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Abstract. Random projections are used as dimensional reduction tech-
niques in many situations. They project a set of points in a high dimen-
sional space to a lower dimensional one while approximately preserving
all pairwise Euclidean distances. Usually, random projections are ap-
plied to numerical data. In this paper, however, we present a successful
application of random projections to quadratic programming problems
subject to polyhedral and a Euclidean ball constraint. We derive approxi-
mate feasibility and optimality results for the lower dimensional problem.
We then show the practical usefulness of this idea on many random in-
stances, as well as on two portfolio optimization instances with over 25M
nonzeros in the (quadratic) risk term.

1 Introduction

In this paper we show that Random Projections (RP) can be applied to Quadratic
Programming (QP) problems subject to linear inequality constraints and a single
Euclidean ball constraint. We consider the following pair of QP formulations:

maxy y
>Q̃y + c̃>y

Ãy ≤ b̃
‖y‖2 ≤ R,

 (1)
maxx x

>Qx+ c>x
Ax ≤ b
‖x‖2 ≤ 1.

 (2)

In Eq. (1), y is a vector of n decision variables, Q̃ is a symmetric n× n matrix,
c̃ ∈ Rn, Ã is m × n, b̃ ∈ Rm, and R is a positive scalar. We also assume that
Ãx ≤ b̃ defines a full dimensional polyhedron and that b̃ ≥ 0 (this can be relaxed
by translation if a feasible point for Ãx ≤ b̃ is known). No assumption is made
on Q̃. Eq. (2) is a scaled version of Eq. (1), where Q = R2Q̃, c = Rc̃, A = Ã/µ
(where µ = maxj ‖Ãj‖2 and Ãj is the j-th column of Ã), and b = b̃/(Rµ). Given
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a solution x∗ of Eq. (2), then y∗ = Rx∗ is a solution of Eq. (1). Note that all
the columns of A are vectors of norm ≤ 1.

QP is now a ripe field with many applications (e.g., portfolio optimization,
constrained linear regression, stable set problem, maximum cut and many more).
The significance of the ball constraint is technical, but it could simply be inter-
preted to mean “bounded”, since for all bounded QPs we can find a large enough
R (in Eq. (1)) so that all solutions fall within a ball of radius R. In practice, how-
ever, if R is too large it might lead to ill scaling of Eq. (2). Note, however, that
Eq. (1) is interesting in its own right as it is the formulation of the well-known
trust region subproblem.

If we assume that all the data are rational, then the decision version of
Eq. (2) without the ball constraint is NP-complete [9]. Moreover, by [10, 11],
the decision version of Eq. (2) without the polyhedral constraints is in P (and
hence also in NP). For Eq. (2), one of the following applies: (i) some of the linear
inequalities are active at the optimum; (ii) the ball inequality is active at the
optimum; (iii) a combination of (i) and (ii); (iv) the optimum is unconstrained.
In the first two cases the results in [9–11] apply, and the problem is in NP. Case
(iii) falls in both of the first two categories, and the problem is still in NP. For
case (iv) we can tell apart optimality vs. unboundedness by testing whether Q
has negative eigenvalues or not [10]. Hence, the decision versions of Eq. (2) and
Eq. (1) are in NP.

RPs are random matrices which are used to perform dimensionality reduc-
tion on a set of vectors while approximately preserving all pairwise Euclidean
distances with high probability. The goal of this paper is the applicability of RPs
to bounded QPs such as those of Eq. (2). Specifically, we will define a projected
version of Eq. (2) and prove that it is likely to have approximately the same
optima as the original QP. We also perform a computational verification of our
claim and show that the theoretical results, which are asymptotic in nature, also
apply in practice.

