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Optimal configuration of gamma ray machine radiosurgery
units: the sphere covering subproblem
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Abstract We use reformulation techniques to model and solve a congphgre covering
problem occurring in the configuration of a gamma ray machauotherapy equipment
unit.
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1 Introduction

The gamma ray machine equipment used in stereotactici@dtherapy can deliver sphere-
shaped “shots” (also callefbci) of radiation at a brain tumor (this medical technique is
known as “Gamma Knife” radiosurgery). Foci can be represrats spheres of different
sizes. Four kinds of interchangeable outer collimators drelmet device with different
radii in the seR = {2,4,7,9}mm are available for irradiating the tumor region. For a tar-
get volume larger than one focus, multiple foci can be usecbteer the entire target. In
practice, most target volumes are treated with 1 to 15 fo¢iJ@]. The target volume (the
tumor) may have an irregular shape, but for the purpose sfsthidy it is considered to be
an ellipsoidT of radii r¥,r¥,r2 smaller than 3cm. With present configuration technology,
treatment plans can be configured up to around 10 foci. Tooyrfam are impracticable
for clinical treatment routines. For accurate locationgase, a stereotactic head frame is
screwed into the patient’s skull and cannot be taken offridubioth the planning procedure
and the treatment process. The treatment planning becoongslex and time-consuming
when several foci are needed for large or irregular tumagsabse any manual tuning of
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foci will cause dosage re-computation. It is therefore seagy to find a suitable covering
of the tumor by spheres to accelerate the planning procedure

The existing literature concerning the use of optimizatiechniques in Gamma Knife
radiosurgery has broader scope than the problem treatdisipaper, and aims to provide
a complete solution to the treatment planning problem,tiencerns dosages as well as
positions. We refer to [10] (Sect. 3.3) for a detailed summatrexisting approaches. In
particular, the approach taken by Ferris and co-workers,f817] formulates linear and
nonlinear programming models where the decision variadnieB(Xs, Ys, Zs, i, j,K), i.e. the
dose of radiation delivered to the tumor “pixdll’, j,k) by the shot of widthw centered
at (Xs,¥s,Zs). The output of these formulations is a distribution giventhg values oDy;
the actual sphere covering is recovered by using simulatichparameter estimation tech-
niques. In [10], the same general approach is followed, Heipproblem is solved by Gen-
eralized Benders’ Decomposition. This “dosage distrimitiapproach also found its way
into related problems [18].

In this paper we focus on the sphere covering problem, whiehapproach from a
mathematical programming point of view: that is, we definelgis which we then solve to
optimality (or near-optimality) by means of general-pwseaolver codes aimed at specific
problem classes: Mixed Integer Linear Programming (MILd®nvex Mixed Integer Non-
linear Programming (cMINLP) and (nonconvex) Mixed Inte@ésnlinear Programming
(MINLP). The problem, which involves covering an ellipsdig spheres, is naturally cast as
a MINLP; however, as is well known, solving MINLPs is much raalifficult than solving
MILPs. This is why we exhibit a sequence of reformulationd ff] that either transform ex-
actly or approximate the original MINLP into a cMINLP and ewaally into different types
of MILPs. By formulationwe mean a formal mathematical description of an optimimatio
problem consisting of parameters, decision variables bggctive function and constraints.
Roughly speaking, eeformulationof a problemP is a problenQ such that all the local and
global optima ofP can be computed from those Qf(see [14] for precise definitions). We
remark that the problem studied in this paper is that of distdbg a good sphere covering
independently of the dosage problem: we thus make no clasolhehg the whole treatment
problem (yet).

The main aim of this paper is to describe a methodology fasisglcomplex (nonlinear)
sphere covering problems by means of mixed-integer linesgramming. However, we also
mean our application example to be a proof of concept: it ssjtde to solve MINLPs with
tens of thousands of variables by employing reformulabased techniques. We also make
an auxiliary contribution in establishing some resultated to the density of certain three-
dimensional sphere arrangements in Sect. 3.1.

In Sect. 2, we give a mathematical programming formulatich®gamma ray unit con-
figuration problem which is close to the (informal) desddptgiven in the medical environ-
ment, but for which there are no available solution methauSections 3-5, we describe a
sequence of reformulations (from MINLP to cMINLP to MILPpléing to practically useful
formulations. Sect. 6 presents to modifications to the palgnodel that stem from medical
considerations. Computational results are discussedadn Be

2 Modelling the problem

In this section we propose a formal description of the carsid problem in terms of a
mathematical programming formulation.



