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Abstract

We discuss some properties of generative models for word embeddings. Namely, (Arora et al., 2016)
proposed a latent discourse model implying the concentration of the partition function of the word
vectors. This concentration phenomenon led to an asymptotic linear relation between the pointwise
mutual information (PMI) of pairs of words and the scalar product of their vectors. Here, we first
revisit this concentration phenomenon and prove it under slightly weaker assumptions, for a set
of random vectors symmetrically distributed around the origin. Second, we empirically evaluate
the relation between PMI and scalar products of word vectors satisfying the concentration property.
Our empirical results indicate that, in practice, this relation does not hold with arbitrarily small
error. This observation is further supported by two theoretical results: (i) the error cannot be exactly
zero because the corresponding shifted PMI matrix cannot be positive semidefinite; (ii) under mild
assumptions, there exist pairs of words for which the error cannot be close to zero. We deduce that
either natural language does not follow the assumptions of the considered generative model, or the
current word vector generation methods do not allow the construction of the hypothesized word
embeddings.
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1. Introduction

Context and Motivations

The construction of intermediate representations is essential for language models and their applica-
tions. These representations can be cast in two groups. The first consists of vector space models
with static word embeddings, where a minimal unit of the language, a word, is associated to a fixed
and constant representation. This representation encodes the meaning of the word, independently
of its context. There exist many examples of static representations, such as word2vec (Mikolov
et al., 2013a) or Glove (Pennington et al., 2014) representations. The second group, which we refer
to as contextual embeddings, maps each word of the vocabulary to a vector which depends on its
context. Long short term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997), or neural
networks with attention mechanisms (e.g. Bidirectional Transformers (Vaswani et al., 2017; Devlin
et al., 2019)) are examples of methods to construct contextual representations.

Despite the fact that contextual embeddings are considered to have superseded the use of standard
vector space models for applications, most of their properties, in particular the relation with language
semantics, remain obscure. On the other hand, the family of static embeddings in (Arora et al., 2016)
have been advertised to possess geometric properties related to language semantics, in particular
with respect to analogies. In this work, we discuss the foundations of such statements, in particular
concerning the properties of a latent model for natural language generation.

Previous Work

The model we will consider has been presented in (Arora et al., 2016): a generative model using prior
probability distributions to compute closed form expressions for word statistics. It originally aimed
at providing a piece of explanation of the linear structure for analogies (Arora et al., 2016, 2018b).
The apparent relation of linear structures of word vectors and semantic analogies has already been
studied in (Khalife et al., 2019), going in favor of an incidental phenomenon rather than systematic.
For the sake of clarity, we will present in the remaining of this subsection the main assumptions of
this generative model.

In the following, f = O(g) (resp. f = Õ(g)) means that f is upper bounded by g (resp. upper
bounded ignoring logarithmic factors) in the considered neighborhood. Let d be a strictly positive
integer corresponding to the word vectors dimension. The generation of sentences in a given text
corpus is made under the following generative assumptions.

◦ Assumption 1 The text generation process is driven by a random walk of a vector ct ∈ Rd,
called discourse vector, such that if wt is the word emitted at step t, then

P(wt = w|ct) ∝ exp(⟨ct, vw⟩) (1)

where vw ∈ Rd is the word vector for word w (the vectors ct and vw are latent variables of the
model). Moreover, the random walk (ct | t ≥ 1) admits a uniform stationary distribution on the
unit sphere.

◦ Assumption 2 The ensemble of word vectors consists of independent and identically distributed
(i.i.d.) samples generated by v = s v̂, where v̂ is drawn from the spherical Gaussian distribution
in Rd and s is an integrable random scalar such that |s| ≤ κ, for a positive constant κ.
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◦ Assumption 3 (ct | t ≥ 1) jumps are small on average. More precisely, ∃ϵ1 ≥ 0 such that
∀t ≥ 1:

Ect+1(exp(κ
√
d||ct+1 − ct||2)) ≤ 1 + ϵ1 (2)

Contributions

The contribution of this work is three-fold. First, we present a theoretical result concerning the
concentration of a certain partition function Zc for a generative model following Equation (1). Our
statement concerns the behavior of the partition function: it concentrates around its mean, for simpler
assumptions than those (1 to 3) aforementioned. Informally, this property means that the variations
of Zc with respect to c (and its randomness) are relatively negligible. This property is very similar to
the concentration phenomenon demonstrated in (Arora et al., 2016). Our result suggests that it is not
an intrinsic characteristic of word embeddings satisfying the Gaussian prior (Assumption 2), since it
holds for other random vectors symmetrically distributed around the origin.

Second, we empirically investigate the relation between the geometry of word vectors and PMI.
Although the experiments reported in (Arora et al., 2016, Section 5) support the concentration
phenomenon and a linear correlation between squared norms of word vectors and word frequencies
(at least, for high frequency words), little is said about the relationship between PMI of word pairs and
the scalar product of their word vectors. In this work, we perform a thorough empirical investigation
of this relationship. Our extensive experiments strongly support the claim that theoretical relations
derived from the considered generative model occur at best in some regimes of the co-occurrence
terms.

Finally, we provide evidence that the implicit matrix factorization problem related to the con-
struction of word embeddings is ill-posed for a symmetric PMI model, since the shifted PMI matrix
(as explored in (Levy and Goldberg, 2014)) is not positive semidefinite. To do so, we establish
necessary conditions for the positive definiteness of the shifted symmetric PMI matrix in terms of
local pairwise probabilities and show these local conditions can be violated in natural language.

2. Result on the Concentration of the Partition Function

In this section, we discuss a theoretical property presented in (Arora et al., 2016), called the
concentration of the partition function. Based on (1), given a discourse vector c, the corresponding
partition function value Zc is defined as:

Zc =
∑
v

exp(⟨v, c⟩) (3)

where v are the word vectors. We remind our reader that the considered generative model treats
corpus generation as a dynamic process, where the t-th word is produced at step t. The process
is driven by a random walk of a discourse vector c. Its coordinates represent the current topic. In
this section, we are interested in an asymptotic property of the partition function Zc. By analogy
with statistical physics, this partition function is the sum of probabilities of the particles state given
macroscopic parameters, such as temperature, over all the particles. More precisely, in our context,
the particles considered are words and the states are the appearances of a word given a latent discourse
vector (which is the analogous with the physical temperature). This latent discourse vector represents
a context of fixed length. The aim of this section is to study the variations of Zc with respect to the
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random variable c. This study is motivated by the use of partition concentration as a theoretical basis
to demonstrate the relationships between PMI and scalar product of word vectors (Arora et al., 2016).

If the word vectors satisfy Assumptions 1 and 2, and n is the number of words, then the
concentration of the partition function is stated as follows (Arora et al., 2016, Lemma 2.1):

P[(1− ϵz)Z ≤ Zc ≤ (1 + ϵz)Z] ≥ 1− δ (4)

for some constant Z (independent of c), ϵz = Õ(1/
√
n) and δ = exp(−Ω(log(n))), where Ω(g) is a

function lower bounded by g. We are interested in this property since it is central for the development
of all the following theorems and propositions in (Arora et al., 2016), including the relation between
PMI of word pairs and the scalar product of their word vectors (Arora et al., 2016, Theorem 2.2).
Indeed, based on Equation (1) and applying the law of total expectation, it is possible to derive an
estimate for the joint probability of a word pair w,w′ (Arora et al., 2016):

p(w,w′) = Ect,ct+1 [p(w|ct)p(w′|ct+1)] = Ect,ct+1

[
exp(⟨vw, ct⟩)

Zct

exp(⟨vw′ , ct+1⟩)
Zct+1

]
, (5)

where Zc =
∑

v exp(⟨v, c⟩), c is a context vector and the sum is over all word vectors v. Further-
more, in the experiments conducted in (Arora et al., 2016, Section 5.1), the property expressed in
Equation (4) is empirically evaluated with the histogram of the partition function Zc (which should
concentrate around its mean) for word vectors obtained from common methods, such as GloVe and
word2vec. By doing so, this concentration of partition function is implicitly considered as a means to
evaluate how well the word vectors follow the generative model. In this section, we will show that
the property holds (modulo a small constant) not only for random vectors described by Assumptions
1 and 2, but for a set of random vectors with bounded norm and symmetrically distributed around the
origin.

2.1 Preliminaries

Before presenting our main inequality in Section 2.2, we state three lemmata used for its demonstra-
tion.

Lemma 1 Let ψ : R → [0,+∞[ be a twice continuously differentiable strictly convex even function,
satisfying the following properties:

1. β 7→ ψ′(β)/β is injective on R+∗

2. ∀β ̸= 0 ψ′′(0)− ψ′(β)/β > 0

3. ∀β ̸= 0 ψ′′(β)− ψ′(β)/β < 0

Then, the function Ψ(x) ≜
∑d

i=1 ψ(xi), subject to ∥x∥2 = R2, with R > 0, has the following
extreme points:

1. x∗ = ±Rek, ∀k ∈ [d], where ek is the k-th canonical vector of Rd, corresponding to global
minimizers;

2. x∗i = ± R√
d

, for i = 1, . . . , d, corresponding to global maximizers.
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Proof Since we are considering a continuous function over a compact set, it attains a maximum
and a minimum in the feasible set. Besides, at any feasible point the linear independence constraint
qualification holds (because x ̸= 0), which ensures that for any minimizer (or maximizer) x, there
exists a Lagrange multiplier λ ∈ R such that

∇Ψ(x) + λx = 0

or equivalently
∀i ∈ {1, . . . , d} ψ′(xi) + λxi = 0 (6)

For the remaining of this proof, let (x, λ) ∈ Rd × R be a fixed feasible point and scalar verifying
Equation (6). Also notice that since ψ is continuously differentiable and even, we have ψ′(0) = 0.