RPs are usually applied to numerical data in view of speeding up algorithms
which are essentially based on Euclidean distances, such as k-means or k-nearest
neighbours. Since RPs ensure approximations of Euclidean distances by defini-
tion, it is perhaps not so surprising that they should work well in those settings.
The focus of the present work is the much more counter-intuitive statement that
a Mathematical Programming formulation might be approximately invariant (as
regards feasibiliy and optimality) w.r.t. randomly projecting the input parame-
ters. Similarly in spirit to our previous work on Linear Programming [13], but
using a different projection and proof techniques, the results of this paper are
independent of any solution algorithm, and largely independent of Euclidean
distances (barring the `2 ball bounding the feasible region, which is applied to
decision variables rather than data). While RPs have already been applied to
some optimization problems, these are usually unconstrained minimizations of
`2 norms and/or assume small Gaussian or doubling dimension of the feasible
set [15, 8]: two assumptions we do not make.
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The rest of this paper is organized as follows. In Sect. 2 we define RPs and
the projected QP. In Sect. 3 we introduce some theoretical results about random
projections. In Sect. 4 we prove the main theorems about RPs applied to QP.
In Sect. 5 we discuss computational results.

2 Definitions

RPs are simple but powerful tools for dimension reduction [15, 8, 12, 13, 4]. They
are often constructed as random matrices sampled from some given distribution
classes. The simplest examples are suitably scaled matrices sampled componen-
twise from independently identically distributed (i.i.d.) random variables with
Gaussian N(0, 1), uniform on [−1, 1], or Rademacher ±1 distributions. One of
the most important features of a RP is that it approximately preserves the norm
of any given vector with high probability. In particular, let P ∈ Rd×n be a RP,
e.g. sample every component of P from N(0, 1/

√
d). Then, for any x ∈ Rn and

ε ∈ (0, 1), we have

Prob

[
(1− ε)‖x‖22 ≤ ‖Px‖22 ≤ (1 + ε)‖x‖22

]
≥ 1− 2e−Cε

2d, (3)

where C is a universal constant (in fact a more precise statement should be
existentially quantified by “there exists a constant C such that. . . ”).

Perhaps the most famous application of RPs is the Johnson-Lindenstrauss
lemma [2]. It states that, for any ε ∈ (0, 1) and for any finite set X ⊆ Rn, there

is a mapping F : Rn → Rd, in which d = O( ln |X|
ε2 ), such that

∀x, y ∈ X (1− ε)‖x− y‖22 ≤ ‖F (x)− F (y)‖22 ≤ (1 + ε)‖x− y‖22.

Such a mapping F can be realized as the matrix P above. The existence of the
correct mapping is shown (by the probabilistic method) using the union bound.
Moreover, the probability of sampling a correct mapping can be made arbitrarily
high. In practice, we found that there is often no need to re-sample P .

In the following, all norm symbols ‖ · ‖ will be assumed to refer to the `2
norm ‖ · ‖2. We sample our RPs from Gaussian ensembles (in practice, we also
specify their density, see Sect. 5).

2.1 The randomly projected QP

Let P ∈ Rd×n be a RP. We want to “project” each vector x ∈ Rn to a lower
dimensional vector Px ∈ Rd. Consider the following projected problem:

max {x>(P>PQP>P )x+ c>P>Px | AP>Px ≤ b, ‖Px‖ ≤ 1}.

By setting u = Px, c̄ = Pc, Ā = AP>, Q̄ = PQP>, we can rewrite it as

max
u∈ Im(P )

{u>Q̄u+ c̄>u | Āu ≤ b, ‖u‖ ≤ 1}, (4)
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where Im(P ) is the image space generated by P . Since P is (randomly) generated
with full rank with probability 1, it is very likely to be a surjective mapping.
Therefore, we assume it is safe to remove the constraint u ∈ Im(P ) and study
the smaller dimensional problem:

max
u∈Rd

{u>Q̄u+ c̄>u | Āu ≤ b, ‖u‖ ≤ 1}, (5)

where u ranges in Rd. As we will show later, Eq. (5) yields a good approximate
solution of Eq. (2) with high probability.

3 Some properties of random projections

It is known that singular values of random matrices often concentrate around
their means. In the case when the RP is sampled from Gaussian ensembles, this
phenomenon is well-understood due to many current research efforts. The fol-
lowing lemma, which is proved in [16], uses this phenomenon to show that, when
P ∈ Rd×n is a Gaussian random matrix (with the number of row significantly
smaller than the number of columns), then PP> is very close to an identity
matrix. This gives an intuitive explanation as to why Eq. (5) has desirable ap-
proximate properties w.r.t. Eq. (2).

