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Abstract

We discuss an application of the well-known Multiplicative Weights Update (MWU) algorithm to
non-convex and mixed-integer nonlinear programming. We present applications to: (a) the distance
geometry problem, which arises in the positioning of mobile sensors and in protein conformation; (b) a
hydro unit commitment problem arising in the energy industry, and (c) a class of Markowitz’ portfolio
selection problems. The interest of the MWU with respect to one of its closest competitors (classic
Multi-Start) is that it provides a relative approximation guarantee on a certain quality measure of
the solution.

1 Introduction

The Multiplicative Weights Update (MWU) algorithm [2] is a stochastic heuristic with a relative perfor-
mance guarantee on a weighted average of the errors. Its typical application is to decide the best way
to take advice from a set of advisors which repeatedly express different opinions. At each iteration, the
MWU performs the following tasks: (i) it updates a probability distribution on the advisors’ performance,
based on gains/costs at the preceding iteration; (ii) it samples new decisions from the current distribution;
and (iii) it updates the gains/costs vector based on the decisions. The MWU yields an approximation
guarantee on the weighted average gains/costs relative to the performance of the best advisor.

The MWU was used in the past to derive approximation algorithms for Linear Programming (LP) [33]
and Semidefinite Programming (SDP) [1]. In this paper, we describe the computational application of
the MWU to two novel settings: nonconvex Nonlinear Programming (NLP) and Mixed-Integer Nonlinear
Programming (MINLP). Although we do not derive an approximation algorithm, we demonstrate the
applicability of the MWU as a heuristic for NLP and MINLP. We showcase its application to three well
known problems: the Distance Geometry Problem (DGP) [29], a variant of the Hydro Unit Commitment
(HUC) problem from the energy industry [40], and a variant of Markowitz’ Mean-Variance Portfolio Se-
lection Problem (MVPS) [32]. We show that the MWU still retains its (relative) approximation guarantee
in these new settings, whilst generally performing as well as, or better than, a classic Multi-Start (MS)
approach (see Alg 1). Note that some work is necessary to adapt MS to any given optimization problem.

Algorithm 1 Multi-Start

1: while termination condition is not met do
2: sample a starting point x′

3: perform a local descent from x′, yielding x̃
4: if x̃ improves the best optimum x∗ so far, update x∗ with x̃
5: end while

We must determine the best distribution to sample from, what kind of local descent algorithm to employ,
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and which termination conditions are appropriate. We shall see that the MWU heuristic applies generally
to optimization problems in a similar way: a nontrivial amount of work is necessary to adapt it to the
given problem.

Our main motivation for singling out the MWU as a good heuristic is that, unlike the vast majority
of heuristics, the MWU comes with a relative approximation guarantee on some user-defined cumulative
(over all MWU iterations) mean costs (or errors) ψ1, . . . , ψq, which turn out to be bounded above by
a piecewise linear function of the cumulative (again, all over MWU iterations) lowest cost mini≤q ψi.
Although, in general, this is a rather weak guarantee, it is surprising that it should exist at all, considering
the generality of the method. The MWU readily turns into an approximation algorithm whenever the
structure of the problem allows one to provide a guaranteed upper bound to the lowest cost. Although
we do not derive such approximations in this paper, we mean to study this issue in further works, and
hope that this paper will spark interest in the matter.

1.1 The MWU algorithm

We believe that Arora et al.’s excellent survey [2] provides an introduction to the MWU that we cannot
hope to improve as regards clarity: we therefore borrow from it here to introduce the MWU by means of
an application example.

An investor employs q advisors to help her decide every day whether the price of a given stock will
increase or decrease. We let θi be the prediction of the i-th advisor, for each i ≤ q. The investor maintains
a weight vector ω ∈ [0, 1]q, where the component ωi is used to weigh the reliability of the i-th advisor,
for each i ≤ q. At the outset, all weights are initialized to 1. As the days pass, each wrong prediction
is penalized by a unit cost ψi to be born by the i-th advisor, whereas correct predictions have zero cost.
Note that we can also assign gains, represented as negative costs; and, more generally, we consider a cost
vector ψ ∈ [−1, 1]q, where ψi denotes the cost, or gain, to be attributed to advisor i (for i ≤ q). At the
end of the day, the weights are updated as follows:

∀i ≤ q ωi ← ωi(1− ηψi), (1.1)

where η is a given positive constant ≤ 1
2 . The next day, each prediction θi is weighed by a random

number sampled in [0, ωi] (for i ≤ q), and the investor makes her decision based on the weighted average
of the predictions. The weights ω should be thought of as a discrete distribution over Q = {1, . . . , q}
which is updated every day. As such, we define their normalized version as p = ω/‖ω‖1.

More formally, given positive constants η ≤ 1
2 and T ∈ N, the MWU maintains a list of weights

ω = (ωi | i ≤ q) ∈ [0, 1]q which are used to randomly update the values of a vector θ ∈ Θ ⊆ Rq of decision
variables related to an associated vector ψ ∈ [−1, 1]q of costs in a componentwise fashion; these costs
are then used to update the weights ω according to Eq. (1.1) before starting the next iteration. This
procedure is repeated for T iterations (see Alg. 2). The idea is that the weights ω iteratively adapt

Algorithm 2 (Didactical) Multiplicative Weights Update

1: while termination condition is not met do
2: weigh each prediction θi by pi
3: compute the cost vector ψ associated to θ
4: update ω using ψ as in Eq. (1.1)
5: end while

θ to being a good solution of an optimization problem which aims at minimizing a weighted average of
the costs ψ. As the i-th cost ψi gets smaller (and perhaps negative, becoming a gain), the associated
weight ωi increases (because of Eq. (1.1)). One (heuristically) hopes that this will yield an even smaller
cost at the next iteration. As the MWU proceeds for T iterations, we index ω, p and ψ by t ≤ T . Thus,
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the expected cost of the process on day t ≤ T is pt ψt, and the cumulative expected cost over the time
horizon is

∑
t≤T

ptψt.

As already mentioned, it takes a nontrivial amount of work to adapt the MWU to the NLP and MINLP
settings: how do we relate θ to a given (MI)NLP, and how do we compute ψ? This paper provides some
answers to these questions, based on three very different applications.

1.2 The MWU approximation guarantee

We recall here the precise statement of the MWU approximation guarantee. Given q, T, η, ω, ψ, p as
above, it can be shown that [2]:

EMWU ,
∑
t≤T

ψt pt ≤ min
i≤q

∑
t≤T

ψti + η
∑
t≤T

|ψti |

 +
ln q

η
. (1.2)

We remark that Eq. (1.2) is actually an immediate consequence of the more general bound:

∀i ≤ q EMWU ≤
∑
t≤T

ψti + η
∑
t≤T

|ψti |+
ln q

η
,

and that different weight update rules yield slightly different bounds.

1.3 The MWU in mixed-integer nonlinear programming

The objective of this paper is to propose an adaptation of the MWU to optimization problems in the
following very general Mixed-Integer Nonlinear Programming (MINLP) form:

min
x∈Rn

f(x)

∀` ≤ m g`(x) ≤ 0
∀j ∈ Z xj ∈ Z,

 [P ] (1.3)

where Z ⊆ {1, . . . , n} is given. If Z = ∅, the problem is called a Nonlinear Programming (NLP) problem.

There are three main issues in abstracting Alg. 2 to Eq. (1.3).

1. As presented in Alg. 2, the MWU algorithm appears to make a single decision (the investor’s) based
on a sequence of random predictions, whereas Eq. (1.3) makes n decisions.

2. The objective function f(x) is given, and will generally be different than the cumulative weighted
cost average that the MWU attempts to minimize.

3. Eq. (1.3) is hard to solve also because of feasibility, not just optimality. Nothing in Alg. 2 is about
feasibility.

We shall address all three issues by means of a particular reformulation of Eq. (1.3) which partitions
the decisions into two vectors of decision variables. One of the two vectors is simply x, the decision
variables in Eq. (1.3). The other vector θ encodes (directly or indirectly) the values of some problematic
terms in Eq. (1.3). The values for θ are decided using the MWU algorithm, whereas those for x are
decided by solving the reformulation (with θ fixed at the values assigned by the MWU) at each iteration
of the. Naturally, the replacement of problematic terms by easier terms in function θ will be chosen so
as to make the resulting reformulation easier to solve than Eq. (1.3). We remark that the reformulation
is parametrized by θ.
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This strategy addresses the second and third issues: the current solution found by solving the refor-
mulation at each MWU iteration can be “plugged into” Eq. (1.3): this yields an objective function value
for Eq. (1.3) at each iteration, as well as a measure of infeasibility of the current solution. The cost
vector ψ can be defined in terms of the relative progress of the objective function value, as well as the
infeasibilities.

Let us see how this strategy addresses the first issue. Specifically, the vector θ in Alg. 2 is a vector
of “random predictions” rather than decisions. This strategy, however, requires θ to match the value of
the terms they replace, or at least get sufficiently close. We achieve this by modifying Step 2 in Alg. 3
so that θ is updated at each iteration by a factor sampled randomly in [0, ωi] (see Alg. 3). This will help
θ be “decided” by the MWU rather than “randomly sampled”. Notice that the relative approximation
guarantee of Sect. 1.2 still holds, since it only depends on the weights update rule.

Algorithm 3 Multiplicative Weights Update

1: while termination condition is not met do
2: for each i ≤ q, multiply θi by a factor sampled randomly from [0, ωi]
3: compute the cost vector ψ associated to θ
4: update ω using ψ as in Eq. (1.1)
5: end while

In the strategy that we will propose in Section 3, θ could have a different dimension with respect to
ω and ψ. This is one of the issues for which adapting Alg. 3 to applications requires nontrivial work.

The rest of this paper is organized as follows. In Sect. 2, we propose a reformulation-based methodology
in order to relate θ to Eq. (1.3), and discuss the application of this methodology to three real-world
applications. We present the adaptation of the MWU for (MI)NLP in Sect. 3, and the computational
results in Sect. 4.

2 Pointwise reformulations

We introduce the reformulation referred to in Sect. 1.3. Broadly speaking, we reformulate P (see Eq. (1.3))
by replacing r “problematic” terms (e.g., the nonconvex terms) with simpler terms parametrized by θ.
This yields a simplified formulation R in the original decision variables x, which varies in function of
θ. We shall then iteratively solve R with θ fixed to values determined by the MWU framework. We
remark that, with this approach, our MWU-based algorithm belongs to the category of mat-heuristics
[31], meaning heuristics based on Mathematical Programming (MP).

Notationally, for a MP formulation P , we write val(P ) to denote the objective function value of a
global optimum of P , and feas(P ) to denote the feasible set of P .

2.1 Definition
Given a MINLP P as in Eq. (1.3), a pointwise reformulation Rθ = ptw

t←t′(θ)

(P ) is a family of MINLP

formulations, parametrized by θ = (θs | s ≤ r), which are obtained by replacing given occurrences
t1, . . . , tr of terms appearing in P by corresponding parametrized terms t′s(θs) (for s ≤ r). 2

Notationally, t and t′ denote “terms” in the MINLP formulation P . We define a term formally as a
symbolic expression represented by its parsing tree [15]. The parsing tree has leaf nodes labelled by the
values of the constants or the index of the variables appearing in the term, and all other nodes labelled
by the operators. The terms t′ are expressed in function of the parameter vector θ, so we denote them
t′(θ). Both t and t′ also depend on the decision variable vector x. These terms can be evaluated by
means of a very simple recursive algorithm which starts at the root of the parsing tree: at each non-leaf
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node v of the tree it calls itself on all the subnodes v1, . . . , vh, and then returns the value ⊗(v1, . . . , vh)
where ⊗ is the operator represented by the label of v; if v is a leaf node, the value of the constant or of
the variable represented by the leaf node is returned. Through the algorithm, each term corresponds to
a function Rn → R, which we denote by t(x) and t′(θ, x).

For every replaced term ts (for s ≤ r) in Defn. 2.1, let Ds be the interval range of ts(x). For every
replacement term t′s (for s ≤ r) let D′s(θs) be the interval range of t′s(θs, x). For s ≤ r, let Θs be the
interval range of the corresponding parameter θs, and let Θ = (Θs | s ≤ r).

