Theorem 5 lets us state the following formulation to obtain a minimum support of a
solution to P0/p.

[IPcov
0/p] min

∑
j∈[m]

bj (9)

∑
j∈[m]\J

bj ≥ 1 ∀ forbidden support J ⊆ [m] (10)

bj ∈ {0, 1} ∀j ∈ [m] (11)

We recall that by solving IPcov
0/p, we do not obtain a solution for P0/p but just an optimal

support J ⊆ [m]. However, by Remark 2, a solution x̂ for this support can be efficiently
obtained afterward. A remarkable characteristic of this proposed method is that there is
no need to use the (usually artificial) big-M bounds for x̂ (as the support J is already fixed
for this last step), and no non-linearities are introduced either. This fact gives IPcov

0/p an
important advantage against formulation MIP0/p, as it does not require any bound M on
the values of x. Therefore, it always finds a proper optimal solution for P0/p (in contrast
with MIP0/p which cannot be considered an exact method for P0/p, as it was discussed in
Section 2).

As the reader may have already noticed, a potential drawback towards the computational
solution of IPcov

0/p is that the formulation may have exponentially many constraints (10).
However, in Section 4.2 we propose a practical approach to tackle this issue in the solution
of IPcov

0/p, and in Section 5 we show how this approach may obtain exciting results in practice.

4.2 A tractable approach for the solution of IPcov
0/p

The main challenge for solving IPcov
0/p is the exponential constraint set (10) present in the

formulation. However, only a small (but a priori unknown) subset of these constraints is
likely necessary to obtain an optimal solution. Moreover, due to Theorem 5, we can deter-
mine if a vector b ∈ {0, 1}m satisfies all these constraints without the need of enumerating
them; namely, a vector b ∈ {0, 1}m satisfies constraints (10) if and only if b ∈ S, i.e., if the
support described by b is not a forbidden support, which by Remark 2 can be efficiently
verified. Precisely, for p ∈ {1,∞}, this can be determined by solving a linear program,
and for p = 2, the problem reduces to solve a least-squares problem. In this section, we
propose a procedure that exploits all these characteristics to solve IPcov

0/p by dynamically
adding constraints (10) whenever an integral infeasible solution is found.

The procedure, shown in Algorithm 3, starts with a relaxed version of IPcov
0/p with an

(initially empty) subset J of constraints (10), i.e., a combinatorial relaxation. At each
iteration, this relaxation is solved to optimality, and a support J ⊆ [m] is obtained1. This
support is then tested (in Line 4) to verify if there exists a feasible solution x̂ associated
with it. If such x̂ exists, the algorithm stops with this optimal solution. Otherwise, J is a
forbidden support, hence an inequality (10) can be added to the formulation, as in Line 9,
thus “cutting out” the previous (infeasible) solution J . Note that the termination of the
algorithm is guaranteed as the set of forbidden supports is finite.

1. In our implementation, we solve this IP by using the commercial solver CPLEX. More details are given
in Section 5.

12



A Novel Integer Linear Programming Approach for Global `0 Minimization

Algorithm 3 Solution procedure for IPcov
0/p

1: J ← {} // Forbidden supports J ∈ J will be used as constraints (10)
2: repeat
3: Solve IPcov

0/p only with constraints (10) associated to J to obtain an optimal support
J ⊆ [m]

4: if there exists a point x̂ ∈ Rm with support J and ‖y −HJ x̂J‖p ≤ α then
5: End the procedure with optimal solution x̂
6: else
7: // J is a forbidden support for P0/p

8: Extend J to a wider forbidden support (using Algorithm 2).
9: J ← J ∪ {J}

10: end if
11: until a solution is found

We note that the forbidden support J obtained in Line 3 is usually expected to be
small, as it is the minimum support of the relaxed version of IPcov

0/p. Hence, the forbidden
support inequality associated with J may include too many variables bj (specifically, those
in the complement of J). Although this inequality would serve the goal of the algorithm,
if we restrict ourselves to using just these forbidden supports, one can easily show that the
number of iterations to reach an optimal solution with support size k would be in the order
of
(
m
k

)
, which is of course prohibitive in practice. To avoid this issue, the forbidden supports

obtained in Line 3 are extended to wider (maximal) forbidden supports before adding them
to J . We do this in Line 8 by resorting to Algorithm 2 (described in Section 3.1.1). As
we mention earlier, the results of Algorithm 2 are highly sensitive to the ordering on the
list J̄ . In this case, we sort these elements by their frequency in previous optimal solutions,
i.e., a column which appeared less often in optimal solutions is prioritized to be included
in the resulting forbidden support J . In any case, we remark that our Algorithm returns
always maximal forbidden supports, as inequalities with non-maximal supports can always
be strengthened. In Section 4.4 we give further theoretical details about the strength of
these inequalities

We shall note that Algorithm 3 can be implemented in practice by employing the so-
called lazy constraints call-back mechanism, usually provided by general MIP solvers. This
technique allows us to solve a formulation with a subset of its constraints (e.g., the set J
above), and whenever an integer solution is found, a call-back method is executed in order
to find a violated constraint to add to the current formulation (e.g., lines 4–10). By these
means, the solution of the model in one iteration may take advantage of the work done in
previous iterations, thus drastically reducing the solution times.