Since x is feasible, there should be components of x verifying xi ̸= 0. For the non-zero
components of x, Equation (6) must hold for the same λ. First, we remark that λ ̸= 0. Indeed, if
λ = 0, then from Equation (6), ∀i ψ′(xi) = 0, but ψ is strictly convex and ψ′(0) = 0, which implies
that xi = 0 for all i, leading to an infeasible point.

Thus, for the non-zero components of x, from Equation (6), we obtain

xi ̸= 0 =⇒ λ = −ψ
′(xi)

xi
̸= 0

But, since β 7→ ψ′(β)/β is injective on R+∗, we conclude that the non-zero components of x must
be all equal, i.e ∃β∗ > 0 s.t. ∀i xi ̸= 0 =⇒ xi = β∗. From the feasibility of x, we conclude that

β∗ = ± R√
∥x∥0

where ∥x∥0 denotes the number of non-zero entries of x.
Let us now analyze the second order conditions for the feasible points verifying Equation (6).

Since the objective function is separable, the Hessian of the Lagrangian ∇2
xxL(x, λ) is a diagonal

matrix whose diagonal entries verify ∀i ∈ {1, . . . , d}:

[∇2
xxL(x, λ)]ii = ψ′′(xi)− ψ′(β∗)/β∗

For the remaining of this proof, for given α and β, let δ(α, β) ≜ ψ′′(α)− ψ′(β)/β. We remind our
reader that, by assumption, β ̸= 0 =⇒ δ(0, β) > 0 and δ(β, β) < 0.

Therefore, for a given y ∈ Rd, we have

yT∇2
xxL(x, λ)y = δ(0, β∗)

∑
i:xi=0

y2i + δ(β∗, β∗)
∑
i:xi ̸=0

y2i

If all components of x are non-zero, then we get ∀y ∈ Rd \ {0}:

yT∇2
xxL(x, λ)y = δ(β∗, β∗)

∑
i:xi ̸=0

y2i < 0

This proves that x verifying ∀i ∈ {1, . . . , d}, xi = ± R√
d

satisfy the second order sufficient

conditions for a local maximizer.
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Now, let us show that if x has at least one zero component and more than one non-zero com-
ponents, then x is a saddle-point. Without loss of generality, assume that exactly two entries of x
are non-zero, then due to the previous discussion, they must be equal, e.g. xT = (0, . . . , 0, β, β).
The second order sufficient conditions concern the Hessian of the Lagrangian with respect to primal
variables, which should be positive definite when restricted on the linear null space of the Jacobian
of the constraints. In this case, this linear space is given by:

x⊥ = {y ∈ Rd : y =(w1, . . . , wd−2, α,−α), w ∈ Rd−2, α ∈ R}

In particular, choosing
y = (w1, 0, . . . , 0, α,−α) ∈ x⊥

we obtain
yT∇2

xxL(x, λ)y = δ(0, β∗)w1 + 2δ(β∗, β∗)α2

Then:

i) w1 > 0 α = 0 =⇒ yT∇2
xxL(x, λ)y > 0

ii) w1 = 0 α ̸= 0 =⇒ yT∇2
xxL(x, λ)y < 0

This implies that x is neither a minimizer nor a maximizer.
Finally, if x = ±Rek, for some canonical vector ek, we obtain, for every y ∈ x⊥ \ {0},

yT∇2
xxL(x, λ)y = δ(0, β∗)

∑
i:xi=0

y2i + δ(β∗, β∗)× 0 = δ(0, β∗)
∑
i:xi=0

y2i > 0

which proves that x = ±Rek satisfies the second order sufficient conditions for a local minimizer.
Furthermore, since ψ is even, and the maximizers (and minimizers) described above only differ

by the sign of their entries, we can conclude that all of them are global.

We present a similar result for the annulus domain:

Lemma 2 Let η be a strictly positive real, and 1 the vector of ones of appropriate dimension. With
the same conditions and notations as in Lemma 1, replacing the sphere of radius R with the annulus
Ωη defined by:

Ωη = {x ∈ Rd | R ≤ ||x||2 ≤ R+ η} (7)

we have that

(i) ∀k ∈ [d], x = Rek, is a global minimizer of Ψ on Ωη,

(ii) R+η√
d

1 is a global maximizer of Ψ on Ωη.

Proof Both (i) and (ii) can be proved in two steps:
(i) Since ψ is even, we limit the study on the set of positive vectors. We show that the maximum of ψ
is reached on the sphere of radius R+ η, whereas the minimum is achieved on the sphere of radius
R. This can be proved by remarking that:

x > 0, x ∈ Ω̊η and R < λ||x|| < R+ η

=⇒ λx ∈ Ωη and ψ(λx) > ψ(x)
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which can be deduced by the fact that ψ is strictly convex and ψ′(0) = 0, hence ψ is increasing on
R+. This implies that the minimum of Ψ is reached on the sphere of radius R, and its maximum on
the sphere of radius R+ η.
(ii) Then, we use Lemma 1 to conclude.

Lemma 3 Let L > 0 and consider the function f : Rd −→ R defined by:

f(c) =
d∏
i=1

{
sinh(Lci)

ci
if ci ̸= 0

L otherwise
(8)

Then Ψ = log(f) verifies the assumptions of Lemma 1.

Proof Left in the Appendix.

2.2 Main Inequality

We now present our result concerning the partition function. Proposition 4 shows that the concentra-
tion property also holds for very simple distributions of the word and context vectors, independently
of Assumptions 1 and 2. More precisely, the concentration property is holding with isotropy and
uniformity on word vectors in a centered cube of Rd, and such that latent discourse vectors belong to
a sufficiently thin annulus1. The analysis of Equation 5 would be difficult if not intractable without
the concentration property. We remark this property was empirically verified for certain common
word embedding methods (Arora et al., 2016, cf. Section 5.1), and combined with Assumption 3, is
sufficient to prove the relations between PMI and the scalar product of word vectors, that we discuss
experimentally in Section 3.

Proposition 4 Let n be the number of words, and let us suppose the word vectors are generated
independently and uniformly in a centered cube of Rd. Then, if the discourse vectors belong to the
annulus domain Ωη, for R ≤ 2, and a sufficiently small η, then there exists γ ≪ 1 such that ∀ϵ > 0,
the following inequality holds with probability 1− α:

(1− ϵ)(1− γ)E[Z0] ≤ Zc ≤ (1 + ϵ)(1 + γ)E[Z0] (9)

where Z0 = Z(c0), for a constant discourse vector c0, and α ≤ exp(−1
2ϵ

2n2).

Proof Our proof is decomposed in three steps:
◦ Use Bernstein inequalities to bound |Zc − E[Zc]| with high probability.
◦ Compute a closed form expression of the mapping c 7→ E[Zc].
◦ Study the variation of this function over Ωη using Lemma 3.

1. A systematic description of the priors for which this concentration occurs is left open for future work.
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Let v, c ∈ Rd be the word and discourse vectors, respectively, with the following properties:

∥v∥ ≤ κ (10)

E [⟨v, c⟩] = 0 (11)

From (10) and Cauchy-Schwarz inequality

⟨v, c⟩ ≤ |⟨v, c⟩| ≤ ∥v∥∥c∥ ≤ 3κ

where ||c|| ≤ 3 because c ∈ Ωη, for R ≤ 2 and η sufficiently small. It follows that

exp⟨v, c⟩ ≤ exp 3κ (12)

Since the random vectors v are i.i.d. and by convexity of the exponential, we have from (11)

E [Zc] = nE [exp⟨v, c⟩] ≥ n expE [⟨v, c⟩]
≥ n exp(0) = n

(13)

Moreover, we are also able to bound the variance of Zc:

Var [Zc] =
∑
v

Var [exp⟨v, c⟩] = nVar [exp⟨v, c⟩]

≤ nE [exp 2⟨v, c⟩]
≤ nE [exp(6κ)] = exp(6κ)n

(14)

Now let Λ be the constant defined as follows:

Λ = exp(6κ)

Let ϵ > 0. Thanks to (12) and (14), we can apply the Bernstein’s inequality to the sum of random
variables Zc =

∑
v exp⟨v, c⟩, to obtain

P [|Zc − E [Zc] | > εn] ≤ exp

(
−

1
2ε

2n2

nΛ + 2
3

√
Λεn

)
(15)

and from (13)

P [|Zc − E [Zc] | > εE [Zc]] ≤ exp

(
−

1
2ε

2n2

nΛ + 2
3

√
Λεn

)
(16)

which shows the concentration of Zc around E [Zc] for any fixed unit norm vector c.

