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1 Introduction

Let G = (V,E) be a simple undirected graph with n nodes and m edges,
weighted by a non-negative cost function w : E → R

+; we use the notation
w(F ) =

∑

e∈F we for subsets F ⊆ E. A cycle is a subset γ of E such that every
node of V is incident with an even number of edges in γ. Since an elementary
cycle is a connected cycle such that at most two edges are incident to any node,
cycles can be viewed as the (possibly empty) union of edge-disjoint elementary
cycles. If cycles are considered as edge-incidence binary vectors in {0, 1}|E|, it
is well-known that the cycles of a graph form a vector space over GF (2). When
the graph G is connected, a set of ν = m−n+1 cycles is a cycle basis if it is a
basis in this cycle vector space associated to G. There are special cycle bases
that can be derived from the spanning trees of G. Let T ⊆ E denote the edge
set of any spanning tree of G; the edges in T are called branches of the tree,
and those in E\T (the co-tree) are called the chords of G with respect to T (or,
with a slight abuse of notation, the chords of T ). Any chord uniquely identifies
a cycle consisting of the chord itself and the unique path in T connecting the
two nodes of the chord. These ν cycles are called fundamental cycles and they
form a Fundamental Cycle Basis (FCB) of G with respect to T (see below for
the definition of weakly FCBs). Since the cycle space of a graph is the direct
sum of the cycle spaces of its edge-biconnected components, we assume that G

is edge-biconnected, i.e., G contains at least two edge-disjoint paths between
any pair of nodes.

Figure 1 shows the difference between a non-fundamental cycle basis and a
fundamental one.
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Fig. 1. (a) A triangular grid graph with unit edge costs, (b) a minimum cycle basis
with cost 27 and (c) a minimum FCB with cost 30.

In this paper we consider the following problem.

Min FCB: Given an edge-biconnected graph G = (V,E) with non-negative
costs assigned to the edges, find a fundamental cycle basis {γ1, . . . , γν} of
minimum total cost, i.e., which minimizes

∑ν
i=1 w(γi) where w(γi) denotes

the sum of the costs of all edges in cycle γi.
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Previous and related work. Cycle bases have been used in the field of electrical
networks since the time of Kirchoff [2]. Interest in minimum FCBs arises in
a variety of application fields, such as electrical circuit testing [3], generating
minimal perfect hash functions (used in compiler design) [4], planning cyclic
timetables [5,6], coding of ring compounds [7] and planning complex syntheses
in organic chemistry [8]. Many of the early results about the graph-theoretical
structure of FCBs are due to a sequence of papers by Sys lo [9–14]. In particu-
lar, a cycle basis is fundamental if and only if each cycle in the basis contains at
least one edge which is not contained in any other cycle in the basis [12]. More-
over, two spanning trees whose symmetric difference is a collection of 2-paths
(paths where each node, excluding the endpoints, has degree 2) give rise to the
same FCB. An algorithm for enumerating the FCBs is also presented in [14].
More recently, weakly fundamental cycle bases, in which it suffices that there
exists an ordering of the cycles γ1, . . . , γν such that γj \ (γ1 ∪ . . . ∪ γj−1) 6= ∅
for all j, 2 ≤ j ≤ ν, have also been considered, see for instance [15]. Notice
that for a cycle basis to be fundamental it has to satisfy the above condition
for all possible orderings of the cycles. In this work we focus on fundamental
cycle bases that are fundamental and, for the sake of brevity, do not mention
strictness.

Although the problem of finding a general cycle basis of minimum total cost
can be solved in polynomial time (see [16] and the recent improvements
[17,18]), requiring (strict) fundamentality makes the problem NP-hard [19].
The approximability of MinFCB is addressed in [20], where the problem
is shown to be APX-hard even when restricted to unweighted graphs, a
O(log2 n log log n)-approximation algorithm is given for arbitrary graphs, and
tighter approximability bounds are obtained for dense graphs, including a
polynomial-time approximation scheme for complete graphs. Constructive heu-
ristic methods for solving the MinFCB problem have been proposed in [4,19,21],
and tested on a variety of regular and randomly generated instances.

A well-known problem related to MinFCB is the minimum routing cost span-
ning tree problem, see e.g. [22,23]. Given a weighted graph G as in Min FCB,
one looks for a spanning tree T of G which minimizes the sum of the costs of
the paths on T between all pairs of nodes. In spite of the similarities, MinFCB
differs substantially from this problem since the sum is taken only over the
pairs of nodes corresponding to the chords of T . Note that for weighted graphs,
the cost of all chords is also included in the objective function.

The paper is organized as follows. In Section 2 we describe a local search algo-
rithm in which the spanning tree associated to the current FCB is iteratively
modified by performing edge swaps. In Section 3 the same type of edge swaps
is adopted within two metaheuristic schemes, namely a variable neighborhood
search and a tabu search. To provide lower bounds on the cost of optimal so-
lutions, a new mixed integer programming (MIP) formulation of the problem
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is presented in Section 4. Computational results are reported and discussed in
Section 5.

2 Edge-swapping local search

Due to the correspondence between fundamental cycle bases and spanning
trees and the fact that the set of all spanning trees can be efficiently explored
by iteratively swapping pairs of edges (see e.g. [24,25]), we consider a local
search algorithm for MinFCB based on edge swaps. Starting from the span-
ning tree associated to an initial FCB, at each iteration we swap a chord e

with one of the branches in the fundamental cycle induced by e so that the
total FCB cost is decreased, until the cost cannot be further decreased, i.e.,
a local minimum is found. In practice, it was verified experimentally that al-
lowing swaps that keep the objective function value constant results in a more
effective exploration of the solution space.

For each chord e = {u, v} of G with respect to the spanning tree T , let 〈u, v〉
be the unique path connecting u, v in T and let γe

T = 〈u, v〉 ∪ {u, v} the
unique fundamental cycle induced by e. For each branch b of T , the removal
of b from T induces the partition of the node set V into two subsets Sb

T and
S̄b

T . Denote by δb
T the fundamental cut of G induced by the branch b of T ,

i.e., δb
T = δ(Sb

T ) = {{u, v} ∈ E | u ∈ Sb
T , v ∈ S̄b

T}. It is easy to verify that
each chord e belongs to all fundamental cuts δb

T induced by the branches b

of the fundamental cycle γe
T . Denoting by C(T ) the set of cycles in the FCB

associated to T , then w(C(T )) denotes the cost of this FCB.

2.1 Initial solutions

Initial solutions are obtained by applying a very fast “tree-growing” proce-
dure [21], where a spanning tree and its corresponding FCB are generated
by adding nodes to the tree according to predefined criteria. The adaptation
of Paton’s procedure to the MinFCB problem proceeds as follows. Initially
the node set VT of the tree only contains a root node v0, and the set W of
nodes to be examined is taken as V . Then at each step a node u ∈ W ∩ VT

is selected according to a predefined ordering. For all nodes z adjacent to u,
if z 6∈ VT , the edge {z, u} is included in T (the edge is selected), the node z

is added to VT and the node u is removed from W . Nodes to be examined are
selected according to non-increasing degree and, to break ties, to increasing
edge star costs. The resulting order tends to maximize the chances of identi-
fying short fundamental cycles early in the process. The performance of this
procedure is comparable to other existing tree-growing techniques [19,4]. Ini-
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tial solutions can also be obtained via the approximation algorithm given in
[26] for constructing spanning trees with average stretch O((log n)2 log log n)
in time O(m log n + n(log n)2). The average stretch of a tree T is defined as

avestretch(T ) = 1
|E|

∑

{u,v}∈E

wT (u,v)
wuv

, where wT (u, v) =
∑

{x,y}∈〈u,v〉
wxy. The rela-

tion between average stretch and FCB cost is given by

|E|avestretch(T ) =
∑

{u,v}∈E

wT (u, v)

wuv

=
∑

b∈T

1 +
∑

{u,v}∈ErT

wT (u, v)

wuv

= |T |+
∑

e∈ErT

w(γe
T )− we

we

= |T |+
∑

e∈ErT

w(γe
T )

we

− (|E| − |T |)

=
∑

e∈ErT

w(γe
T )

we

+ 2n−m− 2,

that is an FCB-like cost where the cost of each cycle is scaled by the weight
of the corresponding chord, plus an additive constant. For unweighted graphs
where we = 1 for all e ∈ E, this becomes simply w(C(T ))+2n−m−2 and the
approximation guarantee for the average stretch then translates directly into
an approximation guarantee for the FCB. For the weighted graphs, a related
technique yielding an approximation of O(w(E) log n log2 n) is given in [27].