4.3 Solving the relaxations of IPcov
0/p

During the execution of Algorithm 3, several relaxed versions of IPcov
0/p need to be solved (i.e.,

for different sets J of forbidden supports inequalities). In order to help in the solution of
these formulations, a general IP solver can be aided by the addition of several elements, some
of them already discussed in Section 3 for the solution of MIP0/p; namely, cutting planes
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and rounding heuristics. These same elements may also be implemented in a branch-and-
cut scheme to help in the solution of the mentioned relaxed versions of IPcov

0/p. Indeed, both
Algorithm 1 (to generate cutting planes) and the rounding heuristic described in Section 3.2,
work on the basis of variables b from MIP0/p (without the need of variables x). Therefore,
we implemented the same approaches to improve the performance of Algorithm 3 when
solving the successive relaxed versions of IPcov

0/p (Line 3).

4.4 On the combinatorial structure of IPcov
0/p

The equivalence given by Theorem 5 has additional (potentially useful) implications. In
particular, we note that IPcov

0/p represents a minimum set covering problem, and this kind
of problems has been widely studied in the literature both in the polyhedral and in the
combinatorial aspects (Balas and Ng, 1989a,b; Borndörfer, 1998; Cornuéjols and Sassano,
1989; Laurent, 1989; Nobili and Sassano, 1989; Sánchez-Garćıa et al., 1998; Sassano, 1989).
A direct implication of this fact is that any valid inequality for these set covering polytopes
is a valid inequality for both IPcov

0/p and MIP0/p. Thus it can be used as cutting planes
in a branch-and-cut algorithm. We give next an example in which we present a family
of valid inequalities for IPcov

0/p and MIP0/p obtained from a known family of set covering
(facet-defining) valid inequalities (Balas and Ng, 1989a).

Proposition 6 Let J ⊆ 2[m] be a family of forbidden supports for P0/p, and define J0 :=
[m] \

⋃
J∈J J , and J∗ := [m] \ (J0 ∪

⋂
J∈J J). Then the forbidden support family inequality∑

j∈J0

2bj +
∑
j∈J∗

bj ≥ 2 (12)

is valid for MIP0/p and for IPcov
0/p.

Proof The validity is implied by 5 and the fact that (12) is a valid inequality for the set
covering polytope (Balas and Ng, 1989a).

We may remark that when |J | = 1, then (12) is a forbidden support inequality (8),
multiplied by 2. Also, we know from the literature (Balas and Ng, 1989a) that (12) are
the only facet-defining inequalities for (the convex hull of feasible solutions of) IPcov

0/p with
coefficients in {0, 1, 2} and a right-hand side equal to 2. Adversely, it is not clear if vari-
ables x from formulation MIP0/p may be added to (12) in order to obtain a stronger (e.g.,
facet-defining) inequality for this formulation. Another interesting result, derived from the
literature, relating to the strength of forbidden support inequalities with respect to IPcov

0/p is
given in the following proposition.

Proposition 7 The constraint (8) associated to a forbidden support J defines a facet of
IPcov

0/p if and only if:

(i) J is a maximal forbidden support; and

(ii) for each j ∈ J , there exists k ∈ [m] \ J such that k /∈ J ′ for every forbidden support
J ′ which contains J \ j.
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Proof Given a set covering polytope PI = conv({x ∈ {0, 1}m | Ax ≥ 1}) with A :=
{(aij)} ∈ {0, 1}n×m, Balas and Ng (1989a) prove that row i of A, with M i := {k ∈
[m] | aij = 1}, defines a facet of PI if and only if:

(a) there exist no i′ ∈ [n] such that M i′ ⊂M i, and

(b) for each column j ∈ [m] \ M i, there exists another column k(j) ∈ M i such that
ahk(j) = 1 for all h ∈ [n] for which ahj = 1 and ahk = 0,∀k ∈ [m] \M i ∪ {j}.

Considering that IPcov
0/p is a set covering polytope of the mentioned structure, it is easy

to check that (a) and (b) imply (i) and (ii), respectively.

In Section 4.2 we proposed an algorithm to tackle the fact that IPcov
0/p may have an

exponential number of constraints. The algorithm consists in finding forbidden supports
iteratively as needed. Proposition 7 gives some insight on which characteristics should be
prioritized when looking for the latter, since using only facet-defining constraints is enough
to solve the problem. Our implementation aims at finding forbidden supports satisfying
property (i) of the proposition, however it does not focus on property (ii), as it is not
clear how to include this characteristic without significantly increasing the computational
bargain of the process.

