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Abstract

In this paper we propose a VNS-based algorithm for the solution of the Molecular Distance

Geometry Problem. First, we use VNS to solve a smoothed version of the problem to identify the

most promising zone in the solution space. We then use VNS again to solve the original problem

restricted to the promising zone. This algorithm often manages to find a solutions having higher

accuracy than other methods. This is important as small differences in the objective function

value may mean completely different 3D molecular structures.

Keywords: molecular conformation, distance geometry, global optimization, variable neigh-

bourhood search, smoothing.

1 Introduction

The Molecular Distance Geometry Problem (MDGP) is the problem of finding a weighted graph

embedding in R
3 such that all Euclidean distances between points in the embedding are the same as

the corresponding edge weights in the graph. The main application is to find the three-dimensional

structure of a molecule given a subset of the atomic distances (these are usually found using NMR

techniques) [1, 13]. There are other applications in network localization [5] and graph drawing [2].
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It has been shown that the MDGP is NP-hard [15]; if G is a complete graph, however, the MDGP

can be solved in linear time [3].

Consider an undirected graph G = (V, E) with weights d : E → R where V is the set of vertices

(also called atoms) and E is the set of weighted edges (also called interatomic distances). Let N = |V |

and dij = d({i, j}) for {i, j} ∈ E. A solution of the MDGP is a set of points x1, . . . , xN ∈ R
3

satisfying

∀{i, j} ∈ E ||xi − xj || = dij . (1)

Notationally, each 3-vector xi has components (xi1, xi2, xi3), and we indicate the vector sequence

(x1, . . . , xN ) by x. The MDGP can be naturally cast as a continuous nonconvex optimization problem

minx f(x) with the following objective function:

f(x) =
∑

{i,j}∈E

(||xi − xj ||
2 − d2

ij)
2. (2)

Since each equation (1) must be satisfied, a candidate point x is a solution of the MDGP if and only

if f(x) = 0. Note that (2) has a large number of local minima, so this is a practically hard global

optimization problem. See [16] for an overview on the main solution methods used to tackle the

MDGP.

One of the most promising methods for solving the MDGP is the Global Continuation Algorithm

(GCA) [11, 12]. The GCA relies on a class of smoothed objective functions derived from (2) by means

of a Gaussian transforms. This class is indexed by a parameter λ; for λ = 0 we recover the original

function (2), and for large enough λ the smoothed function becomes convex. The GCA locally solves

a sequence of smoothed problems for decreasing values of λ. To assess the solution accuracy, the

authors rely on a different quality measure called the Largest Distance Error (LDE) defined as:

LDE(x) =
1

|E|

∑

{i,j}∈E

| ||xi − xj || − dij |

dij

. (3)

It is clear that x is a solution of the MDGP if and only if LDE(x) = 0. The GCA has been

implemented in the dgsol code, available from

http://www.mcs.anl.gov/~more/dgsol/.

One of the striking features of dgsol is its speed and the fact that the time taken to solve the

problem seems to grow rather slowly as a function of the number of atoms in the molecule. On the

other hand, dgsol usually finds solutions whose LDE is relatively large (in the order of 0.01 or even
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0.1). Since there are many totally different 3D structures having small LDE (see for example Fig. 1),

it is of paramount importance to obtain solutions whose LDEs are very close to zero.

Figure 1: Different 3D graph embeddings with very similar objective function values (both values

are in the order of of 10−11).

In a previous paper [8], we tested three different general-purpose global optimization methods

on several MDGP instances, concluding that Variable Neighbourhood Search (VNS) was the best.

Notice also that VNS was used to find the 3D structure of molecules using a potential energy related

objective, rather than distances [4]. In this paper, we combine ideas from smoothing and VNS to

obtain a method which we call Double VNS with Smoothing (DVS). Although it is slower than

dgsol, the obtained solutions generally have much smaller LDE with respect to dgsol.

The rest of this paper is organized as follows. In Section 2 we present the algorithm. In Section

3 we report on the computational results. Section 4 concludes the paper.

2 The algorithm

The Double VNS with Smoothing algorithm is conceptually very simple. As a pre-processing step,

we solve the original problem via VNS to obtain a solution x̃ (this is used to verify whether the

following steps actually improve the solution). Next, we solve the smoothed problem via VNS to

obtain a solution x̄, then solve the original problem restricted to a hypercubic neighbourhood R

around x̄ to obtain the solution x∗. If f(x̃) < f(x∗) we replace x∗ with x̃, and the algorithm

terminates. Notice that this algorithm is actually just a sequence of two VNS solutions on related

problem formulations; no iteration is involved. This algorithm rests on two fundamental building
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blocks: the smoothed objective function and the VNS algorithm.

2.1 Smoothing

The smoothed objective function, parametrized by λ, is derived in [11] as follows:

f̄λ(x) = f(x) +
∑

{i,j}∈E

(10λ2||xi − xj ||
2) + γ, (4)

where γ is a constant. For the choice of λ, we followed the recommendations given in the computa-

tional results sections of [11] and [12].

