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Abstract We use reformulation techniques to model and solve a complexsphere covering
problem occurring in the configuration of a gamma ray machineradiotherapy equipment
unit.
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1 Introduction

The gamma ray machine equipment used in stereotactic radiation therapy can deliver sphere-
shaped “shots” (also calledfoci) of radiation at a brain tumor (this medical technique is
known as “Gamma Knife” radiosurgery). Foci can be represented as spheres of different
sizes. Four kinds of interchangeable outer collimators on ahelmet device with different
radii in the setR= {2,4,7,9}mm are available for irradiating the tumor region. For a tar-
get volume larger than one focus, multiple foci can be used tocover the entire target. In
practice, most target volumes are treated with 1 to 15 foci [17,10]. The target volume (the
tumor) may have an irregular shape, but for the purpose of this study it is considered to be
an ellipsoidT of radii rx

T , ry
T , rz

T smaller than 3cm. With present configuration technology,
treatment plans can be configured up to around 10 foci. Too many foci are impracticable
for clinical treatment routines. For accurate location purpose, a stereotactic head frame is
screwed into the patient’s skull and cannot be taken off during both the planning procedure
and the treatment process. The treatment planning becomes complex and time-consuming
when several foci are needed for large or irregular tumors, because any manual tuning of
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foci will cause dosage re-computation. It is therefore necessary to find a suitable covering
of the tumor by spheres to accelerate the planning procedure.

The existing literature concerning the use of optimizationtechniques in Gamma Knife
radiosurgery has broader scope than the problem treated in this paper, and aims to provide
a complete solution to the treatment planning problem, i.e.it concerns dosages as well as
positions. We refer to [10] (Sect. 3.3) for a detailed summary of existing approaches. In
particular, the approach taken by Ferris and co-workers [3,5,4,17] formulates linear and
nonlinear programming models where the decision variablesareDw(xs,ys,zs, i, j,k), i.e. the
dose of radiation delivered to the tumor “pixel”(i, j,k) by the shot of widthw centered
at (xs,ys,zs). The output of these formulations is a distribution given bythe values ofDw;
the actual sphere covering is recovered by using simulationand parameter estimation tech-
niques. In [10], the same general approach is followed, but the problem is solved by Gen-
eralized Benders’ Decomposition. This “dosage distribution” approach also found its way
into related problems [18].

In this paper we focus on the sphere covering problem, which we approach from a
mathematical programming point of view: that is, we define models which we then solve to
optimality (or near-optimality) by means of general-purpose solver codes aimed at specific
problem classes: Mixed Integer Linear Programming (MILP),convex Mixed Integer Non-
linear Programming (cMINLP) and (nonconvex) Mixed IntegerNonlinear Programming
(MINLP). The problem, which involves covering an ellipsoidby spheres, is naturally cast as
a MINLP; however, as is well known, solving MINLPs is much more difficult than solving
MILPs. This is why we exhibit a sequence of reformulations [1,14] that either transform ex-
actly or approximate the original MINLP into a cMINLP and eventually into different types
of MILPs. By formulationwe mean a formal mathematical description of an optimization
problem consisting of parameters, decision variables, an objective function and constraints.
Roughly speaking, areformulationof a problemP is a problemQ such that all the local and
global optima ofP can be computed from those ofQ (see [14] for precise definitions). We
remark that the problem studied in this paper is that of establishing a good sphere covering
independently of the dosage problem: we thus make no claim atsolving the whole treatment
problem (yet).

The main aim of this paper is to describe a methodology for solving complex (nonlinear)
sphere covering problems by means of mixed-integer linear programming. However, we also
mean our application example to be a proof of concept: it is possible to solve MINLPs with
tens of thousands of variables by employing reformulation-based techniques. We also make
an auxiliary contribution in establishing some results related to the density of certain three-
dimensional sphere arrangements in Sect. 3.1.