(Py) Given a compact sek C R3, a finite setR ¢ R.. and an integen > 0, find
a setX c R3 of at mostn points and an assignment: X — R such thatT C
UxexB(X,W(X)), whereB(x, p) C R?is the ball centered atwith radiusp.

Problem Pr) can be formulated with an infinite (and uncountable) setaoiables and con-
straints. LetN = {1,...,n} be the maximum number of spherts= {1,...,|R|} the index
set for the radii typedVl > diam(T) a sufficiently large constant arad> 0 a small constant;
consider the following parameters:

(a) pis a pointin the compact s&tC R"
(b) r:U — Ris the sphere’s radius

and decision variables:

(@) x: N — R3 is the center of the given sphere

(b) y: N — {0,1} is set to 1 if the given sphere is used, 0 otherwise

(c) u:NxT —{0,1} is set to 1 if the given sphere covers the specified point, ératise
(d) w:NxU — {0,1} is set to 1 if the given sphere has the specified radius, Owiber

The following set of constraints correctly describBg) (

VieN,peT ||Xi—I0||2§Ui(IO)EUWijszJr(1—Ui(ID))'V|2 @
IE

VieN wi =1 2

VpeT Zﬂw(pbl @)

VieN / u(p)dp > &y (4)
peT

VieN ; ui(p)dp < Vol (T)vi, 5)
pe

whereR= {rj| 1< j < |U|} and Vo(T) denotes the Lebesgue measurd ah R3. Con-
straints (1) say that if sphereoversp, then the Euclidean distance betwgesnd the sphere
center must be at most the sphere radius. Constraints (@)eetigt exactly one radius value
is chosen for each sphere. Constraints (3) make sure thiatpedat of T is covered by at
least one sphere. Constraints (4) make sure that any stlguiere covers a nonzero vol-
ume of T, and (5) forcey; to be the zero function if theth sphere is not selected. This is
a nonlinear, nonconvex mixed-integer infinite programnpngplem, for which there is no
known standard solution algorithm.

3 Approximation by discretization

In this section we propose an approximating reformulatiboonsists in replacing by a
finite set of points ifT. Consider a fixed cubic lattide of m® points inR® such that con{P)

is a cube of sidém—1)A, whereA > 0 is the side length of each cubic element in the lattice,
T C convP), and for allP’ C P we haveT ¢ con(P’). EssentiallyP is the smallest three-
dimensional cubic lattice witim points per side that determines a cubic region containing
T. Now consider an index setC {1,...,m*} such thaPNT = {p, | vE V} as being part

of the problem input (i.epy are problem parameters). We reformulate the definition wfeso
decision variables off):



(¢) u:NxV — {0,1} is set to 1 if the given sphere covers the specified point.

We define ;) to be defined by the following set of constraints:

VieN,veV Hxi—p\,Hzgui\,ZJWier-er(l—uiv)Mz (6)
j€
VieN wij =1 @)
YveVv uy > 1 (8)
i€
VieN Uy > Vi 9)
V; v I
VieN gui\, < |V|yi. (10)
ve

This is a nonconvex Mixed-Integer Nonlinear ProgrammindNMP) problem with no ob-
jective function. Although some solution methods exisis e amongst the most difficult
problem classes ever to be tackled. It must be added thaisicdke the number of binary
variables is considerable, making the problem all the mdfieult to solve in practice.

3.1 Approximation guarantee

We remark that the reformulation of Sect. 3 is not exact. Thetiona of T actually cov-
ered by the configuration of spheres solvif) {depends om = minRandA. The value of

o can be estimated by computing the sphere densitfyithe configuration, i.e. the fraction

of the fundamental lattice region covered by spheres aeérag the whole lattice. It is easy

to see thatr — 1 for A — 0, as we recover the exact formulatiBp“in the limit” as the
lattice points grow closer. By the regularity of the funaigdnvolved in the formulation, the
approximation guarantee @ncan be made as small as desired by adding lattice points. On
the other hand, this increases the number of variabl& ia such an extent that computa-
tional solutions become practically impossible to obt#ins,r may have the same order of
magnitude agl, which means that estimatirgin the worst case becomes important.