Given a parameter vector θ ∈ Θ and a function φ, we denote by φθ the function obtained by replacing
the terms t by the terms t′(θ). Thus, for example, the objective and constraints of R are denoted as
fθ, gθ, respectively.

We can therefore write a pointwise reformulation Rθ of P as follows:

min
x∈Rn′

fθ(x)

∀` ≤ m gθ` (x) ≤ 0
∀j ∈ Z ′ xj ∈ Z,

 [Rθ] (2.1)

where Z ′ ⊆ {1, . . . , n′}.

Note that Eq. (2.1) is actually a family of formulations, parametrized by θ. Note also that, whereas
the number of variables n′ may be different from n (since many variables occurring in replaced terms
might be replaced terms involving fewer or more parameter symbols), P and Rθ have the same number
of constraints m. If a replacement yields a trivial constraint, we stipulate that it is still formally part
of Eq. (2.1). In practice, when solving pointwise reformulations, trivially satisfied constraints may be
dropped, of course.

2.1 Theoretical properties

2.2 Definition
Given a MINLP P and Rθ = ptw

t←t′(θ)

(P ), both defined on a vector x of decision variables in Rn:

(a) Rθ is spanning if, for any x ∈ Rn, there are values of θ such that evaluating the functions of P and
of Rθ at x yields the same results — more precisely, ∃θ̄ ∈ Θs such that

∀s ≤ r Ds ⊂
⋃

θs∈Θs

D′s(θs) ∧ [t′s(θ̄s)](x) = ts(x)

(note that the first condition in the conjunction is a form of consistency);

(b) Rθ is exact if, for each globally optimal solution x∗ of P , there is at least one vector θ′ ∈ Θ such that
x∗ is also an optimal solution of Rθ

′
;

(c) Rθ is efficient if there is a polynomial-time algorithm for approximately solving Rθ (for θ ∈ Θ) to
within a given ε > 0 approximation factor. 2

Note that the exactness property of a pointwise reformulation only makes sense for feasible problems.
We arbitrarily define any pointwise reformulation of a class of infeasible problems to be exact.

More informally, we say that a pointwise reformulation is good if there is an established, practically
efficient technology for solving Rθ either optimally or approximately. For example, if Rθ turns out to
be a Linear Program (LP) or convex NLP (cNLP), then Rθ is efficient; if it turns out to be a Mixed
Integer Linear Program (MILP), Rθ is good, since current MILP solution technology can routinely solve
fairly large-scale MILPs, even though MILP itself is NP-hard [25]. Obviously, every efficient pointwise
reformulation is also good.
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2.3 Example
Consider the following formulation P :

min x2(1− y) + y (2.2)

x+ 2y ≥ 2 (2.3)

y ∈ {0, 1}. (2.4)

If we set y = 0, Eq. (2.3) and the objective function direction force x = 2, whereas if y = 1 we can let
x = 0; therefore the global optimum is (x∗, y∗) = (0, 1). We replace the term x2 in the objective function
by the term consisting of the scalar parameter θ, obtaining a pointwise reformulation Rθ:

min (1− θ)y + θ

x+ 2y ≥ 2

y ∈ {0, 1}.

It is easy to see thatRθ is spanning whenever θ ∈ R+. If we set y = 0 we obtain x ≥ 2, whereas y = 1 yields
no constraints on x. The objective function value if y = 0 is θ; y = 1 yields 1−θ+θ = 1. So for θ < 1 the
set of global optima is [2,∞)×{0}; θ > 1 yields the global optimal set R+×{1}, and if θ = 1 every feasible
solution is optimal, with optimal objective function value equal to 1. Hence (x, y) = (x∗, y∗) = (0, 1)
yields an optimum as long as θ ≥ 1, which means that this pointwise reformulation is exact. This
pointwise reformulation is not efficient, since it is a MILP, but it is good. 2

2.4 Lemma
Given P and a spanning reformulation Rθ = ptw

t←t′
(P ), we have:

feas(P ) ⊆
⋃
θ∈Θ

feas(Rθ). (2.5)

Proof. Let x′ ∈ feas(P ). Since Rθ is spanning, there is ξ ∈ Θ such that ts(x
′) = [ts(ξs)](x

′) for each

s ≤ r, which implies gξ` (x
∗) = g`(x

∗) for all ` ≤ m. Since x′ ∈ feas(P ), g`(x
′) ≤ 0 for all ` ≤ m, hence

x′ is also feasible in Rξ. Since feas(Rξ) is a subset of the right hand side of Eq. (2.5) for each possible
ξ ∈ Θ, the result follows. 2

The following example shows that Eq. (2.5) cannot be tightened to an equality.

2.5 Example
Consider the pure feasibility NLP formulation F :

x ≥ 1

2
(2.6)

x2 = x, (2.7)

where x is a continuous decision variable. The constraint in Eq. (2.7) is equivalent to x ∈ {0, 1}, so
Eq. (2.6) forces x = 1, hence feas(F ) = {1}. We rewrite x2 = xx and replace the first occurrence of x by
θ, which yields the pointwise reformulation ptw

t←t′
(F ) = Rθ:

x ≥ 1

2
(2.8)

θ x = x. (2.9)

Any value of θ 6= 1 requires x = 0 in order for Eq. (2.9) to hold, but x = 0 is infeasible by Eq. (2.8).
Setting θ = 1 yields feas(R1) = [1

2 ,∞). In particular, we have

{1} = feas(F ) (
⋃
θ∈R

feas(Rθ) = feas(R1) = [ 1
2 ,∞). (2.10)
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Since F and Rθ have no objective function, every feasible solution is optimal by definition. Verifying
exactness reduces to checking that, for every feasible solution of F , there are values of θ such that the
same solution is feasible in Rθ, which is established by Eq. (2.10). So this reformulation is exact. Since
F is a nonconvex NLP but Rθ is an LP, this reformulation is efficient. 2

A relaxation of a MP formulation Q provides a guaranteed bound (in the optimization direction) at
every feasible point of Q. Since relaxations must be efficiently solvable, and since one usually looks for a
bound to the optimal objective function value of Q, rather than to any objective function value achieved
by a feasible point in Q, it makes sense to generalize a relaxation so it is about optimal rather than feasible
points. A bounding reformulation of Q as a reformulation which, when solved to optimality, provides a
bound in the optimization direction to the optimal objective function value of Q (and, moreover, its
feasible set contains the feasible set of Q). Obviously, all relaxations are bounding reformulations.

2.6 Lemma
For any formulation P and spanning pointwise reformulation Rθ, there exists ξ ∈ Θ such that Rξ is a
bounding reformulation of P .

Proof. The proof of Lemma 2.4 implies that, if ξ ∈ Θ is such that ts(x
∗) = [ts(ξs)](x

∗) for all s ≤ r,
x∗ ∈ feas(Rξ). Similarly, we show fξ(x∗) = f(x∗), and therefore:

val(Rξ) ≤ fξ(x∗) = f(x∗) = val(P ),

which establishes the result. 2

We remark that the bounding reformulation guaranteed by Lemma 2.6 need not be a relaxation in the
traditional sense.

2.7 Remark
Often, the replacement process t ← t′(θ) raises a cardinality issue: we replace r terms of the original
formulation, and we have to use its solution to compute q costs, where r might in general be different
from q. We shall discuss this issue in Sect. 3.1 below. 2

Last but not least, note that pointwise reformulations can be used in more general settings than just
the MWU algorithm. Although they have been devised with the MWU in mind, what they really achieve
is a general mechanism for automatically decomposing the solution process of a MINLP in two phases:
one for deciding values of θ, and the other for deciding values of x, based on solving the corresponding
pointwise reformulation.

2.2 Applications

In this section, we present pointwise reformulations for three real-world MINLP problems, known to be
difficult to solve both from a theoretical and a practical viewpoint, namely:

• the Distance Geometry Problem (DGP) with Euclidean distances;

• the Hydro-power (short-term) Unit Commitment problem (HUC);

• a subclass of nonconvex variants of the Markowitz’ Mean-Variance Portfolio Selection Problem
(MVPS).

The structure of each of those problems is exploited to construct a pointwise reformulation, in view of
solving the problem using the MWU algorithm.
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2.2.1 Distance Geometry Problem

The Distance Geometry Problem (DGP) with Euclidean distances is defined formally as follows [29]:
given an integer K > 0, a simple undirected graph G = (V,E), and an edge weight function d : E → R+,
establish or deny the existence of a vertex realization function x : V → RK such that:

∀{u, v} ∈ E ‖xu − xv‖2 = duv. (2.11)

The DGP arises in many important applications: determination of protein conformation from distance
data [30], localization of mobile sensors in communication networks [18], synchronization of clocks from
phase information [38], control of unmanned submarine fleets [3], spatial logic [19], and more [29]. It is
NP-complete when K = 1 and NP-hard for larger values of K [34]. Notationwise, we let n = |V | and
m = |E|.

The most common MP formulation for the DGP is:

min
x

∑
{u,v}∈E

(‖xu − xv‖22 − d2
uv)

2, (2.12)

It is obvious that the given DGP instance is YES if and only if the globally optimal value of Eq. (2.12)
is zero. Note, however, that the DGP is not currently known to be in NP for K > 1 [6]. Therefore,
if we wish to employ floating point based solution methods, we will not be able to determine precisely
whether a given objective function value is exactly zero. We therefore take a more practical standpoint,
and postulate that the quality of a solution is proportional to the value of a given error function.

Consider now the following formulation:

max
x

∑
{u,v}∈E

‖xu − xv‖22

∀{u, v} ∈ E ‖xu − xv‖22 ≤ d2
uv.

}
(2.13)

2.8 Proposition
Eq. (2.13) is an exact reformulation1 of Eq. (2.12).

Proof. Replacing the outer square in Eq. (2.12) by an absolute value trivially yields an exact reformu-
lation:

min
x

∑
{u,v}∈E

|‖xu − xv‖22 − d2
uv|, (2.14)

since Eq. (2.14) is zero iff Eq. (2.12) is zero. We reformulate Eq. (2.14) as:

min
x,t̂≥0

∑
{u,v}∈E

t̂uv

∀{u, v} ∈ E −t̂uv ≤ ‖xu − xv‖22 − d2
uv ≤ t̂uv.

 (2.15)

The concave constraints −t̂uv ≤ ‖xu − xv‖22 − d2
uv can be moved back to the objective, yielding:

min
x,t̂≥0

∑
{u,v}∈E

((d2
uv − ‖xu − xv‖22) + t̂uv)

∀{u, v} ∈ E ‖xu − xv‖22 − d2
uv ≤ t̂uv.

 (2.16)

Assume first that the given DGP is YES; then Eq. (2.15) must have globally optimal objective func-
tion value zero, which implies that t̂uv = 0 (for all {u, v} ∈ E) at the optimum, and so the following

1An exact reformulation (formally defined in [28] as a surjective mapping from the optima of the exact reformulation to
the optima of the original problem) is not the same as an exact pointwise reformulation. Intuitively speaking, solving an
exact reformulation of a problem directly yields a solution of the problem itself, which is not generally the case for an exact
pointwise reformulation.
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reformulation of Eq. (2.16),

min
x

∑
{u,v}∈E

(d2
uv − ‖xu − xv‖22)

∀{u, v} ∈ E ‖xu − xv‖22 − d2
uv ≤ 0,

}
(2.17)

preserves a mapping between solutions of the DGP and global optima of Eq. (2.15). If the DGP is
NO then the globally optimal objective function value of Eq. (2.15) must be strictly greater than zero,
which implies that either Eq. (2.17) is infeasible, or it has a strictly positive globally optimal objective
function value, whence Eq. (2.17) is an exact reformulation of Eq. (2.12). Finally, we eliminate the
objective constant (which does not change global optima) and write min−f as max f , obtaining the
exact reformulation:

max
x

∑
{u,v}∈E

‖xu − xv‖22

∀{u, v} ∈ E ‖xu − xv‖22 ≤ d2
uv,

}
as claimed. 2

2.9 Corollary
If the given DGP instance is YES, at any global optimum x∗ of Eq. (2.13) all constraints (∀{u, v} ∈
E ‖xu − xv‖22 ≤ d2

uv) of Eq. (2.13) are active.