2.2 Selection of a best edge swap

Let π = (e, b), where e is a chord and b is a branch of γe
T , be the edge swap

such that:
πT = T ∪ {e}r {b}.

An edge swap π = (e, b), with b ∈ γe
T , is an improving edge-swap for T if it

decreases the total FCB cost, that is if ∆π = w(C(T ))− w(C(πT )) > 0.

In our edge-swapping local search algorithm, we start from the FCB associated
to the spanning tree provided by the constructive procedure of Section 2.1.
Then at each iteration we apply to the current spanning tree T the edge
swap π = (e, b) which yields a maximum decrease in the objective function.
The algorithm terminates when no improving edge swap exists for the current
spanning tree.

At each iteration of the edge-swapping local search, we consider the span-
ning tree T of G associated to the current FCB. Two procedures are needed:
FCBCost(T ), a procedure which computes the cost of the fundamental cycle
basis associated with T , and a procedure BestSwap(T ), which finds a chord
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Algorithm 1 Local search

INPUT: an edge-biconnected graph G = (V,E), a spanning tree T ⊂ E of
G

OUTPUT: a spanning tree T ′ of G such that w(C(T ′)) ≤ w(C(T ))
Let T ′ = T

while w(C(T ′)) ≤ w(C(T )) do

Let T = T ′

Find a best edge swap π

Let T ′ = πT

end while

and a branch of the induced fundamental cycle whose swap yields the largest
decrease in the objective function. We show next that an edge swap π = (e, b)
where e is a chord and b a branch of γe

T , acts on a fundamental cycle γ
f
T , where

f is another chord of T , by either fixing it (i.e. by leaving it unchanged), or
by mapping it to the symmetric difference of γ

f
T and γe

T .

The following elementary facts are stated without proof.

(1) For any edge swap π = (e, b), where e is a chord and b a branch of γe
T ,

π fixes γe
T , and, if f 6= e is another chord of T such that γe

T ∩ γ
f
T = ∅, π

also fixes γ
f
T .

(2) For any pair of chords e, f of T , there exists a branch b of T such that
e, f ∈ δb

T if and only if b ∈ γe
T ∩ γ

f
T .

By Fact (1), the only case where a swap π = (e, b) does not fix a fundamental
cycle γf , for a different chord f of T , is when γe

T ∩ γ
f
T 6= ∅. Figure 2 illustrates

the following result.
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�� ��

��

��

�� ��

��

������

ee ff
b b

πγe
T γ

f
T γ

f
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Fig. 2. Illustration of the statement of Theorem 1.

Theorem 1 Consider an edge swap π = (e, b), where e is a chord and b a

branch of γe
T . For any chord f 6= e of T , if b ∈ γe

T ∩ γ
f
T , then once the swap π

is performed the fundamental cycle induced by the chord f , denoted by γ
f
πT or

π(γf
T ), is such that γ

f
πT = γ

f
T△γe

T .

Proof. First, by Fact (2) we have that e, f ∈ δb
T . Then we need the two

following claims, which are illustrated in Figure 3.

Claim 1. For all h ∈ δb
T such that h 6= b, γh

T ∩ δb
T = {b, h}.

Proof. Since γh
T is the simple cycle consisting of h and the unique path in T

connecting the endpoints of h through b, the only edges that belong both to
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the cycle and to the cut of b are b and h.

Claim 2. For all pairs of chords g, h ∈ δb
T such that g 6= h there exists a unique

simple cycle γ ⊆ G such that g ∈ γ, h ∈ γ, and γ\{g, h} ⊆ T .
Proof. Let g = {g1, g2}, h = {h1, h2} and assume w.l.o.g. that g1, h1, g2, h2

are labeled so that g1, h1 ∈ Sb
T and g2, h2 ∈ S̄b

T . Since there exist unique
paths p ⊆ T connecting g1, h1 and q ⊆ T connecting g2, h2, the edge subset
γ = {g, h} ∪ p ∪ q is a cycle with the required properties. Assume now that
there is another cycle γ′ with the required properties. Then γ′ defines paths
p′, q′ connecting respectively g1, h1 and g2, h2 in T . Since T is a spanning tree,
p = p′ and q = q′, and hence γ′ = γ.

Consider the cycle γ = γe
T△γ

f
T . By hypothesis, b ∈ γe

T ∩ γ
f
T , e ∈ γe

T , f ∈
γ

f
T . Since e, f ∈ δb

T , by Claim 1 f 6∈ γe
T and e 6∈ γ

f
T . Thus e, f ∈ γ and

b 6∈ γ. Consider now π(γf
T ): since b ∈ γ

f
T and π = (e, b), we have e ∈ π(γf

T ).
Furthermore, since π fixes f , f ∈ π(γf

T ). Hence, by Claim 2, we have that
π(γf

T ) = γ = γ
f
T△γe

T . 2

��

��

��

��

��

����

��

��

��

e fbg h

γ

Fig. 3. Illustration of Claims 1 and 2 in the proof of Theorem 1.

From Theorem 1, it follows that the change ∆π in FCB cost due to an edge
swap π = (e, b), where e is a chord and b a branch of the current spanning tree
T belonging to γe

T , only depends on the change in cost of those fundamental
cycles γ

f
T (where f 6= e is a chord of T ) which contain b.

Corollary 2 Let π = (e, b) be an edge swap with e a chord and b a branch of

γe
T , and let F (b) = {f ∈ E r T | b ∈ γ

f
T}. Then

∆π = 2
∑

f∈F (b)

w(γe
T ∩ γ

f
T )− |F (b)|w(γe

T ). (1)

Proof. By Theorem 1, the only fundamental cycles that change under the
action of π are those that contain b, and can therefore be used to quantify the
change ∆π. We have:
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∆π =
∑

f∈F (b)

(w(γf
T )− w(γf

πT )) =

=
∑

f∈F (b)

(w(γf
T )− w(γe

T△γ
f
T )) =

=
∑

f∈F (b)

(2w(γe
T ∩ γ

f
T )− w(γe

T ))

because w(γe
T△γ

f
T ) = w(γe

T ) + w(γf
T )− 2w(γe

T ∩ γ
f
T ). The result follows. 2

In the rest of this section, we present two different techniques to determine
a best edge swap at each iteration. The first one, described in Section 2.3,
uses least common ancestors to identify fundamental cycles. The second one,
described in Section 2.4, efficiently updates lists of fundamental cuts and cycles
by using symmetric differences of edge sets. As we shall see in Section 2.5,
although the worst-case complexity estimate favours the first one, the second
one turns out to be around 20 times faster in practice.

2.3 Least Common Ancestor-based algorithm

To compute the symmetric difference we need to determine the intersection
of two cycles. This can be achieved by computing Least Common Ancestors
(LCA, also called Nearest Common Ancestors). Given a spanning tree T of
G, a root r, and two vertices u, v ∈ V , the LCA of u, v is the first common
vertex on the unique paths on T , 〈u, r〉 from u to r and 〈v, r〉 from v to r.
There exists a LCA query algorithm which takes amortized O(log2 n) time for
dynamically updating rooted spanning trees with n vertices [28]. The output
of the LCA query algorithm shall be denoted by LCA(u, v, T, r).

The following elementary lemma is stated without proof.

Lemma 3 Let e = {u, v} be a chord and r any root of T ; let p be the unique

path in T between u and v. Then p contains a unique least common ancestor

x of u, v with respect to the root r of T .

The procedure FCBCost, which is described in Algorithm 2, cycles over the
chords of T and computes the cost of the corresponding fundamental cycles by
using LCAs. It relies on the following observation, which is implied by Lemma
3.

Lemma 4 Let e = {u, v} be a chord and r a vertex of T . If p1 = 〈u, r〉 and

p2 = 〈v, r〉 are the unique paths in T between respectively u and r, and v and

r, then γe
T = p1△p2 ∪ {e}.
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Algorithm 2 FCBCost(T ). Returns the FCB cost wT associated to T .

Let wT = 0, fix an arbitrary root r of T

for v ∈ V do

µ(v) = weight of the unique path in T from r to v

end for

for f = {u, v} ∈ E\T do

y = LCA(u, v, T, r) O(log2 n)
w(γf

T ) = w(f) + (µ(u)− µ(y)) + (µ(v)− µ(y)) [by Lemma 4]
wT ← wT + w(γf

T )
end for

Return wT

Due to the loop over f and the LCA computation, the complexity of Algo-
rithm 2 is O(m log2 n).