Lemma 3.1 ([16]). Let P ∈ Rd×n be a RP. Then for any δ > 0 and 0 < ε < 1
2 ,

with probability at least 1− δ, we have ‖PP> − I‖2 ≤ ε provided that

n ≥ (d+ 1) ln(2d/δ)/(C1ε2), (6)

where ‖ . ‖2 is the spectral norm of the matrix and C1 > 1
4 is some universal

constant.

This lemma also tells us that, when we go from low to high dimensions, with
high probability we can ensure that the norms of all the points endure small
distortions. Indeed, for any vector u ∈ Rd, then

‖P>u‖2 − ‖u‖2 = 〈P>u, P>u〉 − 〈u, u〉 = 〈(PP> − I)u, u〉 ∈ [−ε‖u‖2, ε‖u‖2],

due to the Cauchy-Schwarz inequality. Moreover, it implies that ‖P>‖2 ≤ (1+ε)
with probability at least 1− δ.

Condition (6) is not difficult to satisfy in practice, since d is often very small
compared to n. On the other hand, n should be large enough to dominate the
effect of 1

ε2 .

Lemma 3.2. Let P ∈ Rd×n be a RP satisfying Eq. (3) and let 0 < ε < 1. Then
there is a universal constant C0 such that the following statements hold.

(i) For any x, y ∈ Rn, 〈x, y〉 − ε‖x‖ ‖y‖ ≤ 〈Px, Py〉 ≤ 〈x, y〉 + ε‖x‖ ‖y‖ with

probability at least 1− 4e−C0ε
2d.
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(ii) Let 1 be the all-one vector. For any x ∈ Rn and A ∈ Rm×n having unit
row vectors, we have Ax−ε‖x‖1 ≤ AP>Px ≤ Ax+ε‖x‖1 with probability

at least 1− 4me−C0ε
2d.

(iii) For any two vectors x, y ∈ Rn and a square matrix Q ∈ Rn×n, then with

probability at least 1− 8 k e−C0ε
2d, we have:

x>Qy − 3ε‖x‖ ‖y‖ ‖Q‖∗ ≤ x>P>PQP>Py ≤ x>Qy + 3ε‖x‖ ‖y‖ ‖Q‖∗,

in which ‖Q‖∗ is the nuclear norm of Q and k is the rank of Q.

4 Approximate optimality

We now prove that the objective of the quadratic problem in Eq. (2) is approxi-
mately preserved under RPs. To do so, we study the relations between this and
two other problems:

(QP−ε ) max{u>PQP>u+ (Pc)>u | AP>u ≤ b, ‖u‖ ≤ 1− ε, u ∈ Rd}
(QP+

ε ) max{u>PQP>u+ (Pc)>u | AP>u ≤ b+ ε, ‖u‖ ≤ 1 + ε, u ∈ Rd}.

We first state the following feasibility result.

Theorem 4.1. Let P ∈ Rd×n be a RP. Let δ ∈ (0, 1). Assume further that
Eq. (6) holds for some universal constant C1 > 1

4 . Then with probability at least

1 − δ, for any feasible solution u of the projected problem (QP−ε ), P>u is also
feasible for the original problem in Eq. (2).

We remark the following universal property of Theorem 4.1: with a fixed prob-
ability, feasibility holds for all vectors u (instead of a given vector).

