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Abstract. The Maximum Concurrent Flow Problem (MCFP) is often
used in the planning of transportation and communication networks. We
discuss here the MCFP with incomplete data. We call this new prob-
lem the Incomplete Maximum Concurrent Flow Problem (IMCFP). The
main objective of IMCFP is to complete the missing information assum-
ing the known and unknown data form a MCFP and one of its optimal
solutions. We propose a new solution technique to solve the IMCFP
which is based on a linear programming formulation involving both pri-
mal and dual variables, which optimally decides values for the missing
data so that they are compatible with a set of scenarios of different in-
complete data sets. We prove the correctness of our formulation and
benchmark it on many different instances.

Keywords: Maximum concurrent flow, multi-commodity flow problems,
incomplete data, unknown data, uncertainty, inverse optimization, trans-
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1 Introduction

Network flows have been introduced long ago (see, e.g.,[12], enhanced later by
[11]) to tackle single commodity flow problems, such as the max-flow problem.
Since then, these models have been generalized for multiple commodities [20]
and grouped under the label of multi-commodity flow models. Nowadays, multi-
commodity flow formulations are extensively used in many contexts for their
ability to capture the movements of different types of commodities in various
real-world activities such as people in transportation models, data in telecommu-
nication networks, water flows... (see, e.g.,[1]). These formulations are generally
used to help make the best cost-effective solution for allocating resources; this
leads to optimize a cost function.

In real-world applications, the available data are often uncertain or incom-
plete, and their actual values may only be revealed at a time when the overall
decision strategy has already been chosen. This is often the case in transporta-
tion systems where the parameters are time-dependent and event-sensitive. Sta-
tistical inference and data mining represent convenient ways to deal with this
uncertainty. One of the best known inference models in transportation systems is



the Four Step Model [18], which is an algorithm that iterates over time according
to an equilibrium criterion. More recently, a lot of attention has been devoted
to machine learning approaches, which generally performs better on large scale
datasets. In this context, [21] proposes bayesian networks and [17] uses a deep
learning approach to forecast flow in transportation systems.

However, optimization methods that deal with uncertainty actually do exist.
To the best of our knowledge, [10] was the first to propose a stochastic approach
to tackle incompleteness of input data. It assumes that uncertain data follow
some given probability distribution, and that the objective of this approach is
not to optimize a certain cost, but an expected cost instead. On the other hand,
[22] proposed a complementary approach by optimizing a robust criterion such as
the worst case or the maximum regret. This particular method received renewed
attention from [6] and [7], while [5] applies this approach to multi-commodity
flow problems by considering a polyhedral uncertainty set of demands. Later, [3]
mixed the recourse variables introduced in [10] with the robust approach for a
network flow and design problem.

Optimization methods can also be used to optimally fit experimental mea-
surements. In [15], multi-commodity flow optimization is used to model a gas
transportation network while retrieving missing data. The problem discussed in
[15] consists in recomposing the flow on each arc, knowing only the global amount
of incoming and outgoing flows for each node. The problem of finding a minimal
adjustment of the cost function to ensure the optimality of a given solution gen-
erated a particular interest with [9] under the label of inverse optimization. For
example [2, 23] apply this concept to multi-commodity flow problems (especially
min cost flow problem). The survey [14] on this subject includes situations where
the inverse problem seeks parameters other than objective function coefficients.

The Maximum Concurrent Flow Problem (MCFP) has been extensively stud-
ied over time [20, 8, 4], but in this paper we present a new approach for finding
optimal maximum concurrent flows using incomplete data. Our method seeks
optimal solutions and completes the partial input. This problem typically arises
when we have insights about the global behavior of a system while data are
partially unknown [15]. Symmetrically it can validate/invalidate a hypothetical
behavior by comparing it with the observed data. This is particularly relevant
in transportation when the routing strategy of passengers is known while data
are incomplete. We call this problem Incomplete Maximum Concurrent Flow
Problem (IMCFP).