We conclude this section by noting the fact that there exist several families of known
valid inequalities for the set covering polytope, such as, e.g., the generalized web (Sassano,
1989) and antiweb (Laurent, 1989; Sassano, 1989) inequalities. Facet-generating procedures
were also introduced in the set covering literature, leading to new families of valid inequal-
ities obtained by the composition or other routines (Nobili and Sassano, 1989). All these
elements may represent valuable tools to enhance the solution of both IPcov

0/p and MIP0/p, as
any of these inequalities is valid for these formulations. We also note that by means of a
simple variable substitution (by defining b̄j := 1− bj), the model IPcov

0/p can be transformed
into a general maximum set packing problem, widely studied in the literature also. We
should remark however, that this transformation leads to a packing problem in which the
right-hand-side of the constraints depends on the size of the associated forbidden set, con-
trarily to our original set covering formulation in which every right-hand-side is 1. Hence,
it is not clear if the mentioned re-formulation may be profitable or not, and so we prefer
to keep the set covering formulation instead. An excellent compendium on the set covering
(and the set packing) problem can be found in (Borndörfer, 1998). We note that the imple-
mentation of separation routines for (12) and/or the latter mentioned inequalities escapes
the scope of this work.

5. Computational results

In this section, we conduct computational experimentations intending to test the potential
of the approaches presented in this work to tackle problem P0/p. In particular, we compare
the performance of solving P0/p by the three following approaches:

1. By iteratively solving formulation MIP0/p with the algorithm proposed in Bourguignon
et al. (2016) (explained in Section 2). We denote this approach simply as MIP0/p.
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2. By using the above algorithm but solving the successive formulations of MIP0/p with
the branch-and-cut algorithm proposed in Section 3. We denote this approach as
BC0/p.

3. By solving IPcov
0/p with Algorithm 3 (introduced in Section 4.2) and applying the branch-

and-cut depicted in Section 4.3 to solve the successive relaxed versions of IPcov
0/p. We

denote this approach simply as IPcov
0/p.

All the above approaches are meant to solve P0/p for p ∈ {1, 2,∞}. However, we shall
remark two characteristics which could significantly change the performance of the methods
whether p = 2 or p ∈ {1,∞}. On one hand, the formulation solved in MIP0/p and BC0/p

is linear when p ∈ {1,∞} and non-linear when p = 2. Hence, these methods are expected
to be favored when p ∈ {1,∞}. On the other hand, we note that the task of deciding
whether a set of columns J ∈ [m] represents a feasible support or not, is tackled by linear
programming when p ∈ {1,∞} and by a simple least squares problem when p = 2. This task
is a crucial element for IPcov

0/p, hence the performance of this method may be significantly
degraded when p ∈ {1,∞}.

The above approaches were implemented in Java using the general-purpose solver CPLEX
(version 12.6) through its Java API to solve the MIP/IP formulations. The cutting planes
and the rounding heuristics for the branch-and-cut approaches are incorporated by resort-
ing to CPLEX call-back functions (provided in its Java API). For the solution of IPcov

0/p,
we implemented Algorithm 3 by resorting to the lazy constraint call-back mechanism, also
provided by this API (as explained at the end of Section 4.2). We shall remark that CPLEX
modifies some of its default parameters when these call-back functions are implemented. We
use this same configuration when solving MIP0/p for a fair comparison. The computational
framework is an Intel c© Xeon c© E5-2620 processor clocked at 2.1GHz and limited to 8 GB
of RAM.

Our goal is to compare both the running times and the obtained supports by each
method. Nonetheless, we should remark that the comparison of running times of IPcov

0/p

against the ones of MIP0/p and BC0/p is not a fair one, since IPcov
0/p is an exact algorithm

whereas MIP0/p and BC0/p may yield suboptimal solutions. Indeed, we found several in-
stances in which MIP0/p and BC0/p finish the process (within the time limit) with suboptimal
solutions. In light of this remark, we base our computational experimentation on the two
following sets of instances (which we describe in detail afterward):

• The first test set is based on Bourguignon et al. (2016) and is a set of instances in
which MIP0/p finds almost always optimal solutions. Here, the goal is to compare the
performance in the solution times taken by the proposed approaches.

• The second test set resorts to a “pathological” example from the literature, namely
the adversarial strategy introduced by Mairal and Yu (2012), and it aims to show how
the solutions obtained by MIP0/p can be far from being optimal.

5.1 Deconvolution problems

As a first test-bed, we resort to the sparse deconvolution instances used in Bourguignon
et al. (2016). In these instances, x is a K-sparse sequence in R100 with uniformly distributed
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MIP0/2 BC0/2 IPcov
0/2

SNR K # ins solv time uns supp solv time uns supp solv time uns supp

10 5 50 49 352 1 5.0 46 274 4 5.8 50 26 0 -
7 48 8 949 40 7.9 4 612 44 7.9 37 576 11 7.6
9 16 0 - 16 10.2 0 - 16 10.3 2 898 14 11.1

20 5 50 50 105 0 - 50 24 0 - 50 4 0 -
7 49 29 700 20 7.9 48 190 1 9.0 49 19 0 -
9 41 4 673 37 10.6 22 729 19 11.2 41 99 0 -