Proof. By Lemma 2.8, Eq. (2.13) correctly solves a DGP instance where the given partial Euclidean
Distance Matrix (pEDM) is (duv). The global optimum x∗ must therefore satisfy Eq. (2.11), which
implies that ‖x∗u − x∗v‖2 = duv for each {u, v} ∈ E, as claimed. 2

We can easily derive a pointwise reformulation of Eq. (2.13) by replacing the quadratic term (xuk −
xvk)2 = (xuk − xvk)(xuk − xvk) occurring in the objective function with a linear term θuvk(xuk − xvk):

max
x

∑
{u,v}∈E

∑
k≤K

θuvk(xuk − xvk)

∀{u, v} ∈ E ‖xu − xv‖22 ≤ d2
uv.

}
(2.18)

It is easy to see that Eq. (2.18) is spanning, since, given a solution x′, it suffices to set θ′uvk = (x′uk−x′vk)
for the objective and constraints of the pointwise reformulation to take identical values to the objective
and constraints of the original formulation.

2.10 Proposition
If the given DGP instance is YES, for each globally optimal solution x∗ of Eq. (2.13) there is a parameter

matrix θ ∈ RmK such that x∗ is a globally optimal solution of Eq. (2.18).

Proof. By Lemma 2.6, Eq. (2.18) is a bounding reformulation of Eq. (2.13) for θ∗ = (x∗uk−x∗vk | {u, v} ∈
E ∧ k ∈ K), where x∗ is a global optimum of Eq. (2.13). Since Eq. (2.18) is a maximization problem,
we have to show that there is no optimum x′ of Eq. (2.18) such that fθ

∗
(x′) > fθ

∗
(x∗). To aim at a

contradiction, we suppose the existence of such an x′. Then there must be at least one edge {u, v} ∈ E
such that ∑

k≤K

θ∗uvk(x′uk − x′vk) > ‖x∗u − x∗v‖22

⇒
∑
k≤K

(x∗uk − x∗vk)(x′uk − x′vk) > ‖x∗u − x∗v‖22

⇒ (x∗u − x∗v)(x′u − x′v) > ‖x∗u − x∗v‖22.

The last equation can be re-written as y · z > ‖z‖2, for y = x′u − x′v and z = x∗u − x∗v, and hence as
‖y‖‖z‖ cos(µ) > ‖z‖2, where µ is the angle between y and z. Since ‖z‖ = 0 yields 0 > 0, we assume
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‖z‖ > 0, and we can hence divide through by ‖z‖, yielding ‖y‖ cos(µ) > ‖z‖. Since cos(µ) ≤ 1, the only
way the latter equation can hold is if ‖y‖ > ‖z‖. Hence:

‖x′u − x′v‖2 > ‖x∗u − x∗v‖2
⇒ ‖x′u − x′v‖22 > ‖x∗u − x∗v‖22 = d2

uv

by Cor. 2.9. So ‖x′u − x′v‖22 > d2
uv which means that x′ is infeasible in Eq. (2.18). The result follows. 2

2.11 Theorem
The formulation in Eq. (2.18) is an exact and efficient pointwise reformulation of Eq. (2.11).

Proof. The fact that Eq. (2.18) is a pointwise reformulation of Eq. (2.11) follows by Prop. 2.8. The fact
that it is exact follows by Prop. 2.10. The fact that it is efficient follows by the existence of polynomial-
time algorithms for cNLP (see e.g. [12]). 2

2.2.2 Hydro-power unit commitment

The short-term HUC problem is essentially a scheduling problem, defined as follows: over a uniformly
discretized time horizon H = {1, · · · , h̄} (ranging from one day to a week), given an initial water volume
V0 in a water reservoir, the goal is to find the optimal schedule of released water flow (xh | h ∈ H)
(expressed in m3) which maximizes the revenue obtained by providing the generated power (yh | h ∈ H)
(expressed in MW) to the grid, such that the final volume of water remaining in the reservoir reaches a
desired target Vh̄ (again expressed in m3).

Additional features of the model include:

• time period duration τ (expressed in h)

• volume bounds V and V̄ (expressed in m3) on the volume vh, for each h ∈ H
• maximum flow bound Q̄ (expressed in m3/s) on the released flow xh, for each h ∈ H
• maximum ramp-down Q− and ramp-up Q+ (expressed in m3/s/h) for the flow xh, for each h ∈ H
• forecasted inflows Ih (expressed in m3/s), for each h ∈ H
• forecasted power selling prices Πh (expressed in currency/MWh), for each h ∈ H
• parameters and coefficients K1, . . . ,K6, L1, . . . , L6, L and R0 of a polynomial function which models

the generated power yh, for each h ∈ H.

The simplified version can be formulated as follows, where v is the wolume of water in the reservoir:

max
x,y,v

∑
h∈H

τΠhyh

v0 = V0

vh̄ = Vh̄
∀h ∈ H vh+1 − vh = 3600τ(Ih − xh)
∀h ∈ H xh − xh+1 ≤ Q−

∀h ∈ H xh+1 − xh ≤ Q+

∀h ∈ H yh = ϕ(xh, vh)
∀h ∈ H vh ∈ [V , V̄ ]
∀h ∈ H xh ∈ [0, Q̄],


(2.19)

where ϕ(x, v) = 9.81x(
6∑
l=0

Llx
l)(

6∑
k=0

Kkv
k − L − R0x

2) is the function expressing the power generated

depending on the water flow released x and the water volume v in the reservoir.
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By replacing each nonconvex multivariate function ϕ(xh, vh) (for h ∈ H) with an affine approximation
(i.e. a first-order approximation at a given point (x̃h, ṽh)), we derive a pointwise linear reformulation of
Eq. (2.19):

max
x,y,v

∑
h∈H

τΠhyh

v0 = V0

vh̄ = Vh̄
∀h ∈ H vh+1 − vh = 3600τ(Ih − xh)
∀h ∈ H xh − xh+1 ≤ Q−

∀h ∈ H xh+1 − xh ≤ Q+

∀h ∈ H yh = ν0h + ν1h(xh − x̃h) + ν2h(vh − ṽh)
∀h ∈ H vh ∈ [V , V̄ ]
∀h ∈ H xh ∈ [0, Q̄],


(2.20)

We remark that, in the pointwise reformulation Eq. (2.20), the parameter vector θ is structured as the
h× 5 matrix (x̃, ṽ, ν0, ν1, ν2).

2.12 Lemma
The pointwise reformulation Eq. (2.20) is spanning.

Proof. For each h ∈ H, the following holds: if x′h ∈ [0, Q̄] and v′h ∈ [V , V̄ ], the replacement term
ν0h + ν1h(xh − x̃h) + ν2h(vh − ṽh) matches the replaced term ϕ(xh, vh) for all values of θ satisfying
x̃h = x′h, ṽh = v′h and ν0h = ϕ(x′h, v

′
h). 2

2.13 Proposition
For each globally optimal solution X∗ = (x∗, v∗, y∗) of Eq. (2.19), there is a θ∗ ∈ R5h̄ such that X∗ is a
globally optimal solution of Eq. (2.20).

Proof. Let us show that X∗ is a globally optimal solution of the pointwise problem Eq. (2.20) for

θ∗h = (x∗h, v
∗
h, ϕ(x∗h, v

∗
h),

∂ϕ

∂xh
(x∗h, v

∗
h),

∂ϕ

∂vh
(x∗h, v

∗
h)),

where h ∈ H. Since this definition of θ∗ satisfies the spanning property in Prop. 2.12, we can invoke
Lemma 2.4 to conclude that X∗ is feasible for Eq. (2.20). Since X∗ is a global optimum of Eq. (2.19), in
particular it is also a local optimum, and therefore it satisfies the Karush-Kuhn-Tucker (KKT) conditions.
By the choice of θ∗, the gradients of the objective function and the constraints of Eq. (2.20) at X∗ are
identical to gradients of objective and constraints of Eq. (2.19) at X∗. Therefore, X∗ also satisfies first-
order optimality conditions of Eq. (2.20) when parametrized by θ∗. Since Eq. (2.20) is an LP, any KKT
point is also a global optimum, which concludes the proof. 2

2.14 Theorem
The formulation in Eq. (2.20) is an exact and efficient pointwise reformulation of Eq. (2.19).

Proof. Exactness of Eq. (2.20) follows by Prop. 2.13. Efficiency follows because Eq. (2.20) is an LP,
which can be solved in polynomial time. 2

2.2.3 Mean-variance portfolio selection

Our third application of pointwise reformulations is an uncountable class of problems, parametrized by
symbols which denote abstract univariate functions (any assignment of concrete functions to the symbols
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represents a different problem). Using this very general setting, we mean to provide an insight of how
much better or worse the MWU performs, compared to MS, depending on how far or close such functions
are to being linear. In Sect. 4 below, we shall show that the MWU performs better than the MS on
functions which are “very nonlinear”, whereas the MS wins out on functions which are “close to linear”.
Since this is only a qualitative statement derived empirically on a few univariate functions, we leave the
interpretation of these informally expressed notions to the inspection of the function graphs (see Fig. 4).

The MVPS problem [32] is defined as follows: given a set of n possibly risky stocks, characterized by a
mean return vector ρ ∈ Rn and a covariance matrix Q ∈ Rn×n, determine a composition of the portfolio,
i.e., the fraction xi of value invested in stock i ≤ n, by simultaneously considering two conflicting targets:
maximizing expected return of the portfolio and minimizing a measure of its risk. For an in-depth analysis
on mean-variance approaches to portfolio selection problems, we refer the reader to the survey [17].

We consider here the MVPS variant with transaction costs and maximum number of held assets (also
called the sparsity of the portfolio). Transaction costs are usually defined by means of a separable function
C : Rn → R+ of the assets held in the portfolio:

C(x) =

n∑
i=1

Ci(xi), (2.21)

where, for all i ≤ n, Ci : R → R+ is a univariate possibly nonconvex and nonconcave function. Note
that this setting is much more general than the one usually considered in literature, involving concave
non-decreasing transaction cost (see [26, 41]).

Let K ∈ R+ and σ ∈ R+ be respectively the maximum sparsity level and the maximum risk desired
for the portfolio. The MVPS variant we are interested in can be formally stated as follows:

max
x

ρ>x − C(x)

1x = 1
x>Qx ≤ σ
‖x‖0 ≤ K

x ∈ [x, x̄] ∪ {0},

 (2.22)

where 1 ∈ Rn is the all-one n-dimensional vector, ‖x‖0 is the so-called `0-norm of x, i.e., ‖x‖0 = |{xi :
xi 6= 0}|, x and x̄ are respectively minimum and maximum buy-in thresholds, and x is a vector of n
semi-continuous decision variables [21, 39].

In Eq. (2.22), the first constraint ensures the whole available capital is invested in the portfolio.
Portfolio sparsity is used for modeling the will of investors to limit e.g. brokerage fees, bid-ask spreads
and monitoring costs [35]. Moreover, we assume 0 ≤ x ≤ x̄, so that short selling, i.e., the possibility for
the investor to sell financial assets he/she does not own, is avoided. Eq. (2.22) is an NP-hard problem,
even if n = 3 [8, 37], and can be exactly reformulated (in the sense of [28]) as the following non-convex
MINLP:

max
x,y

ρ>x − C(x)

1x = 1
x>Qx ≤ σ

1 y ≤ K
y>x ≤ x ≤ y>x̄
y ∈ {0, 1}n.


(2.23)

We can obtain a pointwise reformulation by replacing terms Ci(xi) with terms (1 + xi)θi, for every
i ≤ n. This yields the pointwise reformulated objective function:

ρ>x−
∑
i≤n

(θixi + θi) = (ρ− θ)>x− 1 θ,
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which is an affine function of x. Thus, the pointwise reformulation is:

max
x,y

(ρ− θ)>x − 1 θ

1x = 1
x>Qx ≤ σ

1 y ≤ K
y>x ≤ x ≤ y>x̄

y ∈ {0, 1}n.


(2.24)

2.15 Remark
The pointwise reformulation in Eq. (2.24) is spanning, since the replacement terms θi match the replaced

terms Ci(xi)
xi+1 at each feasible point (xi | i ≤ n): it suffices to divide Ci(xi) = (1 + xi)θi through by 1 + xi.