The set γe
T ∩ γ

f
T in (1) can be computed by using LCAs.

Proposition 5 Let π = (e, b) be an edge swap with e = {u, v} a chord and b

a branch of γe
T , and let f = {t, z} 6= e be another chord of T . Let x, y be the

LCAs of t, z with respect to the rootings u, and respectively v, of T . Let p be

the unique path in T between x and y. Then γe
T ∩ γ

f
T = p.

Proof. Let x′ be the LCA of u, v w.r.t. the rooting t, and y′ the LCA of
u, v w.r.t. the rooting z of T . For v1, v2 distinct vertices in V , we indicate by
〈v1, v2〉 the unique path in T from v1 to v2. Then by definition of LCA we
have: 〈x, y〉 ⊆ T , 〈x′, y′〉 ⊆ T , 〈x, u〉 ⊆ T , 〈u, x′〉 ⊆ T , 〈y, v〉 ⊆ T , 〈v, y′〉 ⊆ T .
Suppose x 6= x′ or y 6= y′. Putting the above paths together, we find that
(x, y, v, y′, x′, u, x) is a sequence of vertices on a path in T . Since x appears
as the first and last element, this path is closed, hence T is a spanning tree
containing a cycle, which is a contradiction. Hence x = x′ and y = y′. By
Lemma 3, p belongs to both γe

T and γ
f
T , as claimed (see Figure 4). 2

e

f

u v

t z

x y

x′ y′

Fig. 4. Illustration of the proof of Proposition 5.
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Corollary 2 and Proposition 5 suggest the following method: given an edge
swap π = (e, b) for a chord e and a branch b of γe

T , cycle over all other
chords f 6= e such that b ∈ γ

f
T and compute ∆π. We can then choose the

edge swap leading to the best improvement. This is implemented in a slightly
more efficient way in Algorithm 3 by assigning a weight ξ to the vertices
u ≡ v1, . . . , vk, vk+1 ≡ v in the unique path in T joining the endpoints of the
chord e. For all i ≤ k, the weight

∑

j≤i ξ(vj) corresponds to the change in FCB
cost when b = {vi, vi+1} is selected for the swapping branch in π = (e, b).

The procedure BestSwap is described in Algorithm 3. Its complexity is
O(m2n), due to the nested loops over e and f and the path computation
between x and y.

Algorithm 3 LCA-based implementation of BestSwap(T ).

Initialize ∆∗ = 0, π∗ = identity swap
for e = {u, v} ∈ E\T do

Let ρ = (v1, . . . , vk, vk+1) be the unique path in T joining u, v

for vi ∈ ρ do

Initialize ξ(vi) = 0
end for

for f = {t, z} ∈ E\(T ∪ {e}) do

x = LCA(t, z, T, u)
y = LCA(t, z, T, v)
if x 6= y then

Let p be the unique path (of weight w(p)) in T joining x, y O(n)
d(e, f) = w(γe

T )− 2w(p) [by Corollary 2]
ξ(x)← ξ(x) + d(e, f)
ξ(y)← ξ(y)− d(e, f)

end if

end for

Let vi ∈ ρ be such that
∑

j≤i ξ(vj) is minimum over i ≤ k

Let b = {vi, vi+1}, π = (e, b), ∆ =
∑

j≤i ξ(vj)
if ∆ < ∆∗ then

∆∗ = ∆
π∗ = π

end if

end for

Return π∗ and ∆∗

2.4 Symmetric difference-based algorithm

This implementation of BestSwap is conceptually simpler than the LCA-
based one. We maintain lists of fundamental cuts and cycles associated to the
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current spanning tree, and use them to compute the cost of each edge swap
(see Alg. 4). Since applying an edge swap to a spanning tree may change the
fundamental cycle and cut structures considerably, efficient procedures are
needed to compute ∆π and update the fundamental cut and cycle lists. We
show that any edge swap π = (e, f) applied to a spanning tree T , where e ∈ T

and f ∈ δe
T , changes a cut δh

T if and only if f is also in δh
T . Furthermore,

π(δh
T ) = δh

πT is given by the symmetric difference δh
T△δe

T . By Theorem 1 a
similar statement holds for cycles. This makes it easy to maintain fundamental
cut and cycle data structures that can be updated efficiently, by performing
symmetric differences of edge sets, when π is applied to T .

Algorithm 4 Symmetric difference-based implementation of BestSwap(T ).

Initialize ∆∗ = 0, π∗ = identity swap
For each e ∈ T compute δe

T ; for all f ∈ E r T compute γe
T

for all e ∈ T, f ∈ δe
T s.t. f 6= e do

Let π = (e, f)
Compute C(πT ) and hence ∆π

if ∆π < ∆∗ then

Let ∆∗ = ∆π

Let π∗ = π

end if

end for

Return π∗ and ∆∗

For each pair of nodes u, v ∈ V , 〈u, v〉 denotes the unique path in T from u to
v. Let e = {ue, ve} ∈ T be an edge of the spanning tree and c = {uc, vc} 6∈ T be
a chord. Let p1(e, c) = 〈ue, uc〉, p2(e, c) = 〈ue, vc〉, p3(e, c) = 〈ve, uc〉, p4(e, c) =
〈ve, vc〉 and PT (e, c) = {pi(e, c) | i = 1, . . . , 4}. Note that exactly two paths in
PT (e, c) do not contain e. Let P̄T (e, c) denote the subset of PT (e, c) composed
of those two paths not containing e. Let P ∗

T (e, c) be whichever of the sets
{p1(e, c), p4(e, c)}, {p2(e, c), p3(e, c)} has shortest total path length in T , or
the first one to break ties (see Figure 5). In the sequel, with a slight abuse
of notation, we shall sometimes say that an edge belongs to a set of nodes,
meaning that its endpoints belong to that set of nodes. For a path p and a
node set N ⊆ V (G) we say p ⊆ N if the edges of p are in the edge set E(GN)
(i.e., the edges of the subgraph of G induced by N). Furthermore, we shall
say that a path connects two edges e, f if it connects an endpoint of e to an
endpoint of f .

The following lemma implies that the shortest paths from the endpoints of e

to the endpoints of c do not contain e.

Lemma 6 For any branch e ∈ T and chord c ∈ E\T , we have c ∈ δe
T if and

only if P̄T (e, c) = P ∗
T (e, c), that is e 6∈ P ∗

T (e, c).

Proof. First assume that c ∈ δe
T . Denoting by uc, vc the endpoints of c and by
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Fig. 5. (A) If c is in the fundamental cut induced by e, P̄T (e, c) = P ∗
T (e, c) = {p1, p4}.

Otherwise, up to symmetries, we have the situation depicted in (B) where
P̄T (e, c) 6= P ∗

T (e, c).

ue, ve those of e, we can assume w.l.o.g. that uc, vc, ue, ve are labeled so that
uc, ue ∈ Se

T and vc, ve ∈ S̄e
T . Since there is a unique path q in T connecting

uc to vc, then e ∈ q. Thus, there are unique sub-paths q1, q2 of q such that
q1 = 〈ue, uc〉, q2 = 〈ve, vc〉 and q1 ⊆ Se

T , q2 ⊆ S̄e
T (i.e. neither q1 nor q2 contains

e). Hence P ∗
T (e, c) = {q1, q2} = P̄T (e, c). Conversely, let P ∗

T (e, c) = {q1, q2},
and assume that e is not in q1 nor in q2. Since either q1 ⊆ Se

T and q2 ⊆ S̄e
T or

vice versa, the endpoints of c are separated by the cut δe
T , i.e., c ∈ δe

T . 2

Let π = (e, f) be an edge swap with e ∈ T, f ∈ δe
T and f 6= e. Note that

f ∈ E r T . First we note that the cut in G induced by e with respect to T is
the same as the cut induced by f with respect to πT .

Proposition 7 For any π = (e, f) with e ∈ T and f ∈ δe
T such that f 6= e,

we have π(δe
T ) = δ

f
πT .

Proof. Since f ∈ δe
T , swapping e with f does not modify the partitions that

induce the cuts, i.e., Se
T = S

f
πT . 2

Second, we show that the cuts that do not contain f are not affected by π.

Proposition 8 For each h ∈ T such that h 6= e, and f 6∈ δh
T , we have π(δh

T ) =
δh
T .

Proof. Let g ∈ δh
T . By Lemma 6, the shortest paths pT

1 , pT
2 from the endpoints

of h to the endpoints of g do not contain h. We shall consider three possibilities.