In Sect. 2, we give a mathematical programming formulation of the gamma ray unit con-
figuration problem which is close to the (informal) description given in the medical environ-
ment, but for which there are no available solution methods.In Sections 3-5, we describe a
sequence of reformulations (from MINLP to cMINLP to MILP) leading to practically useful
formulations. Sect. 6 presents to modifications to the original model that stem from medical
considerations. Computational results are discussed in Sect. 7.

2 Modelling the problem

In this section we propose a formal description of the considered problem in terms of a
mathematical programming formulation.
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(P1) Given a compact setT ⊂ R
3, a finite setR⊂ R+ and an integern > 0, find

a setX ⊂ R
3 of at mostn points and an assignmentw : X → R such thatT ⊂

∪x∈XB(x,w(x)), whereB(x,ρ) ⊂ R
3 is the ball centered atx with radiusρ.

Problem (P1) can be formulated with an infinite (and uncountable) set of variables and con-
straints. LetN = {1, . . . ,n} be the maximum number of spheres,U = {1, . . . , |R|} the index
set for the radii types,M ≥ diam(T) a sufficiently large constant andε > 0 a small constant;
consider the following parameters:

(a) p is a point in the compact setT ⊆ R
n

(b) r : U → R is the sphere’s radius

and decision variables:

(a) x : N → R
3 is the center of the given sphere

(b) y : N →{0,1} is set to 1 if the given sphere is used, 0 otherwise
(c) u : N×T →{0,1} is set to 1 if the given sphere covers the specified point, 0 otherwise
(d) w : N×U →{0,1} is set to 1 if the given sphere has the specified radius, 0 otherwise.

The following set of constraints correctly describes (P1).

∀ i ∈ N, p∈ T ||xi − p||2 ≤ ui(p) ∑
j∈U

wi j r
2
j +(1−ui(p))M2 (1)

∀ i ∈ N ∑
j∈U

wi j = 1 (2)

∀ p∈ T ∑
i∈N

ui(p) ≥ 1 (3)

∀ i ∈ N
∫

p∈T
ui(p)dp ≥ εyi (4)

∀ i ∈ N
∫

p∈T
ui(p)dp ≤ Vol(T)yi , (5)

whereR= {r j | 1≤ j ≤ |U |} and Vol(T) denotes the Lebesgue measure ofT in R
3. Con-

straints (1) say that if spherei coversp, then the Euclidean distance betweenp and the sphere
center must be at most the sphere radius. Constraints (2) ensure that exactly one radius value
is chosen for each sphere. Constraints (3) make sure that each point of T is covered by at
least one sphere. Constraints (4) make sure that any selected sphere covers a nonzero vol-
ume ofT, and (5) forceui to be the zero function if thei-th sphere is not selected. This is
a nonlinear, nonconvex mixed-integer infinite programmingproblem, for which there is no
known standard solution algorithm.

3 Approximation by discretization

In this section we propose an approximating reformulation:it consists in replacingT by a
finite set of points inT. Consider a fixed cubic latticeP of m3 points inR

3 such that conv(P)
is a cube of side(m−1)∆ , where∆ > 0 is the side length of each cubic element in the lattice,
T ⊆ conv(P), and for allP′ ⊂ P we haveT 6⊂ conv(P′). Essentially,P is the smallest three-
dimensional cubic lattice withm points per side that determines a cubic region containing
T. Now consider an index setV ⊆ {1, . . . ,m3} such thatP∩T = {pv | v∈V} as being part
of the problem input (i.e.pv are problem parameters). We reformulate the definition of some
decision variables of (P1):
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(c’) u : N×V →{0,1} is set to 1 if the given sphere covers the specified point.

We define (P′
1) to be defined by the following set of constraints:

∀ i ∈ N,v∈V ||xi − pv||2 ≤ uiv ∑
j∈U

wi j r
2
j +(1−uiv)M

2 (6)

∀ i ∈ N ∑
j∈U

wi j = 1 (7)

∀ v∈V ∑
i∈N

uiv ≥ 1 (8)

∀ i ∈ N ∑
v∈V

uiv ≥ yi (9)

∀ i ∈ N ∑
v∈V

uiv ≤ |V|yi . (10)

This is a nonconvex Mixed-Integer Nonlinear Programming (MINLP) problem with no ob-
jective function. Although some solution methods exist, this is amongst the most difficult
problem classes ever to be tackled. It must be added that in this case the number of binary
variables is considerable, making the problem all the more difficult to solve in practice.