By Lemma 2.6, there exist values of θ which make Eq. (2.24) a bounding reformulation for the original
problem Eq. (2.22). 2

2.16 Example
The pointwise reformulation in Eq. (2.24) is not exact. It suffices to consider a portfolio with n = 2 stocks,
Q = I2, K = 2, x = 0, x̄ = 0.55, i.e. essentially unconstrained apart from the total budget constraint
x1 + x2 = 1, with ρ = (1, 0.40)

>
, and C(x) = (C1(x1), C2(x2))

>
= (x1, 0)

>
. Note that, for all i ∈ {1, 2},

θi = Ci(xi)
1+xi

, and hence Θi = [Ci(x)/(1 + x̄), Ci(x̄)/(1 +x)]. Therefore, in this example, Θ1 = [0, 0.55] and
Θ2 = {0}. The objective function of the original formulation Eq. (2.22) is simply max(0.40x2), which

implies a global optimum x∗ = (0.45, 0.55)
>

. The objective function of the pointwise reformulation is

max((1−θ1)x1 +0.40x2−θ1). Now, x∗ = (0.45, 0.55)
>

is a global optimum of the pointwise reformulation
if and oly if (1− θ1) < 0.40, i.e., iff θ1 > 0.60: however, these values of θ1 do not belong to the set Θ1.

2.17 Remark
The pointwise reformulation in Eq. (2.24) is not efficient, since the MVPS is NP-hard [8]. However, the
pointwise reformulation in Eq. (2.24) is good, since the solver technology for finding solutions of convex
MIQPs is more advanced and reliable than that for solving nonconvex nonconcave MINLP.

2

The previous models can be easily extended in order to take into account the presence of fixed
transaction costs. Furthermore, the simplicity of the previous proposed approach makes it a promising
pointwise reformulation candidate for the extension to other mixed integer nonlinear problems with
separable nonconvexities.

3 The MWU for MINLPs

The MWU (Alg. 3) samples some values from an iteratively updated distribution in order to optimize
a given loss or gain criterion. We adapt this framework to (MI)NLP by exploiting good pointwise
reformulations, which can be solved more efficiently than the original formulation, and hence can be
solved repeatedly at a relatively low computational cost. We rely on a set of parameters θ which can be
guessed using the MWU framework. This yields a loop which updates the values of θ, uses them to solve
a pointwise reformulation, and then estimates the error over each variable in order to update θ again at
the next iteration.

The pseudocode of the MWU algorithm for MINLP is shown in Alg. 4. It takes a MINLP formulation
P and a pointwise reformulation ptw

t←t′(θ)

(P ) as inputs, and hopefully produces a good solution as output.

Step 5 in Alg. 4 is not actually needed to ensure that the relative approximation guarantee Eq. (1.2)
holds. Without it, however, the MWU is computationally much less efficient and effective.
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Algorithm 4 MWU(P )

1: Initially set the iteration index t = 1, weights ωt = 1, parameters θt−1 chosen uniformly at random
in Θ, an incumbent x∗ =∞ and t = 1

2: while t ≤ T do
3: assign θt ← θt−1ω̄t where ω̄t is vector chosen uniformly at random in [0, ωt]
4: solve ptw

t←t′(θt)

(P ), get solution xt

5: refine xt (e.g. using local descent on P )
6: if xt is better than the incumbent, replace x∗ ← xt

7: compute costs ψt ∈ [−1, 1]q from xt

8: update weights for the next iteration: ∀i ≤ q ωt+1
i ← ωti(1−

ψti
2 )

9: normalize weights such that
∑
i≤q ω

t+1
i = 1

10: increase t
11: end while

We now clarify the dependencies between symbols occurring in the MWU algorithm, symbols occurring
in the pointwise reformulation, and the optima of the original formulation. EMWU, the function that the
MWU aims at minimizing, depends on p and ψ; p depends on ω, which is updated using ψ, and ψ depends
on the local solution x of the pointwise reformulation, which replaces the incumbent x∗ whenever it
improves it (with respect to the objective function of the original formulation). Note also that x depends
on θ through the pointwise reformulation, and that θ is randomly chosen from the discrete distribution
p, proportional to ω.

Below, we discuss Steps 3, 4-5 and 7 of Alg. 4 in more detail.

3.1 Sampling

As mentioned in Remark 2.7, the dimension r of θ and the dimension q of ω and ψ might be different.
The question is how to apply Step 2 in Alg. 3, since it implicitly assumes that r = q. We deal with this
issue by defining θ using aggregations (if r > q) or disaggregations (if q > r) of the values ω̄ sampled from
[0, ω] (see Step 3 in Alg. 4). Aggregations and disaggregations are obtained by applying any number of
operators, such as products or sums, to ω̄. Since there are many ways to split products and sums in a
prescribed number of different parts, the precise details of this step are heuristic in nature. We note that
the MWU performance guarantee on EMWU (see Eq. (1.2)) depends on q but not on r, and so it is not
impacted by such details.

In Sect. 3.3 we sketch a general methodology which eschews this issue by ensuring that r = q (so that
sampling θ from the distribution p poses no problem). This methodology is then applied to the HUC and
MVPS problems. In the DGP application, on the other hand, we have mK = r > q = n, where n = |V |,
m = |E| and (K,G = (V,E, d)) is the DGP input.

3.2 Solution and refinement

3.2.1 Solving pointwise reformulations

If P has no integer variable and ptw
t←t′

(P ) is efficient, it is likely to be an LP or a cNLP, both of which can

be either solved or accurately approximated in polynomial time. If the pointwise reformulation is not
efficient but at least good, it may be a type of nonconvex NLP for which we have a practically fast solver
which scales reasonably well.
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If P has some integer variables and ptw
t←t′

(P ) is good, P might be a MILP or a convex MINLP (cMINLP).

This complicates matters, since solving a MILP or a cMINLP to optimality at each iteration is usually
computationally costly, even if good solver technologies exist. Note, however, that all the MWU algorithm
needs in order for its guarantee to hold is simply an error vector ψt at each iteration t ≤ T and the weight
update rule Eq. (1.1). So in fact we can run any heuristic we like on the pointwise reformulation. In
practice, we run Branch-and-Bound methods with a bound on computation time or optimality gap.

3.2.2 Refining the pointwise optimum

The refinement step is optional in theory, but computational experience shows it is necessary in practice
for the MWU to perform well. If x′ is the solution of the pointwise reformulation, any solver which is
designed to improve x′ with respect to the original formulation P (at least locally) can be used to refine
x′.

3.3 Computing the MWU costs

This is the most critical step of the MWU algorithm, since it influences the performance guarantee. It
has two requirements:

(a) ψt ∈ [−1, 1]q for all t ≤ T ;

(b) for any t ≤ T , ψt measures the error of the current local solution xt of the pointwise reformulation
with respect to optimality and feasibility of the original formulation.

We need (a) to prove the MWU relative approximation guarantee, and (b) in order to relate EMWU to
the solution quality of the incumbent x∗ (see issues 2-3 in Sect. 1.3).

Based on (a) and (b), we compute a scalar αt related to optimality, and a set {βt` | ` ≤ m} of vectors
related to feasibility. Since we penalize infeasibilities but we generally do not award “better feasibility”,
the components of βt` are usually required to be in [0, 1] rather than [−1, 1].

More specifically, let

Rθ
t

= ptw
t←t′(θt)

(P )

be the pointwise reformulation at iteration t ≤ T , let f(x), g`(x) ≤ 0 (for ` ≤ m) be the objective function

and constraints of P as per Eq. (1.3), and let fθ
t

(x), gθ
t

` (x) ≤ 0 be those of Rt (for ` ≤ m). After Steps

4-5 of Alg. 4, we can evaluate the current solution xt in the pointwise reformulation by computing fθ
t

(xt)

and gθ
t

` (xt) for each ` ≤ m. We define arrays of values, αt, βt at each iteration t ≤ T :

• let αt be proportional to fθ
t

(xt)−f(xt), so as to favor a pointwise reformulation with a lower objec-
tive value (for a MINLP in the general minimization form Eq. (1.3); if considering a maximization
problem, αt should be replaced by −αt);

• for all ` ≤ m, let βt` be proportional to max(gθ
t

` (xt), 0), so as to penalize a pointwise reformulation
which makes a feasible solution infeasible.

The arrays α, β can be scaled in any way which makes them satisfy requirement (a) above. We assume
this scaling is application-dependent. We can now define ψt in a very simple way as the concatenation
of αt and βt` for all ` ≤ m, which also fixes q = 1 + m. Other application-dependent ways of defining ψ
by means of α, β are also possible (see Sect. 3.4.1).
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3.4 Adapting the MWU for MINLP to applications

In this section we discuss the adaptations of Alg. 4 to the different application settings we considered.

3.4.1 Distance Geometry Problem

In this section, we discuss the adaptation of Alg. 4 to the DGP application setting.

The pointwise reformulation Eq. (2.18) we employ for the DGP relies on θt = (θtuvk | {u, v} ∈ E ∧k ≤
K) having dimension r = K|E|, xt = (xtv | v ∈ V ) having dimension n = |V |, and ψt = (ψtuv | {u, v} ∈
E) having dimension q = |E|, at any iteration t ≤ T . Also, the original formulation Eq. (2.11) is a
pure feasibility problem consisting of |E| quadratic equations, without objective function or integrality
constraints. We therefore define:

∀{u, v} ∈ E ψtuv =
| ‖xtu − xtv‖2 − duv|

max(‖xtu − xtv‖2, duv)
. (3.1)

This definition of ψ is close to the interpretation of β given in Sect. 3.3. Since βt` is defined for the `-th
inequality constraint, and equality constraints correspond to pairs of opposing inequality constraints, we
simply observe that max(g̃`(x

t), 0) turns into

max(gθ
t

` (xt),−gθ
t

` (xt)) = |gθ
t

` (xt)| = | ‖xtu − xtv‖2 − duv|,

which is the numerator in the definition of ψt in Eq. (3.1).

As mentioned above and in Sect. 3.1, in the DGP application we have a discrepancy between r and
q; accordingly, we sample a random vector ω̄t uniformly at random from [0, ωt], and define θt+1 as a
disaggregation of ω̄t over k ∈ K, as follows:

∀k ≤ K, {u, v} ∈ E θt+1
uvk = ω̄tuv(x

t
uk − xtvk),

i.e., making a reasonable guess, we postulate that a good parameter θt+1
uvk will be proportional to the k-th

component of the vector xtu − xtv.

The performance guarantee of the MWU applied to the DGP turns out to be slightly better than the
general one in Eq. (1.2), due to the fact that infeasibility is penalized but feasibility is not rewarded:

min
t≤T

∑
{u,v}∈E

ψtuvp
t
uv ≤

1

T

 ln |E|
η

+ (1 + η) min
{u,v}∈E

∑
t≤T

ψtuv

 , (3.2)

which is actually a statement on a weighted feasibility error of the MWU solution x∗, since it concerns
the minimum over all iterations. For a proof of this statement, see [16, Prop. 4.1].

3.4.2 Hydro-power unit commitment

In this section, we discuss the adaptation of Alg. 4 to the HUC application setting.

For each time period of the scheduling horizon, an upper bound on the contribution to the overall
revenue is given by Π̄ϕ̄ , max

h
Πh max

x,v
ϕ(x, v). This allows us to define costs:

∀h ∈ H ψth =
Π̄ϕ̄−Πhyh

Π̄ϕ̄
. (3.3)

This definition of ψt is close to the interpretation of αt given in Sect. 3.3. The overall gain/cost reward
is scaled appropriately for each time period.
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The pointwise reformulation we employ for the HUC (Eq. (2.20)) relies on a parameter matrix θt =
(x̃t, ṽt, νt0, ν

t
1, ν

t
2), and h̄-dimensional cost vectors ψt. Note that θt is h̄×5, and that the first two vectors are

actually points in the (x, v)-space. We therefore set x̃t = xt−1, ṽt = vt−1, and sample νta (for a ∈ {0, 1, 2})
from ωt: it suffices to draw three different samples from the same distribution p proportional to ωt. More
precisely,

∀h ∈ H, νt0h = ω̄thϕ(x̃th, ṽ
t
h),

νt1h = ω̄th
∂ϕ
∂xh

(x̃th, ṽ
t
h),

νt2h = ω̄th
∂ϕ
∂vh

(x̃th, ṽ
t
h).