Proof. Let C1 be as in Lemma 3.1. Let u be any feasible solution for the projected
problem (QP−ε ) and take x̂ = P>u. Then we have Ax̂ = AP>u ≤ b and

‖P>u‖2 = 〈P>u, P>u〉 = 〈u, u〉+ 〈(PP> − I)u, u〉 ≤ (1 + ε)‖u‖2

with probability at least 1 − δ (by Lemma 3.1). This implies that ‖x̂‖ ≤ (1 +
ε/2)‖u‖; and since ‖u‖ ≤ 1 − ε, we have ‖x̂‖ ≤ (1 + ε/2)(1 − ε) < 1 with
probability at least 1− δ, which proves the theorem. ut

Let u−ε and u+ε be optimal solutions for these two problems, respectively.
Denote by x−ε = P>u−ε and x+ε = P>u+ε . Let x∗ be an optimal solution for the
original problem in Eq. (2). We will bound x∗>Qx∗ + c>x∗ between x−>ε Qx−ε +
c>x−ε and x+>ε Qx+ε +c>x+ε , the two values that are expected to be approximately
close to each other.

Theorem 4.2. Let P ∈ Rd×n be a RP, and let δ ∈ (0, 1). Let x∗ be an optimal
solution for the original problem Eq. (2). Then there are universal constants
C0 > 1 and C1 > 1

4 such that, if d ≥ ln(m/δ)/(C0ε2) and Eq. (6) are satisfied,
we will have the following two statements. (i) With probability at least 1− δ, the
solution x−ε is feasible for the original problem Eq. (2). (ii) With probability at
least 1− δ,

x−>ε Qx−ε + c>x−ε ≤ x∗>Qx∗ + c>x∗ ≤ x+>ε Qx+ε + c>x+ε + 3ε‖Q‖∗ + ε‖c‖.
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Proof. The constants C0 and C1 are chosen in the same way as before. (i) By
Thm. 4.1, with probability at least 1−δ, for any feasible point u of the projected
problem (QP−ε ), P>u is also feasible for the original problem Eq. (2). Therefore,
it must hold also for x−ε .

(ii) By Part (i) above, with probability at least 1 − δ, x−ε is feasible for the
original problem Eq. (2). Therefore, we have x−>ε Qx−ε +c>x−ε ≤ x∗>Qx∗+c>x∗

with probability at least 1− δ. Moreover, due to Lemma 3.2, with probability at
least 1− 8(k + 1)e−C0ε

2d, where k is the rank of Q, we have

x∗>Qx∗ ≤ x∗>P>PQP>Px∗ + 3ε‖x∗‖2 ‖Q‖∗ ≤ x∗>P>PQP>Px∗ + 3ε‖Q‖∗
and c>x∗ ≤ c>P>Px∗ + ε‖c‖ ‖x∗‖ ≤ c>P>Px∗ + ε‖c‖,

since ‖x∗‖ ≤ 1. Hence x∗>Qx∗+c>x∗ ≤ x∗>P>PQP>Px∗+c>P>Px∗+ε‖c‖+
3ε‖Q‖∗. On the other hand, let û = Px∗; due to Lemma 3.2, we have

AP>û = AP>Px∗ ≤ Ax∗ + ε‖x∗‖1 ≤ Ax∗ + ε1≤ b+ ε

with probability at least 1−4me−C0ε
2d (the last inequality holds by the assump-

tion b ≥ 0), and ‖û‖ = ‖Px∗‖ ≤ (1 + ε)‖x∗‖ ≤ (1 + ε) with probability at least

1− 2e−C0ε
2d (by Lemma 3.2). Therefore, û is a feasible solution for the problem

(QP+
ε ) with probability at least 1 − (4m + 2)e−C0ε

2d. Due to the optimality of
u+ε for the problem (QP+

ε ), it follows that

x∗>Qx∗ + c>x∗ ≤ x∗>P>PQP>Px∗ + c>P>Px∗ + ε‖c‖+ 3ε‖Q‖∗
= û>PQP>û+ c>P>û+ ε‖c‖+ 3ε‖Q‖∗
≤ u+>ε PQP>u+ε + (Pc)>u+ε + ε‖c‖+ 3ε‖Q‖∗
= x+>ε Qx+ε + c>x+ε + ε‖c‖+ 3ε‖Q‖∗,

with probability at least 1−(4m+6)e−C0ε
2d, which is at least 1−δ for the chosen

universal constant C0. Hence x∗>Qx∗+c>x∗ ≤ x+>ε Qx+ε +c>x+ε +3ε‖Q‖∗+ε‖c‖,
which concludes the proof. ut

The above result implies that the value of x∗>Qx∗ + c>x∗ lies between
x−>ε Qx−ε + c>x−ε and x+>ε Qx+ε + c>x+ε . It remains to prove that these two
values are not so far from each other. Let S∗ = {x ∈ Rn | Ax ≤ b, ‖x‖ ≤ 1}.
Since, by assumption, the feasible set of (2) is full dimensional, S∗ is also full
dimensional.