The worst case configuration minimizeswhilst covering all the points in the cubic
lattice. This yields a configuration where all the spheregehadiusr (to minimize the
volume) and cover as many points as possible (to cover allattiee points with as few
spheres as possible). We remark that the fact th& ithe number of spheres is fixed is
not troublesome: we assume that surplus spheres are ssjtiemped to other spheres in
the configuration (this does not change the density or therawy properties of the current
configuration). Naturally we assume tigthas at least one feasible solution so we do not
need to deal with the case where there are not enough spbe@eert all the lattice points in
PNT. Among all possible such configurations, we may assume segudarity in spherical
placements without loss of generality, for irregularity ynfeelp cover more volume of a
particular lattice cube at the expense of the adjacent @wethe density throughout the
lattice does not change. In the rest of this section, we siadly some worst case sphere
densities for some (small) valuesrof

Since in each case we assume the worst case configuratioritte bee with minimum
possible sphere volume (i.e. using spheres of minimum sadive only consider configura-
tions where the spheres have radii acritical set R C Rdefined as follows: for ali* € R*

a sphere of radius > r* can cover more lattice points than a sphere of radis*. The



densities corresponding to values in the critical set altectaritical densities We define a
function ¢ : R* — N that maps critical radii to the maximum number of latticerpgsithat
can be covered by a sphere of the specified radius. We corsilgiseR C R* of small

critical radiiR= 4{1,v/2,1/3,v/5,2v/2,2/3}, to which there corresponflvalues of:

a7/ |1 V2 V3 VB 22 23
&y 2 4 8 10 19 27

Lemma 1 The sphere densitycorresponding t@r* /A = 1is bounded above b§.

Proof In a sphere covering for a 3D cubic lattice having fundamesitanent widthA, for
allr <r*= % the diameter of spheres of radiuss strictly less tham, which means that
no sphere can ever cover more than one poinP.o€onsider the covering consisting of
pairwise-disjoint spheres centered at the lattice polhts.easy to show that this covering
has a minimum number of spheres. In this covering, eacledattibe has 8 points each of
which is covered by one spherical orthant (1/8-th of a sphéiteus the configuration has

one sphere per lattice cube. The sphere density for thedgriise =r* is thent = 4;7(%%3 ,
which is bounded above by.

Lemma 2 The sphere densitycorresponding t@r* /A = /2 is bounded above b (5—
2v/2).

Proof A sphere covering of a 3D cubic lattic with unit element widtland sphere radii <
r= @A can cover at most 4 lattice points (see Fig. 1-left; the prosfmple). Assuming
a regular and symmetric arrangement of the covering sphiérei® are only two possible
coverings where each sphere covers 4 lattice points, depictFig. 1 (lattice of type L on
the left and R on the right). A simple computation shows th& minimum in the covering
of type L, which is therefore the worst case. The density efdtwvering of type L where the
spheres have the limiting case of radius r* can be computed by considering the volume
z(A,r*) of the sphere crown determined by the radius rangirjéim*], ie. f(rg)/z m((r*)% —
x?)dx. In the covering of type L there are two types of unit lattieneents: the “filled” ones
(where two spheres cover a significant proportion of the etgnsee Fig. 1 left) and the
“empty” ones. The covered volume in “filled” cubes is givendwhole sphere take away
62(A,r*) (4 per side and 2 where the two spheres intersect in the maddkee cube). For
the “empty” cubes the covered volume ig&,r*). We obtainzs (371(r*)3 — 4z(A,r%)),
which is bounded above b (5—2v/2).

In all other cases the technique is similar: find the worseaamfiguration, see how
many lattice cubes it covers and in what way, and then dividetimber of spherical volume
elements by the number of lattice cubes that contains thgproximate values for(r*)
are reported below.

20/A | 1 V2 V3 VB 2V2 2/3
(") | 052 057 0.48 066 083 081

This table, and the fact that — 1 asA — 0 orr — o, suggests that a ratig A > 2 should
guarantee a fairly satisfactory coveringTof



Fig. 1 Worst case sphere density configuration for= @A, with densitya =~ 0.5685 (left). Alternative
configuration for* = @A, with densitya a2 0.6115 (right).

