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Abstract: An important problem in computational physical chemistry
is the determination of the three-dimensional structure of proteins.
Some information about protein structure can be obtained by using
Nuclear Magnetic Resonance (NMR) techniques, but they provide only
a sparse set of distances between atoms in a protein. The Molecular
Distance Geometry Problem (MDGP) consists in determining the three-
dimensional structure of a molecule using a set of known distances
between some atoms. Generally, the MDGP is expressed as a continuous
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optimization problem. Recently, a Branch and Prune (BP) algorithm
was proposed to calculate the backbone of a protein, based on a discrete
formulation for the MDGP. We present an extension of the BP algorithm
that can calculate not only the protein backbone, but the whole three-
dimensional structure of proteins. Since this new algorithm preserves
the combinatorial approach of the BP algorithm, it can potentially
find all solutions of the problem (generally, the methods based on the
continuous approach obtain just one solution). The proposed algorithm
was successfully tested to find all solutions of a commonly used test set
of proteins from the Protein Data Bank (PDB).
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problem; Protein structure; Computational physical chemistry
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1 Introduction

The function of a protein is determined by its chemical and three-dimensional
structures (Creighton, 1993). Some information about the protein structure can be
obtained by using Nuclear Magnetic Resonance (NMR) techniques, which are able
to give a measure of the distance between pairs of atoms that are not greater than
6Å (Schlick, 2002). The problem of finding the atomic positions of a molecule, when
only a given subset of atomic distances is known, is called the Molecular Distance
Geometry Problem (MDGP). In practice, the MDGP is solved by continuous
optimization methods (Lavor, 2007) which are usually capable to obtain just one of
all possible solutions for the problem (for a survey on MDGP methods, see Lavor
et al. (2009); Liberti et al. (2011)).

In 2006, Lavor et al. (2006) described an MDGP subclass called Discretizable
Molecular Distance Geometry Problem (DMDGP), including protein backbone
instances whose 3D structure could be computed by a discrete search algorithm
called Branch and Prune (BP) algorithm (Liberti et al., 2008). Other algorithms
exhibiting some similarities with BP algorithm can be found in Carvalho et al.
(2008); Wu et al. (2008).

We present an extension of the BP algorithm that can calculate not only the
protein backbone, but the whole three-dimensional structure of proteins. Since this
new algorithm preserves the combinatorial approach of the BP algorithm, it can
potentially find all solutions of the problem. This is important because we have
a list of all mathematical solutions and we can select one or some of them that
satisfy additional physical-chemical restrictions depending of the particular protein
under study. The proposed algorithm was able to efficiently find all solutions of
the problems associated to some of the most common test proteins in the MDGP
literature. All optimal configurations of 11 MDGP instances with roughly 200 to
2000 atoms were solved in just 50s of CPU time.

The remaining of the paper is organized as follows. Section 2 explains how the
whole protein structure is determined, first defining an ordering on atoms of the side
chain that satisfies the DMDGP assumptions (Section 2.1) and then presenting the
algorithm that calculates the whole protein structure (Section 2.2). Computational
results are presented in Section 3 and Section 4 concludes the paper.

2 Calculating the whole protein structure

Formally, the MDGP can be defined as the problem of finding Cartesian coordinates
x1, ..., xn ∈ R3 of atoms of a molecule such that

‖ xi − xj ‖= di,j , (i, j) ∈ S,

where S is the set of pairs of atoms (i, j) whose Euclidean distances di,j are known.
If all distances are known, the problem can be solved in linear time (Dong and Wu,
2002). In general, however, the problem is NP-hard (Saxe, 1979).