We associate with each set S a positive number full(S) > 0, which is consid-
ered as a fullness measure of S and is defined as the maximum radius of any closed
ball contained in S. Now, from our assumption, we have full(S∗) = r∗ > 0,
where r∗ is the radius of the greatest ball inscribed in S∗ (see Fig. 1, left).

The following lemma characterizes the fullness of S+
ε with respect to r∗,

where S+
ε = {u ∈ Rd | AP>u ≤ b + ε, ‖u‖ ≤ 1 + ε} is the feasible set of the

problem (QP+
ε ).
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Fig. 1. Left: fullness of a set. Right: idea of the proof of Thm. 4.4.

Lemma 4.3. Let S∗ be full-dimensional with full(S∗) = r∗. Then with prob-
ability at least 1 − 3δ, S+

ε is also full-dimensional with the fullness measure
full(S+

ε ) ≥ (1− ε)r∗.

The proof of this lemma extensively uses the fact that, for any row vector a ∈ Rn

sup‖u‖≤r a
>u = r‖a‖, which is actually the equality condition in the Cauchy-

Schwartz inequality.

Now we will estimate the gap between the two objective functions of the
problems (QP+

ε ) and (QP−ε ) using the fullness measure. The theorem states
that, as long as the fullness of the original polyhedron is large enough, the gap
between them is small. Fig. 1, right, gives the proof idea.

Theorem 4.4. Let 0 < ε < 0.1. Then with probability at least 1 − 4δ, we have

x−>ε Qx−ε +c>x−ε ≤ x+>ε Qx+ε +c>x+ε < (1+ε)2

(1−ε)2
(x−>ε Qx−ε +c>x−ε )+ ε

full(S∗) (36+18‖c‖).

Proof. Let B(u0, r0) be a closed ball with maximum radius that is contained in
S+
ε . In order to establish the relation between u+ε and u−ε , our idea is to move u+ε

closer to u0, so that the new point is contained in S−ε . Therefore, its objective
value will be less that the value of u−ε , but quite close to the objective value of u+ε .
We define û = (1−λ)u+ε +λu0 for some λ ∈ (0, 1): we want to find λ such that û is
feasible for (QP−ε ) while its corresponding objective value is not so different from
x+>ε Qx+ε +c>x+ε . Since for all ‖u‖ ≤ r0, AP>(u0+u) = AP>u0+AP>u ≤ b+ε.

Then AP>u0 ≤ b + ε − r0(‖A1P
>‖, . . . , ‖AmP

>‖)>. Therefore, we have, with
probability at least 1− δ,

AP>u0 ≤ b+ ε− r0(1− ε)(‖A1‖, . . . , ‖Am‖)> = b+ ε− r0(1− ε).

Hence AP>û = (1− λ)AP>u+ε + λAP>u0 ≤ b+ ε− λr0(1− ε) ≤ b+ ε− 1
2λr0,

since we can assume w.l.o.g. that ε ≤ 1
2 . Hence, AP>û ≤ b if we choose ε ≤

λ r0
2 . Furthermore ‖û‖ ≤ 1 + ε Hence, when we choose λ = 2 ε

r0
, then 1−ε

1+ε û

is feasible for the problem (QP−ε ) with probability at least 1 − δ. Therefore,
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1+ε
1−εu

−>
ε PQP>u−ε +(Pc)>u−ε is greater than or equal to û>PQP>û+(Pc)>û =

=
(
u+ε + λ(u0 − u+ε )

)>
PQP>

(
u+ε + λ(u0 − u+ε )

)
+ (Pc)>û

= u+>ε PQP>u+ε + λu+>ε PQP>
(
u0 − u+ε

)
+ λ(u0 − u+ε )>PQP>u+ε

+ λ2(u0 − u+ε )>PQP>(u0 − u+ε ) + (Pc)>û.