3.1 Approximation guarantee

We remark that the reformulation of Sect. 3 is not exact. The fractionα of T actually cov-
ered by the configuration of spheres solving (P′

1) depends onr = minR and∆ . The value of
α can be estimated by computing the sphere densityτ of the configuration, i.e. the fraction
of the fundamental lattice region covered by spheres averaged on the whole lattice. It is easy
to see thatα → 1 for ∆ → 0, as we recover the exact formulationP1 “in the limit” as the
lattice points grow closer. By the regularity of the functions involved in the formulation, the
approximation guarantee onα can be made as small as desired by adding lattice points. On
the other hand, this increases the number of variables inP′

1 to such an extent that computa-
tional solutions become practically impossible to obtain:thus,r may have the same order of
magnitude as∆ , which means that estimatingα in the worst case becomes important.

The worst case configuration minimizesα whilst covering all the points in the cubic
lattice. This yields a configuration where all the spheres have radiusr (to minimize the
volume) and cover as many points as possible (to cover all thelattice points with as few
spheres as possible). We remark that the fact that inP′

1 the number of spheres is fixed is
not troublesome: we assume that surplus spheres are superpositioned to other spheres in
the configuration (this does not change the density or the covering properties of the current
configuration). Naturally we assume thatP′

1 has at least one feasible solution so we do not
need to deal with the case where there are not enough spheres to cover all the lattice points in
P∩T. Among all possible such configurations, we may assume some regularity in spherical
placements without loss of generality, for irregularity may help cover more volume of a
particular lattice cube at the expense of the adjacent ones,so the density throughout the
lattice does not change. In the rest of this section, we shallstudy some worst case sphere
densities for some (small) values ofr.

Since in each case we assume the worst case configuration to bethe one with minimum
possible sphere volume (i.e. using spheres of minimum radius), we only consider configura-
tions where the spheres have radiir in acritical set R∗ ⊆Rdefined as follows: for allr∗ ∈R∗

a sphere of radiusr ≥ r∗ can cover more lattice points than a sphere of radiusr < r∗. The
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densities corresponding to values in the critical set are called critical densities. We define a
function ξ : R∗ → N that maps critical radii to the maximum number of lattice points that
can be covered by a sphere of the specified radius. We considera subsetR̄⊂ R∗ of small
critical radii R̄= ∆

2 {1,
√

2,
√

3,
√

5,2
√

2,2
√

3}, to which there correspondξ values of:

2r∗/∆ 1
√

2
√

3
√

5 2
√

2 2
√

3
ξ (r∗) 2 4 8 10 19 27

Lemma 1 The sphere densityτ corresponding to2r∗/∆ = 1 is bounded above byπ6 .

Proof In a sphere covering for a 3D cubic lattice having fundamental element width∆ , for
all r < r∗ = ∆

2 the diameter of spheres of radiusr is strictly less than∆ , which means that
no sphere can ever cover more than one point ofP. Consider the covering consisting of
pairwise-disjoint spheres centered at the lattice points.It is easy to show that this covering
has a minimum number of spheres. In this covering, each lattice cube has 8 points each of
which is covered by one spherical orthant (1/8-th of a sphere). Thus the configuration has

one sphere per lattice cube. The sphere density for the limiting caser = r∗ is thenτ = 4π(r∗)3

3(∆)3 ,

which is bounded above byπ6 .

Lemma 2 The sphere densityτ corresponding to2r∗/∆ =
√

2 is bounded above byπ12(5−
2
√

2).