The rest of this paper is organized as follows: Section 2 recalls the MCFP
and presents the IMCFP. In Section 3 we propose a formulation for the IMCFP
by integrating both primal and dual formulations of the MCFP, and prove its
correctness based on the complementary slackness conditions of Linear Program-
ming (LP), which we recall for convenience [16]. Then, in Section 4 we present
preliminary experiments for these formulations and their practical interest. Fi-
nally, Section 5 concludes the paper.
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2 The maximum concurrent flow

Consider the following (well-known) problem.

MCFP. Given a simple directed graph G = (V,A), an arc capacity
function c : A → R+, a set K of triplets k = (o, d,D) ∈ V 2 ×R+, find: a
scalar γ ≥ 0 (called threshold) and a set of flows fk on G for each k ∈ K

such that (i) for each arc a ∈ A, the arc load of f on a (i.e., the sum
of the flows on a) does not exceed the arc capacity ca; (ii) each “o− d”
flow fk has value γD for each k = (o, d,D) ∈ K; (iii) γ is maximum.

We recall that, for a given k = (o, d,D) ∈ K, a flow f having value D in a graph
G from node o to node d is a non-negative arc function f : A → R+ such that

∑

j∈N−(d)

fjd −
∑

j∈N+(d)

fdj = D and the following flow balance equations hold (we

omit k index for clarity):

∀i ∈ V r {o, d}
∑

j∈N−(i)

fji =
∑

j∈N+(i)

fij . (1)

We also recall that N−(i) is the set of nodes j such that (j, i) ∈ A and N+(i)
such that (i, j) ∈ A, for each i ∈ V .

The MCFP was introduced in [20]. It can be formulated as follows using LP:

max
γ≥0,f≥0

γ

∀k = (o, d,D) ∈ K
∑

j∈N−(d)

fk
jd = γD +

∑

j∈N+(d)

fk
dj

∀k = (o, d,D) ∈ K, i ∈ V r {o, d}
∑

j∈N−(i)

fk
ji =

∑

j∈N+(i)

fk
ij

∀a = (i, j) ∈ A
∑

k∈K

fk
a ≤ ca.


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(2)

Its dual is (one can choose appropriate inequalities instead of equalities for the
first and second sets of constraints of (2)):

min
p≥0,u≥0

∑

a∈A

uaca

∀k = (o, d,D) ∈ K, ∀a = (i, j) ∈ A, pki + ua ≥ pkj
∀k = (o, d,D) ∈ K, pko = 0

∑

k=(o,d,D)∈K

pkdD ≥ 1























(3)

where ua, (for a ∈ A) are the dual variables associated to the capacity constraints
(last set of constraints of (2)) and pki (for k ∈ K, i ∈ V ) are the dual variables as-
sociated to the flow conservation constraints (first and second sets of constraints
of (2)). This implies that the MCFP is polynomial-time solvable (for example
with an interior point algorithm). The MCFP is also strongly polynomial-time
solvable [19], but it appears to be common knowledge that, for instance sizes of
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current practical interest, it is empirically more efficient to use a good LP solver
on Problem (2) rather than the algorithm in [19]. The MCFP is often used in
real-life applications in order to design networks or evaluate the arcs with high-
est risk of becoming saturated [13]. The main applied interest in the MCFP is
that, through the ratio variable γ, it ensures a fairness of arc capacity utilization
over all flows.

Our motivation for studying this problem stems from transportation net-
works, be they road or rail-oriented. As a critical increase of the load can induce
a decrease of the quality of services, an hypothesis consists of assuming that the
passengers traffic tends naturally to balance itself to an equilibrium [18]. One
can model this problem by minimizing the maximum capacity utilization, and
the latter can be reformulated as a MCFP [20]. In our context, we have historical
traffic data including a partial observation of the arc loads for a certain subset of
arcs. For some networks, we are also given a subset A′ ⊂ A of arcs with known
capacities.

In general, however, we do not know the arc capacities. The problem we are
interested in is the MCFP with incomplete arc capacities. The MCFP in LP
formulation (2) without the capacity constraints is clearly an unbounded LP. To
avoid this situation, we employ a given set S of scenarios from our historical arc
load database. Each scenario s = (As, ℓs,Ks) ∈ S consists of a subset As ⊂ A

of arcs, a partial arc load function ℓs : As → R+, and a set of commodities Ks.
We require that: (i) missing capacities should be estimated so as to allow the
maximum known arc loads over all scenarios, (ii) arc loads from computed flows
should be as close as possible to the loads given in the scenarios, and (iii) each
flow solution for a scenario should describe an optimal solution of the MCFP
w.r.t. capacity and commodity values. We therefore define the following problem,
which is new as far as we could ascertain.