However, from Lemma 3.2 and the Cauchy-Schwartz inequality, we have

|u+>ε PQP>
(
u0 − u+ε

)
| ≤ ‖P>u+ε ‖ ‖Q‖2 ‖P>(u0 − u+ε

)
‖

≤ (1 + ε)2‖u+ε ‖ ‖Q‖2 ‖(u0 − u+ε
)
‖ ≤ 2(1 + ε)4 ‖Q‖2

(since ‖u+ε ‖ and ‖u−ε ‖ ≤ 1 + ε), and similarly for other terms. We then have

û>PQP>û ≥ u+>ε PQP>u+ε − (4λ+ 4λ2)(1 + ε)4 ‖Q‖2.

Since ε < 0.1, we have (1 + ε)4 < 2 and we can assume that λ < 1. Then we
have

û>PQP>û > u+>ε PQP>u+ε − 16λ‖Q‖2
= u+>ε PQP>u+ε − 32ε/r0 (since ‖Q‖2 = 1)

≥ u+>ε PQP>u+ε − 32ε/((1− ε)full(S∗)) (due to Lemma 4.3)

> u+>ε PQP>u+ε − 36ε/full(S∗) (since ε ≤ 0.1),

with probability at least 1− 2δ. Furthermore, we have

c>P>û = c>P>u+
ε + λc>P>(u0 − u+

ε ) ≥ c>P>u+
ε −

4(1 + ε)ε

r0
‖Pc‖.

We know that r0 ≥ (1− ε)r∗, hence

c>P>û ≥ c>P>u+
ε −

4(1 + ε)ε

r0
‖Pc‖ ≥ c>P>u+

ε −
4(1 + ε)2ε

(1− ε)r∗ ‖c‖,

with probability at least 1− δ. The results holds by ε < 0.1. ut

5 Computational results

Although we developed our theory for dense Gaussian RPs, in practice one can
decrease computational costs considerably by using sparsity [1, 3]. All of the
results of this paper, aside from Lemma 3.1, actually hold (unchanged) also for
sub-gaussian RPs. Amongst sub-gaussian RPs, we elect to use d × n matrices
where each component is sampled from N(0, 1√

d
) with some given probability

dens ∈ (0, 1). Although we are not going to include the generalization of Lemma
3.1 to sub-gaussian RPs here for lack of space, the proof exploits the fact that
the largest and smallest singular values of sub-gaussian RPs are approximately
the same.

All tests were carried out on a single core of a 4-CPU machine with 64GB
RAM, each CPU of which has 8 cores (Intel Xeon CPU E5-2620 v4@2.10GHz).
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5.1 Random instances

Our first computational test is carried out of randomly generated feasible in-
stances of Eq. (2) with Q negative semidefinite (we make this assumption in
order to compute guaranteed global maxima in acceptable CPU times for com-
parison purposes: the projection technique is independent of the convexity of the
objective function). We generate all instances varying the following parameters:
number of constraints m ∈ {10, 100, 1000}, of variables n ∈ {2000, 3000}, ran-
dom number generation distribution distr ∈ {0, 1} (choosing between uniform
distributions U(0, 1) and U(−1, 1)) and density dens ∈ {0.1, 0.6} for matrices A
and Q. As mentioned above, our RPs are sparse random Gaussian matrices P
with ε ∈ {0.10, 0.15, 0.20} and density densP ∈ {0.2, 0.5, 1.0}. This yields a to-
tal of 216 solution logs (all instances with all RP generation methods) obtained
using the IPOPT solver [14]. We benchmark means, standard deviations, maxi-
mum and minimum values for: (i) CPU time (solution of original vs. projected
problem to optimality, where the projected CPU time also includes RP sam-
pling, matrix multiplication and solution retrieval time); (ii) objective function

ratio ρ =
|f∗
org−f

∗
retr|

max(|f∗
org|,|f∗

retr|)
, where f∗org is the optimal objective function value of

Eq. (2) and f∗retr is the value of the objective function of Eq. (2) evaluated at the
solution retrieved from the projected problem Eq. (5); (iii) average feasibility
errors denoted ace, are, be for, respectively, Ax ≤ b, ranges −1 ≤ x ≤ 1 and
‖x‖ ≤ 1. All our coding was carried out in Julia+JuMP [5].

