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1 Introduction

The quantum behaviour of atoms and molecules, in the absence of relativistic
effects and any external time-dependent perturbations, is determined by the
time-independent Schrödinger equation:

HΨn = EΨn, (1)

where H, the Hamiltonian operator of the system, represents the total energy
(kinetic + potential) of all the particles of the system.

Analytical solutions for this equation are only possible for very simple sys-
tems. Hence, for the majority of problems of interest, one has to rely on some
approximate model. In the Hartree-Fock (HF) model, the electrons in atoms
and molecules move independently of each other, the motion of each one of the
electrons being determined by the attractive electrostatic potential of the nu-
clei and by a repulsive average field due to all the other electrons of the system.
In this model, the approximate solutions Φn of Eq. (1) are anti-symmetrized
products of one-electron wave functions {ϕi} (also called orbitals), which are
solutions of the Hartree-Fock (HF) equations for the system under study. This
model gives rise to a set of coupled integro-differential equations which can
only be solved numerically. Alternatively, each orbital ϕi can be expanded in a
complete basis set {χs}∞s=1. In order to transform the HF equations into a less
cumbersome algebraic problem, we only consider a finite subset {χs | s ≤ b} of
the basis, and we use it to approximate the orbitals. Among the several types
of basis sets available in the literature, the Gaussian-type basis is the one most
frequently used because it represents the best compromise between accuracy
and computational effort [4]. The choice of the size of the basis set (parameter
b) is dictated by the degree of accuracy expected from the calculations. In the
standard HF method, as the basis set increases, the energy converges smoothly
to the energy value obtained by the numerical solution (the HF limit) of the
integro-differential HF equations. However, the main concern of the present
paper is to show that the HF problem can be reformulated as a global op-
timization problem and this can be achieved by using relative modest basis
sets.

The optimization problem considered in this paper arises because we need to
find a set of coefficients csi, for s = 1, . . . , b and i = 1, . . . , n, such that for all
i ≤ n the function

ϕ̄i =
b∑

s=1

csiχs (2)

is a good approximation of the i-th spatial orbital ϕi. A further requirement
on the approximating set {ϕ̄i} is that it must be an orthogonal set. While not
a necessary condition, orthogonality is always imposed in the Hartree-Fock
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method because the resulting equations are much easier to solve in an orthog-
onal basis of atomic or molecular orbitals. The method most usually applied
to the Hartree-Fock equations iteratively solves a set of linear equations to
find the coefficients csi. This method, however, has three main limitations: (a)
there is no guarantee that the set of coefficients csi found by the method are a
globally optimal such set; (b) it depends on an initial solution being available
(starting guess); (c) the occupation number of all orbitals must be provided
(electronic configuration).

Once the set of orbitals {ϕ̄i} is obtained, it can be used to construct the HF
anti-symmetric wave functions Φn as a Slater determinant:

Φn =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ̄1(1) ϕ̄1(2) · · · ϕ̄1(N)

ϕ̄2(1) ϕ̄2(2) · · · ϕ̄2(N)
...

...
...

...

ϕ̄N(1) ϕ̄N(2) · · · ϕ̄N(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (3)

where N is the number of electrons of the system and 1√
N

is a normalization
constant.

We define the Hartree-Fock Problem (HFP) as the problem of finding a set
of coefficients csi such that the ϕ̄i are the best possible approximations of the
spatial orbitals. The objective function (quality of the approximation) is given
by the energy function E associated with the approximating set {ϕ̄i}, which
is guaranteed to be an upper bound to the energy function associated with
the spatial orbitals [9]. The set {ϕ̄i} is required to be an orthonormal for the
reasons already mentioned. Furthermore, once each member of the set {ϕ̄i}
is expanded in a complete orthonormal basis {χs}, a normalization condition
must be imposed on the expansion coefficients in order to preserve the prob-
abilistic interpretation of the wave function. Thus, we need to minimize the
energy function E subject to orthonormality and normalization constraints.
The decision variables of this mathematical programming problem are the co-
efficients csi. For the orthonormal basis sets {ϕ̄i} and {χs}, the problem can
be expressed as follows:

minc E(c)

s.t. 〈ϕ̄i | ϕ̄j〉 = δij ∀i ≤ j ≤ n

cL ≤ c ≤ cU






(4)

where δij is the Kronecker delta function, which is equal to 1 if i = j and 0
otherwise; the 〈·|·〉 notation (known as the Bra-Ket notation) denotes the inner
product of two vectors. Problem (4) is a nonconvex, multi-extremal, polyno-
mially constrained, polynomial programming problem, and falls therefore in
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the realm of Global Optimization (GO). We solve it by applying the spatial
Branch-and-Bound (sBB) technique, a well-known deterministic GO method
which yields an ε-guaranteed global optimum (for a given ε > 0) and does not
need an initial solution, i.e. a set of starting guess coefficients. For validation
purposes, this method has been applied to two instances of the HFP, namely
to the Helium and Beryllium atoms, with considerable success as regards CPU
time performance. In spite of the fact that He and Be are closed shell systems,
the proposed technique can be easily extended to open shell systems (ROHF)
and also to more sophisticate multiconfigurational wave functions, as will be
discussed in future publications.

1.1 Original contributions of this paper

The HFP was never previously formulated as a mathematical programming
problem; our formulation (Sect. 2) is therefore one of the main original contri-
butions of this paper 1 . Some of the reformulation techniques discussed herein,
which are used to first derive and then tighten a lower bound necessary to solve
the problem, are new (Sect. 4.2); since all of the reformulation techniques ac-
tually apply to a rather large class of NLPs (namely quadratic problems with
linear equation constraints), this is also an important contribution. The third
contribution is to illustrate, by way of the HFP example, that reformula-
tion techniques used as a preprocessing step to a general purpose solution
algorithm may shorten solution times decisively. Finally, we believe we are
making a significant contribution in quantum chemistry by providing the ba-
sis for a new method of solving the Hartree-Fock equations providing both a
global optimum and independence from an initial starting point. Although our
computational results are still too limited to be conclusive, they are certainly
promising.

1.2 Synopsis

The rest of this paper is organized as follows. Section 2 presents the mathe-
matical programming formulation of the HFP. Section 3 gives an overall de-
scription of the sBB algorithm: Sections 3.1 and 3.2 discuss two reformulations
used to obtain the lower bound at each sBB node. Section 4 explains how to
tighten the lower bound: Section 4.1 provides a brief introduction to reduced
Reformulation-Linearization Technique (RLT, see [20]) constraints [16] used
to tighten the bound; Section 4.2 shows a method to choose the best reduced
RLT constraint system; Section 4.3 discusses the application to the HFP in

1 This formulation recently appeared in Europhysics Letters [8] too: this is a journal
targeted at physics researchers and not generally read by the OR community.
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general and the He and Be instances in particular. Section 5 discusses the
computational experience on the He and Be atoms. Section 6 concludes the
paper.

2 Mathematical Programming Formulation of the Problem

The expression for the Hartree-Fock electronic energy E of a 2n-electron
molecule with closed shells is given by [9] as:

E = 2
n∑

i=1

Hcore
ii +

n∑

i=1

n∑

j=1

(2Jij − Kij) + VNN , (5)

where Hcore
ii contains the one-electron integrals, Jij is the Coulomb integral,

Kij is the exchange integral, and VNN is the nuclear repulsion term. While
the Coulomb integrals represent the quantum-mechanical equivalent of the
classical Coulomb interaction between two charged particles, the exchange
integrals are purely quantum entities, resulting from the fact that the total
wave function for any multi-electronic system must be anti-symmetric (Pauli
principle).