Proof A sphere covering of a 3D cubic lattic with unit element width∆ and sphere radiir <

r∗ =
√

2
2 ∆ can cover at most 4 lattice points (see Fig. 1-left; the proofis simple). Assuming

a regular and symmetric arrangement of the covering spheres, there are only two possible
coverings where each sphere covers 4 lattice points, depicted in Fig. 1 (lattice of type L on
the left and R on the right). A simple computation shows thatα is minimum in the covering
of type L, which is therefore the worst case. The density of the covering of type L where the
spheres have the limiting case of radiusr = r∗ can be computed by considering the volume
z(∆ , r∗) of the sphere crown determined by the radius ranging in[∆

2 , r∗], i.e.
∫ r∗
(∆)/2 π((r∗)2−

x2)dx. In the covering of type L there are two types of unit lattice elements: the “filled” ones
(where two spheres cover a significant proportion of the element, see Fig. 1 left) and the
“empty” ones. The covered volume in “filled” cubes is given bya whole sphere take away
6z(∆ , r∗) (4 per side and 2 where the two spheres intersect in the middleof the cube). For
the “empty” cubes the covered volume is 2z(∆ , r∗). We obtain 1

2∆3 ( 4
3π(r∗)3 − 4z(∆ , r∗)),

which is bounded above byπ12(5−2
√

2).

In all other cases the technique is similar: find the worst case configuration, see how
many lattice cubes it covers and in what way, and then divide the number of spherical volume
elements by the number of lattice cubes that contains them. Approximate values forτ(r∗)
are reported below.

2r∗/∆ 1
√

2
√

3
√

5 2
√

2 2
√

3
τ(r∗) 0.52 0.57 0.48 0.66 0.83 0.81

This table, and the fact thatα → 1 as∆ → 0 or r → ∞, suggests that a ratior/∆ ≥ 2 should
guarantee a fairly satisfactory covering ofT.
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Fig. 1 Worst case sphere density configuration forr∗ =
√

2
2 ∆ , with densityα ≈ 0.5685 (left). Alternative

configuration forr∗ =
√

2
2 ∆ , with densityα ≈ 0.6115 (right).

4 Convex MINLP reformulation

(P′
1) is a nonconvex MINLP. The state of the art in the solution methods for this class of

problems [2,12,15,19,6] is not at the stage where reasonably sized instances can be solved
effectively or reliably. Although the nonconvexity in (P′

1) is caused by the set of binary
productsuivwi j , which can all be linearized exactly in the standard way [7,13], this would
imply adding 3|N| |V| |U | inequality constraints to the formulation. We employ a different
reformulation: letN = {1, . . . ,n|R|} and introduce a parameterρ : N → R+ that assigns to
each sphere a fixed radius inR. Since the set of spheres is now larger, we minimize the
number of spheres actually used in the covering. The problemis transformed as follows.

(P2) Given a finite set of pointsP∩T ⊂ R
3, a finite setR⊂ R+ and index setsN and

ρ : N→R, find a set of balls{B(x(i),ρ(i)) | i ∈N} of minimum cardinality covering
each point inP∩T.

The mathematical programming formulation for (P2) is the same as for (P′
1), with (7) deleted,

(6) replaced by
∀ i ∈ N,v∈V ||xi − pv||2 ≤ uivρ2

i +(1−uiv)M
2, (11)

and
min ∑

i∈N
yi (12)

as objective function. Namely, minimize (12) subject to (8)-(11). Since (11) is a convex
constraint, the problem is now a cMINLP. Furthermore, we have eliminated the binary radius
assignment variablesw (at the expense of enlargingN, of course — but this usually yields a
computational improvement).

Reformulations that are linked to a change in the problem definition (and not only to the
problem formulation) are calledreformulations in the sense of Hansen[1,14]. We prove that
the reformulation given above is a reformulation in the sense of Hansen. For an instanceI of
a sphere covering problemP, |I | is the size of the instance (i.e the number of bits necessary
to encode all the values of the problem parameters),n(I) is the number of spheres in the
solution ofI andN(I) is the set of sphere indices in instanceI .