30 5 50 50 62 0 - 50 9 0 - 50 2 0 -
7 50 48 529 2 15.0 49 31 1 23.0 50 5 0 -
9 50 12 1119 38 10.3 50 235 0 - 50 22 0 -

Instances solved. . .
. . . by all: 242 360 sec. 104 sec. 12 sec.
. . . by none: 25 9.04 9.36 9.56

Table 1: Performance of the compared approaches for P0/2 in the deconvolution instances
with a time limit of 1800 seconds.

spike locations, H is a discrete convolution matrix corresponding to a 21-sample impulse
response, and y is a 120-sample signal (we point the reader to Bourguignon et al. (2016)
for more details on these instances). White noise is added with a variable signal-to-noise
ratio (SNR). The authors created 50 instances for each considered SNR and each different
value K ∈ {5, 7, 9}. Unfortunately, we have had trouble recovering correctly the totality
of these instances (as we encountered missing values for some of them). Hence we report
results only on the ones we could recover (404 out of the 450 instances).

5.1.1 Results for P0/2

We start by showing results for problem P0/2, i.e., when the Euclidean `2 norm is used to
measure the misfit error. Table 1 shows the performance of the compared approaches in the
set of instances described above. For each group of instances, column “# ins” shows the
number of instances available for the group, and the remaining columns show the results
obtained by each method. Specifically, columns “solv” and “time” indicate the number of
instances solved to optimality (i.e., the algorithm ends before reaching a time limit of 1800
seconds) and the average time taken (in seconds) to solve these instances, respectively. On
the other hand, columns “uns” and “supp” indicate the number of unsolved instances and
the average support sizes of the best solutions obtained for these instances, respectively.
It is worth noting that the average time and support size are calculated on the sets of
solved and unsolved instances, respectively, for each method, and these sets may differ from
method to method. Therefore, a “fair” comparison is not easy to depict. In this direction,
the last two lines of Table 1 summarize the average running times in the set of instances
solved by all methods and the average obtained support sizes for the set of instances not
solved by any of them.
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As evidenced by Table 1, the branch-and-cut approach BC0/2 represents an interesting
improvement of the classical approach MIP0/2. In most of the groups, it solves to optimality
more instances than MIP0/2, sometimes having a very high difference, as in the group of
SNR = 20 and K = 9, where BC0/2 solves 22 instances against 4 solved by MIP0/2. The
running times are also significantly improved, sometimes reducing them in more than one
order of magnitude (as in the groups with SNR = 30) even when these times consider all
solved instances by each method (which may benefit the method solving fewer instances).
When considering the average time taken by MIP0/2 and BC0/2 over the 242 instances solved
by all three methods, the difference is remarkable (360 seconds against 104). As far as the
unsolved instances are concerned, the differences in the average obtained solution support
seem not to be significant for all the groups but one, namely SNR = 30 and K = 7, in
which BC0/2 obtains average support of 23.0 while the average obtained by MIP0/2 is 15.0.
However, this latter value is the average of two unsolved instances for MIP0/2, with obtained
support sizes 9 and 21, and just one of them for BC0/2, with support size 23 (as the other
instance is solved to optimality with the proper support size of 7), hence the comparison,
in this case, is not considerable. Indeed, when considering the average support obtained
by MIP0/2 and BC0/2 over the 25 instances not solved by any of the three methods, the
difference is not too big (i.e., around 3.5%).

As far as the results of IPcov
0/2 are concerned, Table 1 shows a clear dominance over the

other two methods. In particular, IPcov
0/2 is able to solve to proven optimality all instances

with SNR ∈ {20, 30} and 89 out of the 114 instances with SNR = 10. In total, IPcov
0/2 solves

to proven optimality 379 out of the whole set of 404 instances, while MIP0/2 and BC0/2

solve only 250 and 319 instances, respectively. In terms of running times, the difference in
favor of IPcov

0/2 is also remarkable, in particular in the group of instances with SNR = 30,
in which this difference is approximate of 2 orders of magnitude, with respect to MIP0/2.
When considering the average time taken by IPcov

0/2 over the 242 instances solved by all
three methods, we also can note a remarkable difference (12 seconds against 360 incurred
by MIP0/2). The results of IPcov

0/2 concerning unsolved instances are not easy to measure
as we can only analyze the groups with SNR = 10 and K ∈ {7, 9}, in which the sets of
unsolved instances by IPcov

0/2 and the other two methods are considerably different. As an
example, when K = 7, method IPcov

0/2 obtains an average support size of 7.6 for its set of 11
unsolved instances, which seems to be slightly worse than the 7.9 obtained by BC0/2 in 44
unsolved instances, however, if all instances in this group are taken into consideration we
can see in our experiments that IPcov

0/2 obtains an average support size of 7.01. In contrast,
BC0/2 achieves an average of 7.85 (these individual values cannot be deduced from Table 1).
Indeed, when considering the 25 instances not solved by any of the three methods, we can
see that the average support obtained by IPcov

0/2 is again not too far from the ones obtained
by the other methods.