The spatial orbitals {ϕi | i ≤ n} are expanded as linear combinations of a
finite set of one-electron basis functions as per Eq. (2). The HF equations [9]
are a set of b equations in the variables csi:

b∑

s=1

csi (Frs − εiSrs) = 0, (6)

where Frs = 〈χr|F̂ |χs〉, Srs = 〈χr|χs〉, εi is the orbital energy, and F̂ is
the Fock operator [9] (the notation 〈u|A|v〉 denotes an inner product in a
possibly infinite dimensional space between the vectors u and Av, where A

is an operator acting on v). This is a nonlinear system, since the F̂ operator
depends on the orbitals {ϕi}, which in turn depend on the variables csi.

It is possible to obtain an expression for Frs in terms of the coefficients {csi}
and a set of suitable integrals over the basis functions {χs} [9]:

Frs = Hcore
rs +

b∑

t=1

b∑

u=1

n∑

i=1

c∗ticui[2(rs|tu) − (ru|ts)], (7)

where (rs|tu) and (ru|ts) stand for the Coulomb and exchange integrals be-
tween pairs of electrons expressed in the basis functions {χs}. The wave
functions representing the behaviour of atoms and molecules can be real or
complex. However, since any observable (dynamic variable) must be real,
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the expectation value of the corresponding operator, O, must be taken as
〈O〉 =

∫
φ∗Oφdv, which is the reason why the complex product c∗ticui appears

in Eq. (7).

We write H(r, s) = Hcore
rs and X(r, s, t, u) = (rs|tu), where r = 1, . . . , b,

s = 1, . . . , b, t = 1, . . . , b, and u = 1, . . . , b. It is possible to rewrite equation
(5) in the form

E =
b∑

r=1

b∑

s=1

n∑

i=1

(c∗ricsi (Frs + H(r, s))) + VNN . (8)

Finally, using (7) and (8), we get

E =
1

2

b∑

r=1

b∑

s=1

b∑

t=1

b∑

u=1

(
P (r, s)P (t, u)

(
X(r, s, t, u) − 1

2
X(r, u, t, s)

))
+

+
b∑

r=1

b∑

s=1

(P (r, s)H(r, s)) + VNN , (9)

where

P (j, k) = 2
n∑

i=1

c∗jicki (j = 1, . . . , b and k = 1, . . . , b) .

Note that expression (9) is actually a function of the coefficients csi, since the
integrals H(r, s) and X(r, s, t, u), as well as the value of VNN , can be calculated
once the basis {χs} and the molecular geometry are defined.

As has been mentioned above, the decision variables of the HFP are the co-
efficients csi used in the basis expansion of the spatial orbitals. To further
simplify the notation, we shall write the numerical problem parameters as:

αtu
rs = X(r, s, t, u) − 1

2
X(r, u, t, s)

βrs = H(r, s)

γ = VNN .

After simple term rearrangement, the objective function of the problem be-
comes

E(c) = 2
b∑

r,s=1

(
n∑

i=1

cricsi

)


b∑

t,u=1

αtu
rs

(
n∑

i=1

cticui

)

+ βrs



+ γ. (10)

The orthonormality constraints are 〈ϕ̄i|ϕ̄j〉 = δij for all i ≤ j ≤ n. Substituting
ϕ̄i =

∑
r≤b criχr for all i ≤ n and 〈χr|χs〉 = Srs for all r, s ≤ b we obtain:

∑

r,s≤b

Srscricsj = δij ∀i ≤ j ≤ n, (11)
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where normally Srr = 1 for all r ≤ b. The variable bounds:

cL ≤ c ≤ cU (12)

depend on the instance. The HFP can be succintly summarized as follows:

min{E(c) | s.t. (11)-(12)}, (13)

i.e. the minimization of a quartic objective function subject to quadratic con-
straints and variable bounds.