Let us show now that E [Zc] does not vary much with c. To this end, we need additional
assumptions about the distribution of v apart from (10) and (11). We are interested in E[Zc], and in
particular the amplitude of its variation with respect to c. If the word vectors admit a density function
ξ, then:

Ev[exp(⟨v, c⟩)] =
∫
Ω
exp(⟨v, c⟩)ξ(v)dv

8



FURTHER RESULTS ON LATENT DISCOURSE MODELS AND WORD EMBEDDINGS

If the word vectors are independent and identically distributed, it should be noted that:

Ev[Zc] = nEv[exp(⟨v, c⟩)]

where n is the number of words. Firstly, in order to simplify the calculation, we will consider that
v is distributed uniformly on Ω which is the cube of Rd centered in 0, of side length 2L. Then,
integration using Fubini Theorem yields:

Ev[exp(⟨v, c⟩)] =
1

Ld

d∏
i=1

ϕ(ci)

where

ϕ(ci) =

{
sinh(Lci)

ci
if ci ̸= 0

L otherwise

Consider the function f : Rd −→ R defined by f(c) =
∏d
i=1 ϕ(ci). We will first discuss the

variations in the amplitude of f on the sphere SR centered at 0 with radius R. The relative amplitude
of the variations of f on SR is given by:

maxc∈SR
f(c)−minc∈SR

f(c)

minc∈SR
f(c)

(17)

Using Lemmas 3 and 1, we can infer the two following properties:

• On the one hand, f reaches its maximum at a point c such that c1 = c2 = . . . = cd =
R√
d
. And

then

max
c∈SR

f(c) = [

√
d

R
sinh(

LR√
d
)]d

• On the other hand, the minimum of f is reached for a point where every coordinate has been set to
0 except one (such point exists on the sphere), and therefore, f reaches its minimum on a point c
such that

ϕ(c1) = . . . = ϕ(cd−1) = L

and ϕ(cd) =
sinh(LR)

R

Hence,

min
c∈SR

f(c) = Ld−1 sinh(LR)

R

(It is interesting to observe that the minimum of f does not depend on the dimension if L = 1.)
It should be noted that the maximum relative variation of E[Zc] = (n/Ld) f(c) is the same as

that of f , given in Equation (17).
Now, let us observe the behavior of the maximum of f , when the dimension d tends to infinity.

The Taylor expansion of order 3 for sinh at 0 is given by:

sinh(x) = x+
x3

6
+ o(x3)

9
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Figure 1: Illustration of the maximum relative variations of E[Zc], with the function ∆ : x 7→
e
x2

6

sinh(x)
x

− 1. The x-axis represents the radius considered and th e y- axis the value of the maximum

relative variation.

Therefore, using properties of the exponential:

max
c∈SR

f(c) =

(√
d

R

)d [
LR√
d
+

1

6

(
LR√
d

)3

+ o

((
LR√
d

)3
)]d

=

(
L+

L3R2

6d
+ o(

1

d
)

)d
= Ld

(
1 +

L2R2

6d
+

1

L
o(
1

d
)

)d
∼

d→+∞
Lde

L2R2

6

Then, if d≫ 1 (e.g. d ≥ 50):

∆(R) =
maxc∈SR

f(c)−minc∈SR
f(c)

minc∈SR
f(c)

∼
d→+∞

L
e

L2R2

6

sinh(LR)
R

− 1

This ratio does not depend on the dimension, regardless of the radius of the sphere considered.
With slight abuse of notation, let

||∆||∞ ≜ ||∆||∞,(0,2] = sup
0<R≤2

∆(R) (18)

The graph of the function ∆ : R 7→ ∆(R) for L = 1 is drawn in Figure 1. In particular,
||∆||∞ ≤ 10−1. This implies that if R ≤ 2 (and L ≤ 1):

maxc∈SR
E[Zc]−minc∈SR

E[Zc]
minc∈SR

E[Zc]
= ∆(R) ≤ 10−1 (19)

Finally, if Ωη is replaced by the domain defined by

R ≤ ||x||2 ≤ R+ η

then the extrema of f on Ωη can be deduced from Lemma 2 and are given by

min
c∈Ωη

f(c) = Ld−1 sinh(LR)

R

10
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max
c∈Ωη

f(c) = [

√
d

R+ η
sinh(

L(R+ η)√
d

)]d

Similarly,

∆(R) ∼
d→+∞

L
e

L2(R+η)2

6

sinh(R)
R

− 1

Let L = 1 and denote by

∆η ≜
e

(R+η)2

6

sinh(R)
R

− 1 (20)

such maximum variation for a given η. Plots of ∆η for several values of η are given in Fig. 2b.

Let Z0 be a partition function for a constant discourse vector c0 ∈ SR. Notice that

|Zc − E[Zc] | > ϵE[Zc] ⇐⇒
∣∣∣ Zc
E[Z0]

− E[Zc]
E[Z0]

∣∣∣ > ϵ
E[Zc]
E[Z0]

(21)

and using the previous study (see Eqs. (18) and (19)), we obtain∣∣∣E[Zc]E[Z0]
− 1
∣∣∣ ≤ ||∆||∞

which implies that

ϵ
E[Zc]
E[Z0]

≥ ϵ(1− ||∆||∞)

From Equation (21):

|Zc − E[Zc] | > ϵE[Zc] =⇒
∣∣∣ Zc
E[Z0]

− E[Zc]
E[Z0]

∣∣∣ > ϵ(1− ||∆||∞)

Let E be the event corresponding to the right hand side. Then:

P(E) ≤ P(|Zc − E[Zc]| > ϵE[Zc]) ≤ α (22)

where the second inequality is obtained from Equation (16). We recall that ϵ is an arbitrarily small
real number, and

α = exp

(
−

1
2ε

2n2

nΛ + 2
3

√
Λεn

)
Hence, with (high) probability 1− α:

−ϵ(1− ||∆||∞) +
E[Zc]
E[Z0]

≤ Zc
E[Z0]

≤ E[Zc]
E[Z0]

+ ϵ(1− ||∆||∞) ≤ E[Zc]
E[Z0]

+ ϵ(1 + ||∆||∞)

Again, using:

1− ||∆||∞ ≤ E[Zc]
E[Z0]

≤ 1 + ||∆||∞

11
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We finally have with probability 1− α:

(1− ϵ)(1− ||∆||∞)E[Z0] ≤ Zc ≤ (1 + ϵ)(1 + ||∆||∞)E[Z0]

ϵ is arbitrarily small, and we saw that ||∆||∞ ≤ 10−1, for a domain close to a sphere of radius R ≤ 2.
Setting γ = ||∆||∞ concludes the proof.

Figure 2 illustrates the behavior of the maximum relative variation

∆η =
maxc∈Ωη E [Zc]−minc∈Ωη E [Zc]

minc∈Ωη E [Zc]

for different values of η as R increases. Such behavior for small enough R and η allows us to apply
the Bernstein inequality to arrive at inequality (9) with high probability.

As mentioned earlier, the concentration property combined with Assumption 3 allows to derive
the main theoretical results of Arora et al. (2016), a relation between statistical information (pointwise
mutual info) and the scalar product of their word vectors. Combined with the assumptions of Property
4, Assumption 1 and 3 also allow to obtain the same relations. This can be verified for instance when
the context vectors follow a uniform distribution on the sphere of radius R. In the next section we
discuss these relations in more details.

ηR

(a) Ωη

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

η = 0.05
η = 0.25
η = 0.5

(b) ∆η for η ∈
{0.05, 0.25, 0.5}

Figure 2: Illustration of the maximum relative variations of E[Zc] for L = 1 on Ωη. (a) The annulus
domain of width η. In (b), the x-axis represents the radius R considered and the y-axis the value of
the maximum relative variation ∆η (see Equation (20)).

3. Relation between PMI and scalar product

In this section, we provide an empirical evaluation of the main theorem presented in (Arora et al.,
2016). First, we state some relations claimed in Arora et al. (2016). Second, we conduct experimental
verifications of the aforementioned relations and comment on their results. Third, we discuss the
relations in light of the experimental findings.

Let p(w,w′) be the probability of words w and w′ appearing together in a window of size q
in the corpus, p(w) and p(w′) be the corresponding marginal probabilities and vw, vw′ ∈ Rd the
respective word vectors. Theorem 2.2 in (Arora et al., 2016) gives approximations for log p(w,w′)

12
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and log p(w) as linear functions of ∥vw + vw′∥2 and ∥vw∥2 respectively. Such approximations lead
to a linear approximation of the Pointwise Mutual Information (PMI) of two words w and w′:

PMI(w,w′) = log
p(w,w′)

p(w)p(w′)

by the scalar product ⟨vw, vw′⟩ of their word vectors. These results are gathered in the following
theorem:

Theorem 5 (Arora et al., 2016, Theorem 2.2) Suppose the word vectors satisfy the inequality (4),
and the window size q = 2. Then

log p(w,w′) =
||vw + vw′ ||2

2d
− 2 logZ ± ϵ, (23)

log p(w) =
||vw||2

2d
− logZ ± ϵ, (24)

for ϵ = O(ϵz) + Õ(1/d) +O(ϵ1). Jointly, these imply:

PMI(w,w′) =
⟨vw, vw′⟩

d
±O(ϵ). (25)

In the theorem, ϵz = Õ(1/
√
n) comes from inequality (4) (Arora et al., 2016, Lemma 2.1) and

ϵ1 is from Assumption 3. See (Arora et al., 2016) for details2. For a window size q > 2 we have the
following:

Corollary 6 (Arora et al., 2016, Corollary 2.3) Under the assumptions of Theorem 5, and consider-
ing p(w,w′) and PMI(w,w′) for window size q > 2:

log p(w,w′) =
||vw + vw′ ||2

2d
− 2 logZ + Γ± ϵ, (26)

PMI(w,w′) =
⟨vw, vw′⟩

d
+ Γ±O(ϵ), (27)

where Γ = log q(q − 1)/2.

In Arora et al. (2016), numerical experiments are presented to empirically verify (24), but little is
said about equations (25) and (27). It is just commented that (Arora et al., 2016, Remarks 1): “For
PMI however, the noise level O(ϵ) could be comparable to the leading term, and empirically we
also find higher error here”. Such remark motivated us to conduct extensive experiments in order to
empirically verify equations (25) and (27) (see Section 3.1).