5.1.2 Results for P0/2 on underdetermined cases

Our primary focus is not on achieving the fastest computation, but rather on ensuring
the optimality of the solution, irrespective of the specific problem scenario, whether it
be overdetermined or underdetermined. In this regard, we introduce an underdetermined
deconvolution problem using the ’valid convolution’ instead of the previously employed ’full
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MIP0/2 BC0/2 IPcov
0/2

SNR K # ins solv time uns supp solv time uns supp solv time uns supp

10 5 50 50 54 0 - 50 115 0 - 50 16 0 -
7 48 46 305 2 7.0 38 274 10 7.8 48 68 0 -
9 16 12 743 4 8.5 4 684 12 10.2 15 323 1 11.0

20 5 50 50 69 0 - 50 174 0 - 50 25 0 -
7 49 48 302 1 7.0 35 271 14 7.8 47 52 2 8.0
9 41 25 572 16 9.1 14 507 27 10.4 33 255 8 10.8

30 5 50 50 39 0 - 50 99 0 - 50 25 0 -
7 50 48 324 2 7.0 37 353 13 7.8 49 75 1 9.0
9 50 31 570 19 9.3 17 536 33 10.3 43 327 7 11.7

Instances solved. . .
. . . by all: 292 150 sec. 233 sec. 49 sec.
. . . by none: 15 9.06 11.13 11.07

Table 2: Performance of the compared approaches for P0/2 on underdetermined deconvolu-
tion instances with a time limit of 1800 seconds.

convolution’ as detailed in the previous section. To illustrate this, we refer back to the
instances introduced in Bourguignon et al. (2016). For each of these instances, we generate
a new one by following the same procedure, but this time employing the transpose of the
matrix H (with dimensions of 100× 120).

The results are shown in Table 2 (which follows the same format as Table 1). As
far as the effectiveness of the three methods is concerned, it is evident that BC0/2 does
not outperform MIP0/2 in these new (underdetermined) instances, as the number of solved
instances of the former is worst or equal in every group than the latter, and the running
times are always higher. On the other side, it can be seen that IPcov

0/2 obtains optimal
solutions in more instances than MIP0/2 for most of the groups, as it was the case in the
previous experimentation (Table 1), although the gap between these two methods is not as
large as for the overdetermined cases. A similar analysis can be done regarding the running
times, which for IPcov

0/2 are always lower than for MIP0/2. The summary lines at the bottom
of the table show again a big difference between IPcov

0/2 and MIP0/2, since the former uses
on average one third of the time required by the latter. We can see again that in the few
instances not solved to optimality, the support provided by MIP0/2 results to be slightly
better than the ones provided by IPcov

0/2.

5.1.3 Results for P0/∞

We now present the results obtained for P0/∞, i.e., when the `∞ norm is used to measure

the misfit error. In this case, we modified the instances replacing H and y by HTH and
HT y, respectively, to obtain instances corresponding to the Dantzig Selector (Candes et al.,
2007) which is well studied in the literature (see Asif and Romberg 2010 and references
therein for more details and the relationship between the Lasso and the Dantzig Selector)
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MIP0/∞ BC0/∞ IPcov
0/∞

SNR K # ins solv time uns supp solv time uns supp solv time uns supp

10 5 50 33 340 17 7.4 40 375 10 7.7 32 1012 18 8.4
7 48 5 1033 43 8.3 10 941 38 8.7 2 1465 46 11.2
9 16 0 - 16 10.0 0 - 16 10.2 0 - 16 15.1

20 5 50 38 331 12 7.3 45 356 5 7.4 41 964 9 9.7
7 49 11 717 38 7.9 30 878 19 8.7 11 1340 38 11.6
9 41 1 1144 40 9.6 2 1095 39 9.9 0 - 41 15.2

30 5 50 44 330 6 7.3 48 290 2 9.0 45 810 5 9.2
7 50 17 591 33 8.0 37 758 13 8.7 26 1343 24 13.4
9 50 1 1142 49 9.7 9 1110 41 10.0 3 1443 47 16.2

Instances solved. . .
. . . by all: 129 366 sec. 290 sec. 954 sec.
. . . by none: 179 9.04 9.32 13.57

Table 3: Performance of the compared approaches for P0/∞ in the deconvolution instances

from (Bourguignon et al., 2016) (premultiplied by HT ) with a time limit of 1800
seconds.

That is, the considered problem is

min ‖x‖0 s.t. ‖HT (y −Hx)‖∞ ≤ α (13)

with the same H and y as before. We show these results in Table 3, with the same format
as in Table 1.

Table 3 verifies that BC0/∞ represents an improvement of MIP0/∞. In this case, the
difference is more notorious in the number of solved instances rather than in the running
times. In every group but one, BC0/∞ solves to optimality more instances than MIP0/∞.
There seems to be no significant difference in the running times when considering all solved
instances by each method. However, when considering the average time taken by MIP0/∞
and BC0/∞ over the 129 instances solved by all three methods, the difference is slightly in
favor of the latter (366 seconds against 290). The average obtained solution supports for
unsolved instances seem to have an insignificant difference.