3 Solution method

GO methods may be deterministic or stochastic according as to whether they
provide an approximation guarantee within a given ε > 0 constant in finite
time (for some problems exactness can also be proved, i.e. ε = 0), or they em-
ploy random search techniques (which are usually associated to a convergence
result in probability in infinite time [23], Ch. 4). The most commonly employed
deterministic GO method is an extension to continuous spaces, called spa-
tial Branch-and-Bound (sBB) [1,22,13], of the well-known Branch-and-Bound
algorithm for implicit binary enumeration [2]. In sBB, branching occurs by
partitioning the continuous variable range in two or more sub-ranges. The
recursive application of branching gives rise to a search tree. A node is fath-

omed (i.e. no further branching occurs on the node) either because the global
minimum relative to the node has been found, or because the global minimum
relative to the node cannot be better than the overall best solution found so
far (the incumbent). In order to test these two conditions at each node, we
compute a lower bound and an upper bound to the objective function value of
the node’s problem restriction. The first condition is verified if these bounds
differ by less than a pre-specified ε > 0 tolerance, and the second if the lower
bound for the node is higher than the incumbent. It appears that providing
a tight lower bound is one of the most important elements to obtaining an
efficient sBB algorithm. At any given sBB node, some of the decision vari-
ables are restricted to lie in subranges given by the recursive branching rules.
We consider the restriction of the original problem (13) to the node’s variable
ranges. The upper bound is provided by locally solving the original nonconvex
problem with restricted bound by a general purpose local NLP solver (such as
SNOPT [5]). The lower bound is given by the solution of a linear relaxation
of the restricted problem using an LP solver (such as CPLEX [6]). The linear
relaxation is built in two steps: (a) reformulation and (b) relaxation.
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3.1 Linearization

Step (a) reformulates the problem to a standard form [22] consisting of a
linear objective function subject to linear constraints and a set of quadratic
constraints. By introducing new variable sets y, w [21,20] with the following
constraints:

yij
rs = cricsj ∀r, s ≤ b, i, j ≤ n (14)

w
ij
rstu = yii

rsy
jj
tu ∀r, s, t, u ≤ b, i, j ≤ n (15)

we can replace all the quartic and quadratic terms in the problem, obtaining:

miny 2
∑

r,s≤b

(
∑

t,u≤b

αtu
rs

∑
i,j≤n

w
ij
rstu + βrs

∑
i≤n

yii
rs) + γ

s.t.
∑

r,s≤b

Srsy
ij
rs = δij ∀ i ≤ j ≤ n

(14) − (15)

cL ≤ c ≤ cU

yL ≤ y ≤ yU

wL ≤ w ≤ wU ,






(16)

where the bounds yL, yU on y and wL, wU on w are obtained through simple
interval arithmetics using the bounds on c and the quadratic relations (14)-
(15).

3.2 Relaxation

Step (b) constructs a relaxation of (16) by replacing (14)-(15) by their convex
envelopes. For simple constraints of the form z = xt where xL ≤ x ≤ xU and
tL ≤ t ≤ tU (such as (14)-(15)) the convex envelope is given by [18,3]:

z ≤min{xU t + tLx − xU tL, xLt + tUx − xLtU} (17)

z ≥max{xLt + tLx − xLtL, xU t + tUx − xU tU}, (18)

which defines an enveloping tetrahedron around the points (xL, tL), (xL, tU),
(xU , tL), (xU , tU). Purely quadratic constraints of the form z = x2 are relaxed
by the secant and the tangents of the parabola at (xL, (xL)2), (xU , (xU)2). This
relaxation yields a linear problem whose optimal objective function value f̄ is a
lower bound to the globally optimal objective function value f ∗ of (16), which
is the same as that of (13). Since (17)-(18) vary in function of the variable
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bounds, f̄ depends on cL, cU , which means that the lower bound depends on
the current sBB search tree node, as desired.

4 Tightening the lower bound

In practice it turns out that f̄ is not a very tight bound. This is mostly
due to the fact that the envelope (17)-(18) is generally not very close to the
original surface (14)-(15). We try to improve this situation by adding some
valid inequalities to the convexification of (16) obtained in Section 3. For this
task we turn to reduced RLT constraints [11,12,16], which form a subclass of
the RLT constraints described in [21].