Since the distance to Π̄ϕ̄ is always penalized with nonnegative ψ, the performance guarantee of the
MWU applied to the HUC is similar to Eq. (3.2):

min
t≤T

∑
h∈H

ψthp
t
h ≤

1

T

 ln h̄

η
+ (1 + η) min

h∈H

∑
t≤T

ψth

 . (3.4)

3.4.3 Mean-variance portfolio selection

Note that the only complicating terms of the MVPS formulation Eq. (2.23) are the transaction costs in
the objective function. Since feasibility is not an issue, we only need to define ψ for optimality purposes,
i.e. we only consider the α arrays mentioned in Sect. 3.3. Specifically, at each iteration t ≤ T , we define
a vector αt ∈ [0, 1]n, whose components are:

αti =
Ci(x

t
i)− (xti + 1)θti

max(|(xti + 1)θti |, |Ci(xti)|)
. (3.5)

Note that we define αt to be a vector of n components, instead of a scalar as in Sect. 3.3. This adaptation
fits the MVPS well, since its objective function is separable, and since satisfying its constraints is not
hard. Each component of αt defines a cost/gain relative to the contribution of each asset quantity towards
the value of the objective function. We then simply set:

∀i ≤ n ψti = αti. (3.6)

In Alg. 4, the θt vector is updated in terms of ω, which are themselves updated as in Eq. (1.1). For
this application, we decided to add a step with the purpose of explicitly scale each θti (for i ≤ n) by

ti =
Ci(x

t
i)

(1+xti)
first, in order to make θti a better replacement candidate for ti:

∀i ≤ n θti = ψti
Ci(x

t
i)

(1 + xti)
. (3.7)

After this modification, we resume Alg. 4: we proceed to update ω, then compute θt+1 as an update to
θt multiplied by random sample from the distribution p, proportional to ω.

4 Computational experiments

In this section we present comparative computational experiments to validate the behaviour of the MWU
algorithm for (MI)NLP in practice. We always compare the MWU with a classic MS heuristic, which is
possibly the most similar existing algorithm to the MWU for (MI)NLP, on a fixed number T of iterations,
and with initial points sampled uniformly within the instance ranges. We chose η = 0.5 and T = 20 for
most of the experiments (unless stated otherwise).
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4.1 DGP results

The test set consists of a set of 46 Protein Data Bank (PDB) [7] files, to be realized in R3. The protein
graph has an edge {i, j}, weighted by the inter-atomic distance between atoms i and j, whenever this
distance is smaller than 5Å (compatibly with Nuclear Magnetic Resonance [36] data). Note that, since
all the proteins we tested actually exist, all of these instances are YES instances of the DGP. Based on
the computational results, we partition these instances in two groups: Easy (27 instances) and Hard
(19 instances). We configured both MWU and MS solvers with T = 20 iterations, and use the IPOpt
solver [14] as the local NLP solver in both methods.

MWU MS

Instance n m d:min max avg err:avg max CPU avg max CPU
C0700odd.1 8 28 0.93 4.06 2.39 0.00 0.00 0.61 0.00 0.00 0.46
C0700odd.2 8 28 0.93 4.06 2.39 0.00 0.00 0.61 0.00 0.00 0.46
C0700odd.3 8 28 0.93 4.06 2.39 0.00 0.00 0.62 0.00 0.00 0.46
C0700odd.5 8 28 0.93 4.06 2.39 0.00 0.00 0.61 0.00 0.00 0.39
C0700odd.6 8 28 0.93 4.06 2.39 0.00 0.00 0.60 0.00 0.00 0.49
C0700odd.7 8 28 0.93 4.06 2.39 0.00 0.00 0.64 0.00 0.00 0.39
C0700odd.8 8 28 0.93 4.06 2.39 0.00 0.00 0.61 0.00 0.00 0.45
C0700odd.9 8 28 0.93 4.06 2.39 0.00 0.00 0.61 0.00 0.00 0.39
C0700odd.A 8 28 0.93 4.06 2.39 0.00 0.00 0.61 0.00 0.00 0.45
C0700odd.B 8 28 0.93 4.06 2.39 0.00 0.00 0.62 0.00 0.00 0.44
lavor11 11 40 1.48 4.87 2.77 0.00 0.00 0.77 0.00 0.00 0.51
lavor11 7-2 11 47 1.49 4.97 2.95 0.00 0.00 0.72 0.00 0.00 0.83
lavor11 7 11 47 1.44 4.98 2.96 0.00 0.00 0.68 0.00 0.00 0.81
lavor11 7-1 11 47 1.44 4.98 2.96 0.00 0.00 0.73 0.00 0.00 0.80
lavor11 7-b 11 47 1.44 4.98 2.96 0.00 0.00 0.78 0.00 0.00 0.87
C0150alter.1 26 191 1.02 4.99 2.99 0.00 0.00 2.01 0.00 0.00 5.24
lavor30 6-4 30 191 0.64 4.96 2.88 0.00 0.00 1.74 0.00 0.00 4.00
lavor30 6-1 30 192 0.64 4.98 2.90 0.00 0.00 1.85 0.00 0.00 3.29
lavor30 6-8 30 193 0.64 4.99 2.90 0.00 0.00 1.91 0.00 0.00 3.85
lavor30 6-6 30 195 0.64 4.99 2.96 0.01 0.15 1.71 0.00 0.00 3.47
lavor30 6-7 30 195 0.64 4.98 2.93 0.00 0.00 1.87 0.00 0.00 4.11
lavor30 6-3 30 195 0.64 4.98 2.92 0.00 0.00 1.73 0.00 0.00 3.65
lavor30 6-5 30 195 0.64 4.99 2.93 0.00 0.00 1.79 0.00 0.00 3.37
lavor30 6-2 30 202 0.64 4.99 3.03 0.00 0.00 1.81 0.00 0.00 4.45
tiny 27 252 0.93 4.99 3.10 0.00 0.00 1.56 0.00 0.00 8.75
C0700.odd.G 36 308 0.98 4.99 3.04 0.00 0.00 2.58 0.00 0.00 8.29
C0700.odd.H 36 308 0.98 4.99 3.04 0.00 0.00 2.55 0.00 0.00 10.01
avg (CPU) 1.22 2.62
geo (CPU) 1.05 1.40

Table 1: Comparative results on the Easy instances of the DGP. The last line reports the arithmetic
and geometric means of the CPU times.

The result tables 1 and 2 report, for each of the instance sets Easy and Hard, the instance PDB
name, the number n of atoms, the number m of given distances, the minimum, maximum and average
distance values in the instance, and the solver performance statistics. These are average and maximum
edge errors, defined respectively as:

1
m

∑
{i,j}∈E

|dij − ‖xi − xj‖2 |

max
{i,j}∈E

|dij − ‖xi − xj‖2 |,

and seconds of user CPU time of an i7 at 2GHz with 8GB RAM running Darwin 13.4.0.

Both methods are iterative, both have been run for the same number of iterations, MWU calls the
local NLP solver twice per iteration (solution of the pointwise reformulation and refinement) and MS
calls it only once. However, the MWU takes much less time (Fig. 1), and yields better results, as shown
in Tables 1-2.

For the Hard instances only, we also carried out a comparison to a very well-known and efficient
metaheuristic called Variable Neighbourhood Search (VNS) [23], applied to the DGP as described in
[27], and using IPOpt as its local NLP solver. The range of applications where VNS excels borders
on unbelievable. As is clear from the results in Table 3 and Fig. 2, it excels in the DGP case too, in
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MWU MS

Instance n m d:min max avg err:avg max CPU avg max CPU
2erl-frag-bp1 39 406 0.81 4.99 3.11 0.00 0.00 2.63 0.00 0.00 15.06
C0080create.1 60 681 0.98 5.00 3.33 0.04 0.41 6.17 0.26 1.27 37.79
C0080create.2 60 681 0.98 5.00 3.33 0.04 0.41 6.05 0.06 0.99 36.50
names 82 840 1.21 5.00 3.48 0.16 1.28 10.91 0.15 1.17 79.85
pept 107 999 1.16 5.00 3.55 0.16 1.38 15.53 0.42 1.45 108.80
C0020pdb 107 999 1.16 5.00 3.55 0.16 1.45 14.69 0.44 1.92 101.72
1guu-1 150 959 1.20 4.99 3.46 0.09 0.79 15.09 0.10 1.06 30.80
1guu-4000 150 968 0.33 4.99 3.51 0.11 0.68 19.31 0.16 1.00 42.88
1guu 150 955 1.30 5.00 3.46 0.09 0.70 15.33 0.12 1.07 31.58
res 5000 108 1392 0.94 5.00 3.42 0.11 1.75 22.79 0.43 2.15 162.53
res 2000 108 1404 0.95 5.00 3.42 0.17 1.80 21.46 0.42 2.24 169.70
res 0 108 1410 0.94 5.00 3.43 0.12 2.07 22.11 0.38 1.98 154.44
res 3000 108 1487 0.97 5.00 3.48 0.20 1.99 25.29 0.41 2.38 209.24
res 1000 108 1506 0.94 5.00 3.49 0.16 1.71 25.19 0.40 2.23 213.81
res 2kxa 177 2627 0.93 5.00 3.52 0.18 2.16 74.32 0.39 2.75 621.78
2kxa 177 2711 0.93 5.00 3.53 0.26 2.79 78.66 0.44 3.07 834.17
C0030pkl 198 3247 0.94 5.00 3.56 0.22 2.86 115.21 0.45 3.43 1249.54
cass...-130731 281 4871 0.94 5.00 3.50 0.21 3.03 256.58 0.46 3.46 2029.28
helix amber 392 6265 0.96 5.00 3.52 0.26 3.30 388.29 0.46 3.63 2600.84
avg 0.14 1.61 59.76 0.31 1.96 459.49
geo (CPU) 25.43 156.54

Table 2: Comparative results (MWU vs. MS) on the Hard instances of the DGP. The last line reports
the average edge errors and the arithmetic and geometric mean of the CPU times.

Figure 1: CPU time vs. m: MWU vs. MS.

both quality and CPU time. What is surprising, however, is that the MWU is often able to find a
better maximum distance error. This measure is important in the context of proteins, since a single
large maximum distance error might well mean a different conformation altogether (possibly closer to
a different isomer), and therefore a protein with a different function. On the other hand, the average
distance error is somewhat less important (as long as it remains low enough), as it might simply be due
to experimental errors. Unlike the MWU, and similarly to MS, VNS has no approximation guarantee
whatsoever, even a relative one.
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MWU VNS

Instance n m d:min max avg err:avg max CPU avg max CPU
2erl-frag-bp1 39 406 0.81 4.99 3.11 0.00 0.00 2.63 0.00 0.00 4.00
C0080create.1 60 681 0.98 5.00 3.33 0.04 0.41 6.17 0.00 0.00 9.19
C0080create.2 60 681 0.98 5.00 3.33 0.04 0.41 6.05 0.00 0.00 0.7
names 82 840 1.21 5.00 3.48 0.16 1.28 10.91 0.01 0.63 16.91
pept 107 999 1.16 5.00 3.55 0.16 1.38 15.53 0.15 1.91 11.62
C0020pdb 107 999 1.16 5.00 3.55 0.16 1.45 14.69 0.12 2.78 6.44
1guu-1 150 959 1.20 4.99 3.46 0.09 0.79 15.09 0.04 1.11 1.46
1guu-4000 150 968 0.33 4.99 3.51 0.11 19.31 0.68 0.11 1.08 10.57
1guu 150 955 1.30 5.00 3.46 0.09 0.70 15.33 0.06 1.00 9.64
res 5000 108 1392 0.94 5.00 3.42 0.11 1.75 22.79 0.06 2.57 10.24
res 2000 108 1404 0.95 5.00 3.42 0.17 1.80 21.46 0.15 1.87 2.50
res 0 108 1410 0.94 5.00 3.43 0.12 2.07 22.11 0.2 2.60 2.32
res 3000 108 1487 0.97 5.00 3.48 0.20 1.99 25.29 0.01 0.86 20.11
res 1000 108 1506 0.94 5.00 3.49 0.16 1.71 25.19 0.14 2.89 10.49
res 2kxa 177 2627 0.93 5.00 3.52 0.18 2.16 74.32 0.00 0.00 20.11
2kxa 177 2711 0.93 5.00 3.53 0.26 2.79 78.66 0.01 1.26 20.86
C0030pkl 198 3247 0.94 5.00 3.56 0.22 2.86 115.21 0.00 0.01 7.80
cass...-130731 281 4871 0.94 5.00 3.50 0.21 3.03 256.58 0.12 3.54 21.09
helix amber 392 6265 0.96 5.00 3.52 0.26 3.30 388.29 0.11 4.52 23.12
avg 0.14 1.61 59.76 0.07 1.51 11.02
geo (CPU) 25.43 7.85

Table 3: Comparative results (MWU vs. VNS) on the Hard instances of the DGP. The last line reports
the average edge errors and the arithmetic and geometric mean of the CPU times.