CPUorg CPUproj ρ ace are be

mean 37.691 14.590 0.103 0.0 0.0 2.237
stdev 49.984 15.057 0.070 0.0 0.0 0.916
min 8.750 2.170 0.000 0.0 0.0 0.921
max 198.350 61.340 0.485 0.0 0.0 3.886

Table 1. Computational results for random instances.

Table 1 shows a consistent behaviour of our projection technique: projected
formulations take considerably less time to solve (despite pre- and post-processing
steps), and yield solutions having objective function values within around 10% of
the optimum, with no feasibility error w.r.t. linear and range constraints. There
is a large ball error, however, which we are unable to explain at this time — we
are looking into it. Scaling the retrieved solution back to norm 1 yields a feasible
point but increases ρ considerably (to around 0.4 on average).

Table 2 shows the trade-off between approximation quality and efficiency in
function of the parameters ε and densP of the RP (blacker is better). The best
compromise appears to be achieved for ε = 0.15 and densP = 0.2.
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densP 0.2 0.5 1.0

ε CPUorg CPUproj ρ CPUorg CPUproj ρ CPUorg CPUproj ρ

0.10 37.57 19.91 0.07 37.90 21.02 0.06 37.76 24.36 0.07
0.15 37.56 11.26 0.10 37.81 11.95 0.09 37.78 12.16 0.11
0.20 37.50 10.04 0.14 37.71 10.30 0.15 37.62 10.32 0.14

Table 2. Trade-off between approximation and efficiency for ε and densP .

5.2 Two large portfolio instances

We consider two large-scale Markowitz portfolio [6, 7] instances where the ob-
jective is a scalarized version of risk minimization (using correlation rather than
covariance for better scaling) and return maximization. The system Ax ≤ b
encodes the portfolio constraints 0 ≤ x ≤ 1 (with −x ≤ 0 being part of the
inequality constraints) and

∑
j xj ≤ 1, which imply ‖x‖2 ≤ 1. The stock price

data were obtained from Kaggle (goo.gl/XHfhi2), and yielded fully dense Q
matrices. We have used the ε = 0.15 and densP = 0.2 RP settings obtained
from Table 2. Our results are presented in Table 3. The computational savings

Instance n nnz(Q) CPUorg CPUproj ρ ace are be

etfs 1344 902,496 534.32 11.38 0.270 0.026 0.001 1.570
stocks 7163 25,650,703 266,713.40 132.78 0.007 0.023 0.001 3.927

Table 3. Results for two large instances of Markowitz’ portfolio problem.

are remarkable, the optimal objective function values are within a reasonable
approximation ratio, but the retrieved solutions are slightly infeasible w.r.t. lin-
ear and range constraints. Specifically, some of the components of the retrieved
solutions are very slightly negative (0.001 for etfs and 0.0005 for stocks on
average), which is an issue we had also observed in applying RPs to Linear
Programs [13]. The ball errors are again high.

6 Conclusion

We prove that random projections can be used to generate lower dimensional
QPs, bounded by a Euclidean ball constraint, which have approximately the
same global optimum with arbitrarily high probability as their original counter-
parts. Computational results are exhibited to substantiate our claim and show
the applicability of our techniques.

As a corollary, we remark that our results are also applicable to reduce the
number of variables of inequality constrained LPs (with a Euclidean ball con-
straint), since there is no assumption on Q (so Q = 0 is a possibility). We are in
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the process of deriving theorems which ensure better bounds given this specific
structure.
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