(1) In the case where e and f do not belong either to pT
1 or pT

2 we obtain
trivially that P̄πT (f, e) = P̄T (e, f) = P ∗

T (e, f) = P ∗
πT (f, e) and hence the

result.

(2) Assume now that e ∈ pT
1 , and that both e, f are in Sh

T . The permutation π

changes pT
1 so that f ∈ pπT

1 , whilst pπT
2 = pT

2 . Now pπT
1 is shortest because it is

the unique path in πT connecting the endpoints of pT
1 , and since h 6∈ pπT

1 , pπT
2

because π does not affect h, we obtain P̄πT (e, c) = P ∗
πT (e, c).
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(3) Suppose that e ∈ pT
1 , e ∈ Sh

T and f ∈ S̄h
T . Since f ∈ δe

T , by Lemma 6
there are shortest paths qT

1 , qT
2 connecting the endpoints of e and f such that

qT
1 ⊆ Se

T , qT
2 ⊆ S̄e

T . Since e ∈ Sh
T , f ∈ S̄h

T and T is tree, there is an i in
{1, 2} such that h ∈ qT

i (assume w.l.o.g. that i = 1), so qT
1 = rT

1 ∪ {h} ∪ rT
2

where rT
1 ⊆ Sh

T connects h and e, and rT
2 ⊆ S̄h

T connects h and f . If we let
qT = rT

1 ∪ {e} ∪ qT
2 , then qT is the unique path in Sh

T connecting h and f .
Since rT

2 connects h and f in S̄h
T , we must conclude that f ∈ δh

T , which is a
contradiction. 2

Third, we prove that any cut containing f is mapped by the edge swap π =
(e, f) into its symmetric difference with the cut induced by e of T .

Theorem 9 For each h ∈ T such that h 6= e and f ∈ δh
T , we have π(δh

T ) =
δh
T△δe

T .

The proof is lengthy and hence is given in Appendix A.

2.5 Complexity comparison

It was shown in Section 2.3 that the complexity of the BestSwap procedure
based on LCA computation is O(m2n).

In the alternative algorithm of Section 2.4, fundamental cuts and cycles are
determined and updated by using symmetric differences of edge sets, which
require linear time in the size of the sets. Since for any spanning tree T there
are m−n+1 fundamental cycles with at most n edges, and n−1 fundamental
cuts with at most m edges, updating the fundamental cut and cycle structures
after the application of an edge swap (e, f) requires O(mn). Doing this for each
branch of the tree and for each chord in the fundamental cut induced by the
branch, leads to a O(m2n2) worst-case complexity, apparently leading to a
worse algorithm.

Running the implementation of both algorithms, however, showed a consis-
tent performance difference in favour of the second algorithm. More precisely,
tested on a set of 60 instances of various types (see the table in Appendix
B), the LCA-based algorithm was on average around 20 times slower than
the symmetric difference-based one (with a standard deviation of around 10);
profiling the code suggested that this was essentially due to the algorithm
rather than the implementation. An intuitive explanation may be found in
the fact that worst-case complexity analysis may not accurately reflect the
performance of the second algorithm. Take for instance the update of the fun-
damental cuts: there is a first loop on the n−1 tree branches inducing the cuts,
and a second nested loop of O(m) chords in each cut. This eventually leads
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to the (apparently) very costly O(m2n2) term. On average, however, each cut
is very far from attaining the worst-case estimation of m edges. Instead, one
should consider the total number of edges counted jointly by the two nested
loops, which is usually much lower than the worst-case m(n− 1).

In support of the above view, the following simple average-case observations
can be made for unweighted graphs.

(1) Let k̄ be the average cardinality of each cycle in the minimum FCB: then
k̄ = f∗

m−n+1
where f ∗ is the cost of the minimum FCB.

(2) Each chord belongs on average to the k̄−1 cuts induced by its own cycle.

(3) The average length of each cut is therefore m(k̄−1)
n−1

, and the total number

of edges counted jointly by the two nested loops is on average m(k̄ − 1).
(4) Asymptotically, m(k̄ − 1) is O(f ∗).

It follows that, for unweighted graphs, the cost of the minimum FCB is a
reasonable estimate of the complexity cost of each swap. Since the main focus
of this work is experimental, in the sequel we only report the computational
results for the faster algorithm based on symmetric differences.

Finally, we remark that the computing time taken for a single iteration of
the local search heuristic (i.e. an application of the BestSwap algorithm) is
(asymptotically) comparable with the time taken for constructing the initial
solution (see e.g. worst-case complexity bounds in [26]). This suggests that
such heuristics are not well-suited for real-time or time-critical applications.

3 Metaheuristics

To go beyond the scope of local search and try to escape from local minima, we
have implemented and tested two well-known metaheuristics: variable neigh-
borhood search (VNS) [29] and tabu search (TS) [30].

3.1 Variable neighborhood search

VNS is a relatively recent metaheuristic which relies on iteratively exploring
neighborhoods of growing size to identify better local optima [29]. More pre-
cisely, in VNS one attempts to escape from a local minimum x′ by choosing
another random starting point in increasingly larger neighborhoods of x′. If
the cost of the local minimum x′′ obtained by applying the local search from
x′ is smaller than the cost of x′, then x′′ becomes the new best local mini-
mum and the neighborhood size is reset to its minimal value. This procedure

14



is repeated until a given termination condition is met. VNS was successfully
tested on many combinatorial and continuous optimization problems [31].

For the MinFCB problem, given a locally optimal spanning tree T ′ provided
by the local search algorithm, we consider a neighborhood of size p consisting
of all those spanning trees T that can be reached from T ′ by applying p

consecutive edge swaps. A random solution in a neighborhood of size p is
obtained by generating a sequence of p random edge swaps and applying it to
T ′. The algorithm is summarized in Figure 6.

For the whole test set, the parameters were set as follows: minimum neighbor-
hood size k = 2 (k = 1 would simply explore the local search neighborhood
again), maximum neighborhood size K = 5, number of trials in each neigh-
borhood F = 1.

(1) Let T ∗ be a locally minimal spanning tree found with LS, and
ϕ∗ its FCB cost

(2) Initialize minimum and maximum neighborhood sizes k,K and
number F of local searches in each neighborhood

(3) Set p = k and T = T ∗

(4) for all i ≤ F do

for all j ≤ p do

Choose random edge swap π = (b, c)
T = πT

Let T ′ = LS(T ) and ϕ′ be the FCB cost of T ′

if ϕ′ < ϕ∗ then let T ∗ = T ′, ϕ∗ = ϕ′ and go to step (3)
(5) p← p + 1
(6) if p > K then terminate else go to step (4)

Fig. 6. The VNS algorithm for the MinFCB problem. In step 4, LS(T ) denotes the
spanning tree provided by the local search algorithm.

3.2 Tabu search

Our implementation of TS [30] includes diversification steps “à la VNS” (vTS).
In order to escape from local minima, a best available edge swap is applied
to the current solution (even if it worsens the FCB cost) and is inserted in
a tabu list. If all possible edge swaps are tabu or a pre-determined number
S of successive non-improving moves is exceeded, t random edge swaps are
applied to the current spanning tree; this move is called a random shaker of
size t. The number t increases until a limit K is reached, and is then re-set
to a starting size k. The procedure runs until a given termination condition is
met. The algorithm is summarized in Figure 7.
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For the whole test set, we took: maximum tabu list size Λ = 10, minimum
and maximum random shaker sizes k = 2, K = 30, non-improving moves limit
S = 20.

(1) Let T ∗ be a locally minimal spanning tree found with LS, and
ϕ∗ its FCB cost

(2) Initialize tabu list length Λ, minimum and maximum random
shaker size k,K, non-improving moves limit S

(3) Initialize FIFO tabu list L = ∅, cost-increasing edge swap
counter s = 0, random shaker size p = k

(4) Choose a cost-increasing edge swap π 6= 1 s.t. cost increase is
minimal and π 6∈ L; let s = s + 1

(5) if such a π does not exist, or s > S then let π be a random

shaker of size p; set p = p + 1 and s = 0
(6) if p > K then terminate
(7) Let T = πT ∗ and L = L ∪ {π−1}
(8) if |L| > Λ then remove oldest edge swap from L

(9) Let T ′ = LS(T ) and ϕ′ be the FCB cost of T ′

(10) if ϕ′ < ϕ∗ then let ϕ∗ = ϕ′, T ∗ = T ′, s = 0, p = k

(11) Go to step (4)

Fig. 7. The TS algorithm for the MinFCB problem. In step 7, π−1 indicates the
inverse edge swap; in step 4, LS(T ) denotes the spanning tree provided by the local
search algorithm.