4.1 Reduced RLT constraints primer

In this section only, we attach a different meaning to the symbols n and b.
Assume the feasible region of an NLP is defined by a set of variable ranges and
constraints including the linear equality system Ax = b (where A is an m× n

matrix with full rank m ≤ n, x ∈ R
n, and b ∈ R

m); assume further that all
quadratic products xkxi (for k ≤ i ≤ n) appear in the problem (either in the
objective function, or in some of the constraints, or both). Define linearizing
variables wi

k = xkxi for k ≤ i ≤ n, and let wk = (w1
k, . . . , w

n
k ). We can generate

valid linear constraints by multiplying the system Ax = b by each variable xk

in turn and linearizing the quadratic terms:

∀k ≤ n (xk(Ax) − bxk = 0) ⇒ ∀k ≤ n (Awk − bxk = 0).

The linear system above, depending on x and w, is called a reduced RLT

constraints system (RCS). By substituting b = Ax, we see that the above is
equivalent to ∀k ≤ n (A(wk − xkx) = 0). If we set zk = wk − xkx = (w1

k −
xkx1, . . . , w

n
k −xkxn) = (z1

k, . . . , z
n
k ), the RCS is easily seen to be equivalent to

the companion system

∀k ≤ n (Azk = 0).

The companion system can be written as Mz = 0 for a suitable matrix M ,
where z is the vector of all zi

k. Now, let B be a maximal set of index pairs
(i, j) such that z

j
i is a basic variable of the companion system. Let N be

the corresponding nonbasic index pair set (so that z
j
i is nonbasic for each

(i, j) ∈ N). By setting all the nonbasic variables to zero, for Mz = 0 to
hold, the basic variables must also be zero. Thus, by setting w

j
i = xixj for

all (i, j) ∈ N , the RCS implies w
j
i = xixj for all (i, j) ∈ B. In other words,

the RCS replaces those quadratic constraints corresponding to basic variables
of the companion system. Effectively, the original problem is equivalent to
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a reformulated problem containing the original linear constraints, the RCS,
and the quadratic constraints relative to nonbasics of the companion system
(which should hopefully be fewer than the number of quadratic terms in the
original problem).

We remark that although the general RLT hierarchy can be applied to poly-
nomial programming problems, the reduced RLT reformulation was only ever
applied to problems involving quadratic terms and linear equality constraints
[12,16].

4.2 Choosing the best RCS

Notice that for any given linear system the choice for partitioning the variables
in basic and nonbasic is usually not unique. To any quadratic term we asso-
ciate a measure, called the convexity gap, of how tightly the convex relaxation
approximates it. For any quadratic defining constraint wi

k = xkxi, the convex
relaxation of the set Di

k of points (xk, xi, w
i
k) satisfying the constraint consists

in the set D̄i
k of points (xk, xi, w

i
k) satisfying the following relaxed constraints

[18,3]:

wi
k ≤ ḡ(xk, xi) = min{xU

k xi + xL
i xk − xU

k xL
i , xL

k xi + xU
i xk − xL

k xU
i }

wi
k ≥ g(xk, xi) = max{xL

k xi + xL
i xk − xL

k xL
i , xU

k xi + xU
i xk − xU

k xU
i },

where ḡ is a concave overestimating envelope and g is a convex underestimating
envelope of the function g(xk, xi) = xkxi. Let µp(S) be the Lebesgue measure
in R

p of the set S ⊆ R
p for p ∈ N. The convexity gap V i

k is defined as
µ3(D̄

i
k) − µ3(D

i
k). For quadratic terms, i.e. when k = i, we use the chord as a

concave overestimator and the function itself as a convex underestimator:

ḡ(xk, xk) = (xL
k + xU

k )xk − xL
k xU

k

g(xk, xk) = x2
k.

In practice it is more convenient to solve linear relaxations, rather than non-
linear convex ones, so we employ a linear estimation of the quadratic function
consisting of the tangents at the endpoints and the xk coordinate axis:

g(xk, xk) = max{2xL
k xk − (xL

k )2, 2xU
k xk − (xU

k )2, 0}.

Obviously, for quadratic terms we use the 2-dimensional Lebesgue measure µ2

instead of µ3 when computing the convexity gap.