4 Convex MINLP reformulation

(P;) is a nonconvex MINLP. The state of the art in the solutiontmds for this class of
problems [2,12,15,19,6] is not at the stage where reaspisasd instances can be solved
effectively or reliably. Although the nonconvexity i) is caused by the set of binary
productsuyWwij, which can all be linearized exactly in the standard way 37, this would
imply adding 3|N| |[V| |U| inequality constraints to the formulation. We employ aefiént
reformulation: letN = {1,...,n|R|} and introduce a parametgr: N — R_. that assigns to
each sphere a fixed radius B Since the set of spheres is now larger, we minimize the
number of spheres actually used in the covering. The prolderansformed as follows.

(P,) Given a finite set of pointBN T  R?, a finite seRC R, and index setsl and
p:N— R, find a set of ball{B(x(i),p(i)) | i € N} of minimum cardinality covering
each pointirPNT.

The mathematical programming formulation f8)is the same as fof), with (7) deleted,
(6) replaced by

YieN,veV [jx—pl? < uvp?+ (1—uy)M?, (1)
and

min § y; (12)
le

as objective function. Namely, minimize (12) subject to-(8)). Since (11) is a convex
constraint, the problem is now a cMINLP. Furthermore, weshgliminated the binary radius
assignment variables (at the expense of enlargim of course — but this usually yields a
computational improvement).

Reformulations that are linked to a change in the problenniiefin (and not only to the
problem formulation) are callegformulations in the sense of Hangédn14]. We prove that
the reformulation given above is a reformulation in the sesfHansen. For an instantef
a sphere covering probleR, 1| is the size of the instance (i.e the number of bits necessary
to encode all the values of the problem parametexd), is the number of spheres in the
solution ofl andN(1) is the set of sphere indices in instarice

Proposition 1 Given a feasible instanceg bf (R), there is a feasible instance bf (R)
(where|l| is polynomial in|l1]) such that if(x,y,u) optimally solvesd then an optimal
solution(X,y,u’,w') of I; can be obtained in linear time in(h).



Proof Letn(l2) = |U|n(l1), forall j e U,i <n(ly) let w(i, j) = (j —1)n(I1) +1i, and define
Pui,j) = j- If 11 is feasible/; is also feasible because for each potential sphergtimere
are |U| potential spheres having all the possible radiRinThe size offly| is polynomial
by construction. Letx,y,u) be an optimal solution of,. Since each sphere has a unique
radius, there is an ordering bif 1) such that_zU Yoo(i,jy < Lforalli € N(I1). AssumeN(l2) is

Je

ordered in such a way. For ale N(I1), j € U letw]j =Yy j) if pgyi j) = rj and 0 otherwise;
forie N(lp) lety, = 5 Yo j) andX = 3 Y j)*w(,j) @nd fori € N(I1) andve V letu), =
jeu” jeu” ’

3 Yaoli,j)Ua(iv)v- It follows immediately that ¥ yi= 5 i, which implies optimality
jeu o ieN(ly) ieN(l2)

of (X,y,u,w) in I1. It can be immediately verified that the optimal solutionlptan be
obtained in time linear im(l>).

4.1 Inner approximation of the norm

One relatively straightforward approximating reformidatthat is sometimes applied to
MINLPs is outer or inner approximation of wholly convex/aawe terms. Problen¥) is
nonlinear because of the norm tefim — py||2 in (11) for alli € N,ve V. Now, ||x — py||? =
Sk<3(X& — 2XikPuk+ PZ), SO the only nonlinear term ig,. We can replace it by an added
linearization variable

(e) s:N — R3: sy replaces forie N,k <3,

and change (11) accordingly:

VieNveV Y (sk—2Xpu+t p2) < Uyp? + (1—uy)M2. (13)
&3

In order to make sure that ttsg variables take on values that are feasible in the quadratic
constraint (11), we neesgl > x& for i € N,k < 3. We employ the inner approximation
depicted in Fig. 2 using a finite number of evenly spaced poigi for d in some suitable
index seD (|D| is the number of inner approximation points). Formally, vedirte:

Vi e N,k<3 sk =max{(Xkd +Xikd-1)Xk — XikaXkd-1|d € D~ {1}}.  (14)
Eq.(14) can be reformulated as a set®f— 1 linear constraints
VieN,k<3,deD~{1} sk> (Xkd+ Xik.d—1)Xik — XikdXik d—1- (15)

Itis easy to show thagy, > xﬁ( foralli e NJk< 3.