2.2 VNS Solver

We employed the VNS solver described in [9]. The search space is defined as the hyper-parallelepiped

given by the set of variable ranges xL ≤ x ≤ xU . At first we pick a random point x̃ in the search

space, we start one (or optionally, more) local searches and we store the local optimum x∗. Then,

until k does not exceed a pre-set kmax, we iteratively select new starting points x̃ in an increasingly

larger neighbourhood Nk(x
∗) and start new local searches from x̃ leading to local optima x′. As

soon as we find a local optimum x′ better than x∗, we update x∗ = x′, re-set k = 1 and repeat.

Otherwise the algorithm terminates.

For each k ≤ kmax we consider hyper-parallelepipeds Hk(x
∗) proportional to xL ≤ x ≤ xU ,

centered at x∗, whose sides have been scaled by k
kmax

. More formally, let Hk(x
∗) be the hyper-

parallelepiped yL ≤ x ≤ yU where, for all i ≤ n,

yL
i = x∗

i −
k

kmax

(x∗
i − xL

i )

yU
i = x∗

i +
k

kmax

(xU
i − x∗

i ).

This construction forms a set of hyper-parallelepiped-shaped shells centered at x∗ and propor-

tional to xL ≤ x ≤ xU . As has been mentioned above, we define each neighbourhood Nk(x
∗)

as Hk(x
∗)\Hk−1(x

∗).

2.3 Parameters

The main adjustable parameters of our algorithm are:
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• the smoothing parameter λ;

• the k
max

terminating parameter for VNS;

• the number s of local searches in each VNS neighbourhood;

• the size of the restricted neighbourhood R (i.e. R is a hypercube with side 2b centered at x̄).

2.4 The implementation

The conceptual simplicity of the proposed algorithm does not reflect a corresponding simplicity in the

implementation. Our algorithm uses an VNS global optimization solver [9] for continuous nonconvex

programming problems as a black-box. In turn, the VNS solver calls a local NLP solver (SNOPT [6])

as a black-box. Careful software architecture and code re-entrancy is required. Our implementation

uses the ooOPS optimization framework library [10], which allows to easily formulate nonlinear

programming problems and solve them with a variety of global and local optimization algorithms.

3 Computational Results

In this section we report on the computational results, obtained on an Intel 2.66GHz Pentium IV

CPU with 1GB RAM running Linux. The algorithmic parameters have been set to the following

default values: λ = 1

2
(min{i,j}∈E dij + max{i,j}∈E dij), k

max
= 10, s = 1, b = 1.

3.1 Instances

Our computational tests refer to two sets of instances: the “Moré-Wu” instances [11] and the “Lavor”

instances [7].

The “Moré-Wu” instances are simply a cubic lattice with s3 atoms (s = 1, 2, 3, ...) defined by

{(i1, i2, i3) ∈ R
3 : 0 ≤ ik ≤ s − 1, k = 1, 2, 3}. (5)

See Fig. 2 for an example with s = 3. An order is defined for the atoms of the lattice by letting

atom i be the atom at position (i1, i2, i3), where

i = 1 + i1 + si2 + s2i3, (6)
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Figure 2: The s = 3 Moré-Wu instance with 27 atoms.

and the set E, is defined by

E = {{i, j} : |i − j| ≤ s2}. (7)

For example, for a molecule with 8 atoms (s = 2), the sequence of atoms is

x1 = (0, 0, 0), x2 = (1, 0, 0), x3 = (0, 1, 0), x4 = (1, 1, 0),

x5 = (0, 0, 1), x6 = (1, 0, 1), x7 = (0, 1, 1), x8 = (1, 1, 1),

and the set E is given by

E = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 1}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 1}, {3, 2}, {3, 4}, {3, 5},

{3, 6}, {3, 7}, {4, 1}, {4, 2}, {4, 3}, {4, 5}, {4, 6}, {4, 7}, {4, 8}, {5, 1}, {5, 2}, {5, 3}, {5, 4}, {5, 6},

{5, 7}, {5, 8}, {6, 2}, {6, 3}, {6, 4}, {6, 5}, {6, 7}, {6, 8}, {7, 3}, {7, 4}, {7, 5}, {7, 6}, {7, 8}}.

The “Lavor” instances, described in [7], are based on the model proposed by [14], whereby a

molecule is represented as a linear chain of atoms. Bond lengths and angles are kept fixed, and a

set of likely torsion angles is generated randomly by minimization of an energy function including

some Lennard-Jones potential terms. Depending on the initial choice of bond lengths and atoms,

the Lavor instances give rather more realistic models of proteins than the Moré-Wu instances do.

We generated 10 different Lavor instances for each size N = 10, . . . , 70. These are called lavorN -m,

where N is the number of atoms in the molecule and m is an instance ID (since there is a random

element of choice in the generation of the Lavor instances, many different instances can be generated

having the same atomic size). See Fig. 3 for an example.
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Figure 3: The lavor11 7 instance.