Since Di
k is a surface in R

3 (R2 if k = i), its Lebesgue measure is zero. Hence
V i

k = µ3(D̄
i
k) (V k

k = µ2(D̄
k
k) if k = i). Since we want to tighten the con-
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vex relaxation, we need to make sure that the set of nonbasic variables of
the companion system (i.e., those quadratic terms that have to remain in
the problem formulation) have the least total convexity gap. Equivalently, we
need to choose a set of basic variables with the largest total convexity gap∑

all (i,k) V i
k . It can be shown [10] that V i

k depends on the widths of the variable
ranges of xk, xi: the larger the variable ranges, the larger the convexity gap.
We therefore choose the basic variables of the companion system to include all
the quadratic terms whose associated variables have large range. This prob-
lem is easily seen to reduce to choosing a maximal weight basis off a weighted
column set, which clearly has a matroidal structure and can be solved by a
straightforward greedy algorithm.

4.3 Application to the HFP

Recalling that Srr = 1 for all r ≤ b, we first remark that when i = j, con-
straints (11) are:

b∑

r=1

c2
ri + 2

∑

r<s

Srscricsi = 1 ∀i ≤ n, (19)

which can be written in terms of the y variables as:

b∑

r=1

yii
rr + 2

∑

r<s

Srsy
ii
rs = 1 ∀i ≤ n. (20)

Secondly, we multiply (20) by problem variables y
jj
tu for all t, u ≤ b, j ≤ n,

obtaining

b∑

r=1

yii
rry

jj
tu + 2

∑

r<s

Srsy
ii
rsy

jj
tu = y

jj
tu ∀t, u ≤ b, i, j ≤ n.

We can now replace the quadratic products in the y variables using the w

variables as per (15), obtaining a linear relation between the y and the w

variables:

b∑

r=1

w
ij
rrtu + 2

∑

r<s

Srsw
ij
rstu = y

jj
tu ∀t, u ≤ b, i, j ≤ n. (21)

In the linear relaxation of (16) the y and w variables are only related through
inequality constraints of type (17)-(18), thus (21) are valid linear constraints
that can be added to the convexification.
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4.3.1 The He atom instance

For the He atom, the energy function considering an uncontracted Gaussian
basis set consisting of two s functions with the exponents ζ1 = 0.532149 and
ζ2 = 4.097728 is given by

EHe =−3.059912c2
11 − 7.016380c11c21 − 0.62798c2

21

+0.823136170c4
11 + 2.139139440c3

11c21

+3.972805480c2
11c

2
21 + 3.955260680c11c

3
21 + 2.28416050c4

21 .

The constraint

c2
11 + c2

21 + 2c11c21S12 = 1,

where S12 = 0.509475 is the overlap integral, must be imposed to preserve the
normalization condition. Thus, the problem is:

min
−1≤c≤1

EHe(c11, c21)

s.t. c2
11 + c2

21 + 2c11c21S12 = 1. (22)

We now discuss the reduced RLT constraints reformulation applied to this
instance. First, we linearize all the nonlinear terms. The defining constraints
are as follows:

y1
11 = c2

11 y1
22 = c2

21 y1
12 = c11c21

w11
1111 = (y1

11)
2 w11

2222 = (y1
22)

2 w11
1212 = (y1

12)
2 w11

1112 = y1
11y

1
12 w11

2212 = y1
22y

1
12.






(23)
Notice that in this problem the quadratic terms we take into account are those
in the linearizing variables y rather than those in the original problem variables
c. Since the w variables linearize all quadratic terms in the y variables and the
equation constraint (22) becomes the linear equation constraint y1

11 + y1
22 +

2S12y
1
12 = 1 upon substitution of the y variables in place of the quadratic

terms in the c variables, the following linearized problem can be tightened via
reduced RLT constraint techniques:

min
c,y

EHe(y, w)

s.t. y1
11 + y1

22 + 2S12y
1
12 = 1

defining constraints (23)

0 ≤ y1
11, y

1
22, w

11
1111, w

11
2222, w

11
1212 ≤ 1

−1 ≤ y1
12, w

11
1112, w

11
2212, c11, c21 ≤ 1.