IMCFP. Given a graph G = (V,A), a subset A′ ⊂ A, a partial arc
capacity function c : A′ → R+, and a set S of scenarios (As ⊂ A, ℓs,Ks)
where ℓs : As → R+ and Ks is a set of triplets k = (o, d,D) ∈ V 2 ×R+,
find: a threshold function γ : S → R+, a complementary arc capacity
function c : A \ A′ → R+, and a set of flows fsk (for s ∈ S and for
k ∈ Ks) such that (i) for each arc a ∈ A and for each s ∈ S, the arc load
of f on a is bounded above by ca; (ii) for each s ∈ S and arc a ∈ As, the
arc load of f on a is as close as possible to the arc load γsℓ

s
a; (iii) for each

s ∈ S, the flows f s and γs should be optimal with respect to an MCFP
defined over the capacities ca over all a ∈ A and the commodities Ks.

Although the IMCFP is natively cast in a multi-objective fashion (see condition
(ii)), in practice we minimize a max norm over all arcs and all scenarios. We
remark that condition (iii) is only apparently recursive: we want to decide f, c

at the same time and also require that every f s should be optimal flows w.r.t. a
putative MCFP instance defined over the values of the c variables and the Ks

parameters. We shall see below that the IMCFP can be formulated by means
of a Mixed-Integer Linear Programming formulation that combines both primal
and dual variables.
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3 The IMCFP

In this section we shall first introduce a Mixed-Integer Linear formulation for
the IMCFP, and then prove its correctness.

3.1 Formulation

– Sets:

• V : set of nodes
• A: set of arcs
• S: set of scenarios
• Ks: set of commodities for scenario s

• A′: subset of arcs from which the capacity is known
• As: subset of arcs from which the load is known.

– Parameters:

• k = (o, d,D) for k ∈ Ks, s ∈ S: commodity data (origin o ∈ V , destina-
tion d ∈ V , demand value D ∈ R+)

• ℓs : As → R+: load function over the arcs As for each scenario s ∈ S

• c : A′ → R+: capacity function over the arcs A′

• Mw: “Big M” parameter associated to the binary weights w
• Mf : “Big M” parameter associated to the binary flows x.

– Decision variables:

• f sk
a ≥ 0 for a ∈ A, s ∈ S, k ∈ Ks: flow variable of arc a ∈ A, for scenario
s ∈ S and demand k ∈ Ks

• γs ≥ 0 for s ∈ S: threshold variable for scenario s ∈ S

• pski ≥ 0 for i ∈ V, s ∈ S, k ∈ Ks: potential variable (dual variable from
MCFP’s conservation constraint) for node i, scenario s, and demand k

• us
a ≥ 0 for a ∈ A, s ∈ S: weight variable (dual variable from MCFP’s

capacity constraint) for arc a ∈ A and scenario s ∈ S

• ws
a ∈ {0, 1} for a ∈ A, s ∈ S: binary variable that allows for a corre-

sponding weight us
a to be greater than 0 or not

• xsk
a ∈ {0, 1} for a ∈ A, s ∈ S, k ∈ Ks: binary variable that allows for a

corresponding flow f sk
a to be greater than 0 or not

• ∆ ≥ 0: maximal difference between the load parameters with the com-
puted ones

• ca ≥ 0 for a ∈ A \A′: capacity variable of arc a.