Other TS variants were tested. In particular, we implemented a “pure” TS
(pTS) with no diversification, and a fine-grained TS (fTS) where, instead of
forbidding moves (edge swaps), feasible solutions are forbidden by exploit-
ing the fact that spanning trees can be stored in a very compact form. We
also implemented a TS variant with the above-mentioned diversification steps
where pTS tabu moves and fTS tabu solutions are alternatively considered.
Although the results are comparable on most test instances, vTS performs
best on average. Computational experiments indicate that diversification is
more important than intensification when searching the MinFCB solution
space with our type of edge swaps. Variable length tabu lists were also tried,
but the results were similar to those obtained with fixed-length lists.

4 Lower bounds

Lower bounds on the cost of the optimal solutions are useful to assess the
performance of heuristics. The linear relaxations of three different mixed in-
teger programming formulations were discussed in [32]. In this section, we de-
scribe an improved formulation that uses non-simultaneous flows on arcs to en-
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sure that the cycle basis is fundamental. Consider an edge-biconnected graph
G = (V,E) with a non-negative cost wij assigned to each edge {i, j} ∈ E. For
each node v ∈ V , δ(v) denotes the node star of v, i.e., the set of all edges in-
cident to v. Let G0 = (V,A) be the directed graph associated with G, namely
A = {(i, j), (j, i)|{i, j} ∈ E}. We use two sets of decision variables. For each
edge {k, l} ∈ E, the variable xkl

ij ≥ 0 represents the flow through arc (i, j) ∈ A

from k to l. Moreover, for each edge {i, j} ∈ E, the variable zij is equal to 1
if edge {i, j} is in the spanning tree of G, and equal to 0 otherwise. For each
pair of arcs (i, j) ∈ A and (j, i) ∈ A, we define wji = wij. The following MIP
formulation for the MinFCB problem provides much tighter bounds than
those considered in [32]:

min
∑

{k,l}∈E

∑

(i,j)∈A

wijx
kl
ij +

∑

{i,j}∈E

wij(1− 2zij) (2)

s.t.
∑

j∈δ(k)

(xkl
kj − xkl

jk) = 1 ∀{k, l} ∈ E (3)

∑

j∈δ(i)

(xkl
ij − xkl

ji) = 0 ∀{k, l} ∈ E, ∀i ∈ V \{k, l} (4)

xkl
ij ≤ zij ∀{k, l} ∈ E, ∀{i, j} ∈ E (5)

xkl
ji ≤ zij ∀{k, l} ∈ E, ∀{i, j} ∈ E (6)

∑

{i,j}∈E

zij = n− 1 (7)

xkl
ij ≥ 0 ∀{k, l} ∈ E, ∀(i, j) ∈ A

zij ∈ {0, 1} ∀{i, j} ∈ E.

For each edge {k, l} ∈ E, a path p from k to l is represented by a unit of
flow through each arc (i, j) in p. In other words, a unit of flow exits node
k and enters node l after going through all other (possible) nodes in p. For
each edge {k, l} ∈ E, the flow balance constraints (3) and (4) account for a
directed path connecting nodes k and l. Note that the flow balance constraint
for node l is implied by constraints (3) and (4). Since constraints (5) and (6)
require that zij = 1 for every edge {i, j} contained in some path (namely
with a strictly positive flow), the z variables define a connected subgraph of
G. Finally, constraint (7) ensures that the connected subgraph defined by the
z variables is a spanning tree. The objective function (2) adds the cost of
the path associated to every edge {k, l} ∈ E and the cost of all tree chords,
and subtracts from it the cost of the tree branches (which are counted when
considering the path for every edge {k, l}). The main shortcoming of this
formulation is that it contains a large number of variables and constraints and
hence it is hard to solve to optimality even for medium-sized instances.

The bounds reported in the next section were obtained by letting CPLEX
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MIP solver (v. 9.1, [33]) process the root node of the branch-and-bound tree,
with automatic cut generation enabled. For small instances, the solver was
run to completion.

4.1 Efforts towards tighter lower bounds

A substantial effort was undertaken in order to obtain tighter lower bounds
but unfortunately to no avail. A number of different ILP formulations and
corresponding Lagrangian relaxations of some of the constraints were consid-
ered. Almost invariably, one of the two resulting subproblems was solvable in
polynomial time and the other was computationally as difficult as (or more
than) solving the MinFCB problem itself. When two easy subproblems were
obtained, the resulting bounds were weaker or the same as those obtained by
solving the linear relaxation of the formulation given above.

One of the most (apparently) promising Lagrangian relaxations we considered
is the following “partial” ILP formulation:

min z =
∑

i∈E

ν
∑

k=1

wixik (8)

s.t.
ν
∑

k=1

xik ≥ 1 ∀i ∈ E (9)

{i | yi = 1} is a spanning tree of G (10)
ν
∑

k=1

xik ≤ 1 + νyi ∀i ∈ E (11)

∑

i∈δj

xik = 2sjk ∀j ∈ V, k ≤ ν (12)

∑

i∈E

xik ≥ 3 ∀k ≤ ν. (13)

where:

xik = 1 if edge i ∈ cycle k and 0 otherwise (14)

yi = 1 if edge i ∈ spanning tree T and 0 otherwise (15)

sjk = 1 if vertex j ∈ cycle k and 0 otherwise (16)

and δj is the star of vertex j (there are Θ(mn) variables in (8)-(13), the same
as in (2)-(7)). The only “complicating constraints” of this formulation, involv-
ing both the x and y variables, are those in Equation (11). By relaxing these
constraints we can decompose the Min FCB problem into two separate (sim-
pler) problems. We relax the |E| constraints (11) using Lagrange multipliers
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λi for all i ∈ E to obtain:

z(x, y, λ) =
∑

i∈E

wi

ν
∑

k=1

xik +
∑

i∈E

λi

(

ν
∑

k=1

xik − 1− νyi

)

=

=
∑

i∈E

(wi + λi)
ν
∑

k=1

xik − ν
∑

i∈E

λiyi −
∑

i∈E

λi =

= z1 − z2 − z3

where

z1(x, λ) =
∑

i∈E

(wi + λi)
ν
∑

k=1

xik

z2(y, λ) = ν
∑

i∈E

λiyi

z3(λ) =
∑

i∈E

λi.

This separates the problem into two independent subproblems: Max Span-
ning Tree (y variables, objective function z2) and a special form of Min
Eulerian Cycle (x variables, objective function z1). The Max Spanning
Tree problem is formulated as miny{z2(y, λ) | (10)} and solved combinato-
rially with a greedy method. The special Min Eulerian Cycle problem is
formulated as minx,s{z1(x, s, λ) | (9) ∧ (12) ∧ (13)} and also solved combina-
torially (we omit the details). The Lagrangian dual problem is therefore

max
λ≥0

(min
x,s
{z1(x, λ) | (9) ∧ (12) ∧ (13)} −min

y
{z2(y, λ) | (10)} − z3(λ)),

which we tried to solve using a subgradient method [34], but to no avail, getting
a bound that was identical to the relaxation of the MinFCB formulation (2)-
(7).

Since the constraints in the MinFCB formulation are the same as in the
minimum routing cost tree formulation, we tried to tighten the bound by
adding valid cuts used in [23]. In particular, we considered the cardinality
cuts stating that each subtree must contain a number of edges equal to the
number of nodes minus one. However, the solution of the linear relaxation of
the above formulation, albeit fractional, already satisfied all these cuts on all
tested instances.

For large instances, even solving the linear relaxation of our formulation is a
very challenging task. In those cases, a lower bound was obtained by finding
the minimum (non-fundamental) cycle basis of the graph using an improved
version of Horton’s algorithm [16,18,35]. On average, this is a very weak lower
bound, whose difference with respect to the optimal FCB cost grows with the
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size of the instance. In the case of mesh graphs, we established experimentally
that the gap between this lower bound and the heuristic solution increases
about linearly with number of vertices in the graph (in the case of unweighted
graphs, Thm. 6.6 of [38] gives an asymptotic 1

1024
ln(n) lower bound for square

grids). Further information about bounds and asymptotic sizes for mesh grids
can be found in [36] and the references cited therein.

5 Computational results

Our edge-swapping local search algorithm and metaheuristics were imple-
mented in C++ and tested on various types of unweighted and weighted
graphs. CPU times refer to a Pentium 4 2.66 GHz processor with 1 GB RAM
running Linux. We considered the following classes of instances:

• star graphs and rectangular mesh graphs with known global optima,
• square mesh graphs with unit costs on the edges,
• Euclidean graphs generated randomly, with weights proportional to the edge

lengths,
• two instances taken from a real-life periodic timetabling problem,
• one instance taken from a real-life electrical circuit testing application,
• 2D and 3D toroidal graphs with unit costs on the edges.