(24)
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We derive a RCS by multiplying the linear equation constraint by each of the
y variables in turn. We obtain a RCS Mw = y where

M =





1 0 1 2S12 0

1 1 0 2S12

2S12 1 1




.

Consider the companion system Mz = 0 (see Section 4.1). Since M has full
rank 3, we have |B| = 3, |N | = 2. The obvious set of nonbasic variables is
N = {z11

1111, z
11
2212}. Observe, however, that these variables have high convexity

gap, since both depend on the variable y1
12 which has range −1 ≤ y1

12 ≤ 1.
By applying the permutation (4152) to the columns of M , after Gaussian
elimination we get the following matrix:

M ′ =





2S12 0 1 0 0

2S12 1 1 0

2S12 − 1
S12

− 1
S12

− 1
S12




.

The nonbasics for M ′z = 0 are N ′ = {z11
1111, z

11
2222}. This choice minimizes

the convexity gap, as both w4 and w5 depend on variables with range [0, 1].
Finally, we end up with the following exact reformulation:

min
c,y

EHe(y, w)

s.t. y1
11 + y1

22 + 2S12y
1
12 = 1

y1
11 = c2

11, y
1
22 = c2

21, y
1
12 = c11c21

w11
1111 = (y1

11)
2, w11

2222 = (y1
22)

2

Mw = y

0 ≤ y1
11, y

1
22, w

11
1111, w

11
2222, w

11
1212 ≤ 1

−1 ≤ y1
12, w

11
1112, w

11
2212, c11, c21 ≤ 1.






(25)

Observe that we have three fewer nonlinear terms in (25) than in (24), and
that the convexity gap is minimized; therefore the convex relaxation of the
reformulated problem is guaranteed to yield have a tighter lower bound than
the convex relaxation derived directly from the original problem.

The globally optimal solution of the above problem has objective function
value E∗

He = −2.7471h and solution c11 = 0.8256 and c21 = 0.2832. These
results are in perfect agreement with the ones obtained through the standard
self-consistent procedure to the HFP.
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4.3.2 The Be atom instance

For the Be atom, the energy function considering a contracted minimal basis
set with the following parameters

function exponents (ζi) contraction coefficients

30.1678707 0.154328967295

1s 5.4951153 0.535328142282

1.4871927 0.444634542185

1.3148331 −0.099967229187

2s 0.3055389 0.399512826089

0.0993707 0.700115468880

is given by

EBe =−15.734260c2
12 − 15.734260c2

11 + 0.5721648000c12c22c
2
21

+1.568145040c2
12c11c21 + 1.568145040c2

11c12c22

−7.7290488c11c21 − 7.7290488c12c22 − 4.204318c2
21

−4.204318c2
22 + 2.298830600c4

11 + 4.597661200c2
11c

2
12

−1.329488452c11c21c12c22 + 0.8353663000c2
21c

2
22

+0.4176831500c4
21 + 0.4176831500c4

22 + 2.124875442c2
11c

2
22

+2.124875442c2
12c

2
21 + 1.460131216c2

12c
2
22 + 0.5721648000c11c

3
21

+0.5721648000c12c
3
22 + 0.5721648000c11c21c

2
22

+1.568145040c3
12c22 + 1.460131216c2

11c
2
21

+1.568145040c3
11c21 + 2.298830600c4

12 .

In this case the orthogonality constraints are:

c2
11 + c2

21 + 2c11c21S12 = 1

c2
12 + c2

22 + 2c12c22S21 = 1

c11c12 + c21c22 + (c11c22 + c21c12) S12 = 0.

Thus, the problem is:

min
−1≤c≤1.5

EBe(c11, c21, c12, c22)

14



subject to






c2
11 + c2

21 + 2c11c21S12 = 1

c2
12 + c2

22 + 2c12c22S21 = 1

c11c12 + c21c22 + (c11c22 + c21c12) S12 = 0,

where S12 = S21 = 0.259517.