– Objective function:

min
f,γ,p,u,w,x,c

∆. (4)

– Constraints:

• flow conservation:

∀s ∈ S, ∀k = (o, d,D) ∈ Ks, ∀i ∈ V \ {o, d}
∑

j∈N−(i)

f sk
ji =

∑

j∈N+(i)

f sk
ij

(5)
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• demand satisfaction:

∀s ∈ S, ∀k = (o, d,D) ∈ Ks
∑

j∈N−(d)

f sk
jd −

∑

j∈N+(d)

f sk
dj = γsD (6)

• min-cost node access:

∀s ∈ S, ∀k ∈ Ks, ∀(i, j) ∈ A pski + us
ij − pskj ≥ 0 (7)

• min-cost path condition:

∀s ∈ S, ∀k ∈ Ks, ∀(i, j) ∈ A pski + us
ij − pskj ≤ 1− xsk

ij (8)

• origin access:

∀s ∈ S, ∀k = (o, d,D) ∈ Ks psko = 0 (9)

• complementary slackness condition on capacity:

∀s ∈ S, ∀a ∈ A ca ≤
∑

k∈Ks

f sk
a +Mw(1 − ws

a) (10)

• binary flow constraint:

∀s ∈ S, ∀k ∈ Ks, ∀a ∈ A f sk
a ≤ Mfxsk

a (11)

• binary weight constraint:

∀s ∈ S, ∀a ∈ A us
a ≤ ws

a (12)

• dual weights constraint:

∀s ∈ S
∑

a∈A

us
a = 1 (13)

• threshold bound:
∀s ∈ S, ∀a ∈ As ca ≥ γsℓ

s
a (14)

• feasibility bound:

∀s ∈ S, ∀a ∈ A
∑

k∈Ks

f sk
a ≤ ca (15)

• max norm (i):

∀s ∈ S, ∀a ∈ As ∆ ≥ γsℓ
s
a −

∑

k∈Ks

f sk
a (16)

• max norm (ii):

∀s ∈ S, ∀a ∈ As ∆ ≥
∑

k∈Ks

f sk
a − γsℓ

s
a. (17)
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The model aims at minimizing the maximal error ∆, which is the absolute
value of the difference for each scenario and each arc between the load of f and
the load γsℓ

s
a (see constraints (16) and (17)) as stated in condition (ii) of the

IMCFP. Constraints (5) and (6) are flow conservation constraints already men-
tioned in (1). Constraints (7), (8), (9), and (11) provide the system that ensures
the optimality of the routing in the sense of the weights u, which correspond to
the dual variables in (3) of capacity constraint in MCFP (2). Constraints (10)
and (12) describe the slackness conditions for the dual variables of the capac-
ities. Constraint (13) ensures a feasible dual solution of (3) for each scenario.
Finally, Constraints (15) and (14) guarantee the feasibility of (2) as condition
(i) of IMCFP. Note that ca of (14), (15), and (10) can either be a parameter or
a variable, depending whether a is in A′ or not. The condition (iii) of IMCFP
follows by Proposition 1 and Theorem 2 (below).

3.2 Correctness

Proposition 1 Let f = (fk
a | a ∈ A, k ∈ K) ≥ 0 and γ ≥ 0 be a feasible flow

solution of the MCFP (2) and p = (pki | k ∈ K, i ∈ V ) ≥ 0 and u = (ua | a ∈
A) ≥ 0 be a feasible solution of its dual (3). These two assertions are equivalent:

1. (a) ∀a ∈ A, we have ua(ca −
∑

k∈K

fk
a ) = 0

(b) ∀a = (i, j) ∈ A, ∀k ∈ K, we have fk
a (p

k
i + ua − pkj ) = 0

(c)
∑

a∈A

ua > 0

2. f and γ are optimal for the MCF (2), and p and u (both scaled by
∑

k=(o,d,D)∈K

pkdD) are optimal for its dual (3).

Proof. 2⇒1: If f and γ (resp. p and u) are optimal for (2) (resp. for (3)), the com-
plementary slackness conditions [16] state immediately the first two equations.
The third complementary slackness condition of MCFP states

∑

k∈K

pkdD = 1.

Therefore, (3) ensures there exists a so that ua > 0, meaning
∑

a∈A

ua > 0.

1⇒2: If
∑

a∈A

ua > 0 and ∀a ∈ A, ua ≥ 0, there exists a ∈ A so that ua > 0.