Proposition 1 Given a feasible instance I1 of (P1), there is a feasible instance I2 of (P2)
(where|I2| is polynomial in|I1|) such that if(x,y,u) optimally solves I2 then an optimal
solution(x′,y′,u′,w′) of I1 can be obtained in linear time in n(I2).
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Proof Let n(I2) = |U |n(I1), for all j ∈U, i ≤ n(I1) let ω(i, j) = ( j −1)n(I1)+ i, and define
ρω(i, j) = r j . If I1 is feasible,I2 is also feasible because for each potential sphere inI1 there
are |U | potential spheres having all the possible radii inR. The size of|I2| is polynomial
by construction. Let(x,y,u) be an optimal solution ofI2. Since each sphere has a unique
radius, there is an ordering ofN(I2) such that∑

j∈U
yω(i, j) ≤ 1 for all i ∈N(I1). AssumeN(I2) is

ordered in such a way. For alli ∈N(I1), j ∈U let w′
i j = yω(i, j) if ρω(i, j) = r j and 0 otherwise;

for i ∈N(I1) let y′i = ∑
j∈U

yω(i, j) andx′i = ∑
j∈U

yω(i, j)xω(i, j); and fori ∈N(I1) andv∈V let u′iv =

∑
j∈U

yω(i, j)uω(i,v),v. It follows immediately that ∑
i∈N(I1)

yi = ∑
i∈N(I2)

y′i , which implies optimality

of (x′,y′,u′,w′) in I1. It can be immediately verified that the optimal solution ofI1 can be
obtained in time linear inn(I2).

4.1 Inner approximation of the norm

One relatively straightforward approximating reformulation that is sometimes applied to
MINLPs is outer or inner approximation of wholly convex/concave terms. Problem (P2) is
nonlinear because of the norm term||xi − pv||2 in (11) for all i ∈N,v∈V. Now, ||xi − pv||2 =

∑k≤3(x
2
ik −2xik pvk + p2

vk), so the only nonlinear term isx2
ik. We can replace it by an added

linearization variable

(e) s : N → R
3
+: sik replacesx2

ik for i ∈ N,k≤ 3,

and change (11) accordingly:

∀ i ∈ N,v∈V ∑
k≤3

(sik −2xik pvk+ p2
vk) ≤ uivρ2

i +(1−uiv)M
2. (13)

In order to make sure that thesik variables take on values that are feasible in the quadratic
constraint (11), we needsik ≥ x2

ik for i ∈ N,k ≤ 3. We employ the inner approximation
depicted in Fig. 2 using a finite number of evenly spaced points x̄ikd for d in some suitable
index setD (|D| is the number of inner approximation points). Formally, we define:

∀i ∈ N,k≤ 3 sik = max{(x̄ikd + x̄ik,d−1)xik − x̄ikdx̄ik,d−1 | d ∈ Dr{1}}. (14)

Eq.(14) can be reformulated as a set of|D|−1 linear constraints

∀i ∈ N,k≤ 3,d ∈ Dr{1} sik ≥ (x̄ikd + x̄ik,d−1)xik − x̄ikdx̄ik,d−1. (15)

It is easy to show thatsik ≥ x2
ik for all i ∈ N,k≤ 3.

Formulation (P′
2) is like (P2) with the added variabless, added constraints (15), and (11)

replaced by (13). Namely, minimize (12) subject to (8)-(10), (13), (15). It is a MILP that
approximates (P2). It is easy to see that forxikd − xik,d−1 → 0 the MILP becomes a Semi-
Infinite Programming (SIP) problem which is an exact SIP reformulation of the cMINLP
(P2). We remark that this type of approximation can also be applied to (P′

1), yielding a MILP
(P′′

1 ) obtained in the same way as (P′
2).

Formulation (P′
2) can be solved by CPLEX [9]. The practical performance ranges from

reasonable to unsatisfactory.
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Fig. 2 Inner approximation ofx2.