Figure 2: CPU time vs. m: MWU vs. VNS.

4.2 HUC results

In this section we present the results on the HUC application.
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4.2.1 Test configuration

We again use the IPOpt solver [14] as the local NLP solver in both the MWU (Step 5 of Alg. 4) and
MS (Step 3 of Alg. 1) methods; and Cplex [24] as the LP solver for the pointwise reformulation of the
MWU (Step 4 of Alg. 4). External solvers are invoked without time limits. Tests were executed on a
machine configured with eight 64-bit Intel Xeon CPU E5504 running at 2.00 GHz and and 11.7 GB of
RAM, running the Linux operating system.

The authors of [11] provided us with three simplified instances, sharing the following common char-
acteristics:

• h̄ = 128, τ = 1h

• V0 = Vh̄ = 21078580, V = 15000000, V̄ = 33000000m3

• Q̄ = 42m3/s

• Q− = Q+ = 70m3/s/hour

• R0 = 0.01

• L = 385

• L = (L` | ` ∈ {0, . . . , 6}) =
= (4.0986,−1.2554, 0.1605,−9.762× 10−3, 3.0943× 10−4,−4.9293× 10−6, 3.1152× 10−8)

• K = (Kk | k ∈ {0, . . . , 6}) =
= (3.074× 102, 3.88× 101,−4.37, 0.265,−8.87× 10−3, 1.55× 10−4,−1.11× 10−6)

All of the the values of the inflows I (m3/s) and prices Π (currency/MWh) per time period are reported
in Tab. 8 in the appendix.

In order to work with a larger test set, nine further instances were generated from each of the three
original instances by uniformly sampling price vectors Π = (Πh | h ∈ {1, . . . , 168}) in [min Π,max Π].
The generated instances are noted A2 to A10, B2 to B10, C2 to C10. For example, instance C2 features
the same data as C1 except for the prices, which, however, lay in the same range.

4.2.2 Comparative results on solution quality and CPU time

Both MWU and MS are configured with T = 20 iterations. Tests are run on the (A1-C10) 30-instance set
introduced in Sect. 4.2.1. The comparative computational results are reported in Tab. 4 as follows:

• the first column shows the instance name

• second and third columns show objective value and CPU time (in seconds of user time) for the MS
algorithm

• the fourth and fifth columns show objective value and CPU time (in seconds of user time) for the
MWU algorithm

• the fifth column shows relative objective value improvement from MS to MWU computed as

∆ =
val(MWU)− val(MS)

val(MS)
(4.1)

• the sixth column shows time improvement ratio from MS to MWU computed as

Λ =
cpu(MS)

cpu(MWU)
. (4.2)

For the last two columns, the comparison metrics are summarized in the last line with the average (avg)
and the standard deviation (std) across all 30 instances.
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MS MWU MS vs. MWU
Instance objective CPU objective CPU ∆ Λ
A1 4.12E+4 30.2 4.17E+4 5.7 1.27% 5.35
A2 5.18E+4 33.4 5.32E+4 5.7 2.59% 5.89
A3 4.88E+4 33.4 4.97E+4 5.6 1.80% 5.99
A4 4.86E+4 31.8 4.98E+4 5.9 2.56% 5.42
A5 5.01E+4 34.4 5.19E+4 5.5 3.63% 6.29
A6 5.00E+4 29.8 5.10E+4 6.1 2.11% 4.91
A7 5.10E+4 33.0 5.20E+4 5.8 1.97% 5.68
A8 5.07E+4 33.2 5.24E+4 5.8 3.37% 5.69
A9 5.08E+4 32.7 5.21E+4 5.7 2.48% 5.71
A10 5.04E+4 32.0 5.13E+4 6.0 1.61% 5.32
B1 1.98E+4 29.5 1.98E+4 4.4 0.00% 6.70
B2 2.67E+4 33.3 2.67E+4 5.0 0.00% 6.64
B3 2.53E+4 30.7 2.53E+4 4.4 0.00% 7.03
B4 2.53E+4 29.2 2.53E+4 4.7 0.00% 6.22
B5 2.60E+4 30.2 2.60E+4 5.0 0.00% 6.05
B6 2.60E+4 28.2 2.60E+4 4.6 0.00% 6.11
B7 2.62E+4 28.6 2.62E+4 4.4 0.00% 6.54
B8 2.65E+4 29.6 2.65E+4 4.5 0.00% 6.54
B9 2.62E+4 29.5 2.62E+4 4.8 0.00% 6.20
B10 2.61E+4 31.8 2.61E+4 4.5 0.00% 7.08
C1 5.09E+4 26.8 5.17E+4 5.0 1.60% 5.38
C2 6.82E+4 33.0 6.99E+4 5.7 2.53% 5.82
C3 6.51E+4 33.6 6.65E+4 5.4 2.06% 6.29
C4 6.58E+4 31.9 6.70E+4 5.5 1.85% 5.77
C5 6.70E+4 33.1 6.87E+4 5.0 2.43% 6.62
C6 6.64E+4 30.2 6.82E+4 5.0 2.77% 6.07
C7 6.83E+4 31.3 6.87E+4 4.8 0.55% 6.51
C8 6.83E+4 33.2 6.86E+4 5.0 0.44% 6.69
C9 6.72E+4 30.9 6.88E+4 4.7 2.27% 6.62
C10 6.77E+4 32.5 6.84E+4 5.3 1.03% 6.14
avg 4.67E+4 31.4 4.75E+4 5.2 1.36% 6.11
std 1.71E+4 1.9 1.76E+4 0.5 1.19% 0.54
geom 4.33E+4 31.3 4.39E+4 5.1 NA 6.09

Table 4: Objective and CPU time of MS and MWU, relative objective improvement ∆ and CPU time
improvement Λ from MS to MWU.

The MWU algorithm is always better than the MS algorithm objective-wise but the improvement is
relatively small. It must be emphasized, however, that a few percentage points in the objective functions
of energy-related optimization problems often translate in consistent savings in absolute terms. As for
the time performance, the MWU algorithm is six times faster than the MS algorithm on average, with
low variability: this is an extremely desirable feature in short-term unit commitment problems such as
this.

4.2.3 Sensitivity to instance size

In order to study in the relative performance sensitivity of the MWU algorithm on instance size, we
artificially vary the time horizon h̄ of the instances from one day to two weeks.

The instances introduced in Sect. 4.2.1 are one week long with hourly time steps (h̄ = 168); we now
consider instances with h̄ in {24, 48, . . . , 168, . . . , 336}, defined as follows:

• when h̄ ≤ 168, data from the 168-long instances is cropped to h ∈ [1, h̄];

• when h̄ > 168, data for h ∈ [1, 168] is identical to the 168-long instances, and data for h ∈ [169, h̄]
is duplicated from the first interval and taken from time period h− 168 ∈ [1, 168].

Both MWU and MS are configured with T = 20. For each instance subset A (A1 to A10), B (B1 to B10)
and C (C1 to C10), the comparative computational results for the 14 different sizes are summarized by
average and standard deviation in Tab. 5, as follows:

• the first column shows the instance subset

• the second column shows instance size h̄
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• the third and fourth columns show average (avg) and standard deviation (std) of the CPU time
improvement Λ taken over the 10 instances in the first column having size specified in the second

• the fifth and sixth columns show average (avg) and standard deviation (std) of the relative objective
improvement ∆ taken over the 10 instances in the first column having size specified in the second

For the last three columns, the last line shows average, standard deviation and geometric mean of the
corresponding metrics taken over the whole 420 (= 3× 10× 14) tested instances.

Instance
subset

Instance
size h̄

∆ Λ
avg std avg std geo

A

24 0.38% 7.73% 2.76 0.17 2.75
48 3.10% 1.05% 3.82 0.17 3.82
72 3.19% 1.97% 4.46 0.21 4.46
96 2.30% 0.88% 5.12 0.23 5.11
120 3.67% 1.32% 5.11 0.23 5.11
144 1.81% 1.22% 5.62 0.35 5.61
168 2.23% 0.66% 5.73 0.29 5.73
192 2.73% 0.98% 6.18 0.33 6.17
216 2.40% 1.11% 6.39 0.37 6.38
240 1.86% 1.25% 6.48 0.44 6.47
264 2.12% 0.54% 7.18 0.40 7.17
288 2.30% 0.74% 6.77 0.45 6.76
312 1.84% 0.73% 6.65 0.39 6.64
336 1.78% 0.91% 7.01 0.50 7.00

B

24 0.00% 0.00% 3.19 0.24 3.18
48 0.00% 0.00% 4.87 0.27 4.86
72 0.00% 0.00% 5.92 0.38 5.91
96 0.00% 0.00% 6.51 0.38 6.50
120 0.00% 0.00% 6.31 0.29 6.31
144 0.00% 0.00% 6.75 0.46 6.74
168 0.00% 0.00% 7.01 0.46 6.99
192 0.00% 0.00% 7.41 0.72 7.38
216 0.00% 0.00% 7.36 0.71 7.33
240 0.00% 0.00% 7.40 0.31 7.40
264 0.00% 0.00% 7.68 0.52 7.67
288 0.00% 0.00% 7.60 0.98 7.54
312 0.00% 0.00% 7.92 0.75 7.88
336 0.00% 0.00% 8.45 0.82 8.41

C

24 0.00% 0.00% 3.06 0.15 3.05
48 2.08% 1.87% 4.31 0.21 4.31
72 2.59% 2.11% 4.77 0.33 4.76
96 2.99% 1.01% 5.17 0.19 5.16
120 3.30% 1.86% 5.47 0.23 5.47
144 2.75% 0.99% 5.98 0.30 5.97
168 1.89% 0.72% 6.59 0.39 6.58
192 1.81% 0.96% 6.74 0.60 6.72
216 1.08% 0.76% 6.53 0.44 6.52
240 1.70% 1.34% 7.41 0.46 7.40
264 1.20% 0.82% 7.32 0.85 7.28
288 1.22% 0.81% 7.29 0.54 7.27
312 1.46% 0.85% 7.31 0.45 7.30
336 0.62% 1.03% 7.15 0.46 7.14
avg 1.34% 0.86% 6.16 0.41 6.15
std 1.20% 1.25% 1.38 0.20 1.37
geo NA NA 5.98 0.37 5.97

Table 5: Relative objective improvement ∆ and CPU time improvement Λ from MS to MWU, according
to instance subset and instance size h̄.

The results from Tab. 5 corroborate those from Tab. 4: the MWU algorithm almost always outputs
a slightly better objective than the MS algorithm while consistently outperforming the MS algorithm in
CPU time.

We graphically compare CPU times averaged over instance sizes in Fig. 3. Each point corresponds to
(size, average CPU time) over all the instances A1-C10.
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Figure 3: Average of CPU time (sec) vs. instance size |H| = h̄. Each point represents a CPU time average
over three equally-sized instances (in groups A, B, C).

4.2.4 Influence of initialization

In this section we empirically show that the MWU method is robust to varying inital conditions. We
define the objective dispersion Ξ as the standard deviation over the average of a sample of objective
function values collected from a sequence of runs with randomly chosen starting vectors θ.

The MWU search is somewhat diversified due to the random sampling of θ (Step 3 of Alg. 4), which
is used to define the pointwise reformulation. Whenever the ψ costs are only defined through feasibility
(i.e. ψ is proportional to β, see Sect. 3.3), it is easy to show that the weights ω can only decrease during
MWU execution (Step 8 of Alg. 4), which means the sampling domain is increasingly small. In the
extreme case where all weights ω are set to zero for all iterations, the search is deterministic and only
depends the values initially set for parameters θ. We therefore test whether MWU results are conditioned
by initialization.

To this end, we look at the dispersion of 20 MWU runs (all of them configured with T = 20), started
from with 20 different randomly sampled vectors θ. In addition, for each sampled initial point, a local
descent is independently performed to solve problem Eq. (2.19); the best of these descents is equivalent
to the result of a 20-iteration MS run.