The first condition implies that for this a we have ca =
∑

k∈K

fk
a . We can assume

the arcs have a non-zero capacity (otherwise the arc should not have existed),
meaning there exists a k = (o, d,D) for which fk

a > 0. The second condition im-
plies that going through this arc satisfies the “min cost path condition”, meaning
pkd ≥ ua > 0. We can then construct Q =

∑

k=(o,d,D)∈K

pkdD > 0. Choose u′
a so

that u′
a = ua

Q
, and, for each k = (o, d,D) ∈ K, p′

k
d =

pk

d

Q
. Then we trivially have

∑

k=(o,d,D)∈K

p′
k
dD = 1. Substituting u by u′ and p by p′, one can observe that

∀a ∈ A, ua(ca −
∑

k∈K

fk
a ) = 0 and ∀a = (i, j) ∈ A, ∀k ∈ K fk

a (p
k
i + ua − pkj ) = 0
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still hold and (u, p) becomes a feasible solution of (3). The proposition follows
from the LP complementary slackness conditions [16]. ⊓⊔

Theorem 2 Given a graph G = (V,A) and a feasible solution (f, c) of IMCFP,
for each s ∈ S, fs corresponds to an optimal solution of an MCFP with respect
to c and Ks.

Proof. Let us choose a s ∈ S. f s is feasible for MCFP (2) with parameters
c and Ks due to (5), (6), (15). ps and us describes a feasible solution of (3)
with parameters c and Ks due to (13) and (7) (one can scale the solution to
ensure

∑

k=(o,d,D)∈Ks

pskd D ≥ 1 ). The combination of (10) and (12) ensure the

first slackness condition, as us
a = 0 if the ca −

∑

k∈Ks

f sk
a > 0. Constraints (7)-

(8) validate the second slackness condition. The third slackness condition is
obtained by (13). Proposition 1 validates the optimality of f s for MCFP (2)
with parameters c and Ks. As it holds for each s ∈ S, it concludes the proof. ⊓⊔

4 Numerical results

We can solve IMCFP instances by simply formulating them as the Mixed-Integer
Linear Program in Sect. 3.1 and solving them using an off-the-shelf solver. By
the polynomial number of constraints and variables of our formulation, we know
that the decision version of IMCFP is inNP. Although the MCFP is polynomial-
time solvable, our IMCFP formulation introduces the need of binary variables
to ensure optimality among the different scenarios, meaning it is still an open
question whether IMCFP is NP-complete or not. To solve all the following
instances, we solved the IMCFP model with the MILP solver IBM CPLEX
12.6 with default settings and a time limit of 1200 CPU seconds on a personal
computer (Intel Core i7-6820HQ 2.70 GHz, 16 GB DDR3 RAM). All graphs
used in the following experiments are based on the topology of the Paris subway
network, often restricted to the left bank. Therefore, each node represents a
connection between one or more different metro lines, and each arc represents a
section of a line. The network is strongly connected, meaning we can generate
complete sets of demands (|K| = (|V | − 1)|V |). The demand value for each
commodity k ∈ K is an integer uniformly chosen in the interval [1, 10].

Firstly, to evaluate the prediction performance of the proposed formulations,
we generated integer capacities for the MCFP in the interval [1, 15] and then
calculated an optimal solution of MCFP for each scenario of demands, keeping
the same capacities C among them. It allows us to give the total configuration
of loads ℓsa and Ks as input where an optimal solution with zero ∆ value exists.
This let us compare the computed capacities in A \ A′, with those we chose to
construct our instances of MCFP (the generated ones). Secondly, we generated
ℓsa, K

s, and ca according to a feasible flow solution (in terms of conservation
and capacity constraints) which is not MCFP compliant (i.e., whose input data
do not follow an optimal MCFP solution pattern). The second set of instances
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aims at observing how our model deals with data based on a wrong hypothesis
(structure of an optimal solution of MCFP) and, hence, how the objective value
is impacted. Moreover, we studied the impact of the quantity of known and

unknown data by giving a fixed percentage of capacities for MCFP ( |A
′|

|A| × 100)
as an input.