As far as the results of IPcov
0/∞ are concerned, Table 3 shows that this method does

not perform better than MIP0/∞. Even when the number of solved instances is similar in
almost every group, we can see that the running times are considerably increased when
using IPcov

0/∞. Moreover, the average solution support obtained by IPcov
0/∞ is always worse

than the one obtained by MIP0/∞ (due to time-limits). Indeed, when considering the 179
instances not solved by any of the three methods, we can see that the average support
obtained by IPcov

0/∞ is almost 50% greater than the one obtained by the other two methods.
These results seem to verify the hypothesis stating that when p ∈ {1,∞}, the performance
of IPcov

0/p gets degraded while the performance of MIP0/p and BC0/p is favored. Nevertheless,
we should remark that we are comparing here an exact approach against heuristic ones (i.e.,
IPcov

0/p against MIP0/p and BC0/p). We omit the results for p = 1 as they follow the same
trends as the results for p =∞ presented in Table 3.
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5.2 A pathological case study

Intending to test the potential difference in the solutions obtained by IPcov
0/p against MIP0/p

and BC0/p, we resort to a “pathological” example from the literature, namely the adversarial
strategy introduced in (Mairal and Yu, 2012). Given an instance with t variables, such a
strategy consists of building a new instance with t + 1 variables increasing the complexity
by a multiplicative factor. It results in explicit, surprisingly simple, pathological examples,
unlike other classical pathological examples such as those for the simplex algorithm or SVMs
(we point the reader to (Mairal and Yu, 2012) for more details on this strategy). In the
end, these examples have a particularly simple shape:

y = (1, 1, . . . , 1)T and H =


α1 2α2 2α3 . . . 2αm

0 α2 2α3 . . . 2αm

0 0 α3 . . . 2αm
...

...
...

. . .
...

0 0 0 0 αm


with αk being positive numbers satisfying mild conditions, for k ∈ [m].

We extract random submatrices from this adversarial strategy matrix as a test-bed. For
each generated overcomplete (m ≤ n) submatrix H, we randomly generate a sparse solution
x with a given support size K and then calculate the vector y := Hx+ε, where ε represents
a gaussian noise. We set afterwards α := ‖y − Hx‖p. We generate 10 instances for each
size of H in {20× 40, 30× 60, 40× 80} and each value of K in {4, 6, 8}. We remark that by
these means, we know that a solution of support size K always exists for these instances.
However, an optimal solution with a support size smaller than K may also exist. Indeed,
as seen in the results below, this is the case for some instances with K = 6. In the following
experiments, we set a time limit of 1800 seconds.

Based on the results shown in Section 5.1.3, we focus the experimentation on problem
P0/2, i.e., when the `2 norm is used to measure the misfit error. As we shall show below, in
most of the tested instances, MIP0/2 ends the process before reaching the time limit (i.e.,
it ends normally), but yet the solution provided is far from being optimal. Our intention
with this set of instances is to assess the potential optimality gap of MIP0/2, even when
the algorithm ends normally. In this setting, comparing computational times of MIP0/2 and
IPcov

0/2 makes no sense since it is much more likely for MIP0/2 to have shorter times than
IPcov

0/2 (as it may end with a solution far from an optimal one). However, we shall report
whether the methods reached a time limit in an instance or not, as this fact is essential to
the analysis of the results.

Table 4 summarizes the results obtained by MIP0/2, BC0/2 and IPcov
0/2 in the test set

described above, within a time limit of 1800 seconds. For each group of instances and each
method, columns “tl” and “supp” report the number of instances in which the method
reached the time limit and the average support size obtained. For each method, column
“top” reports the number of instances in which the solution provided by the method is not
worse than the solutions provided by the other two methods, and column “best” counts the
cases in which the solution is strictly better than the other methods.

The first element we shall remark from the results reported in Table 4 is the difference
in the support sizes obtained by IPcov

0/2 in comparison with the obtained by the other two
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MIP0/2 BC0/2 IPcov
0/2

Size K tl supp top best tl supp top best tl supp top best

20× 40 4 0 16.2 2 0 0 15.5 2 0 0 4.0 10 8
6 0 14.7 2 0 1 16.2 2 0 0 5.8 10 8
8 0 20.5 1 0 1 19.5 1 0 9 8.7 9 9

30× 60 4 0 9.8 4 0 2 9.2 5 0 0 4.0 10 5
6 2 15.8 3 0 4 16.6 3 0 0 5.7 10 7
8 2 11.9 6 1 5 12.1 5 0 10 9.8 7 4

40× 80 4 5 11.0 4 0 5 11.1 4 0 0 4.0 10 6
6 2 14.6 6 0 5 16.4 6 0 7 7.6 8 4
8 4 17.2 6 0 6 19.1 5 0 9 10.1 8 4

Table 4: Performance of the compared approaches for P0/2 in the pathological instances
extracted from the adversarial strategy (Mairal and Yu, 2012), with a time limit
of 1800 seconds.