Some instances are from the literature, while others were generated on pur-
pose. In the next subsections, we provide the corresponding information and
report the results obtained for each one of them. Each instance was tested with
the following heuristics: the local search algorithm (LS), the NT-heuristic cited
in [4], and the VNS and TS algorithms described in Section 3 (which were run
for 10 minutes after finding the first local optimum, unless specified otherwise).
For most instances, we also report a lower bound.

5.1 Graphs with known optima

N-Star graphs. These graphs can be represented as regular polygons having N

sides. The nodes are those adjacent to the N sides and a node at the center
of the polygon; the edges are the N sides and all edges connecting the central
node with each of the other nodes. An example with N = 8 sides is shown
in Figure 8(a). The spanning tree giving rise to the optimal FCB consists of
all edges connecting the central node with each of the other nodes. All the
cycles in the optimal FCB have 3 edges; each of the N sides of the polygon is
a chord. The optimal FCB cost is 3N . We considered the instances for all N

up to 50, and in all cases the optimal solution was reached without any edge
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swap, i.e., the initial constructive heuristic always found the optimal solution.

Rectangular mesh graphs. These graphs consist of a rectangular array of 4×N

nodes; Figure 8(b) shows an example with N = 9, together with the optimal
solution. Although it is easy to show that the optimal solutions for such in-
stances are all similar to that given in Figure 8(b), constructive heuristics fail
to find it. The optimal FCB has 2(n− 3) + 6 square cycles (4 edges each) and
N − 3 rectangular cycles (6 edges each) with an optimal cost of 14N − 28. All
instances from N = 10 to N = 100 were tried, and the local search heuristic
always managed to find the optimum, either within 2 or 4 edge swaps.

3 3

3 4

4

4

4

4

6 6 6

4

4

4 4 4 4 4

4 4 4 4 4 4

6 6 63

3

3

3
3

(a) (b)

Fig. 8. Instance of 8-star graph with optimal FCB (a). Instance of (4×9)-rectangular
mesh with optimal FCB (b).

5.2 Unweighted mesh graphs

One of the most challenging testbeds for the MinFCB problem is given by
the square N ×N mesh graphs with unit costs on the edges. Due to the large
number of symmetries in these graphs, there are many different spanning
trees with identical associated FCB costs. Uniform cost square mesh graphs
have n = N2 nodes and m = 2N(N − 1) edges. Table 1 reports the FCB
costs and corresponding CPU times. The lower bounds for this class of graphs
correspond to the formula 4(m − n + 1), namely to the cost of a minimum
non-fundamental cycle basis. In the case of mesh graphs, it is also a minimum
weakly fundamental cycle basis.

For this class of graphs LS finds much better solutions than NT, but the
differences in CPU times are enormous. TS performs very slightly better than
VNS on average.

Since these results were first presented in [1], considerable attention has been
devoted to the MinFCB problem. In particular, the focus in [36] is on mesh
graphs, and the authors improve the FCB costs by around 16% with respect
to Table 1 and the lower bounds by around 67%. Our methods, of course,
are applicable to general graphs, whereas those developed in [36] are tailored
to mesh graphs. In any case, it appears clear that reducing the gap between
lower and upper bounds is a definite challenge for future research.
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LS NT VNS TS Bound

N Cost Time Cost Time Cost Cost Cost

5 72∗ 0:00:00 78 0:00:00 72 72 64

10 474 0:00:00 518 0:00:00 466∗ 466∗ 324

15 1318 0:00:00 1588 0:00:00 1280 1276∗ 784

20 2608 0:00:03 3636 0:00:00 2572∗ 2590 1444

25 4592 0:00:16 6452 0:00:00 4464 4430∗ 2304

30 6956 0:00:47 11638 0:00:00 6900 6882∗ 3364

35 10012 0:02:19 16776 0:00:00 9982 9964∗ 4624

40 13548 0:06:34 28100 0:00:01 13524∗ 13534 6084

45 18100∗ 0:14:22 35744 0:00:01 18100 18100 7744

50 23026∗ 0:31:04 48254 0:00:03 23026 23552 9604

Table 1
Computational results (CPU times in format h:mm:ss) for N × N mesh graphs.
Values marked with ∗ denote the best value found for the instance.

5.3 Random Euclidean graphs

We have generated simple random edge-biconnected graphs. The nodes are
positioned uniformly at random on a 20 × 20 square centered at the origin.
Between each pair of nodes an edge is generated with probability p, with
0 < p < 1 (also called the edge density). The cost of an edge is equal to the Eu-
clidean distance between its adjacent nodes. For each n in {10, 20, 30, 40, 50}
and p in {0.2, 0.4, 0.6, 0.8}, we have generated a random graph of size n with
edge probability p. The computational results are given in Table 2. Lower
bounds have been computed by solving a linear relaxation of the formulation
in Section 4. The average percentage gap between the LS heuristic and lower
bounding FCB costs is 8.19%, the standard deviation is ± 5.15%, and the
mode is 6% (these values have been obtained considering a larger instance set
than that reported in Table 2, namely 81 instances). It is worth pointing out
that the lower bounds obtained by solving the linear relaxation of the formu-
lation presented in Section 4 are generally much tighter than those derived
from the formulations considered in [32]. The performance of VNS and TS is
very similar on this class of graphs.

5.4 Instances from real-life applications

Periodic Timetabling. An interesting application of MinFCB arises in peri-
odic timetabling for transportation systems. In [5], the timetables of the Berlin
underground are designed by considering a mathematical programming model
based on the Periodic Event Scheduling Problem (PESP) [37] and the associ-
ated graph G in which nodes correspond to events. Since the number of integer
variables in the model can be minimized by identifying an FCB of G and the
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p = 0.2

n LS Time NT Time VNS TS Bound Time

10 216.698† 0 222.987 0 216.698† 216.698† 216.698† 0

20 1052.38† 0 1178.15 0 1052.38† 1052.38† 1052.38† 0:56

30 3315.89 0 3868.78 0 3111.71∗ 3311.71∗ 2750.92 0:28

40 4634.04 0 6154.1 0.01 4504.84∗ 4505.84∗ 4065.187 16:58

50 7007.34 0:01 9326.82 0.01 6991.53∗ 6991.53∗ 6448.711 2:38:51

p = 0.4

n LS Time NT Time VNS TS Bound Time

10 472.599 0 504.275 0 459.305† 459.305∗ 459.305† 0:02

20 2021.82 0 2801.28 0 2021.37∗ 2021.37∗ 1894.747 0:08

30 4467.13 0 5482.21 0.01 4455.2∗ 4455.2∗ 4265.6 22:56

40 7685.97 0:01 9509.93 0.01 7648∗ 7648∗ - -

50 11096.8 0:05 15667.5 0.01 11022.8∗ 11022.8∗ - -

p = 0.6

n LS Time NT Time VNS TS Bound Time

10 581.525 0 593.475 0 547.406† 547.406† 547.406† 0:08

20 2776.22 0 3959.41 0 2756.6∗ 2756.6∗ 2627.558 0:59

30 7031.2 0 8243.03 0.01 6979.15 6967.98∗ 6445.83 39:32

40 11686.0 0:02 13469.5 0.01 11513∗ 11513∗ - -

50 19387.3 0:10 24440.3 0.02 19174.1∗ 19174.1∗ - -

p = 0.8

n LS Time NT Time VNS TS Bound Time

10 992.866 0 992.866 0 775.838† 775.838† 775.838† 0:26

20 3478.11 0 4019.34 0 3383.45∗ 3383.45∗ 3164.9 2:31

30 8971.78 0:01 10847.8 0.01 8384.32∗ 8384.32∗ 7823.848 1:43:05

40 14946.4 0:07 20229.2 0.01 14870.7 14792∗ - -

50 25349.9 0:12 28586.8 0.02 25061.2∗ 25245.5 - -

Table 2
Computational results (CPU times in seconds or hh:mm:ss) for Euclidean random
graphs. Lower bound values marked with † denote an optimal solution (MIP solved
to optimality by CPLEX v. 9.1 [33]). FCB costs marked with ∗ denote the best
value found for the instance. Missing values are due to excessive CPU timings.

number of discrete values that each integer variable can take is proportional
to the total FCB cost, good models for the PESP problem can be obtained
by finding minimum fundamental cycle bases of the corresponding graph G.
Due to the way the edge costs are determined, the MinFCB instances arising
from this application have a high degree of symmetry, which makes them diffi-
cult. The results reported in Table 3 for instance timtab2 (with 88 nodes and
316 edges), which is available from MIPLIB (http://miplib.zib.de), are
promising. According to practical modeling requirements, certain edges are
mandatory and must belong to the spanning tree associated to the MinFCB
solution. The above-mentioned instance contains 80 mandatory edges out of
87 tree branches, and most of the these 80 fixed edges have very high costs. As
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shown in Table 3 (instance l-fixed), this additional condition obviously leads
to FCBs with substantially larger costs. Missing values in the table, marked
with “-”, are due to a missing implementation of the corresponding algorithm
which deals with mandatory spanning tree edges. Lower bounds were obtained
by solving the linear relaxation of the formulation in Section 4.