We now discuss the reduced RLT constraints reformulation. The linearizing
variables for the second degree quadratic terms are

y1 = c2
11, y2 = c2

12, y3 = c2
21, y4 = c2

22, y5 = c11c21, y6 = c12c22

(we dispense from full indexing for simplicity and readability). The other lin-
earizing variables are w1, . . . , w18, and there exist defining constraints linking
w1, . . . , w18 to all the quadratic products among the variables {y1, . . . , y6}.
The reduced RLT constraints reformulation of this instance involves a RCS
matrix M having rank 11. The set of nonbasic variables of the companion
system which minimizes the convexity gap is:

w3 = y2
3, w4 = y2

4, w5 = y1y2, w7 = y1y4,

w8 = y2y3, w9 = y2y4, w10 = y3y4.

Since |B| = 11, this exact reformulation has 11 quadratic terms fewer than
the original problem.

The globally optimal solution has objective function value E∗
Be = −14.3519h,

with solution c11 = 0.9929, c21 = 0.02614, c12 = −0.2939, and c22 = 1.035.
Once more, in perfect agreement with the results obtained from the standard
HF self-consistent procedure.

5 Computational Results

The computational results, expressed in seconds of user CPU time, are re-
ported in Table 1, and organized as follows. The first three columns relate to
deterministic methods. In the first column we report on sBB solving the refor-
mulated instances. In the second column we report on sBB solving the original
instances. In the third column we report on sBBIA (a sBB algorithm where
the lower bounds have been computed with an interval arithmetic approach)
solving the original instances. The last two columns refer to heuristic methods.
The fourth column contains results obtained with an implementation of Vari-
able Neighbourhood Search (VNS) [19,14]. The fifth column contains results
obtained with a variant of the Multi Level Single Linkage (MLSL) algorithm
called SobolOpt [7], which uses deterministic low-discrepancy Sobol’ sequences
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to generate a uniform sampling of starting points. All computational results
have been obtained by running global solvers within the ooOPS optimization
software framework [17,13] executed on a PIII 850MHz with 384 MB RAM
running Linux. All algorithms converged to the global optimum for both the
He (-2.747064059541913 au) and Be (-14.351912029941255 au) instances.

Since in energy minimization problem it is important to obtain a guarantee of
global optimality, the main computational result is that relating to sBB meth-
ods, where it appears clear that the reformulation gives rise to a much faster
solution process. The fact that the heuristic methods are faster than sBB is to
be expected (however, they do not provide any certificate of global optimal-
ity, even within ε). The extent to which the timings for sBB have the same
order of magnitude as those for SobolOpt (and partially also VNS) comes as
somewhat of a surprise, showing that that sBB approach is a valid alternative
to the more widely employed heuristic methods for global optimization, even
though just for small and medium scale problems.

Atom sBB sBB(noRCS) sBBIA VNS SobolOpt

He 0.26s 3.43s 6s 0.116s 0.14s

Be 10s 223s 220s 0.3s 14s

Table 1
Computational results for the He and Be atoms.

It is worth pointing out that the problem discussed in this paper offers some
computational validation to the reduction constraints method, as solving both
the original (unreformulated) instances of Section 4.3 and the reformulated
instances with a non-optimal (in the sense of the convexity gap) set of nonbasic
variables of the companion system yields considerably higher CPU times than
solving the optimally reformulated instances.

6 Conclusion

The usual way to solve Hartree-Fock equations has three limitations: (a) it
provides a solution which is not guaranteed to be the optimal one, (b) it de-
pends heavily on an initial solution being provided and (c) the occupation
number of all orbitals must be provided (electronic configuration). All limita-
tions are overcome by formulating this problem as a nonconvex optimization
problem, and solving using a spatial Branch-and-Bound algorithm for global
optimization. The crucial step, i.e. the determination of the lower bound at
each search tree node, relies on a sequence of reformulation steps which aim to
linearize and relax the problem, and then to tighten the bound. The tightening
reformulations may be applicable to a considerably larger class of problems
than the HFP.
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