3.2 Comparative results

In Table 1 we report on the comparative computational results (seconds of user CPU time and

Largest Distance Errors) obtained by running the GCA and DVS algorithms on a selection of Moré-

Wu and Lavor instances of molecular sizes in the range 8-70 atoms. For molecules with fewer than

50 atoms, the DVS algorithm improved on the straight VNS in only around half of the instances.

For molecules with more than 40 atoms, the DVS improves on a straight VNS for the large majority

of the instances.

In Table 2, we give arithmetic average values for user CPU time and Largest Distance Error for

each sample of 10 Lavor instances. The average LDE is calculated considering only those instances

in the sample for which DVS calculated a suitable solution (we consider a solution clearly unsuitable

if its associated LDE exceeds 0.01, as such a large LDE usually indicates the wrong 3D structure).

We therefore included two columns in Table 2, labelled “LDE-st” and “Unsuitable” that report:

the arithmetic average of the LDE for instances with LDE < 0.01, and the number of unsuitable

instances in each 10-sample.

As can be easily seen from the results, DVS outperforms the GCA in accuracy, whilst the GCA

is superior to the DVS in terms of computation times. Since usually looking for the 3D structure

of a molecule is a task where accuracy is more important than short CPU times, we feel these

computational results validate the soundness of the proposed approach.
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Instance GCA DVS

Name N |E| CPU LDE CPU LDE

mmorewu-2 8 28 0.02 2.63E+5 1.09 2.51E-8

mmorewu-3 27 331 0.23 6.99 27.05 2.25E-9

mmorewu-4 64 1882 0.67 7.79E-6 642.97 2.75E-10

lavor10 0 10 33 0.02 1.57E-5 2.76 1.55E-9

lavor15 0 15 57 0.10 4.04E-5 10.01 3.77E-9

lavor20 0 20 105 0.14 2.77E-5 18.14 2.68E-9

lavor25 0 25 131 0.84 1.18E-4 60.41 2.24E-9∗

lavor30 0 30 169 0.40 1.75E-5 231.02 6.51E-9∗

lavor35 0 35 171 0.81 9.33E-5 624.72 4.54E-3∗

lavor40 0 40 295 2.84 0.096 770.78 2.46E-5

lavor45 0 45 239 3.33 0.170 538.25 3.13E-4

lavor50 0 50 271 3.45 0.696 971.79 8.66E-6

lavor55 0 55 551 5.80 0.257 870.50 1.13E-8∗

lavor60 0 60 377 5.15 0.049 1800.35 2.85E-4

lavor65 0 65 267 2.61 0.065 1119.82 3.94E-3

lavor70 0 70 431 8.73 0.107 2165.81 4.97E-4

Table 1: Computational results for a sample of Moré-Wu, and Lavor instances. LDE values marked

with ∗ have been found by the pre-processing VNS run on the unrestricted original problem (i.e. the

smoothing run did not improve the value).

4 Conclusion and Future Work

In this paper we presented an algorithm called Double VNS with Smoothing used to solve the

Molecular Distance Geometry Problem. The DVS is based on VNS for global optimization problems

and a smoothed version of the problem. We tested this algorithm on two classes of problems from

the literature. It turns out that the DVS algorithm finds solutions with high accuracy, compared to

existing methods. This is important insofar as a small error in the objective function may lead to a

completely different molecular structure.

Future research in this direction will focus on employing instance information dynamically to

adjust some of the DVS parameters in a smart way. Furthermore, we intend to test a variant of

the DVS where the smoothed problem is replaced by a relaxed problem where only some of the

interatomic distances are considered.
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Instance GCA / avg. DVS / avg.

N CPU LDE CPU LDE-st Unsuitable

10 0.03 4.40E-01 2.81 3.04E-9 0

15 0.08 1.96E-02 10.07 3.34E-9 0

20 0.23 3.20E-03 22.01 3.59E-9 1

25 0.56 1.58E-02 46.19 3.64E-5 1

30 0.65 1.03E-02 276.40 2.94E-5 2

35 1.10 5.43E-02 465.72 2.37E-3 1

40 1.41 2.61E-02 486.64 4.03E-4 1

45 2.13 5.80E-02 752.93 1.69E-3 1

50 2.54 1.65E-01 863.14 1.06E-3 0

55 4.10 7.29E-02 762.78 4.03E-4 0

60 4.47 1.59E-01 2172.23 8.06E-4 0

65 4.64 1.16E-01 1404.57 1.97E-3 0

70 7.63 9.28E-02 1912.97 4.12E-4 0

Table 2: Average statistics for Lavor instances (taken over 10 instances for each molecular size).

References

[1] G.M. Crippen and T.F. Havel. Distance Geometry and Molecular Conformation. Wiley, New

York, 1988.

[2] I.F. Cruz and J.P. Twarog. 3D Graph drawing with simulated annealing. In F.-J. Brandenburg,

editor, Graph Drawing – GD95 Proceedings, LNCS, volume 1027, pages 162–165, Berlin, 1996.

Springer.

[3] Q. Dong and Z. Wu. A linear-time algorithm for solving the molecular distance geometry

problem with exact inter-atomic distances. Journal of Global Optimization, 22:365–375, 2002.
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