Testing of electrical networks. The MinFCB problem also arises in the event-
driven simulation of electrical circuits [3]. The electrical network is decomposed
into current sources (represented by branches in the tree) and voltage sources
(represented by chords in the co-tree). Fundamental cycles are then used to
compute the voltage across the current sources, and fundamental cuts to de-
termine the current through the voltage sources. When the network evolves in
time, it is necessary to perform edge swapping, and the best choice appears
to be the one minimizing the length of the fundamental cycles. The instance
gm19 (from A. Brambilla, DEI, Politecnico di Milano) has 414 nodes and 1091
edges. The graph was too large for the lower bound to be computed by solv-
ing the linear relaxation of the formulation in Section 4, so we reported the
minimum (non-fundamental) cycle basis cost computed by Horton’s algorithm
[16].

Local search NT [4] VNS TS Bound

Instance FCB cost Time FCB cost FCB cost Time FCB cost Time FCB cost

timtab2 40520 0.7s 50265 39801∗ 30s 39841 30s 31220.534

l-fixed 46072 0.13s - - - 46002∗ 30s 39907.96

gm19 2592 1.5s 2662 2584∗ 600s 2584∗ 600s 2267†

Table 3
Computational results for real-life applications. Best values are marked with ∗. CPU
times for the NT heuristic are approximately 0s. The bound marked with † is given
the cost of the MCB computed by Horton’s algorithm.

5.5 TUM cycle basis test set

A collection of 2D and 3D toroidal graphs and of hypercubic graphs are avail-
able from http://www-m9.ma.tum.de/dm/cycles/mhuber. This website at
Technische Universität München (TUM) also contains the costs of the mini-
mum (not necessarily fundamental) cycle bases, which provide lower bounds
to the minimum FCB costs. Toroidal graphs are D-dimensional grids of nD

nodes each of which is adjacent to each neighboring node, with wrap-around
adjacency at the border. Computational results (for a subset of the instances)
are reported in Tables 4 and 5. Lower bounds, reported in the last column,
refer to the minimal non-fundamental cycle bases.

For hypercubic graphs, the locally optimal FCB found by the initial construc-
tive heuristic was never improved by edge-swapping heuristics. This is strong
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LS NT [4] VNS TS Bound

n Cost Time Cost Time Cost Cost Cost

5 140 0 154 0 138∗ 138∗ 106

10 770 0.38 834 0 738∗ 738∗ 416

15 2004 5.86 2372 0.01 1930 1926∗ 926

20 3884 21.05 4856 0.03 3822∗ 3868 1636

25 6650 80.46 8792 0.06 6414∗ 6650 2546

30 9680 241.73 14076 0.09 9674 9666∗ 3656

33 11988 442.8 18296 0.14 11976∗ 11994 4418

Table 4
Computational results for some 2D toroidal graphs from the TUM test set. Values
marked with ∗ denote the best value found for the instance.

computational evidence that the initial constructive heuristic actually finds
the global optimum.

LS NT [4] VNS TS Bound

n Cost Time Cost Time Cost Cost Cost

5 1609 2.25 1771 0.02 1567∗ 1567∗ 1007

6 3062 16.93 3242 0.04 3024∗ 3028 1738

7 5409 58.87 5895 0.09 5409 5361∗ 2757

8 8234 107.33 9030 0.14 8210∗ 8214 4112

9 13105∗ 662.11 14525 0.61 13105 13105 5851

10 17890∗ 1037.36 20248 1.33 17890 17890 8022

Table 5
Computational results for the 3D toroidal graphs from the TUM test set. Values
marked with ∗ denote the best value found for the instance.

6 Concluding remarks

We described and investigated new heuristics, based on edge swaps, for tack-
ling the MinFCB problem. Compared to existing tree-growing procedures,
our local search algorithm and simple implementation of the VNS and TS
metaheuristics look very promising, even though computationally more inten-
sive. We established structural results that allow an efficient implementation
of the proposed edge swaps. We presented a new MIP formulation whose linear
relaxation provides tighter lower bounds than known formulations on several
classes of graphs. Finally, we tested LS, NT, VNS and TS heuristics on several
classes of graphs. Our VNS and TS implementations are on average roughly
equivalent in performance, and they compared favorably with straight local
search but have higher computational requirements.
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Appendix A: proof of Theorem 9

To establish that for each h ∈ T such that h 6= e and f ∈ δh
T we have

π(δh
T ) = δh

T△δe
T , we distinguish four separate cases, illustrated in Figures 9-

12.

We prove that: (1) g ∈ δh
T ∩ δe

T ⇒ g 6∈ π(δh
T ), (2) g 6∈ δh

T ∪ δe
T ⇒ g 6∈ π(δh

T ),

(3) g ∈ δh
T\δ

e ⇒ g ∈ π(δh
T ), and (4) g ∈ δe\δh

T ⇒ g ∈ π(δh
T ).

When there is no ambiguity, δe
T is written δe.
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Claim 1: g ∈ δh ∩ δe ⇒ g 6∈ π(δh).

Proof. Since g ∈ δh there are shortest paths pT
1 , pT

2 connecting g, h and not

fδ
e

g

f

h

(e,f)

h h

e

e

g

f

h

δ

δ δ

Fig. 9. Claim 1: If g ∈ δh ∩ δe then g 6∈ π(δh).

containing h, such that pT
1 ⊆ Sh

T and pT
2 ⊆ S̄h

T . Since g ∈ δe, either pT
1 or

pT
2 must contain e, but not both. Assume w.l.o.g. that e ∈ p1, e 6∈ p2 (i.e.,

e ∈ Sh
T ). Thus π sends pT

1 to a path pπT
1 containing f , whereas pπT

2 = pT
2 . Thus

P ∗
πT (h, g) = {pπT

1 , pπT
2 }. Since f ∈ δh

T , there exist shortest paths qT
1 ⊆ Sh

T and
qT
2 ⊆ S̄h

T connecting f, h and not containing h. Because qT
2 ⊆ S̄h

T , e 6∈ qT
2 . In

πT , qT
2 can be extended to a path qπT = qT

2 ∪ {f}. By Proposition 7 g ∈ δ
f
πT .

Thus in πT there exist paths rπT
1 in S

f
πT = Se

T and rπT
2 in S̄

f
πT = S̄e

T connecting
f, g and not containing f . Notice that the path qπT∪rπT

1 connects the endpoint
of h in S̄h

T and g, and pπT
2 connects the same endpoint of h with the opposite

endpoint of g. Thus pπT
1 = {h} ∪ qπT ∪ rπT

1 , which means that h ∈ pπT
1 , i.e.,

P ∗
πT (h, g) 6= P̄πT (h, g). By Lemma 6, the claim is proved.

Claim 2: g 6∈ δh ∪ δe ⇒ g 6∈ π(δh).

Proof. By hypothesis, g ∈ Se
T ∩Sh

T or g ∈ S̄e
T ∩ S̄h

T . Assume the former w.l.o.g.

e
δ

fδ

(e,f)

h

e

h

f

h

e

h

f

g g

δ δ

Fig. 10. Claim 2: If g 6∈ δh ∪ δe then g 6∈ π(δh).