Formulation &) is like (P,) with the added variables added constraints (15), and (11)
replaced by (13). Namely, minimize (12) subject to (8)-(1@B), (15). It is a MILP that
approximatesH). It is easy to see that fofxg — Xk 4—1 — O the MILP becomes a Semi-
Infinite Programming (SIP) problem which is an exact SIP mafdation of the cMINLP
(P2). We remark that this type of approximation can also be appb ¢;), yielding a MILP
(Py) obtained in the same way a&).

Formulation P}) can be solved by CPLEX [9]. The practical performance rarfgem
reasonable to unsatisfactory.



Fig. 2 Inner approximation ox?.

5 MILP approximation

One way to get rid of the problematic “big M” constraint (6)tisencode all possible dis-
tanced|x; — py|| (for i € N,v € V) into the problem instance, and reformulate this to a pure
covering problem. Since there is an uncountable numberaifadgositions forx;, we ap-
proximate the problem by requiring that the sphere centexg only be positioned on the
lattice points. For all € N,v € V we introduce the setg;j, C V describing the covering
extent of thei-th sphere for the lattice poing i.e.ny ={t €V | ||pv— pt|| < pi}. As the
sphere centers are now fixed, we replace the variadibgssariablesy:

(@) x:NxV —{0,1} is setto 1 if the given sphere is centered on the specifigddaivint,

subject to assignment constraints

Vi<N Xiv = Vi. (16)
v; v I

The covering conditions become:

VieN,veViteny Uy > X 17)
VieN,veV Z Xit = Uiy. (18)
te
VENjt
This is a MILP formulation describing the following problem

(Ps) Given a finite set of pointBN T C R3 indexed by the index s&t, an index set
N, and a set-valued functiop: N xV — Z2(V) (the power set d¥), find a function
X :NxV — {0,1} such that the se&= {(i,Vv) | xiv = 1} has minimum cardinality
and has the property that for &lE V there is(i,v) € Swith t € n.

We remark that the approximation analysis of Sect. 3.1 isapplicable in this case. The
fact thata — 1 asA — 0, however, still holds.
6 Minimizing radiation on healthy tissues

Although it is of course of the utmost importance to cover asimas possible of the tumor
with radiation, it is also desirable not to “overshoot” egs@ely: the spheres placed near the



border ofT will in general cover a region of healthy brain tissue, whiehst be minimized.
To this aim we consider a band-shaped region (of wigtiaroundT and define the set
T={xeR®| 3K €T (]|x—X|| < )} that contains the tumor and a region of healthy brain
tissue around it. We define a larger cubic latticeR¢the smallest such lattice containing
T), defineV to be a set of integers indexing the point®in T and extendy, to be defined
for eachi € N and for eactve V.

These changes reflect oR;J and @) differently. For ), we reformulate toR) as
follows: we quantify (13) and change the sum quantifiers p{19) toV instead oV and
modify the objective function (12) to:

1
minS (Vi + ——— Uiy ). (29)
2NV,
Namely, minimize (19) subject to (8)-(10), (13), (15) withreplaced by . For (), we
reformulate to ) as follows: we extend to be defined o, change the sum quantifiers
of (16) toV instead ol/, change (18) to

VieN,veV Z Xit > Uy (20)
te
Vet

and employ the objective function (19) above. Namely, min@(19) subject to (16) with
V replaced by, (17), (20).

7 Computational results

In this section we present computational results for foetiohsP;, P/, P, P}, and P;.
Computational results fd®, (resp.P;) are comparable with those 8% (resp.P}). As the
latter include considerations from Sect. 6, they are maakbstéc.

All computational results were obtained on a PC with an IG®fe Duo 1.2GHz CPU
with 1.5GB RAM running Linux, under the AMPL [8] modelling einonment. Nonconvex
MINLPs (P;) were solved by using a VNS algorithm [15] coded in AMPL anitbtad for
MINLPs (with maximum neighbourhood limit set to 10), withnlp_bb [11] (v. 20020703)
as local solver; this was used by itself to solve cMINLPs)(MILPs (P, Py, P}) were
solved by CPLEX 10.1 [9]. Solution quality is establishedtbsee parameters: CPU time
(expressed in seconds of user time) taken to obtain a sojatioestimatiomr of the fraction
of tumor volume covered by the spheresié computed by using a very fine lattice grid
coveringT), and the numbey of spheres used in the covering.