methods. More precisely, we can see that the support sizes obtained by IPcov
0/2 are, on average,

around 50% of the support sizes obtained by MIP0/2 and BC0/2. Additionally, when we focus
on the first group (size 20 × 40), we can see that MIP0/2 does not reach the time limit in
any of these instances, meaning that the algorithm ends normally in these cases. However,
the obtained supports are far from being optimal, as we can see that the obtained support
sizes are more than double the sizes of those solutions found by IPcov

0/2. Furthermore, this
also holds for the subgroup of K = 8, in which IPcov

0/2 incurs a time limit in 9 out of the 10
instances of the group, and yet the average support size for IPcov

0/2 is 8.7, which is less than
half of the one obtained by MIP0/2 (i.e., 20.5). As depicted in Table 4, IPcov

0/2 obtains the
best solution among the three approaches in 82 out of the 90 instances while MIP0/2 and
BC0/2 achieve this in 34 and 33 instances, respectively. Furthermore, IPcov

0/2 obtains strictly
better solutions than the other two methods (columns “best”) in 55 instances while MIP0/2

does it only in 1 of them (and BC0/2 in none).

To further analyze the gap between the solutions obtained by MIP0/2 and BC0/2 against
those obtained by IPcov

0/2, we disaggregate in Table 5 the data corresponding to the 40 in-
stances in which the three methods usually finish (i.e., before reaching the time or mem-
ory limit). For each individual instance, we report the (optimal) support size obtained
by IPcov

0/2 and the support sizes of the solutions obtained by MIP0/2 and BC0/2 (columns
“supp”). Additionally, for MIP0/2 and BC0/2 we report the optimality gap computed as
100 × (s − sopt)/sopt, where s is the corresponding support size and sopt is the optimal
support size found by IPcov

0/2. In the table, an instance named n_m_k_i corresponds to the

ith instance of the group of size n× m with K = k.

As we can see in Table 5, the optimality gap of the solutions obtained by MIP0/2 and
BC0/2 has a notable variance. Even when the average gap in these 40 instances is approx-
imately 175%, we can see that it may reach very high values, as is the case of MIP0/2 on
instance 30_60_4_9 where the gap reaches 900%, meaning that the obtained solution is 10
times greater than the optimal support.
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IPcov
0/2 MIP0/2 BC0/2

Instance supp supp gap supp gap

20_40_4_1 4 13 225% 12 200%

20_40_4_2 4 4 0% 4 0%

20_40_4_3 4 26 550% 26 550%

20_40_4_4 4 29 625% 29 625%

20_40_4_5 4 7 75% 6 50%

20_40_4_6 4 13 225% 12 200%

20_40_4_7 4 18 350% 16 300%

20_40_4_8 4 30 650% 30 650%

20_40_4_9 4 18 350% 16 300%

20_40_4_10 4 4 0% 4 0%

20_40_6_1 6 6 0% 6 0%

20_40_6_2 6 11 83% 11 83%

20_40_6_3 6 31 417% 31 417%

20_40_6_4 6 17 183% 31 417%

20_40_6_5 6 21 250% 24 300%

20_40_6_6 6 17 183% 17 183%

20_40_6_8 5 10 100% 10 100%

20_40_6_9 5 14 180% 12 140%

20_40_6_10 6 6 0% 6 0%

20_40_8_8 7 34 386% 34 386%

IPcov
0/2 MIP0/2 BC0/2

Instance supp supp gap supp gap

30_60_4_1 4 5 25% 4 0%

30_60_4_2 4 5 25% 5 25%

30_60_4_4 4 4 0% 4 0%

30_60_4_5 4 8 100% 8 100%

30_60_4_6 4 4 0% 4 0%

30_60_4_7 4 4 0% 4 0%

30_60_4_8 4 4 0% 4 0%

30_60_4_9 4 40 900% 31 675%

30_60_6_1 6 6 0% 6 0%

30_60_6_2 5 33 560% 42 740%

30_60_6_7 6 32 433% 28 367%

30_60_6_8 6 6 0% 6 0%

30_60_6_9 5 5 0% 5 0%

30_60_6_10 5 10 100% 10 100%

40_80_4_1 4 4 0% 4 0%

40_80_4_2 4 4 0% 4 0%

40_80_4_5 4 4 0% 4 0%

40_80_4_6 4 6 50% 6 50%

40_80_4_10 4 4 0% 4 0%

40_80_6_3 6 6 0% 6 0%

Table 5: Support sizes were obtained for the 40 instances in which the three methods finish
normally (i.e., before reaching the time or memory limit).

The reader may have noticed from Table 5 that support sizes obtained by MIP0/2 and
BC0/2 may be different for the same instance. This behavior may seem odd at first, as these
methods work with the same MIP formulation. However, we shall remark that MIP0/2 and
BC0/2 implement the incremental algorithm from (Bourguignon et al., 2016) (explained in
Section 2) in which the MIP formulation is solved several times depending on the values
of the successively obtained solutions (i.e., if these values are tight on M , then this bound
is increased and the model is solved again). Consequently, MIP0/2 and BC0/2 may find
different (although equivalent) initial solutions, leading to different numbers of iterations
on the algorithm, hence reaching different values for the bound M , thus finally yielding
different support sizes for the final solution. Indeed, we could verify this is precisely the
case for the above instances.