5 MILP approximation

One way to get rid of the problematic “big M” constraint (6) isto encode all possible dis-
tances||xi − pv|| (for i ∈ N,v∈V) into the problem instance, and reformulate this to a pure
covering problem. Since there is an uncountable number of spatial positions forxi , we ap-
proximate the problem by requiring that the sphere centers may only be positioned on the
lattice points. For alli ∈ N,v ∈ V we introduce the setsηiv ⊂ V describing the covering
extent of thei-th sphere for the lattice poingv, i.e. ηiv = {t ∈ V | ||pv− pt || ≤ ρi}. As the
sphere centers are now fixed, we replace the variablesx by variablesχ:

(a’) χ : N×V →{0,1} is set to 1 if the given sphere is centered on the specified lattice point,

subject to assignment constraints

∀i ≤ N ∑
v∈V

χiv = yi . (16)

The covering conditions become:

∀i ∈ N,v∈V, t ∈ ηiv uiv ≥ χiv (17)

∀i ∈ N,v∈V ∑
t∈V

v∈ηit

χit ≥ uiv. (18)

This is a MILP formulation describing the following problem.

(P3) Given a finite set of pointsP∩T ⊂ R
3 indexed by the index setV, an index set

N, and a set-valued functionη : N×V →P(V) (the power set ofV), find a function
χ : N×V → {0,1} such that the setS= {(i,v) | χiv = 1} has minimum cardinality
and has the property that for allt ∈V there is(i,v) ∈ Swith t ∈ ηiv.

We remark that the approximation analysis of Sect. 3.1 is notapplicable in this case. The
fact thatα → 1 as∆ → 0, however, still holds.

6 Minimizing radiation on healthy tissues

Although it is of course of the utmost importance to cover as much as possible of the tumor
with radiation, it is also desirable not to “overshoot” excessively: the spheres placed near the
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border ofT will in general cover a region of healthy brain tissue, whichmust be minimized.
To this aim we consider a band-shaped region (of width ¯r) aroundT and define the set
T̄ = {x∈ R

3 | ∃x′ ∈ T (||x−x′|| < r̄)} that contains the tumor and a region of healthy brain
tissue around it. We define a larger cubic lattice setP̄ (the smallest such lattice containing
T̄), defineV̄ to be a set of integers indexing the points inP̄∩ T̄ and extenduiv to be defined
for eachi ∈ N and for eachv∈ V̄.

These changes reflect on (P′
2) and (P3) differently. For (P′

2), we reformulate to (P′′
2 ) as

follows: we quantify (13) and change the sum quantifiers of (9)-(10) toV̄ instead ofV and
modify the objective function (12) to:

min ∑
i∈N

(yi +
1

|V̄|− |V| ∑
v∈V̄rV

uiv). (19)

Namely, minimize (19) subject to (8)-(10), (13), (15) withV replaced byV̄. For (P3), we
reformulate to (P′

3) as follows: we extendη to be defined on̄V, change the sum quantifiers
of (16) toV̄ instead ofV, change (18) to

∀i ∈ N,v∈ V̄ ∑
t∈V

v∈ηit

χit ≥ uiv (20)

and employ the objective function (19) above. Namely, minimize (19) subject to (16) with
V replaced bȳV, (17), (20).

7 Computational results

In this section we present computational results for formulationsP′
1, P′′

1 , P2, P′′
2 , andP′

3.
Computational results forP′

2 (resp.P3) are comparable with those ofP′′
2 (resp.P′

3). As the
latter include considerations from Sect. 6, they are more realistic.

All computational results were obtained on a PC with an IntelCore Duo 1.2GHz CPU
with 1.5GB RAM running Linux, under the AMPL [8] modelling environment. Nonconvex
MINLPs (P′

1) were solved by using a VNS algorithm [15] coded in AMPL and tailored for
MINLPs (with maximum neighbourhood limit set to 10), withminlp bb [11] (v. 20020703)
as local solver; this was used by itself to solve cMINLPs (P2). MILPs (P′′

1 , P′′
2 , P′

3) were
solved by CPLEX 10.1 [9]. Solution quality is established bythree parameters: CPU time
(expressed in seconds of user time) taken to obtain a solution, an estimationα of the fraction
of tumor volume covered by the spheres (α is computed by using a very fine lattice grid
coveringT), and the numbery of spheres used in the covering.