All tested instances are based on realistic machine settiitty respect to the s& N
was set to 5 for problem#{, P’) and to §R| = 20 for problems®, P}, P}). Each instance
is then described by a 5-tuple},r¥,r2,1,A) specifying the radii of the ellipsoid-shaped
tumor, the healthy band width, and the side length of theafibidamental lattice region.
All instances forP/', P} have|D| = 10 in the linearization of the square term (Sect. 4.1).
Instance statistics such as the total number of variabl@g, (split into binary (bin) and
continuous (var- bin), constraints (con) and nonlinear terms (nlt) are regzbin Table 1.
All statistics have been recorded after any AMPL presoliap§fications.

The computational results in Table 2 show that all modelfesfriom different types of
blemishes. Most notably, all models excepf)(take too much CPU time to find a solution.
(P4), however, does not find solutions with highvalues (as is to be expectedass linked
to the sphere density, and the approximation results fordo not hold inP). We remark
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P P
Name [[ X [ [riZ [T [ A var bin con nlt var bin con
btil 6 8 |12 4| 5 919 904 918 9625 559 529 1478
bt2 6 8 |12 |4 | 3 3509 3494 | 3576 38115 | 2259 | 2229 | 5966
bt3 6 8 |12 | 4| 2 12199 | 12184 | 12465 | 133705 | 7234 | 7204 | 19100
bt4d 10 10| 10| 6| 3 6699 6684 | 6832 73205 | 3909 | 3879 | 10322
P, Py P
Name var bin con nit var bin con var bin con

bt1 3580 | 3520 | 3560 | 10500 | 3640 | 3520 | 4100 | 1550 | 1550 4790

bt2 13940 | 13880 | 13968 | 41580 | 14000 | 13880 | 14528 | 8480 | 8480 | 87543
bt3 48700 | 48640 | 48947 | 145860 | 48760 | 48640 | 49487 | 31090 | 31090 | 886877
bt4 26700 | 26640 | 26814 | 79860 | 26760 | 26640 | 27354 | 13160 | 13160 | 154819

Table 1 Instance statistics.

that the failure noted for CPLEX on the4 instance folP}’ is to be interpreted as not finding
a feasible solution after over 7h of CPU time.

P; (VNS) P; (CPLEX)

Name CPU a y CPU a y

btl 2682 | 0.963 | 2 1407 0.874 | 2

bt2 15807 | 0.967" | 4 | 51168 (50%)| 0.984 | 5

bt3 (fail) - - | 54217 (75%)| 0.999 | 4

bt4 22701 | 0.426" | 2 (fail) - -

P (minlp_bb) PJ (CPLEX) P (CPLEX)
Name CPU a y CPU a y CPU a y
bt1 847.6 | 0158 | 4 1357 084 | 2| 026 | 0.75| 5
bt2 (fail) - - | 72857 (23%)| 0.981 | 2 | 13.23 | 0.71 | 2
bt3 (fail) - - | 60058 (66%) 1 2| 870r | 091 2
bt4 (fail) - - | 58608 (76%)| 0.907 | 3 | 3206° | 0.78 | 3

Table 2 Computational results. Times marked witltorrespond to CPLEX running to optimality. Values
marked with! correspond to infeasible runs.

These computational results also validate the refornaratiased methodological ap-
proach: the resulting formulations (i.8; andPj) are easier to solve and/or provide better
quality solutions than their predecessors in the refortiariasequence.

8 Conclusion

This paper discusses a sphere covering problem arising ioathfiguration of a gamma ray
machine for the cure of brain tumor. We employ a solution rétthogy based on successive
reformulations going from a natural infinite formulatiorrdbigh nonconvex mixed-integer
nonlinear and convex mixed-integer nonlinear to two veffedint types of mixed-integer

linear formulations. We also report on preliminary compiotzal results. Work is under way

in investigating different types of formulations based auibding interspherical distance
from below. The final aim is that of integrating the modelliedative to the dosage problem
and thus of proposing formulations for the whole treatmeabfem.
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