6. Final remarks and future work

Problem P0/p is a challenging Sparse Approximation problem, combining both global
minimization aspects within a combinatorial structure. Existing convex Mixed Integer
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Programming approaches for these problems (denoted in this article as MIP0/p) use “big-
M” formulations but fails to provide an exact algorithm to tackle the problem of finding
a proper value for M . In order to fairly compare exact `0 minimization with other sparse
approaches such as the Lasso, as discussed in Hastie et al. (2020), it appears essential to
have an algorithm that warranty to reach such a global minimizer.

In this work, we studied the polytopes arising from the mentioned formulations and
derived valid inequalities to improve the performance of the existing methods. In particular,
we introduce the family of forbidden supports inequalities. As a first solution approach, we
used these inequalities to design a branch-and-cut algorithm for these models, which we
called here BC0/p. On the other hand, the main contribution of this paper relies on an
attractive characteristic of this family of inequalities; we proved that they are sufficient
to describe the set of feasible supports of P0/p. Based on this result, we introduced a
novel integer linear programming formulation for P0/p which consists in solving a pure
combinatorial set covering formulation and which we denote IPcov

0/p here. As far as we know,
IPcov

0/p is the first exact integer linear programming formulation for P0/p. Since the proposed
formulation may have exponentially many constraints, we developed a practical approach
to tackle its solution, which starts from a combinatorial relaxation of IPcov

0/p with few (or
no) constraints and it dynamically adds constraints as needed during the process. We also
strengthen the solution of IPcov

0/p by the addition of cutting planes and rounding heuristics,
similarly to the branch-and-cut algorithm BC0/p.

The computational experimentation conducted to assess the potential of the newly de-
veloped methods for P0/p shows interesting results when p = 2, i.e., when the `2 norm is
used to measure the misfit error. In this case, our results show a significant improvement
by IPcov

0/2 and BC0/2 concerning the existing approach MIP0/p, and in particular IPcov
0/2 seems

to outperform BC0/2 in general. In addition to the fact that IPcov
0/2 solves more instances in

less time than the other methods, the most crucial characteristic is maybe the fact that it
is an exact approach, while the others can only be considered as heuristic ones (unless some
bound on the solution values is known beforehand). As evidenced by the computational
experimentation with the pathological examples, the gap between the (optimal) support
obtained by IPcov

0/2 and the ones obtained by MIP0/2 and BC0/2 can be huge, even when the
processes end normally (i.e., before reaching time or memory limits). Unfortunately, when
using p ∈ {1,∞}, the performance of IPcov

0/p gets seriously degraded (verifying the hypothe-
sis stated in Section 5), and the results in these cases do not seem to improve the existing
approaches. However, we could see that the newly developed branch-and-cut algorithm
BC0/p does indeed obtain better results than MIP0/p in these cases, thus representing an
improvement of this approach.

We conclude this paper with a remark about the combinatorial structure of IPcov
0/p (i.e.,

the minimum set covering structure). We strongly think this structure shall be further
exploited to improve the performance of the proposed approaches. Many articles have
been written about this problem, both about the polyhedral and the combinatorial aspects.
Many families of valid inequalities are known for the set covering polytopes, which may be
used as cutting planes within the solution of IPcov

0/p and MIP0/p. Also, there is an appreciable
amount of work in algorithms and heuristics to solve this kind of problem, which can be
used to improve our newly developed approaches. Nevertheless, we leave these ideas as a
future line of further work.
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2020.

Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM Journal
on Computing, 24(2):227–234, 1995.

Deanna Needell and Joel A. Tropp. Cosamp: Iterative signal recovery from incomplete and
inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301 – 321,
2009.

Deanna Needell and Roman Vershynin. Uniform uncertainty principle and signal recovery
via regularized orthogonal matching pursuit. Foundations of computational mathematics,
9(3):317–334, 2009.

Deanna Needell and Roman Vershynin. Signal recovery from incomplete and inaccurate
measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected
Topics in Signal Processing, 4:310 – 316, 05 2010.

Paolo Nobili and Antonio Sassano. Facets and lifting procedures for the set covering poly-
tope. Mathematical Programming, 45:111–137, 1989.

Yagyensh Chandra Pati, Ramin Ramin Rezaiifar, and Perinkulam Sambamurthy Krish-
naprasad. Orthogonal matching pursuit: recursive function approximation with applica-
tions to wavelet decomposition. In Proceedings of 27th Asilomar Conference on Signals,
Systems and Computers, volume 1, pages 40–44, 1993.

Alejandro Ribes and Francis Schmitt. Linear inverse problems in imaging. IEEE Signal
Processing Magazine, 25(4):84–99, 2008.
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