It is also mentioned in (Arora et al., 2016) that relation (27) is consistent with the result of
(Levy and Goldberg, 2014), which showed that without dimension constraints, the solution to the

2. We also provide the proof leading to equation (24) in the Appendix (Lemma 9), using Eq. 2.13 given in Arora et al.
(2019).
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optimization problem in skip-gram with negative sampling (Mikolov et al., 2013b) corresponds to a
factorization of a shifted asymmetric PMI matrix:

∀w,w′ PMI(w,w′) = ⟨v̂w, v̂w′⟩ − β

for a suitable constant β. We will discuss this result for the case of a symmetric PMI matrix in
Section 4. In the following, we will present the results of an experimental verification of Theorem 5
and Corollary 6. Later, a discussion of these results follows.

3.1 Experimental verification

The experimental verification consists in performing a linear regression (we provide the slope, the
intercept, and the coefficient of determination R2, along with the Pearson correlation value) to verify
the relations (23)–(27) with ϵ = 0. Thus, when we talk about validity of one of such relations we
mean its validity for ϵ ≈ 0 (it is intuitive that for large enough ϵ all these relations are valid but they
become meaningless).

Word vectors Since Theorem 5 assumes that the word vectors satisfy the concentration property
described by Equation (4), we considered GloVe (Pennington et al., 2014) and SN (Squared norm)
(Arora et al., 2016) word vectors because they empirically verify such property (Arora et al., 2016,
Section 5.1). We recall their respective optimization formulations.

Let Xw,w′ be the number of times words w and w′ co-occur within the same window in the
corpus, f1(Xw,w′) = min(Xw,w′ , 100) and f2(Xw,w′) = min(X

3/4
w,w′ , 100).

The SN formulation is given by:

min
v,C

∑
w,w′

f1(Xw,w′)(logXw,w′ − ∥vw + vw′∥22 − C)2 (28)

whereas GloVe considers the following optimization problem:

min
v,s,C

∑
w,w′

f2(Xw,w′)(logXw,w′ − ⟨vw, v′w⟩ − sw − s′w − C)2 (29)

The SN word embeddings were reproduced using code available at (Arora et al., 2018a) which tries
to solve (28) using AdaGrad (Duchi et al., 2011) with initial learning rate 0.05 and 25 training epochs.
Pre-trained GloVe word embeddings made available by (Pennington et al., 2014) were used as well.

Datasets The English Wikipedia was used to train the SN word embeddings. The corpus was pre-
processed using the standard approach (non-textual elements removed, sentences split, tokenized).
Only words appearing more than 1000 times are considered. Three different extracts from the
English Wikipedia dump were used. The first corpus (denoted corpus 1) consists of the first 1 million
documents of the 2016 Wikipedia dump, deprived of prepositions and pronouns. The second corpus
and third corpus (denoted corpus 2 and corpus 3 respectively) consist of the first 1,072,907 and
3,170,407 documents, respectively, of the 2020 Wikipedia dump. A description of the corpora is
available in Table 1.

All the results of our experiments are reported in the tables 2, 3, 4. The results of tables 2 and 3
are based solely on corpus 1.

14
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Corpus Vocabulary size Number of tokens

1 16,927 266,561,061
2 39,317 1,020,897,871
3 62,051 2,035,545,719

Table 1: Description of the corpora

Table 2: Results for the experimental verification of equations (23) and (26) for SN word embeddings.

Dimension Window size Pearson correlation Slope Intercept R2

50 2 0.73 0.0368 -23.57 0.53
100 2 0.74 0.0243 -24.75 0.55
200 2 0.76 0.0157 -26.11 0.57
300 2 0.76 0.0119 -27.00 0.58
50 10 0.78 0.0517 -27.19 0.61

100 10 0.79 0.0320 -28.40 0.62
200 10 0.79 0.0191 -29.46 0.63
300 10 0.80 0.0139 -30.02 0.64

In these experiments, we consider the following approximations for the underlying probabilities

p(w,w′) ≈ p̄(w,w′) ≜
Xw,w′∑

(v,v′)∈V×V Xv,v′
, p(w) ≈ p̄(w) ≜

Xw∑
v∈V Xv

, (30)

where Xw, Xw,w′ are respectively the occurrence count of w and the co-occurrence count of (w,w′).
Therefore, in the following discussion, the term PMI(w,w′) should be interpreted as its empirical
approximation, given by

PMI(w,w′) ≜ log
p̄(w,w′)

p̄(w)p̄(w′)
(31)

unless stated otherwise.

Table 3: Results for the experimental verification of equation (24) for SN word embeddings. The
partial linear regression is based on the 50 points corresponding to words with the largest frequencies.

Regression Dimension Window size Pearson correlation Slope Intercept R2

full 50 2 0.84 0.115 -16.61 0.70
full 100 2 0.85 0.073 -18.21 0.73
full 200 2 0.89 0.044 -19.69 0.79
full 300 2 0.91 0.03 -20.29 0.83
full 50 10 0.86 0.120 -16.86 0.74
full 100 10 0.85 0.071 -17.96 0.73
full 200 10 0.87 0.040 -18.96 0.75
full 300 10 0.88 0.028 -19.41 0.78

partial 50 10 0.86 0.049 10.77 0.72
partial 100 10 0.85 0.024 10.39 0.73
partial 200 10 0.87 0.012 10.30 0.74
partial 300 10 0.88 0.008 10.38 0.70
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Table 4: Results for the experimental verification of equation (25) and (27) for SN and GloVe word
embeddings. The partial linear regression is based on points with PMI less than 5.

Corpus Embedding Dimension Regression Window size Pearson correlation Slope Intercept R2

1 SN 50 full 2 0.04 0.0061 0.93 0.002
1 SN 100 full 2 0.09 0.0088 0.89 0.008
1 SN 200 full 2 0.17 0.0109 0.86 0.03
1 SN 300 full 2 0.24 0.0117 0.85 0.06
1 SN 50 full 10 0.09 0.0129 0.32 0.008
1 SN 100 full 10 0.11 0.0094 0.29 0.011
1 SN 200 full 10 0.13 0.0070 0.27 0.02
1 SN 300 full 10 0.15 0.0063 0.27 0.02
2 SN 50 full 2 0.21 0.0360 1.07 0.04
3 SN 50 full 2 0.21 0.0378 1.14 0.04
2 SN 50 partial 2 0.17 0.0269 1.02 0.03
3 SN 50 partial 2 0.16 0.0256 1.03 0.02
2 GloVe 50 full 2 0.05 0.0082 1.17 0.003
2 GloVe 100 full 2 0.03 0.0029 1.20 0.001
3 GloVe 50 full 2 0.10 0.0179 1.21 0.011
3 GloVe 100 full 2 0.08 0.0086 1.23 0.007

Equations (23) and (24) From Table 3, it is clear that a high correlation exists between log p(w)
and ||vw||2, as predicted by equation (24), along with a fairly satisfying determination coefficient.
However, the experimental slope of this linear relationship from the theoretical 1

2d (= 0.01 for
d = 50, for example) for all of the dimensions seen in the experiments. Still, the relationship between
the experimental slopes and the theoretical slopes, in an evolution w.r.t the inverse of the dimension,
is satisfyingly linear both for (23) and (24). For example in Equation (24), we find the experimental
slopes to be ten times the theoretical slopes when dimension grows. This discrepancy cannot be
worked around without violating the requirement in Arora et al. (2016) for all word vectors to have
a squared l2 norm of the order of dimension. On the other hand, this implies that for word vectors
that have a large enough l2 norm, that is high frequency words, Equation (24) becomes empirically
possible together with the norm constraint.

For equation (24), we also performed a partial linear regression based on the 50 points corre-
sponding to words with the largest frequencies. For this regression, the slope approximation from the
partial linear regression is much closer to the theoretical one.

For equation (23), Table 2 shows that, although the linear correlation values are satisfyingly large,
the experimental slope values for window size 2 do not match with the theoretical 1

2d .

In order to empirically estimate the theoretical intercept, we approximate3 Z ≈ 1.67 × 104,
which gives logZ ≈ 9.72. The experimental values do not exactly match with the theoretical value
of the intercept (approximately −19.44 and −9.72 for equations (23) and (24) respectively with
window size 2). The error in the intercept is larger for equation (24). A possible explanation for why
the error on the intercept is smaller for equation (23) is that the SN optimization problem (28) tries
to fit equation (23)4.

3. Z was computed as the empirical mean of sampled partition function values Zc, computed using equation (3), by
sampling random context vectors c in the unit sphere.

4. viewing vw as v̄w/
√
2d and considering the approximation p(w,w′) ≈ p̄(w,w′).
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Equation (25) As can be observed from Table 4, for the results based on corpus 1, the correlation
values are somewhat low and the determination coefficient values are poor. For the latter, it was
argued in (Arora et al., 2016, Remark 1) that the high noise O(ϵ) in Eq. (25) is the principal reason.
Figure 3 shows the magnitude of the noise in equation (25).

Figure 3: y-axis: PMI(w,w′)− 1
d ⟨w,w

′⟩, x-
axis: arbitrary indexation of couples of words
(w,w′). Based on corpus 2 and SN word em-
beddings with dimension 50, window size 2.
Green line: constant value 0. Red line: regres-
sion line. Only one in every 100 points was
plotted.

Figure 4: Empirical distribution of
PMI(w,w′) − 1

d ⟨w,w
′⟩ with Gaussian

density estimation. Based on corpus 2 and SN
word embeddings with dimension 50, window
size 2.

In fact, for window size 2, the experimental slope is increasing with respect to the dimension
(see Figure 5), which is completely contradictory with equation (25). Our experiments show that,
as dimension increases, more couples (w,w′) tend to concentrate around certain “clusters”. One
of these is formed by couples of words verifying 1

d⟨vw, vw′⟩ ≈ 1, while the points in the region
with the highest density have 1

d⟨vw, vw′⟩ ≈ 0. As a matter of fact, the red points group in Figure 5
corresponds to pairs of words occurring with themselves. We later prove that for these couples
⟨vw, vw′⟩ = ||vw||2 ≈ d, when the dimension is large enough (see Lemma 7 in Section 3.2).