In Lavor et al. (2006) and Liberti et al. (2008), it was shown that under the
following assumptions, the MDGP can be formulated as a combinatorial problem,
called DMDGP:

1. all distances di−3,i, di−2,i, di−1,i must be known for i ∈ {4, . . . , n},
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2. the angles defined by each triplet of consecutive atoms cannot be equal to kπ
(for k ∈ Z),

for a given ordering on the atoms of the molecule.
The geometrical intuition behind the combinatorial formulation is that the i-

th atom lies on the intersection of three spheres centered at atoms i− 3, i− 2,
i− 1 having respective radii di−3,i, di−2,i and di−1,i. By assumptions above, the
intersection of the three spheres defines at most two points labeled i and i′ in
Figure 1. This allows us to express the position of the i-th atom in terms of
the preceding three, leading to the definition of a binary tree of possible atomic
positions, where solutions to the DMDGP can be searched. Pruning tests are
employed in order to discover infeasible atomic positions. As soon as an atomic
position is found to be infeasible, then the corresponding branch is pruned and
the search is backtracked. The pruning phase usually reduces the tree within
manageable sizes, so that an exhaustive search on the remaining branches is not
computationally expensive. As shown in Liberti et al. (2008), the instances of
DMDGP have a finite number of solutions with probability 1. The BP algorithm

Figure 1 Combinatorial formulation of the MDGP

proposed in Lavor et al. (2006) and Liberti et al. (2008) can only find the 3D
structure of protein backbones. In fact, a protein is composed of a backbone and
many side chains, which are always connected to one of the atoms of the backbone
and appear systematically on each three atoms of the backbone related to the amino
acids that define the protein (Creighton, 1993). When two amino acids bind during
protein synthesis, some of the atoms of their common parts are lost, while the
carbon atom C of the first amino acid binds to the nitrogen N of the second one.
Therefore, the protein backbone is formed by the sequence of atoms N − Cα − C.
The general structure of an amino acid is shown in Figure 2, where all atoms are
shown and the circle marked by R represents the atoms of the side chain.

Figure 3 illustrates a protein backbone with three side chains SC1, SC2 and
SC3 (there are 20 different side chains found in all proteins, varying from 1 to 18
atoms (Schlick, 2002)).
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Figure 2 General structure of an amino acid

Figure 3 The protein backbone and the side chains SC1, SC2 and SC3

When separated from their backbone, side chains are valid DMDGP instances.
Thus, to determine the whole protein structure, several instances of the DMDGP
should be solved. The difficulty lies in how to solve these instances in an efficiently
and integrated manner.

The algorithm that we developed integrates the calculation of the positions of
the atoms belonging to the protein backbone and also the positions of the atoms
belonging to the side chains. To consider the atoms of the side chains as instances
of the DMDGP, it was necessary to define an ordering on its atoms satisfying the
above assumptions 1 and 2.
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2.1 Defining an ordering on atoms of the side chains

Finding an atomic ordering on the side chains that satisfies the DMDGP
assumptions involves solving the Discretization Vertex Order Problem (DVOP),
defined as follows (Lavor et al., 2010):

Definition 1 Given a simple undirected graph G = (V,E) and a positive integer
K, establish whether there is an order < on V such that:

1. {v ∈ V | ρ(v) ≤ K} is a K-clique in G,

2. for each v ∈ V with ρ(v) > K, we have |δ(v) ∩ γ(v)| ≥ K,

where γ(v) = {u ∈ V | u < v} is the set of predecessors of v, ρ(v) = |γ(v)|+ 1 is
the rank of the v-th element, and δ(v) = {u ∈ V | {u, v} ∈ E} is the star around v,
for all v ∈ V .

The propositions below were proved in Lavor et al. (2010).

Proposition 1 DVOP is an NP -complete problem.

Proposition 2 DVOP with fixed K is polynomially solvable.

An immediate corollary follows from the above results:

Corollary 1 The problem of defining an ordering on atoms of the side chains of a
protein in order to satisfy the assumptions of the DMDGP is a DVOP with K = 3.

Algorithm 1 presents a polynomial algorithm for ordering the atoms of the side
chains. It takes as input the side-chain graph G and returns the order rank ρ if the
atoms ordering can be determined, or NULL otherwise.

2.2 The algorithm

The BP algorithm developed in Liberti et al. (2008) for finding the 3D structure of
protein backbones is very simple and follows the structure of the problem structure
closely. At each step the ith atom can be placed in two possible positions xi and
x′i. So the search is branched in two branches, one considering position xi and the
other considering position x′i. The feasibility of each solution is verified by checking
if the distances between the calculated position for the ith atom to the previous
positions already calculated for the previous atoms of the backbone are equal to
the known distances. If the position is feasible, the search of the tree continues in
the same way, otherwise the branch is pruned. If neither position is feasible, both
branches are pruned and the search is backtracked.