The resulting tables are organized as follows. The number of nodes (|V |) and
arcs (|A|) are reported in the caption of each table. The proportion of known
capacities is specified in the first column “C(%)”. The rest of the table is divided
in 3 subsets of columns, 4 for each value of cardinality of S. The four columns
report: (i) the amount of capacities “c(%)” that has been successfully predicted
(the percentage of successfully predicted capacities may be lower than the given
ones due to the truncation process of “C(%)|A′|”); (ii) the maximal absolute
gap (“Gap”) observed between the predicted capacities and the generated ones;
(iii) the CPU time in seconds “T (s)” (we denote termination due to time limit
by *); and (iv) objective value “∆”.

|S| = 3 |S| = 4 |S| = 5

C(%) c(%) Gap T (s) ∆ c(%) Gap T (s) ∆ c(%) Gap T (s) ∆

0 42.11 13.00 2.95 0.00 42.11 14.00 4.31 0.00 63.16 7.00 6.11 0.00
10 60.53 9.72 2.64 0.00 65.79 11.00 3.07 0.00 63.16 9.00 7.43 0.00
20 68.42 11.00 2.12 0.00 71.05 10.00 118.00 0.00 73.68 10.00 4.82 0.00
30 60.53 14 1.83 0.00 78.95 8.58 4.48 0.00 76.32 9.00 ∗ 0.04
40 44.74 12.83 2.18 0.00 81.58 6.00 3.00 0.00 73.68 13.00 5.40 0.00
50 84.21 10.46 2.14 0.00 86.84 6.00 3.31 0.00 78.95 11.77 6.80 0.00
60 81.58 10.00 2.59 0.00 81.58 7.00 4.12 0.00 89.47 13.00 14.09 0.00
70 81.58 9.26 2.01 0.00 89.47 9.00 2.11 0.00 84.21 12.72 6.05 0.00
80 86.84 12.00 2.56 0.00 97.37 6.00 3.09 0.00 94.74 11.25 6.63 0.00
90 100.00 0.00 1.90 0.00 97.37 0.69 3.46 0.00 92.11 4.00 9.95 0.00

100 100.00 0.00 1.42 0.00 100.00 0.00 2.47 0.00 100.00 0.00 3.74 0.00

Table 1. IMCFP, Paris left bank subway network topology (|V | = 13, |A| = 38).
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|S| = 3 |S| = 4 |S| = 5

C(%) c(%) Gap T (s) ∆ c(%) Gap T (s) ∆ c(%) Gap T (s) ∆

0 13.40 12.50 ∗ 0.28 14.83 9.44 ∗ 3.66 64.60 12.11 ∗ 1.00
10 15.31 13.78 ∗ 0.33 17.70 11.84 ∗ 2.21 68.42 11.04 ∗ 3.15
20 67.46 12.53 ∗ 10.54 69.86 10.77 ∗ 5.20 60.29 13.21 ∗ 1.09
30 76.55 13.44 ∗ 2.00 74.16 12.45 ∗ 0.80 75.12 13.29 ∗ 0.71
40 73.68 13.41 ∗ 1.00 79.43 11.00 ∗ 1.52 76.56 12.04 ∗ 1.03
50 80.38 9.82 ∗ 1.00 54.07 12.54 390.44 0.00 84.21 11.54 ∗ 2.36
60 78.95 12.90 ∗ 0.33 86.12 11.43 ∗ 2.65 83.73 12.02 ∗ 9.00
70 73.2 13.02 ∗ 0.04 90.90 10.45 ∗ 3.00 90.43 9.16 ∗ 3.85
80 90.43 9.50 ∗ 2.00 92.34 10.61 ∗ 1.39 92.82 11.26 ∗ 6.03
90 90.43 12.94 ∗ 0.82 94.26 11.71 ∗ 5.00 97.13 12.10 ∗ 3.13

100 100.00 0.00 ∗ 3.00 100.00 0.00 ∗ 1.00 100.00 0.00 ∗ 1.83

Table 2. IMCFP, Paris subway network topology (|V | = 57, |A| = 209).