Tests are run on the (A1-C10) 30-instance set introduced in Sect. 4.2.1 (with h̄ = 168 time periods).
Computational results are reported in Tab. 6, as follows:

• the first column shows the instance name

• the second column shows the objective dispersion Ξ

• the third column shows average objective function value improvements from MS to each of the 20
MWU runs (∆avg)

• the fourth column indicates whether the worst objective function value obtained over the 20 MWU
runs is as good as the MS result.

The comparison metrics are summarized in the last line with the average across all 30 instances.

On average, the dispersion of the MWU results is low (avg(Ξ) = 0.38%), which shows low sensitivity
to variability in initialization. In addition, the dispersion of the MWU results is lower on average than the
average relative improvement (avg(∆avg) = 1.17%), thus showing that the MWU is consistently better
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Instance Ξ ∆avg MWU ≥ MS

A1 0.40% 0.08% false
A2 0.63% 2.50% true
A3 0.56% 2.76% true
A4 0.83% 1.87% true
A5 0.67% 2.02% true
A6 0.33% 0.20% false
A7 0.69% 3.93% true
A8 0.57% 1.53% true
A9 0.41% 2.17% true
A10 0.61% 2.02% true
B1 0.00% 0.00% true
B2 0.00% 0.00% true
B3 0.00% 0.00% true
B4 0.00% 0.00% true
B5 0.00% 0.00% true
B6 0.00% 0.00% true
B7 0.00% 0.00% true
B8 0.00% 0.00% true
B9 0.00% 0.00% true
B10 0.00% 0.00% true
C1 0.41% 1.43% true
C2 0.63% 3.44% true
C3 0.45% 1.70% true
C4 0.70% 3.96% true
C5 0.46% 1.40% true
C6 0.52% 0.48% false
C7 0.57% 2.47% true
C8 0.70% 0.59% false
C9 0.56% 0.93% false
C10 0.58% 0.54% false
avg 0.38% 1.20% 80%

Table 6: Objective dispersion Ξ, average relative objective value improvement from MS ∆avg, and worst-
case objective value comparison to MS (last column) for the 20 MWU runs.

than MS; this comparison is all the more relevant as the 20 MWU runs and the 20 MS iterations are
started with the same values. Similarly, four out of five times (80%) even the worst MWU run yields a
result as good as the MS.

Therefore, the MWU method does not suffer from a mitigated diversification compared to the MS
method, and is robust to varying initial conditions.

4.2.5 Importance of the pointwise step

In this section we show that solving the pointwise problem within the MWU method (Step 4 of Alg. 4)
contributes to its effectiveness compared to the MS.

Both MWU and MS feature a randomly started local descent. On the one hand, the intialization
phase for MS is based on sampling from a uniform distribution. On the other hand, the MWU has a
specific routine to sample parameters, which are then used to solve the pointwise problem Eq. (2.20),
the solution of which is employed as a starting point to a local descent (refinement step) for the original
problem Eq. (2.19). In the MWU loop applied to the HUC, a solution of the pointwise problem is feasible
for the original problem (except for the dependent variables y), whereas the initial point randomly
sampled in MS may be infeasible. To test if the latter characteristic is responsible for the very good
relative time performances of the MWU, we compare results against an enhanced MS with a pointwise
feasibility recovery step, as described in Alg. 5.

Both MWU and MSptw are configured with T = 20. Tests are run on the (A1-C10) 30-instance
set introduced in Sect. 4.2.1, (with h̄ = 168 time periods). The comparative computational results are
reported in Tab. 7 as follows:

• the first column shows instance name

• the second and third columns show objective value and CPU time (in seconds) for the MSptw
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Algorithm 5 MSptw(P )

1: while t ≤ T do
2: sample θt uniformly at random
3: solve ptw

t←t′(θt)

(P ), get solution xt

4: refine xt (e.g. using local descent)
5: if xt is better than the incumbent, replace x∗ ← xt

6: increase t
7: end while

algorithm

• the fourth and fifth columns show objective value and CPU time (in seconds) for the MWU algo-
rithm

• the fifth column shows relative objective value improvement ∆ from MSptw to MWU

• the sixth column shows time improvement ratio Λ from MSptw to MWU.

For the last two columns, the comparison metrics are summarized in the last line with the average (avg)
and the standard deviation (std) across all 30 instances.

MWU MSptw MWU vs. MSptw
Instance objective CPU objective CPU ∆ Λ
A1 4.17E+4 5.48 4.18E+4 7.93 -0.27% 1.45
A2 5.32E+4 5.22 5.19E+4 8.02 2.40% 1.54
A3 4.97E+4 5.29 4.95E+4 8.51 0.49% 1.61
A4 4.98E+4 5.51 4.90E+4 8.3 1.74% 1.51
A5 5.19E+4 5.35 5.06E+4 8.86 2.56% 1.66
A6 5.10E+4 5.49 5.06E+4 8.36 0.81% 1.52
A7 5.20E+4 5.3 5.11E+4 8.3 1.84% 1.57
A8 5.24E+4 5.38 5.17E+4 7.83 1.36% 1.46
A9 5.21E+4 5.33 5.14E+4 8.18 1.28% 1.53
A10 5.13E+4 5.57 5.04E+4 8.54 1.64% 1.53
B1 1.98E+4 4.2 1.98E+4 7.33 0.00% 1.75
B2 2.67E+4 4.57 2.67E+4 7.52 0.00% 1.65
B3 2.53E+4 4.11 2.53E+4 7.64 0.00% 1.86
B4 2.53E+4 4.37 2.53E+4 7.21 0.00% 1.65
B5 2.60E+4 4.8 2.60E+4 8.28 0.00% 1.73
B6 2.60E+4 4.35 2.60E+4 7.8 0.00% 1.79
B7 2.62E+4 4.1 2.62E+4 7.8 0.00% 1.90
B8 2.65E+4 4.28 2.65E+4 7.97 0.00% 1.86
B9 2.62E+4 4.65 2.62E+4 8.04 0.00% 1.73
B10 2.61E+4 4.33 2.61E+4 7.25 0.00% 1.67
C1 5.17E+4 4.57 5.16E+4 6.7 0.09% 1.47
C2 6.99E+4 5.3 6.84E+4 8.26 2.11% 1.56
C3 6.65E+4 5.26 6.57E+4 9.05 1.12% 1.72
C4 6.70E+4 5.64 6.54E+4 7.97 2.51% 1.41
C5 6.87E+4 5 6.88E+4 7.9 -0.11% 1.58
C6 6.82E+4 4.9 6.71E+4 8.25 1.77% 1.68
C7 6.87E+4 5.08 6.67E+4 8.54 3.02% 1.68
C8 6.86E+4 5.03 6.79E+4 8.02 1.06% 1.59
C9 6.88E+4 4.7 6.73E+4 8.18 2.25% 1.74
C10 6.84E+4 5.39 6.78E+4 8.82 0.96% 1.64
avg 4.75E+4 4.95 4.70E+4 8.05 0.95% 1.63
std 1.76E+4 0.49 1.72E+4 0.52 1.02% 0.13
geo 4.39E+4 4.93 4.35E+4 8.03 NA 1.63

Table 7: Objective and CPU time of MWU and MS with ptw initialization, relative objective improvement
∆ and CPU time improvement Λ from MSptw to MWU.

The MWU method still outperforms the enhanced MSptw method both as regards the objective
function value and the CPU time. However, the improvement margin is less marked as with plain MS
(see tab 4). Solving a pointwise reformulation to quickly obtain a feasible solution for local descent serves
the effectiveness of the MWU method (this is all the more so if the pointwise reformulation is efficient).
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4.3 MVPS results

The test set consists in the 20 real-world instances described in [13], publicly available from OR-Library
[4, 5] on the web site http://www.brunel.ac.uk/~mastjjb/jeb/info.html, differing for the number of
assets and for value for the risk level σ . We imposed, as in [13], x = 0.01, x̄ = 1 and K = 10.

4.3.1 Transaction cost functions, ranked by nonlinearity

We consider different transaction cost functions, which represent different categories of “nonlinearity”.
In particular, we analyze the performance of the MWU algorithm with respect to the following five
univariate functions (see Fig. 4):

(a) Ci(xi) = −ρi ln ( 20−0.06(1+xi)
1+xi

)) for all i ≤ n: this function is increasing, concave and “almost
linear”.

(b) Ci(xi) = −ρi ln ( 0.2−0.01(0.00001+xi)
0.00001+xi

)) for all i ≤ n: this function is concave and replicates the
behavior of the transaction cost function described in [26].

(c) Ci(xi) = ρi(4xi + 0.12 sin(40xi)) for all i ≤ n: this function has a sinusoidal behavior similar to a
step function.

(d) Ci(xi) = ρi(4xi + 0.3 sin(40xi)) for all i ≤ n: this function is similar to the one in (c) but with a
“stronger nonlinear behavior”.

(e) Ci(xi) = ρi(0.5xi + sin(50xi)) for all i ≤ n: this is the “most nonlinear” transaction cost function
among which we tested the methods.

We were careful to use quotes around this informally held quantitative view of the nonlinearity of a
function. Since these functions are univariate, we trust most readers will agree with our categorization,
by inspection of Fig. 4.

4.3.2 Configuration of the computational platform

We use T = 20 iterations of both MWU and MS. We use Bonmin [9] as the local MINLP solver for both
methods, with time limit equal to 600 seconds. Specifically, we employ Bonmin’s native Branch-and-
Bound (B-BB) algorithm [22, 10], since it is generally more stable for nonconvex MINLPs. We use Cplex
[24] as the convex MIQP solver for the pointwise reformulation Eq. (2.24), with a 600s time limit, using
only one thread. All of the computational experiments were performed on an Intel Xeon CPU E5649,
2.53GHz, using only one processor.

4.3.3 Localization of the MS subsolver

Since the MVPS problem is the only application involving integer variables, a further discussion is in
order.

The MS algorithm is based on randomly sampling a starting point, and performing a local optimization
starting from that point. On the other hand, since B-BB is a local optimization procedure when deployed
on nonconvex MINLP, the only influence of the starting point is that it sets a cut-off value for the optimum.
From some preliminary tests, Bonmin behaves more like a global solver on our test-set than a local one,
and essentially defies the purpose of comparing the MWU against the MS.
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Figure 4: Examples of transaction cost functions.

In order to turn the B-BB into a truly local solver, we added a local branching constraint [20] to
the formulation, which limits the amount of flips of the binary variables to a fixed constant bνnc, where
ν ∈ [0, 1]: ∑

i≤n
y′
i
=0

yi +
∑
i≤n
y′
i
=1

(1− yi) ≤ bν nc, (4.3)

where y′ is the starting point. This enforces a local exploration in combinatorial neighbourhood of the
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starting point y′. Some trial and error yielded a very high threshold ν = 0.96 (lower values made the
instance infeasible excessively often).

4.3.4 Summary of results

The results (see Fig. 5) seem to confirm a preliminary observation that MWU finds better solutions
than MS for problems involving “very nonlinear” functions. With transaction costs (a)-(b), MS performs
better than MWU; with respect to the transaction costs (c) and (e), however, MWU performs better than
MS. In particular, for transaction costs (c)-(d) the average value of relative objective value improvement
from MS to MWU is considerably high.

Another interesting (and unexpected) observation concerning solution quality is that, on average,
the number of assets in the best portfolio produced by the MWU (a secondary goal when solving such
portfolio problems in real life) is smaller with regards to the MS. At the moment we are unable to explain
why, so we leave this as an open issue.

As for the geometric mean for the CPU time, MS shows an advantage only in case (a), all the other
cases being dominated by MWU.