All tested instances are based on realistic machine settings with respect to the setR; N
was set to 5 for problems (P′

1,P
′′
1 ) and to 5|R| = 20 for problems (P2,P′′

2 ,P′
3). Each instance

is then described by a 5-tuple(rx
T , ry

T , rz
T , r̄,∆) specifying the radii of the ellipsoid-shaped

tumor, the healthy band width, and the side length of the cubic fundamental lattice region.
All instances forP′′

1 ,P′′
2 have|D| = 10 in the linearization of the square term (Sect. 4.1).

Instance statistics such as the total number of variables (var), split into binary (bin) and
continuous (var− bin), constraints (con) and nonlinear terms (nlt) are reported in Table 1.
All statistics have been recorded after any AMPL presolver simplifications.

The computational results in Table 2 show that all models suffer from different types of
blemishes. Most notably, all models except (P′

3) take too much CPU time to find a solution.
(P′

3), however, does not find solutions with highα values (as is to be expected asα is linked
to the sphere densityτ, and the approximation results forτ do not hold inP′

3). We remark
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P′
1 P′′

1
Name rx

T ry
T rz

T r̄ ∆ var bin con nlt var bin con
bt1 6 8 12 4 5 919 904 918 9625 559 529 1478
bt2 6 8 12 4 3 3509 3494 3576 38115 2259 2229 5966
bt3 6 8 12 4 2 12199 12184 12465 133705 7234 7204 19100
bt4 10 10 10 6 3 6699 6684 6832 73205 3909 3879 10322

P2 P′′
2 P′

3
Name var bin con nlt var bin con var bin con
bt1 3580 3520 3560 10500 3640 3520 4100 1550 1550 4790
bt2 13940 13880 13968 41580 14000 13880 14528 8480 8480 87543
bt3 48700 48640 48947 145860 48760 48640 49487 31090 31090 886877
bt4 26700 26640 26814 79860 26760 26640 27354 13160 13160 154819

Table 1 Instance statistics.

that the failure noted for CPLEX on thebt4 instance forP′′
1 is to be interpreted as not finding

a feasible solution after over 7h of CPU time.

P′
1 (VNS) P′′

1 (CPLEX)
Name CPU α y CPU α y
bt1 2682 0.963 2 1407∗ 0.874 2
bt2 15807 0.967† 4 51168 (50%) 0.984 5
bt3 (fail) - - 54217 (75%) 0.999 4
bt4 22701 0.426† 2 (fail) - -
P2 (minlp bb) P′′

2 (CPLEX) P′
3 (CPLEX)

Name CPU α y CPU α y CPU α y
bt1 847.6 0.158† 4 1357∗ 0.84 2 0.26∗ 0.75 5
bt2 (fail) - - 72857 (23%) 0.981 2 13.23∗ 0.71 2
bt3 (fail) - - 60058 (66%) 1 2 8701∗ 0.91 2
bt4 (fail) - - 58608 (76%) 0.907 3 3206∗ 0.78 3

Table 2 Computational results. Times marked with∗ correspond to CPLEX running to optimality. Values
marked with† correspond to infeasible runs.

These computational results also validate the reformulation-based methodological ap-
proach: the resulting formulations (i.e.P′′

2 andP′
3) are easier to solve and/or provide better

quality solutions than their predecessors in the reformulation sequence.

8 Conclusion

This paper discusses a sphere covering problem arising in the configuration of a gamma ray
machine for the cure of brain tumor. We employ a solution methodology based on successive
reformulations going from a natural infinite formulation through nonconvex mixed-integer
nonlinear and convex mixed-integer nonlinear to two very different types of mixed-integer
linear formulations. We also report on preliminary computational results. Work is under way
in investigating different types of formulations based on bounding interspherical distance
from below. The final aim is that of integrating the modellingrelative to the dosage problem
and thus of proposing formulations for the whole treatment problem.
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