|S| = 3 |S| = 4 |S| = 5

C(%) c(%) Gap T (s) ∆ c(%) Gap T (s) ∆ c(%) Gap T (s) ∆

0 0 13.40 1.87 0.00 10.53 13.54 ∗ 0.2 5.26 11.97 8.25 0.00
10 15.79 12.62 ∗ 0.34 10.53 13.18 121.12 0.00 10.53 10.24 ∗ 0.15
20 23.68 14.06 ∗ 0.30 28.95 9.67 4.48 0.00 21.05 12.61 5.07 0.00
30 28.95 12.64 ∗ 0.00 28.95 13.66 4.31 0.00 31.58 13.53 4.1 0.00
40 39.47 11.36 ∗ 2.00 42.11 12.26 ∗ 0.95 50.00 12.89 ∗ 1.00
50 55.26 8.95 ∗ 3.17 50.00 11.93 6.50 0.00 57.89 10.09 ∗ 1.00
60 57.90 12.63 ∗ 0.43 57.89 9.55 ∗ 1.12 65.79 11.53 5.16 1.00
70 68.42 11.89 859.08 1.00 68.42 12.93 2.67 0.00 73.68 9.00 7.28 1.00
80 81.58 7.49 2.21 1.00 78.95 9.47 4.00 2.00 81.58 8.69 5.16 1.00
90 89.47 12.08 1.16 0.50 92.10 12.08 1.07 1.00 89.47 9.89 6.33 1.35

100 100.00 0.00 0.52 14.00 100.00 0.00 0.66 11.67 100.00 0.00 0.80 14.13

Table 3. IMCFP, Paris left bank subway network topology (|V | = 13, |A| = 38). Input
data not MCFP compliant.

The most striking thing one can note is the effectiveness of our methodology
in predicting arc capacities (see Table 1). Even if without insights of capacities
the prediction correctness remains low, it skyrockets to more than 50% of ad-
ditionnal correct predictions with only three scenarios. This can be explained
by the fact that even with few capacities the γs become strongly bounded. This
proportion of corrected predictions tends naturally to arise when more and more
capacity parameters are known, but the number of scenarios seems to remain a
strong source of insights for the network, especially when the number of known
capacities is low (see Table 2). However, the number of scenarios seems more
and more important as the size of the instance grows. Indeed, the average per-
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centage of correct predictions is quite close compared from |S| = 4 to |S| = 5
(around 81% for both) in the instances of Table 1 as if this increase did not
bring further information. But this average percentage rises from 70% to 79%
between |S| = 4 and |S| = 5 in the instances of Table 2. This could mean that
the larger the instance, the higher the number of required scenarios to reach a
similar prediction performance. It is also interesting to note that some of these
results are obtained without even reaching optimality, especially on the total
metro network instances, meaning that the routing problems are quite hard to
solve even when all capacities are known. This is confirmed by the amount of
time consumed by the instances when all the capacities are set. This suggests
that MCFPs are also quite hard to solve. This is a well-known result that moti-
vated the design of approximation schemes to solve it (see e.g. [8]). As one can
expect, confronted with inconsistent data (input data that do not follow a struc-
ture of an optimal solution of the MCFP), the prediction effectiveness does not
perform as well as the previous case (see Table 3). Nevertheless, our model often
tends to bring a solution that fits significantly the input loads, especially when
few capacities are known. Generally speaking, this means that a low objective
value does not guarantee necessarily that the MCFP pattern hypothesis on our
input data is right. However, when all capacities are set (A′ = A), this seems to
constraint drastically our model whose objective value skyrockets. Therefore, it
suggests that our model can still be used to validate/invalidate this hypothesis
on condition that all capacities are known.

5 Conclusion and future work

In this paper we studied a new problem called the IMCFP and proposed a so-
lution technique to tackle it. The purpose of the new formulation proposed is
to find a routing of commodities that fits input data at best (namely loads and
demand matrix) as [15]. But, in addition, the solution has to follow an optimal
structure of MCFP regarding a set of known and unknown data. The practi-
cal interest of the problem we discussed arises in transportation systems when
it comes to recompose unknown data assuming hypothesis of data structure
(namely a MCFP and one of its optimal solutions). Moreover, this formulation
can validate/invalidate hypothesis of a MCFP’s optimal routing by confronting
it to observed data. More theoretically, we showed that this problem can be tack-
led by embedding primal and dual formulations and complementary slackness
conditions all together into a single Mixed Integer Linear Program. We proved
the correctness of such models, and led experiments to emphasize empirical be-
haviours and computational hardness. Future work will focus on computational
performance improvements so that larger graphs can be treated.
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