5 Conclusion

This paper is about the adaptation of the multiplicative weights algorithm to the (nonconvex) nonlinear
and mixed integer nonlinear programming setting, based on a particular parametrized reformulation
of the problem. Though this algorithm has been previously employed as a theoretical tool to derive
approximation algorithms, we decided to benchmark it computationally to solve three classes of hard
problems from different application fields. We found it compares quite favorably to the well-known
multi-start method, which, unlike the MWU, offers no approximation guarantee.
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A Parameter values for the HUC instances

instance A1 instance B1 instance C1 instance A1 instance B1 instance C1
h Ih Πh Ih Πh Ih Πh h Ih Πh Ih Πh Ih Πh
1 2.66 50.17 0.53 42.37 1.53 48.06 85 2.19 57.99 0.66 84.77 3.06 71.69
2 2.66 40.17 0.53 29.75 1.53 48.06 86 2.19 61.75 0.66 92.72 3.06 57.64
3 2.66 35.17 0.53 30.09 1.53 47.56 87 2.19 61.69 0.66 99.75 3.06 55.62
4 2.66 35.17 0.53 30.12 1.53 47.00 88 2.19 56.24 0.66 103.72 3.06 55.62
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instance A1 instance B1 instance C1 instance A1 instance B1 instance C1
h Ih Πh Ih Πh Ih Πh h Ih Πh Ih Πh Ih Πh
5 2.66 35.15 0.53 30.20 1.53 47.55 89 2.19 56.24 0.66 99.75 3.06 71.62
6 2.66 40.05 0.53 30.29 1.53 47.73 90 2.19 51.70 0.66 93.68 3.06 96.89
7 2.66 57.17 0.53 52.40 1.53 54.20 91 2.19 55.63 0.66 76.65 3.06 96.92
8 2.66 75.17 0.53 60.24 1.53 75.00 92 2.19 64.64 0.66 63.71 3.06 97.00
9 2.66 90.00 0.53 93.60 1.53 105.00 93 2.19 70.00 0.66 68.75 3.06 96.97
10 2.66 147.00 0.53 140.11 1.53 110.61 94 2.19 61.00 0.66 76.75 3.06 74.92
11 2.66 146.94 0.53 148.11 1.53 110.63 95 2.34 57.12 0.67 68.62 2.84 67.67
12 2.66 139.95 0.53 141.11 1.53 100.61 96 2.48 56.02 0.67 55.67 2.62 50.62
13 2.66 95.00 0.53 82.61 1.53 78.61 97 2.63 40.50 0.68 60.61 2.39 48.62
14 2.66 90.19 0.53 77.61 1.53 77.71 98 2.78 40.50 0.68 50.61 2.17 47.63
15 2.66 95.00 0.53 90.61 1.53 94.91 99 2.93 35.30 0.69 45.61 1.95 47.54
16 2.66 95.36 0.53 103.61 1.53 95.63 100 2.93 35.31 0.69 30.61 1.95 47.00
17 2.66 90.61 0.53 107.60 1.53 188.11 101 2.93 30.25 0.69 30.61 1.95 47.00
18 2.66 75.49 0.53 97.60 1.53 199.13 102 2.93 30.26 0.69 30.61 1.95 47.43
19 2.66 60.39 0.53 73.61 1.53 199.13 103 2.93 40.25 0.69 41.61 1.95 49.62
20 2.66 80.50 0.53 62.61 1.53 110.63 104 2.93 48.25 0.69 56.34 1.95 75.82
21 2.66 95.62 0.53 61.61 1.53 79.63 105 2.93 48.25 0.69 76.61 1.95 92.85
22 2.66 65.25 0.53 75.45 1.53 61.62 106 2.93 60.56 0.69 92.50 1.95 109.51
23 2.51 60.25 0.52 61.25 1.53 58.49 107 2.93 60.71 0.69 92.41 1.95 109.02
24 2.36 55.05 0.51 59.15 1.52 52.85 108 2.93 60.86 0.69 79.41 1.95 93.93
25 2.21 50.24 0.50 41.75 1.52 48.60 109 2.93 60.50 0.69 61.49 1.95 76.00
26 2.06 40.16 0.49 30.24 1.52 48.49 110 2.93 47.45 0.69 58.17 1.95 75.92
27 1.91 35.15 0.48 30.14 1.52 48.49 111 2.93 47.40 0.69 58.00 1.95 76.45
28 1.91 35.07 0.48 30.12 1.52 48.38 112 2.93 47.45 0.69 58.75 1.95 99.92
29 1.91 35.09 0.48 29.75 1.52 48.38 113 2.93 51.45 0.69 59.75 1.95 184.03
30 1.91 40.16 0.48 29.75 1.52 48.62 114 2.93 60.40 0.69 59.75 1.95 199.14
31 1.91 57.06 0.48 52.40 1.52 54.62 115 2.93 60.40 0.69 59.75 1.95 199.14
32 1.91 65.23 0.48 60.13 1.52 75.62 116 2.93 60.45 0.69 59.75 1.95 120.44
33 1.91 100.61 0.48 93.00 1.52 105.63 117 2.93 79.71 0.69 70.11 1.95 80.47
34 1.91 147.61 0.48 132.00 1.52 110.63 118 2.93 69.89 0.69 70.11 1.95 72.43
35 1.91 147.62 0.48 140.00 1.52 105.63 119 2.63 60.45 0.71 56.75 1.92 59.64
36 1.91 130.61 0.48 133.00 1.52 100.62 120 2.34 57.45 0.73 50.00 1.88 49.70
37 1.91 95.61 0.48 81.93 1.52 75.63 121 2.05 40.25 0.75 55.75 1.85 47.70
38 1.91 80.59 0.48 77.14 1.52 75.63 122 1.76 40.11 0.77 30.48 1.82 47.55
39 1.91 95.61 0.48 90.22 1.52 95.62 123 1.47 35.22 0.80 30.50 1.79 47.00
40 1.91 95.60 0.48 110.00 1.52 95.63 124 1.47 30.25 0.80 30.49 1.79 47.00
41 1.91 90.60 0.48 110.00 1.52 185.15 125 1.47 30.25 0.80 30.50 1.79 47.00
42 1.91 85.60 0.48 96.77 1.52 199.27 126 1.47 35.29 0.80 30.60 1.79 47.58
43 1.91 70.60 0.48 72.75 1.52 199.27 127 1.47 40.25 0.80 30.50 1.79 53.69
44 1.91 70.61 0.48 61.75 1.52 110.64 128 1.47 47.45 0.80 30.50 1.79 75.25
45 1.91 95.61 0.48 74.75 1.52 75.65 129 1.47 48.26 0.80 50.61 1.79 118.00
46 1.91 80.59 0.48 60.93 1.52 75.63 130 1.47 60.08 0.80 60.60 1.79 138.10
47 1.82 60.48 0.48 60.88 1.74 70.62 131 1.47 60.62 0.80 60.50 1.79 118.50
48 1.73 55.29 0.48 58.69 1.96 53.63 132 1.47 60.78 0.80 60.50 1.79 100.29
49 1.64 55.73 0.48 50.75 2.18 48.63 133 1.47 60.61 0.80 60.49 1.79 78.25
50 1.56 44.75 0.48 30.60 2.40 48.61 134 1.47 47.87 0.80 50.61 1.79 78.07
51 1.47 39.75 0.48 30.33 2.63 48.61 135 1.47 47.45 0.80 50.40 1.79 95.50
52 1.47 34.75 0.48 30.25 2.63 48.61 136 1.47 48.05 0.80 50.23 1.79 95.63
53 1.47 39.68 0.48 37.25 2.63 48.60 137 1.47 51.62 0.80 50.20 1.79 184.94
54 1.47 50.59 0.48 40.25 2.63 47.79 138 1.47 60.08 0.80 50.20 1.79 199.13
55 1.47 52.73 0.48 52.04 2.63 59.55 139 1.47 60.40 0.80 50.25 1.79 198.50
56 1.47 62.00 0.48 61.10 2.63 75.68 140 1.47 60.66 0.80 50.40 1.79 100.63
57 1.47 96.00 0.48 88.63 2.63 95.91 141 1.47 79.86 0.80 60.25 1.79 79.35
58 1.47 145.50 0.48 101.64 2.63 105.97 142 1.47 70.00 0.80 70.21 1.79 74.89
59 1.47 145.49 0.48 140.60 2.63 105.90 143 1.58 60.89 0.74 60.00 1.67 69.63
60 1.47 145.00 0.48 121.64 2.63 95.87 144 1.70 61.00 0.68 59.84 1.56 52.75
61 1.47 94.49 0.48 84.40 2.63 71.82 145 1.81 40.40 0.62 53.00 1.44 48.00
62 1.47 85.29 0.48 89.40 2.63 59.60 146 1.93 40.07 0.57 30.25 1.33 47.68
63 1.47 89.34 0.48 90.61 2.63 59.57 147 2.04 35.07 0.51 30.25 1.22 47.50
64 1.47 85.49 0.48 104.63 2.63 64.50 148 2.04 29.63 0.51 29.75 1.22 45.51
65 1.47 88.89 0.48 100.64 2.63 74.78 149 2.04 29.68 0.51 29.40 1.22 46.87
66 1.47 79.70 0.48 94.62 2.63 95.80 150 2.04 40.07 0.51 29.4 1.22 48.02
67 1.47 61.61 0.48 76.40 2.63 99.89 151 2.04 56.75 0.51 30.24 1.22 54.61
68 1.47 83.75 0.48 68.40 2.63 95.80 152 2.04 70.16 0.51 59.40 1.22 75.49
69 1.47 92.75 0.48 64.60 2.63 77.00 153 2.04 90.47 0.51 94.75 1.22 118.62
70 1.47 80.07 0.48 76.40 2.63 69.64 154 2.04 147.43 0.51 110.00 1.22 118.62
71 1.61 63.95 0.52 68.40 2.71 59.67 155 2.04 147.28 0.51 110.06 1.22 118.62
72 1.76 61.24 0.55 56.61 2.80 48.61 156 2.04 140.21 0.51 100.45 1.22 100.62
73 1.90 62.60 0.59 50.62 2.89 52.62 157 2.04 75.20 0.51 87.77 1.22 78.02
74 2.05 52.65 0.62 29.61 2.97 50.53 158 2.04 80.00 0.51 87.88 1.22 78.62
75 2.19 36.65 0.66 29.62 3.06 47.64 159 2.04 90.28 0.51 92.00 1.22 95.62
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instance A1 instance B1 instance C1 instance A1 instance B1 instance C1
h Ih Πh Ih Πh Ih Πh h Ih Πh Ih Πh Ih Πh
76 2.19 33.63 0.66 29.62 3.06 47.62 160 2.04 95.27 0.51 92.11 1.22 95.62
77 2.19 30.64 0.66 36.51 3.06 47.56 161 2.04 90.25 0.51 92.18 1.22 185.12
78 2.19 32.61 0.66 39.62 3.06 47.56 162 2.04 75.10 0.51 82.00 1.22 199.12
79 2.19 52.68 0.66 51.65 3.06 47.67 163 2.04 74.79 0.51 81.75 1.22 199.12
80 2.19 57.75 0.66 64.61 3.06 50.09 164 2.04 84.89 0.51 60.75 1.22 100.62
81 2.19 59.39 0.66 87.68 3.06 49.44 165 2.04 109.89 0.51 74.77 1.22 79.62
82 2.19 69.99 0.66 100.81 3.06 71.66 166 2.04 70.04 0.51 65.45 1.22 75.62
83 2.19 70.00 0.66 139.82 3.06 74.00 167 2.04 55.19 0.51 55.07 1.22 70.00
84 2.19 65.00 0.66 109.88 3.06 72.59 168 2.04 54.67 0.51 51.00 1.22 53.07

Table 8: Inflows Ih (m3/s) and prices Πh (currency/MWh) for time periods h ∈ {1, . . . , h̄ = 164} for the
3 provided instances.

B Detailed results for the MVPS problem

Tables 10-13 report the numeric results for each transaction cost function. Their columns are as follows:

• instance name;

• maximum risk level σ;

• number n of assets quoted on the financial market;

• objective value for the MWU algorithm;

• CPU time (in seconds) for the MWU algorithm;

• objective value for the MWU algorithm with the local branching constraint;

• CPU time (in seconds) for the MWU algorithm with the local branching constraint;

• objective value for the MS algorithm with the local branching constraint;

• CPU time (in seconds) for the MS algorithm with the local branching constraint;

• relative objective value improvement from MS to MWU computed as

Γ =
val(MWU)− val(MS)

|val(MS)|
; (B.1)

• time improvement ratio Λ from MS to MWU (see Eq. (4.2));

• relative objective value improvement from MS to MWU with the local branching constraint (see
Eq. (B.1));

• time improvement ratio Λ from MS to MWU with the local branching constraint (see Eq. (4.2)).

The comparison metrics are summarized in the last three lines with the sum (
∑

), average (avg) and
the standard deviation (std) across all 20 instances.
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