We can also prove that E[⟨vw, v′w⟩] = 0 and V[1d⟨vw, v
′
w⟩] ∝ 1

d as long as vw, v′w are independent
(Assumption 2). As the couples of words occurring with themselves tend to have medium to large
PMI values (as shown by the heat plot of subfigure 6b), they pull the regression line up, hence the
experimental slope increases with the dimension. This phenomenon can be observed for window
size 10 as well. Although the experimental slopes are decreasing, according to Table 4, if we look
at the ratio of the experimental slope to the theoretical one, this ratio increases and goes beyond 1
as dimension grows. Perhaps, when the window size is large enough, the discussed phenomenon
is compensated by more points in the blue group. Still, from Table 4, equation (27) seems to hold
better than equation (25).

We also remark that for larger corpora the results were slightly better, especially regarding the
slope values. For q = 2, the intercept values are close to 1, which is not coherent with the theoretical
zero value. When the window size is greater than 2, the theoretical intercept is γ = log q(q − 1)/2
according to equation (27). For window size q = 10, the theoretical intercept is γ ≈ 3.81. In all
cases, there is a discrepancy between the experimental intercept and the theoretical one.
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(a) d=50 (b) d=100

(c) d=200 (d) d=300

Figure 5: Plot of PMI vs. 1
d⟨vw, vw′⟩ successively for dimensions 50, 100, 200 and 300 based on

corpus 1, for window size q = 2. In red, couples of words occurring with themselves. This figure
shows that experimental slope is increasing with respect to the dimension, for this corpus. We can
also observe the separation of two different groups of couples of words.

It remains important to visualize the shape of the plot. Figure 7 provides the plots of the
experiments for different corpus sizes. Also, a heat plot is provided in order to consider the density
of the plotted points. We observe that the larger the corpus, the larger the upper bound of PMI. And
for this part of the plot, that is large PMI values, the linear relationship predicted by equation (25)
seems nonexistent. We also observe the high discrepancy of the dot product values when PMI ≈ 0.
This point will be discussed further. Finally, the discrepancy observed between the shape of the plots
in Figure 7, namely the missing edge in top of the surface of subfigure 7a, is due to the removal of
stopwords from corpus 1.

Experiments using GloVe In order to avoid being restricted to SN word embeddings, the relation
between PMI and the scalar product was also tested for GloVe word vectors. From Table 4, we
can see that the relationship is practically nonexistent for GloVe. In view of the efficiency and
popularity of GloVe, it is therefore possible to claim that the relation discussed is not necessary
for word vectors to perform well on semantic and syntactic tasks. We recall that the GloVe word
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(a) Based on corpus 1, q = 2, d = 1000. (b) Heat plot of plot 6a only showing words co-occurring
with themselves. It shows that these couples of words
typically have a large PMI.

(c) Based on corpus 2, q = 2, d = 1000.

Figure 6: Plot of PMI vs. 1
d⟨·, ·⟩ and Pearson’s linear correlation denote Corr(·, ·). We can distinguish

three groups of points from left to right. The experimental slope seems to be mostly determined by
the first and second groups.

vectors were pretrained on Wikipedia 2014 and the corpus Gigaword 5 for a total of 6 billion tokens.
Therefore, as they have not been trained on the same corpus as the SN word vectors, we want to
make it clear that we are not comparing the two. Instead, we are checking whether what we know
are performant word vectors, like GloVe, verify relation (25).

3.2 Discussion

In this subsection, we discuss the relation claimed in Theorem 5 (and Corollary 6) between PMI
and the dot product of the model’s word embeddings. First, we show that a distribution discrepancy
exists in equation (24), restricting the possible domain of validity of this equation. Then, we provide
empirical and theoretical arguments to restrict the domain where the claimed theorem can be valid
with ϵ ≈ 0. Finally, we examine granular examples of some regions of the plots in Figure 7 to argue
that equation (25) cannot hold due to the intrinsic difference between PMI and the dot product.
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(a) Based on corpus 1 (b) Based on corpus 2

(c) Based on corpus 3. Only a point in two was plotted. (d) Heat map of the plot based on corpus 3

Figure 7: Experiments on equation (25) for d = 50. x-axis: ⟨vw, vw′⟩; y-axis: PMI(w,w′). Green
line: theoretical linear relationship predicted by the equation. Red line: result of the linear regression.

DISTRIBUTION DISCREPANCY IN EQUATION (24)

The experiments conducted to verify equation (24) show that it is not empirically verified by
infrequent words. Figure 8, similarly to Figure 2 in (Arora et al., 2016), shows that a linear
relationship can possibly exist only when log p(w) > −9 or 1

d ||vw||
2 > 1.5, although the slope of

this linear relationship does not match with the theoretical one.
We also provide a theoretical argument, using Assumption 2 to claim that equation (24) does not

hold for infrequent words. To this end, we need an auxiliary lemma.

Lemma 7 Let X ∈ Rd a real-valued random vector drawn from the spherical Gaussian distribution
in Rd. Then, for all z ∈ R,

P(
1

d
||X||2 ≥ z) = 1− Φ

(
(z − 1)

√
d

2

)
+O(

1√
d
) (32)

where Φ is the cumulative distribution function of the standard normal distribution.

Proof Left in the Appendix.
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Figure 8: Experiments on equation (24). Green line: theoretical relation predicted. Red line: result
of the partial linear regression. Based on corpus 2 and SN word embeddings with d = 50, w = 2.

Lemma 7 proves that 1
d ||vw||

2 concentrates around the value 1 for a large enough value of the
dimension, for word vectors verifying Assumption 2. On the other hand, from empirical observation,
the logarithm of word frequency seems to follow a shifted exponential distribution with a shift very
distant from the mean of 1

d ||vw||
2. Hence, as shown by Figure 9, there is a distribution discrepancy

between 2(log p(w)+ logZ) and 1
d ||vw||

2 which strongly restricts the possible domain of validity of
equation (24). In fact, even if the value of logZ allowed the means of both distributions to be close
enough, an important variance discrepancy remains and restricts the range of values where equation
(24) can hold. This range is such that 2 log pZ > 0, which is equivalent to log p > − logZ ≈ −9.72.
This is coherent with Figure 8, which shows that a linear relationship exists when log p > −9.

Figure 9: Density estimation for 2(log p(w) +
logZ) and 1

d ||vw||
2. Based on corpus 2 and

SN word embeddings with d = 50, w = 2.

Figure 10: Density estimation for log p(w).
Based on corpus 2 and SN word embeddings
with d = 50, w = 2.

RESTRICTION OF THEOREM 5
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From the results displayed in Figure 7c, we can compare the empirical upper bound of PMI and that
of 1

d⟨·, ·⟩. We empirically observe maxPMI ≈ 15 and max 1
d⟨·, ·⟩ ≈ 4. This shows that, at least in

the region where PMI ≫ 4, we cannot have PMI ≈ 1
d⟨·, ·⟩.

We prove this incompatible range of values to exist for any given corpus, as demonstrated by
Proposition 8 below, under mild assumptions about the distribution of occurrences and co-occurrences
shown in Assumption 4.

Assumption 4 (Distributional assumptions for Proposition 8) For every words w,w′ in the finite
vocabulary V , we consider the real-valued random variables

f(w) ≜ − log p̄(w),

f(w,w′) ≜ − log p̄(w,w′)

where p̄(w), p̄(w,w′) are from Eq. (30).
We also define

f(w|w′) ≜ f(w,w′)− f(w′), PMI(w,w′) ≜ f(w) + f(w′)− f(w,w′),

and make the following assumptions:

• −f(w) + s ∼ Exp(λ)

• ∀β > 0, f(w|w′)|(f(w) > β) ∼ N (µβ, σ
2
β)

for some λ, s > 0, and ∀β > 0, µβ, σβ ≥ 0.

Intuitively, −f(w) represents the natural logarithm of frequency for word w and PMI its induced
empirical estimation of PMI.

We can experimentally verify that these distributional assumptions hold for the datasets used.
For example, for corpus 2, the distributional assumptions hold with a very good approximation for
β = 12, σ = 1

λ = 1.5, s = 13.8 (cf. Figure 10 for the distributional assumption on f(w)).
We introduce the following notations used in Proposition 8:

• m1 ≜
∑

w∈V Xw

• m2 ≜
∑

(w,w′)∈V×V Xw,w′

Proposition 8 Let V be a finite vocabulary. Suppose the word vectors {vw}w∈V ⊂ Rd verify
Assumption 2 (with κ = 1), and Assumption 4. Then, given ϵ > 0, ∃M ⊂ V × V , with P((w,w′) ∈
M) > 0, ∀(w,w′), such that if d = ⌈ 1

ϵa+2 ⌉, a > 0, then with high probability over the word vectors:

∀(w,w′) ∈M, PMI(w,w′) > max
V×V

1

d
⟨vw, vw′⟩+ ϵ, (33)

more precisely

∀(w,w′) ∈M, P
(
PMI(w,w′) > max

V×V

1

d
⟨vw, vw′⟩+ ϵ

)
≥ 1− e−

1
4ϵa +O(ϵ1+

a
2 ) (34)
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Furthermore, when m1,m2 −→ +∞, we have:

∀(w,w′) ∈M, PMI(w,w′) ≥ max
V×V

1

d
⟨vw, vw′⟩+ ϵ (35)

and

∀(w,w′) ∈M, P
(
PMI(w,w′) ≥ max

V×V

1

d
⟨vw, vw′⟩+ ϵ

)
≥ 1− e−

1
4ϵa +O(ϵ1+

a
2 ) (36)

Proof For every α, ϵ > 0, we define

Mα ≜ { (w,w′) ∈ V × V | f(w|w′) < α, f(w) > α+ ϵ+ 1 }

using the notations introduced in Assumption 4.
First, we prove that for a small enough ϵ > 0, there exists α > 0 such that:

∀(w,w′) ∈Mα, PMI(w,w′) > 1 + ϵ (37)

and P(Mα) ≜ P((w,w′) ∈Mα) > 0.
Indeed, for every ϵ > 0 and (w,w′) ∈Mα:

PMI(w,w′) = f(w) + f(w′)− f(w,w′) = f(w)− f(w|w′) > −α+ α+ 1 + ϵ = 1 + ϵ

Moreover, from the distributional assumptions (Assumption 4), for β = α+ ϵ+ 1, we have for
every α > 0

P(Mα) = P((w,w′) ∈Mα) = P(f(w|w′) < α|f(w) > β)× P(f(w) > β)

= Φβ(α)(1− exp(λ(1 + ϵ+ α− s)))1α≤s−1−ϵ

where Φβ is the cumulative distribution function of N (µβ, σ
2
β).