The side chains appear on each three atoms of the protein backbone and can be
considered as instances of the DMDGP. So we have two approaches to determine the
whole protein structure. The first one is to find the positions of all backbone atoms
and of all side chain atoms separately and then integrate all structures based on
the known distances. The second one is to determine the positions of the backbone
atoms and the side chain atoms in an integrated way. We developed an algorithm
based on the second approach.
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Algorithm 1 Order Atoms Side Chains (G)

1: for ({u1, u2, u3} ⊆ V ) do
2: ρ(u1)← 1, ρ(u2)← 2, ρ(u3)← 3;
3: U ← V \ {u1, u2, u3};
4: while (U 6= ∅) do
5: w ← argmax{|δ(v) ∩ γ(v)| | v ∈ U};
6: if (|δ(w) ∩ γ(w)| < 3) then
7: break;
8: else
9: ρ(w)← |V | − |U |+ 1;

10: U ← U \ {w};
11: end if
12: end while
13: if (U = ∅) then
14: {instance is YES}
15: return ρ;
16: end if
17: end for
18: {instance is NO}
19: return NULL.

Figure 4 illustrates the idea of the algorithm. The numbered vertices correspond
to the possible positions of the protein backbone atoms and the subtrees at each
third atom represent the possible side chains. The algorithm starts by fixing the
position of the first three atoms of the protein backbone formed by the sequence
(H,N,Cα, C,N,Cα, C, ..., N,Cα, C). At atom 3, there is a side chain. So, a DMDGP
is solved considering the chain formed by the first three atoms of the backbone
and the atoms of the side chain, considering an ordering on its atoms previously
determined by the Algorithm 1 described in the previous section. The known
distances between the backbone atoms and the side chain atoms are used to
eliminate some positions which are infeasible. Then, DMDGPs are solved to find
positions for the atoms 4, 5 and 6 of the backbone and some of them are eliminated
according to the known distances. At the backbone atom 6, another DMDGP is
solved to find atom positions for the side chain connected to the backbone atom
6, considering the chain formed by backbone atoms 4, 5 and 6 and the side chain
atoms. This procedure follows in the same way until the positions for all atoms of
the protein backbone and for all side chain atoms are determined.

Let n be the total number of backbone atoms, F be the set of all known distances
and SC be the set of side chains ordered by Algorithm 1.

Let T be a graph representation of the search tree, which is initialized with the
first three backbone atoms and v be a node with rank i− 1 in T .

The detailed steps are shown in Algorithm 2. In line 2, the two possible
placements of the ith backbone atom xi and x′i are calculated. If the distances of the
position xi to the positions already determined for some of the backbone atoms and
for the atoms of at least one of the side chains are not compatible with the known
distances, the tree is pruned in line 11. Otherwise, if the ith atom is a multiple of
3, in line 5, the procedure to determine the side chain atom positions is executed.
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Figure 4 Search tree of Algorithm 2

In line 6, the feasibility of the calculated side chain positions is checked against the
known distances, and the unfeasible side chains are pruned. Then a left subnode is
created in line 8 related to position xi and the whole procedure is called again in
line 9. From lines 13 to 22 the same process is executed for position x′i. When the
depth search is completed, in line 24, all discovered side chains are checked with
each other and with the backbone to verify if the positions of the side chains obey
the known distances. If they do not match the known distances, they are discarded.

3 Computational results

The real instances generated for the MDGP were extracted from the structures
contained in the Protein Data Bank (PDB) (Berman et al., 2000) and were selected
from the set of proteins used by Biswas et al. (2008), Carvalho et al. (2008) and Wu
et al. (2007) that use different approaches to solve the same problem. The instances
were generated by calculating the distances among all the atoms of a protein and
discarding the distances that are above a cutoff value, which is set to a value
detectable by NMR techniques.

The code was written in C++ programming language by using the Standard
Template Library and compiled by the Visual C++ 2005. All experiments were
carried out on an Intel Core 2, 1.6 GHz and 2GB RAM, running Windows XP with
Service Pack 2.