Let pT
1 , pT

2 be unique shortest paths from h to g, and assume h ∈ pT
1 . Thus

pT
2 ⊆ Sh

T . Since g 6∈ δe, there are unique shortest paths qT
1 , qT

2 from e to g

such that e is in one of them, assume e ∈ qT
1 . Since both h, e ∈ T , there is a
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shortest path rT between one of the endpoints of h and one of the endpoints of
e, while the opposite endpoints are linked by the path {h}∪rT ∪{e}. Suppose
e ∈ pT

1 . Then since both endpoints of g are reachable from e via qT
1 , qT

2 , and e

is reachable from h through rT , it means that e ∈ pT
2 . Conversely, if e 6∈ pT

1 ,
then e 6∈ pT

2 . Thus, we consider two cases. If e is not in the paths from h

to g, then π fixes those paths, i.e., h ∈ pπT
1 and h 6∈ pπT

2 , that is g 6∈ δh.
If e is in the paths from h to g, then both the unique shortest paths pπT

1

and pπT
2 connecting h and g in πT contain f . Since g 6∈ δ

f
πT = δe

T , there are
shortest paths sπT

1 , sπT
2 connecting f to g one of which, say sπT

1 , contains f .
Moreover, since both h, f ∈ T , there is a shortest path uπT connecting one of
the endpoints of h to one of the endpoints of f , the other shortest path between
the opposite endpoints being {h}∪uπT ∪{f}. Thus, either pπT

1 = uπT ∪sπT
1 and

pπT
2 = {h}∪uπT∪{f}∪sπT

2 , or pπT
1 = uπT∪{f}∪sπT

2 and pπT
2 = {h}∪uπT∪sπT

1 .
Either way, one of the paths contains h. By Lemma 6, the claim is proved.

Claim 3: g ∈ δh\δe ⇒ g ∈ π(δh).

Proof. Since g ∈ δh, there are shortest paths pT
1 ⊆ Sh

T ,pT
2 ⊆ S̄h

T connecting h

(e,f)

h

e

f

h

g

h

e

e

f

h

g

f

δ δ

δ

δ

Fig. 11. Claim 3: If g ∈ δh and g 6∈ δe, then g ∈ π(δh).

and g, none of which contains h. Assume w.l.o.g. e ∈ Sh
T . Suppose e ∈ pT

1 , say
pT

1 = qT ∪ {e} ∪ rT . Consider sT = qT ∪ {h} ∪ pT
2 and rT . These are a pair

of shortest paths connecting e and g such that e does not belong to either;
i.e., g ∈ δe

T , which contradicts the hypothesis. Thus e 6∈ pT
1 , i.e., π fixes paths

πT
1 , πT

2 ; thus P̄πT (h, g) = P̄T (h, g) = P ∗
T (h, g) = P ∗

πT (h, g), which proves the
claim.

Claim 4: g ∈ δe\δh ⇒ g ∈ π(δh).

Proof. First consider the case where e, g ∈ Sh
T . Since g 6∈ δh

T , the shortest paths
pT

1 , pT
2 connecting h, g are such that one of them contains h, say h ∈ pT

1 , whilst
pT

2 ⊆ Sh
T . Since g ∈ δe, there are shortest paths qT

1 , qT
2 entirely in Sh

T , connecting
e, g such that neither contains e. Since both e, h ∈ T there is a shortest
path rT ⊆ Sh

T connecting an endpoint of h to an endpoint of e, the opposite
endpoints being joined by {h}∪rT ∪{e}. Thus w.l.o.g. pT

1 = {h}∪rT ∪{e}∪qT
1 .
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Fig. 12. Claim 4: If g 6∈ δh and g ∈ δe, then g ∈ π(δh).

Since the path rT ∪ qT
2 does not include e and connects h, g, e 6∈ pT

2 . Thus
pπT

2 = pT
2 and h 6∈ pπT

2 . On the other hand π sends pT
1 to a unique shortest

path pπT
1 connecting h, g that includes f . Since f ∈ δh

T , there are shortest paths
sT
1 ⊆ Sh

T , sT
2 ⊆ S̄h

T that do not include h. Since pT
2 ⊆ Sh

T , sT
1 may only touch the

same endpoint of h as pT
2 . Thus the endpoint of h touched by pT

1 also originates
sT
2 . Since sT

2 ⊆ S̄h
T , h 6∈ sT

2 . Since pπT
1 joins h, g, contains f and is shortest,

pπT
1 = sT

1 ∪ {f} ∪ u, where uπT is a shortest path from f to g (which exists
because by Proposition 7 g ∈ δ

f
πT ), which shows that h 6∈ pπT

1 . Thus by Lemma
6, g ∈ π(δh). The second possible case is that e ∈ Sh

T , g ∈ S̄h
T . Since g ∈ δe

T

there are shortest paths pT
1 , pT

2 connecting e, g such that neither includes e.
Assume w.l.o.g. h ∈ Se

T . Since e, g are partitioned by δh
T , exactly one of pT

1 , pT
2

includes h (say h ∈ pT
1 , which implies pT

1 ⊆ Sh
T ). Let qT

1 be the sub-path of pT
1

joining h and g and not including h, and let rT be the sub-path of pT
1 joining h

and e and not including h. Let qT
2 = rT ∪{e}∪pT

2 . We have that q2 is a shortest
path joining h, g not including h. Thus P̄T (h, g) = {qT

1 , qT
2 } = P ∗

T (h, g), and
by Lemma 6 g ∈ δh

T , which is a contradiction. 2

Appendix B: Comparison of best swap algorithms

Computational comparison of the local search algorithm using LCA-based and
symmetric difference-based implementations. Average of user CPU times ratio
LCA-based/Symmdiff-based: 21.381733, standard deviation: 10.145212.
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Instance name FCB Cost LCA-based (seconds) Symmdiff-based (seconds)

euclid-40 0.8 13698.1 261.345 12.4031
euclid-50 0.3 10085.6 66.1819 3.69544
euclid-75 0.2 16878.5 284.533 10.2924
hypercube-7 0 603.327 146.554 17.8823
hypercube-7 1 512.612 135.625 12.5261
hypercube-7 2 573.665 128.384 10.0195
hypercube-7 3 515.37 194.44 20.1819
hypercube-7 4 583.176 174.868 14.1029
hypercube-7 5 583.601 163.057 18.6732
hypercube-7 6 568.314 150.146 16.8114
hypercube-7 7 577.642 149.693 15.0577
hypercube-7 8 555.623 152.57 18.2222
hypercube-7 9 553.632 140.768 15.2127
hypercube-7 1986 1.75073 8.75267
mesh-15 0 539.587 53.8818 1.57976
mesh-15 1 533.461 58.3101 1.82272
mesh-15 2 513.962 53.0169 1.71174
mesh-15 3 491.852 53.0849 2.05369
mesh-15 4 536.154 59.5309 2.34864
mesh-15 5 496.06 56.0165 2.22666
mesh-15 6 509.269 41.6437 1.67375
mesh-15 7 461.934 48.8766 1.3318
mesh-15 8 530.033 46.3799 1.46478
mesh-15 9 551.304 46.4889 1.74074
mesh-15 1318 22.7785 0.955855
random-40 0.8 1846 3.54346 0.086986
random-50 0.3 0 279.792 91.1901 9.70252
random-50 0.3 1 323.47 101.088 7.18991
random-50 0.3 2 318.589 90.3893 10.5884
random-50 0.3 3 307.708 86.9288 6.72598
random-50 0.3 4 341.978 73.8478 5.75413
random-50 0.3 5 351.295 117.428 10.4234
random-50 0.3 6 338.125 91.2041 4.05738
random-50 0.3 7 327.712 138.806 10.0675
random-50 0.3 8 312.191 98.1721 4.83727
random-50 0.3 9 347.057 146.437 10.0145
random-50 0.3 1410 11.9282 0.652901
random-75 0.2 2239 82.7704 2.36664
torus-15 0 779.19 136.352 12.3541
torus-15 1 684.073 102.291 12.927
torus-15 2 694.008 79.7819 9.8385
torus-15 3 688.822 98.3271 11.7462
torus-15 4 679.94 87.3487 13.6699
torus-15 5 677.581 77.7322 12.3981
torus-15 6 729.846 97.2192 12.0492
torus-15 7 693.137 95.9574 13.191
torus-15 8 785.313 103.293 12.7601
torus-15 9 761.546 84.1552 10.5694
torus-15 1994 46.8199 6.11907
triangle-20 0 630.693 312.561 7.50186
triangle-20 1 676.275 297.625 6.92595
triangle-20 2 644.77 264.222 6.30804
triangle-20 3 637.528 296.559 6.33004
triangle-20 4 655.714 250.214 4.96824
triangle-20 5 623.176 273.085 5.95609
triangle-20 6 633.518 304.851 5.9101
triangle-20 7 553.599 235.029 4.20336
triangle-20 8 617.789 259.001 5.3002
triangle-20 9 655.251 286.719 7.02793
triangle-20 1934 115.115 2.98455
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