Clearly, a small enough ϵ and large enough s such that α̂ = s− 1− 2ϵ > 0 imply P(Mα̂) > 0.
Second, we prove that, for any ϵ > 0, we have with high probability over the word vectors

max
V×V

1

d
⟨vw, vw′⟩ ≤ 1 + ϵ/2 (38)

We recall that maxV×V
1
d⟨vw, vw′⟩ = maxV

1
d ||vw||

2, due to the Cauchy–Schwarz inequality.
Therefore, (38) is equivalent to

max
V

1

d
||vw||2 ≤ 1 + ϵ/2

By Lemma 7, we know that

P(max
V

1

d
||vw||2 ≥ 1 + ϵ/2) = 1− Φ

(
ϵ

2

√
d

2

)
+O(

1√
d
) (39)

We then conclude that
lim

d→+∞
P(max

V

1

d
||vw||2 ≥ 1 + ϵ/2) = 0

showing that (38) holds with high probability over word vectors for a sufficiently large dimension.
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Using (37) and (38), we obtain that there exists a set M ⊂ V ×V such that P((w,w′) ∈M) > 0
and with high probability over word vectors for a sufficiently large dimension:

∀(w,w′) ∈M, PMI(w,w′) > max
V×V

1

d
⟨vw, vw′⟩+ ϵ/2

Moreover, we can obtain an asymptotic lower bound of the probability over word vectors for this

inequality to hold, using Equation (39) and that Φ(x) > 1− e−
x2

2 , for every x > 0. We can then set
d = ⌈ 1

ϵa+2 ⌉, a > 0 to obtain the stated lower bound.
It remains to prove that almost surely

lim
m1,m2→+∞

PMI(w,w′) = PMI(w,w′)

where m1, m2 denote the total number of occurrences and co-occurrences respectively.
For that, it is enough to prove that for every w,w′ ∈ V , we almost surely have{

limm1→+∞ f(w) = − log p(w)

limm2→+∞ f(w,w′) = − log p(w,w′)

Let Vi ≜ 1Oi=w be the variable indicating whether word w appears in token i of the corpus, i.e.
equal to 1 if Oi = w and 0 otherwise.

Therefore
exp(−f(w)) = 1

m1
(
∑
i

1Oi=w)

Since V1, . . . , Vm1 are i.i.d., then due to the strong law of large numbers, we have almost surely:

lim
m1→+∞

exp(−f(w)) = p(w)

Thanks to the continuity of − log, we have almost surely:

lim
m1→+∞

f(w) = − log p(w)

We similarly prove that

lim
m2→+∞

f(w,w′) = − log p(w,w′)

We then conclude the desired result.

Remark on Proposition 8: The statement of Proposition 8 mentions that Inequality (35) is
obtained when m1,m2 −→ +∞. For simplicity, we omitted to mention that this inequality is obtained
almost surely. The almost sure convergence stems from the frequency of word counts converging to
the probability of word occurrences once m1,m2 −→ +∞.

Experiments based on corpus 2 show that the set M , found in Proposition 8 with latent parameter
α = 10 and for ϵ = 1, can be as large as 15% of {(w,w′) ∈ V × V| p(w,w′) > 0}. Moreover, the
couple of words having the largest error (with respect to Eq. (25)), which has an order of magnitude
of 10 for corpus 2 (see Figure 3), can be found in the set M .
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In an attempt to find a restricted domain where the claimed relation is valid, we added the
frequency rank (denoted R(w) for word w) as a third dimension to the plot of PMI and ⟨·, ·⟩. The
plot displayed in Figure 11a shows that couples (w,w′) for which the linear relation of Theorem 5
fails to hold are in general couples of infrequent words. This is not coherent with the fact that,
according to (Arora et al., 2016), “very frequent words [...] do not fit our model”. However, this is
not surprising when we consider that Equations (23) and (24) seem to hold5 better for very frequent
words. In fact, in the objective function for SN word vectors (see Eq. (28)), very frequent pairs of
words have the largest weights. Moreover, they are involved in a great number of terms, since they
co-occur with a lot of words. Therefore, this can explain why the model fits better for very frequent
words.

(a) (b)

(c)

Figure 11: Plot of PMI(w,w′), ⟨vw, v′w⟩ with max(R(w), R(w′)) in the first and third figures, and
with min(R(w), R(w′)) in the second figure, where R(w) is the frequency rank of word w. Based
on corpus 2 and SN word embeddings with d = 50, w = 2. Green line: theoretical relation. Red
line: linear regression.

5. from a correlation point of view
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When we restrict the third dimension, that is max(R(w), R(w′)), to have a threshold maximum
value of 5006, the relation seems to hold better (see Figure 11c).

Table 5: PMI, scalar product and cosine similarity of words sampled from the corpus. The experiment
was made using SN word embeddings on corpus 3.

Word 1 Word 2 PMI Scalar product Cosine similarity

notre dame 10 79 0.85
obama barack 10 81 0.92

Table 6: Words with low PMI and large scalar product

Word 1 Word 2 PMI Scalar product Cosine similarity

many several -0.82 134 0.90
march general 0.77 80 0.55

Table 7: Words with scalar product ≈ 0 and relatively large PMI

Word 1 Word 2 PMI Scalar product Cosine similarity

schools newsweek 3.02 5 0.05
schools moldovan 2.58 -5 -0.05
schools ugandan 2.45 8 0.09

ON THE INTRINSIC DIFFERENCE BETWEEN PMI AND THE DOT PRODUCT

We advocate that PMI and the dot product, although they both encode similarity between words,
do not encode the same type of similarity. While PMI(w,w′) yields large values for words w and
w′ which co-occur more often than if they were independent, it merely takes into account "the
company [the word] keeps" (Firth, 1957). On the other hand, the scalar product ⟨vw, vw′⟩ of word
embeddings trained on the non-zero entries of a global word-word co-occurrence matrix, like SN and
GloVe, captures not only co-occurrences of w and w′ but also those of other related words as well.
Furthermore, PMI usually requires large corpora because of its unreliability with low occurrence
words (see (Role and Nadif, 2011) for full details on the difficulties related to handling low occurrence
events for PMI).

In order to understand the difference between PMI and the inner product of word vectors, we can
distinguish three situations of couples of words: both frequent, both infrequent, one frequent and the
other infrequent. Given these types, we can distinguish three regions in the plot of Figure 11a. It
can be inferred from the first two plots of Figure 11 that the top region of the surface corresponds in
great part to couples of infrequent words. The bottom right region corresponds to couples of frequent
words. The bottom left corresponds to couples made of a frequent and an infrequent word.

When both words are infrequent and happen to co-occur, it is very likely that they have large
PMI and scalar product values. This explains the shape of the top region of the surface on the plot.

6. That is, a couple of word is left only if at least one of the two words of the couple is in top 500 most frequent words.
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This part of the plot is the most interesting as it is where the major outliers of Theorem 5 live. These
values always exist in natural language. To illustrate this, Table 5 contains an example of very large
values of PMI. Usually, these words would rarely appear without their partner word, thus the large
PMI value. The scalar product and cosine similarity are also large which is coherent for such words
that rarely appear without the other.

Table 6 contains a sample of words from the region of high discrepancy around the 0 PMI value
in Figure 7. This is an example of very similar words, as inferred by the cosine similarity and scalar
product, with low PMI values. Especially for the words ’many’ and ’several’ which are similar but
will almost never appear together7, thus the low PMI value. The scalar product was able to capture
the similarity because it had access to all the contexts of ’many’ and ’several’ and inferred that these
were similar.

In Table 7 we can see a sample of words with scalar product ≈ 0 and positive8 PMI value. We can
give the following explanation for ’schools’ and ’moldovan’ for example: ’moldovan’ is a relatively
rare word and it happens that it naturally occurs often (relatively to the frequency of ’moldovan’)
with ’schools’, thus the PMI value. But these words are completely different semantically, thus the
scalar product value. This is another example of unwanted behavior of PMI for low occurrence
words.

Finally, an important difference between the scalar product and PMI can be observed for words
occurring with themselves. For this type of co-occurrences, the scalar products are naturally the
largest. However, the PMI values can be anywhere from negative to large positive values: words ’the’
and ’her’ have a dot product of 98 and PMI value of -1.26, while ’as’ and ’well’ have a dot product
of 136 and PMI value of 4.58. In fact, this last example is the exact type of co-occurrences causing
the bottom-right edge on the scatter plot (see subfigure (c) of Figure 7). This further justifies how a
strict linear relationship between PMI and scalar product can hardly exist unless an unacceptably
high error term is tolerated.