Different metrics to measure the quality of solutions and different cutoff values
are used in the generation of instances for the MDGP. All these factors hinder a
fair comparison between the methods. Thus, for testing the proposed algorithm,
we used some instances commonly found in the literature (representing different
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Algorithm 2 Whole Protein Algorithm(T, v, i)

1: if (i ≤ n− 1) then
2: ith Positions← Compute Possible Positions ith Atom;
3: if Feasible Position Left(ith Positions, F ) then
4: if (i mod 3 = 0) then
5: Obtain Feasible SideChains(SC);
6: Check Feasibility SideChains(F );
7: end if
8: create a left node z;
9: Whole Protein Algorithm (T, z, i+ 1);

10: else
11: Prune Left(T);
12: end if
13: if Feasible Position Right(ith Positions, F ) then
14: if (i mod 3 = 0) then
15: Obtain Feasible SideChains(SC);
16: Check Feasibility SideChains(F );
17: end if
18: create a right node z;
19: Whole Protein Algorithm (T, z, i+ 1);
20: else
21: Prune Right(T);
22: end if
23: else
24: if Solution is Feasible(T) then
25: Store Feasible Backbone SideChains(T, SC, F );
26: end if
27: end if
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sizes of proteins) and the Largest Distance Error (LDE) as a measure of solution
accuracy (Liberti et al., 2011), defined by

LDE =
1

|S|
∑

(i,j)∈S

|‖xi − xj‖ − dij |
dij

,

where S is the set of pairs of atoms (i, j) whose Euclidean distances dij are known
and xi, xj are the Cartesian coordinates of atoms (i, j), respectively. The cutoff
value for generating the instances was fixed in 6Å, which is the maximum value
allowed to simulate data obtained through NMR (Schlick, 2002).

Table 1 presents the obtained results. The column #Atoms indicates the number
of atoms of the protein, the column #Sol shows the amount of found solutions,
the column PDB indicates which of the found solutions has the greatest degree of
similarity with the protein obtained from the PDB (using the RMSD method (Wu
et al., 2008)), the column LDE shows the LDE value obtained for the best found
solution, and the column Time-W shows the computational time, in seconds, took
by the method for finding all solutions.

The last column Time-B shows the computational time, in seconds, took by the
algorithm used to find the solutions only for the backbone. We can observe that,
sometimes, the procedure to find the solutions for the backbone demanded more
computational effort. The algorithm to find the whole protein structure considers
also the side chains of a protein, so there may be more distances available to prune
the tree of the BP algorithm, which, in general, may reduce the total computational
cost of the algorithm.

Protein #Atoms #Sol PDB LDE Time-W Time-B

1brv 261 2 2 1.95e-17 0.5780 0.00

1ptq 402 8 2 3.91e-15 1.1400 0.05

1aqr 524 2 2 5.25e-17 1.9210 1.03

1hoe 558 4 2 6.93-e17 1.3590 0.01

1lfb 641 4 2 5.87e-17 1.5310 0.02

1ahl 684 2 1 3.97e-17 4.0000 57.62

1pht 811 8 2 6.41e-17 4.0930 0.11

1brz 859 2 1 5.29e-17 6.1710 28.83

1poa 914 32 9 7.50e-17 5.4210 0.03

1acz 1613 8 2 4.71e-17 17.078 2484.24

1rgs 2015 4 1 1.58e-16 5.3590 110.42

Table 1 Solutions obtained for 3D structure of whole proteins

The computational results show the very good performance of the algorithm
and the high quality of the solution associated to the greatest degree of similarity
with the protein obtained from the PDB. In fact, all found solutions presented LDE
values very small, indicating that all solutions are global minimizers of the LDE
function. As it was said, one of the main advantages of the combinatorial approach
is the possibility to obtain all the solutions of the problem.
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4 Conclusions

We presented a method to calculate the three-dimensional structure of a protein,
using a set of known distances between some atoms of the protein. It was based
on the BP algorithm, which can calculate just the protein backbone. Now, it is
possible to calculate the whole protein structure, including the side chains.

Since this new algorithm preserves the combinatorial structure of the BP
algorithm, it was able to find all solutions of the selected problems (generally, the
methods based on the continuous approach obtain just one solution). Furthermore,
the computational times for executing the algorithm were quite small and the
quality of the generated solutions was very high.
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