The next section demonstrates that if the error term is dropped from Eq. (27), the equality cannot
hold because it would imply that the corresponding shifted symmetric PMI matrix should be positive
semidefinite which, as we shall show ahead, may be violated by natural language.

4. Relation with implicit matrix factorization

The experimental results of Section 3 point in the direction that Equation (27) is not verified in
practice with a small noise level ϵ. In this section we shall prove that, as long as a symmetric PMI
matrix is considered, (27) cannot hold if the noise ϵ vanishes. To this end, we will show that the
shifted symmetric PMI matrix fails to be positive semidefinite when considering natural language.

In (Levy and Goldberg, 2014), it was shown that the optimization problem solved in skip-gram
with negative sampling (Mikolov et al., 2013b) corresponds to an implicit matrix factorization:

∀w, c, ⟨vw, vc⟩ = PMI(w, c)− β, (40)

where β = log k, k is the number of “negative samples” and PMI(w, c) corresponds to an entry of an
asymmetric (usually rectangular) word-context PMI matrix. Each context is defined by a window of

7. Usually, redundancy is avoided in writings and such interchangeable words would not be used together.
8. These values are relatively large as it is useful to notice that when PMI(w,w′) ≈ 3, words w and w′ are 20 times

more likely to co-occur than if they were independent.
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size q around each token wℓ, i.e wℓ−q, . . . , wℓ−1, wℓ+1, . . . , wℓ+q is the context for the word/token
wℓ. In (40), vw, vc ∈ Rd for a suitable dimension d.

If we consider a matrix V whose rows are the vectors vw, and C a matrix whose rows are the
vectors vc, then (40) can be written in matrix form as

V C⊤ =M − β1|V |1⊤|C|, (41)

where M is a |V | × |C| matrix with entries Mwc = PMI(w, c) and 1m denotes the vector of ones in
Rm. The singular value decomposition (Golub and Van Loan, 1996) ensures that (41) holds for some
d = rank(V C⊤) ≤ rank(M) + 1.

In view of relation (27), one may wonder whether (40) also holds for a symmetric PMI matrix:
here the vocabularies of words and contexts are the same.

In fact, in (Arora et al., 2016, pg. 389) one finds: “This [Equation (27) in Corollary 6] is also
consistent with the shift β for fitting PMI in (Levy and Goldberg, 2014b), which showed that without
dimension constraints, the solution of skip-gram with negative sampling satisfies PMI(w,w′)− β =
⟨vw, vw′⟩ for a constant β that is related to the negative sampling in the optimization. Our result
justifies via a generative model why this should be satisfied even for low dimensional word vectors.”

Let us consider a symmetric PMI matrix M with entries Mww′ = PMI(w,w′) and assume that
there exists a scalar β such that

∀w,w′, ⟨vw, vw′⟩ = PMI(w,w′)− β. (42)

Suppose the vocabulary is finite (of size n), and since PMI(w,w′) = PMI(w′, w), we can write
(42) in matrix form as

V V ⊤ =M − β11⊤,

where V is a n× d matrix whose rows contain the vectors vw ∈ Rd, and 1 ∈ Rn denotes the vector
of ones.

Since V V ⊤ is symmetric positive semidefinite, we obtain that, for every vector y ∈ Rn

0 ≤ y⊤(M − β11⊤)y = y⊤My − β(1⊤y)2.

In particular, taking y ∈ {1}⊥, we have

∀y ∈ {1}⊥, y⊤My ≥ 0. (43)

Let w and w′ be a pair of words for which p(w,w′) > 0, p(w,w) > 0, p(w′, w′) > 0, and
choose y = ew − ew′ ∈ {1}⊥, where ew, ew′ are canonical vectors of Rn. Thus,

y⊤My =(ew − ew′)⊤M(ew − ew′) =Mww − 2Mww′ +Mw′w′

=PMI(w,w)− 2PMI(w,w′) + PMI(w′, w′)

= log
p(w,w)

p(w)p(w)
− 2 log

p(w,w′)

p(w)p(w′)
+ log

p(w′, w′)

p(w′)p(w′)

= log p(w,w)− 2 log p(w,w′) + log p(w′, w′).

From (43) and the last equality we obtain

log
p(w,w)p(w′, w′)

p(w,w′)2
≥ 0
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or, equivalently,
p(w,w′)2 ≤ p(w,w)p(w′, w′). (44)

However, this inequality is violated by a pair of words w and w′ for which p(w,w) and p(w′, w′)
are quite small when compared to p(w,w′), i.e words that appear repeated in very few windows but
co-occur considerably more as illustrated in the following examples based on the statistics for the
“corpus 2”:

◦ Example 1: If we consider w = professional and w′ = wrestler, then p(w,w′) = 4.51×10−6 and
p(w,w) = 2.09× 10−7 and p(w′, w′) = 5.26× 10−8. In this case p(w,w′)2 > p(w,w)p(w′, w′).

◦ Example 2: If we consider w,w′ as the pair of words well, done (respec.), we have log p(w,w) ≈
−14.7547, log p(w′, w′) ≈ −17.5806 and log p(w,w′) ≈ −13.9783, which shows that
2 log p(w,w′) > log p(w,w) + log p(w′, w′), i.e inequality (44) does not hold.
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Figure 12: Spectrum of PMI matrix M for “corpus 2” (in blue). In red, the 100 smallest/largest
eigenvalues of M restricted to the subspace {1}⊥.

Hence, condition (44), which is a necessary condition for (42), can be violated with natural
language, thereby invalidating the claim (42), regardless the dimension d and the constant β.

Figure 12 shows the 100 largest/smallest eigenvalues of M restricted to {1}⊥ for “corpus 2”.
The presence of negative eigenvalues shows that (43) is violated.

Since (42) does not hold, independently of d and β, we conclude that Equation (27) cannot hold
with an arbitrarily small noise/error O(ϵ). Interestingly, as n and d increase, the noise ϵ is dominated
by O(ϵ1), where ϵ1 is the presumably “small” constant in Assumption 3.

5. Conclusion

The concentration property plays an important role for the theoretical foundations of the relation
between PMI and the scalar product of word vectors. It allows to conduct an analysis of the joint
distribution of words in contexts, which would be difficult - if not intractable - otherwise. This
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relation was further used to justify the analogies conjecture (“semantic relations=lines”) of several
popular PMI-based word embeddings (Mikolov et al., 2013b; Arora et al., 2016). In this work, we
first proved in Section 2 and with Proposition 4, that the concentration property also holds for very
simple distributions of the word and context vectors, independently of Assumptions 1 and 2. More
precisely, the concentration property is holding with isotropy and uniformity on word vectors in a
centered cube of Rd, and such that latent discourse vectors belong to a sufficiently thin annulus. We
remark this concentration property was empirically verified for certain common word embedding
methods (Arora et al., 2016, cf. Section 5.1). Also, Proposition 4 shows that any generative model
such that P(wt = w|ct) ∝ exp(⟨vw, ct⟩), combined with Assumption 3, broadens the relation
between PMI and scalar product to a larger class of word and context embeddings.

As the experiments in Arora et al. (2016) did not address the main relation (Equation (25))
claimed by Theorem 5, our work includes extensive experiments on this relation. The empirical
verification of the equations listed by Theorem 5 and Corollary 6 strongly suggests that the claimed
linear relation between PMI and the inner product of word embeddings does not hold in practice
unless a large error term O(ϵ) is tolerated. Moreover, the statistical discussion in Section 3.2
provides empirical and theoretical evidences of the existence of a range of values where the linear
relation cannot hold. These experimental findings concerning the violation of Equation (25) (and
Equation (27)) – with error terms dropped – are further corroborated by the theoretical analysis of
Section 4 which shows that the desired linear relation ⟨vw, vw′⟩ = PMI(w,w′)− β implies in the
positiveness of the symmetric PMI matrix in a certain subspace, but such condition can be violated
by natural language. Therefore, even when word vectors verify all the assumptions of Arora et al.
(2016) (which we have shown not to be necessary for the concentration property to hold) we can
observe that they fail to satisfy Equation (27) with small error. We believe that different reasons may
be responsible for this failure.

First, the optimization schemes may fail to retrieve the embeddings satisfying the relations
between PMI and their scalar product with lowest possible error, which motivates other types of loss
functions and optimization schemes.

For example, in Khalife et al. (2021) the loss function is the sum of terms (PMI(w,w′) −
⟨vw, vw′⟩)2 over all pairs (w,w′) for which w or w′ is in the top-m most frequent words.

Second, the geometries used to construct the word embeddings may be inadequate. We showed
that fitting PMI on Euclidean inner product cannot be done without error, and the current schemes
do not allow even to retrieve word embeddings fitting PMI with relative small discrepancy. In this
sense, our study suggests to investigate alternative geometries to construct word embeddings where
the relation between PMI and Gramian matrices emerges more naturally. An example of alternative
geometry we think of is Hyperbolic geometry (cf. for instance Marconi et al. (2020)).

Finally, although the concentration property is empirically verified for common word vectors,
suggesting Assumption 2 or the slightly weaker assumptions of Proposition 4 are reasonable in
practice, the impossibility of PMI equation to hold for every word pair with arbitrarily small error (cf.
Proposition 8 and Section 4), even for n and d sufficiently large, indicates that Assumption 3 is not
satisfied with a small ϵ1. Hence the model assumptions are too strong to have everything matched
up exactly. Although this is not enough to fundamentally reject the considered generative model, it
certainly exposes its limitations. Nevertheless, the equations in Theorem 5 and Corollary 6 may still
be useful and allow to make predictions about high frequency word pairs.
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Appendix A: Proofs of technical lemmata

Lemma 3 Let L > 0 and consider the function f : Rd −→ R defined by:

f(c) =

d∏
i=1

{
sinh(Lci)

ci
if ci ̸= 0

L otherwise
(8)

Then Ψ = log(f) verifies the assumptions of Lemma 1.

Proof In order to simplify the expressions, we will consider that L = 1 but the general case can be
treated similarly. First, let us consider the function

ϕ : x 7→

{
sinh(ci)
ci

if ci ̸= 0

1 otherwise

and in the following, let ψ = log ϕ.

i) First, ψ is twice continuously differentiable. Indeed, ψ is continuous on R and limx→0 ψ
′(x) = 0,

so with the derivation extension theorem, ψ is differentiable at 0 and ψ′(0) = 0. We use the same
reasoning with ψ′ and show that ψ is twice differentiable on R, with ψ′′(0) = 1

3 .

ii) ψ is strictly convex because ϕ is strictly logarithmically convex. Indeed,

∀x ̸= 0 ϕ(x)ϕ′′(x)− ϕ′(x)2 =
−1− 2x2 + cosh(2x)

2x4
> 0

where the strict inequality can be deduced from the Taylor series of cosh.

iii) ψ is even since ϕ is. Besides, as proved in i), we have ψ′(0) = 0 and ψ′′(0) = 1
3 . Furthermore,

for x ̸= 0:

ψ′′(0)− ψ′(x)

x
=

1

3
− ψ′(x)

x
=

1

3
− 1

sinh(x)

(
cosh(x)

x
− sinh(x)

x2

)
and

ψ′′(x)− ψ′(x)

x
=− x

coth(x)

sinh(x)

(
cosh(x)

x
− sinh(x)

x2

)
+

x

sinh(x)

(
−2

cosh(x)

x2
+ 2

sinh(x)

x3
+

sinh(x)

x

)
Now, let us prove:

iv) ∀x ̸= 0, ψ′′(0)− ψ′(x)
x > 0

v) ∀x ̸= 0, ψ′′(x)− ψ′(x)
x < 0

vi) x 7→ ψ′(x)
x is injective on R+∗.
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After some algebraic manipulations, we remind that:

ϕ′(x) =
x coshx− sinhx

x2
, ϕ′′(x) =

(x3 + 2x) sinhx− 2x2 coshx

x4

In particular:

ψ′(x) =
ϕ′(x)

ϕ(x)
=
x coshx− sinhx

x sinhx
=

coshx

sinhx
− 1

x
= cothx− 1

x

=

(
1

x
+
x

3
− x3

45
+ · · ·

)
− 1

x
=
x

3
− x3

45
+ · · · (45)

Now, let us consider the function q be defined as:

q(x) =


ψ′(x)

x
x ̸= 0

1
3 otherwise

After some algebraic manipulation and Taylor series expansion of coth, we obtain

∀x ̸= 0 q(x) =
−1 + x cothx

x2
=

−1 + x

(
1

x
+
x

3
− · · ·

)
x2

=
1

3
− x2

45
+ 2

x4

945
− · · · (46)

and

q′(x) =
2− x(cothx+ x csch2 x)

x3

with limx→0 q
′(x) = 0. Since x(cothx+ x csch2 x) > 2, for x ̸= 0, we obtain: ψ′(x)

x = q′(x) < 0,
for all x > 0. This proves that the function q is injective on R+∗. Property vi) is proved.

Similarly, we obtain q′(x) > 0, for all x < 0, implying that q(0) = 1
3 is the global maximum:

∀x ∈ R, q(x) ≤ 1/3.

Moreover,

ψ′′(x) =
ϕ′′(x)ϕ(x)− ϕ′(x)2

ϕ(x)2
=

1

x2
− csch2 x =

1

x2
−
(

1

x2
− 1

3
+
x2

15
− · · ·

)
=

1

3
− x2

15
+ · · ·

implying

∀x ̸= 0 ψ′′(0)− ψ′(x)

x
=

1

3
− q(x) > 0

showing Property iv).
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Finally, for x ̸= 0:

ψ′′(x)− ψ′(x)

x
=

2− x(cothx+ x csch2 x)

x2
< 0

proving v).

Lemma 7 Let X ∈ Rd a real-valued random vector drawn from the spherical Gaussian distribution
in Rd. Then, for all z ∈ R,

P(
1

d
||X||2 ≥ z) = 1− Φ

(
(z − 1)

√
d

2

)
+O(

1√
d
) (32)

where Φ is the cumulative distribution function of the standard normal distribution.

Proof Let Xk be the k-th component of vector X ∈ Rd for k ∈ {1, . . . , d}. Since X is drawn from
the spherical Gaussian distribution, then for all k ∈ {1, . . . , d}, X2

k is chi-squared distributed and
E[X2

k ] = 1,V[X2
k ] = 2. Therefore, by using the Central Limit Theorem applied to the squared

components of X , we have for all ẑ ∈ R

P(
√
d

2
(
1

d
||X||2 − 1) ≤ ẑ)

d→∞−−−→ Φ(ẑ)

Moreover, since ρ ≜ E[|X2
k − 1|3] < ∞, then thanks to the Berry–Esseen theorem, there exists

C > 0 such that
|Fd(z)− Φ(z)| ≤ Cρ

σ3
√
d

where Fd(ẑ) ≜ P(1d ||X||2 ≤ 1 + ẑ
√

2
d) and σ2 ≜ E[(X2

k − 1)2].

Since P(1d∥X∥2 ≤ z) = P(
√

d
2(

1
d∥X∥2− 1) ≤ (z− 1)

√
d
2), by using ẑ = (z− 1)

√
d
2 , we then

conclude the desired result.

Lemma 9 With the same notations as in Section 3, given the relation (Arora et al., 2016, arxiv
version 8., Eq. 2.13):

E[⟨vw + vw′ , c⟩] = (1 + ϵ) exp(
vw + vw′

2d
) (47)

Then:

log p(w) =
||vw||2

2d
− logZ ± ϵ′

for ϵ′ = O(ϵz) + Õ(1/d) +O(ϵ1).

Proof We recall that p(w,w′) denotes the probability of words w and w′ appearing together in
a window of size q in the corpus. Moreover, p(w) and p(w′) denote the corresponding marginal
probabilities and vw, vw′ ∈ Rd the respective word vectors.
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From Equation (2.6) in Arora et al. (2016), we have

p(w,w′) = Ec,c′
[
exp ⟨vw, c⟩

Zc
· exp ⟨vw

′ , c′⟩
Zc′

]
And since for all c, Zc =

∑
w exp ⟨vw, c⟩, we then have

p(w) =
∑
w′

p(w,w′)

=
∑
w′

Ec,c′
[
exp ⟨vw, c⟩

Zc
· exp ⟨vw

′ , c′⟩
Zc′

]

= Ec,c′
[
exp ⟨vw, c⟩

Zc

(∑
w′

exp ⟨vw′ , c′⟩
Zc′

)]

= Ec
[
exp ⟨vw, c⟩

Zc

]
The concentration property of the partition function allows Zc = (1±O(ϵz))Z

Therefore

p(w) =
(1±O(ϵz))

Z
Ec [exp ⟨vw, c⟩]

by neglecting the event where Zc /∈ [(1− ϵz)Z, (1 + ϵz)Z].
We can then write

p(w) =
(1±O(ϵz))

Z
(1± ϵ)(1 + ϵ1) exp

||vw||2

2d

with ϵ = Õ(1d), thanks to Eq. 47 with vw′ = 0.
We then conclude the desired equation by introducing the log function on this last result.

References

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model
approach to PMI-based word embeddings. Transactions of the Association for Computational
Linguistics, 4:385–399, 2016.

Sanjeev Arora, Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli. A compressed sensing
view of unsupervised text embeddings, bag-of-n-grams, and lstms. In Proceedings of the 6th
International Conference on Learning Representations (ICLR), 2018a.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic
structure of word senses, with applications to polysemy. Transactions of the Association for
Computational Linguistics, 6:483–495, 2018b.

34



FURTHER RESULTS ON LATENT DISCOURSE MODELS AND WORD EMBEDDINGS

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model
approach to PMI-based word embeddings, 2019. URL https://arxiv.org/abs/1502.
03520.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

John Rupert Firth. A synopsis of linguistic theory. 1957.

G. A. Golub and C.F. Van Loan. Matrix Computations, 3rd edition. The John Hopkins University
Press, London, 1996.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Sammy Khalife, Leo Liberti, and Michalis Vazirgiannis. Geometry and analogies: a study and
propagation method for word representations. In International Conference on Statistical Language
and Speech Processing, pages 100–111. Springer, 2019.

Sammy Khalife, Douglas Gonçalves, and Leo Liberti. Distance geometry for word embeddings and
applications. 2021.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factoriza-
tion. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 27, pages 2177–
2185. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5477-neural-word-embedding-as-implicit-matrix-factorization.pdf.

Gian Marconi, Carlo Ciliberto, and Lorenzo Rosasco. Hyperbolic manifold regression. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 2570–2580. PMLR, 2020.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013b.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

Francois Role and Mohamed Nadif. Handling the impact of low frequency events on co-occurrence
based measures of word similarity. 2011.

35

https://arxiv.org/abs/1502.03520
https://arxiv.org/abs/1502.03520
http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf
http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf


KHALIFE, GONÇALVES, ALLOUAH AND LIBERTI

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

36


	Introduction
	Result on the Concentration of the Partition Function
	Preliminaries
	Main Inequality

	Relation between PMI and scalar product
	Experimental verification
	Discussion

	Relation with implicit matrix factorization
	Conclusion
	Appendix

