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Abstract

Random projections decrease the dimensionality of a finite set of vectors while ensuring approx-
imate congruence, up to a multiplicative constant. Based on the theory of random projections in
conic programming we derive an application of random projections to a nonconvex mathematical
programming problem in distance geometry, namely that of finding the positions of the vertices of
a graph in a vector space of given dimension, while ensuring that every pair of adjacent vertices is
placed at a Euclidean distance equal to the corresponding edge weight.

1 Introduction

This paper is about the application of Random Projections (RP) to the Distance Geometry Problem
(DGP). Insofar as RPs have been applied to Mathematical Programming (MP), this is the first time
that RPs are successfully applied to a problem with nonconvex constraints.

The DGP is the following problem [9]. Given an integer K > 0 and a simple edge-weighted undirected
graph G = (V,E, d) with d : E → R+, determine if there is a realization x : V → RK such that

∀i < j ∈ V ‖xi − xj‖22 = d2ij . (1)

The DGP is useful to model inverse problems where the input is given by a subset of Euclidean
distances, and the problem is to construct a consistent realization. Although the DGP is framed as a
decision problem, it is defined over the real numbers, which means that it is unlikely to be in NP for
all K > 1. Nonetheless, it is NP-hard [15].

Given A = {A1, . . . , An} ∈ Rm, ε ∈ (0, 1), and k = O(ε−2 ln(n)), RPs are σ-sparse k ×m random
matrices, sampled componentwise1 from N(0, 1/

√
kσ), such that

Prob
(
∀i < j ≤ n (1− ε)‖xi − xj‖2 ≤ ‖Txi − Txj‖2 ≤ (1 + ε)‖xi − xj‖2

)
≥ 1− δ, (2)

where δ = O(e−Cφ(k)), C is a universal constant not depending on input data, and φ is usually linear
in k. Eq. (2) is known as the Johnson-Lindenstrauss Lemma (JLL) [6], the main result in this area. It
proves that RPs guarantee approximate congruence, with arbitrarily high probability (wahp) on finite
point sets reduced from m to k dimensions. We note that the JLL is a high-dimensional theoretical
result: if m is too small, any decent value for ε will already set k larger than m, trivializing the result.

We note outright that the JLL cannot be trivially applied to the dimensionality K of the solution
vectors involved in Eq. (1). Not only is K usually too small for this purpose, but the x symbols in
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Eq. (1) are decision variables, rather than given vectors. Given that they range over RK , they represent
uncountable point sets: the JLL does not apply to such cases.

The key to a successful application of RPs to the DGP goes through a theory of RPs in conic
programming developed in [10].

1.1 Some results about the DGP

The DGP has applications in many different dimensions. Time-synchronization network protocols
motivate the DGP in one dimension K = 1 [16], localization of sensor networks motivate it for K = 2
[4], protein conformation by Nuclear Magnetic Resonance (NMR) [12] motivates it for K = 3. Graph
embeddings in machine learning motivate it for high-dimensional values of K too [7]. For certain graph
structures, one may use specific mixed-combinatorial methods [9]. In general, though, we resort to MP,
a formal language for describing and solving optimization problems [8].

In this paper we make use of two simple MP formulations of the DGP: the slack formulation

P ≡


min

x∈RnK

s+≥0,s−≥0

∑
{i,j}∈E

(s+ij + s−ij)

∀{i, j} ∈ E ‖xi − xj‖22 = d2ij + s+ij − s
−
ij ,

(3)

and the quartic formulation

min
x∈RnK

∑
{i,j}∈E

(‖xi − xj‖22 − d2ij)2. (4)

We note that both are non-convex Nonlinear Programs (NLP), and that both are exact reformulations
of one another.

1.2 Some results about RPs

There is by now an extensive body of work on RPs [5, 17], ranging from new JLL proofs, to efficient
ways to sample RPs, to applications in data science, to computational testing. More recently, the
field of application of RPs was generalized to optimization problems, which poses new challenges: (a)
dealing with the fact that decision variables may represent infinite (rather than finite) vector sets,
and (b) inferring approximate feasibility and optimality from approximate congruence. Least-squares
optimization subject to black-box convex constraints was discussed in [14], Linear Programming (LP)
in [19], Conic Programming (CP) in [10], Quadratic Programming (QP) in [3].

The work most relevant to the current paper is [10], which gives derived approximate feasibility and
optimality results for LP, Second-Order Cone Programming (SOCP) and Semidefinite Programming
(SDP) using the language of Formally Real Jordan Algebras.

2 Applying RPs to the slack formulation

We let P be the DGP formulation in Eq. (3), and T be a random projector. We define a projected DGP
formulation TP similarly to [10]. For a standard-form CP

C ≡ min{〈C,X〉 | ∀i ≤ m 〈Ai, X〉 = bi ∧X � 0}

we write the linear constraints as [A �X = b] ≡ [∀i ≤ m vec(A)i
>vec(X) = bi], where vec(M) is the

vector obtained by stacking the columns of M , and define the projected CP

TC ≡ min{〈C,X〉 | TA�X = Tb ∧X � 0}.

The result of this projection is that the number of constraints goes from m down to k (see Eq. (2)),
which hopefully implies that it can be solved more efficiently.
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First, we note that we can limit the scope of RPs to a given subset of rows. If our linear system
A � X = b consists of two stacked subsystems A1 � X = b1 and A2 � X = b2, it suffices to define

T̂ =

(
I 0
0 T

)
to obtain the projected system T̂A�X = T̂ b consisting of the two stacked subsystems

A1 �X = b1 and TA2 �X = Tb2. This allows us to project subsets of rows of a MP formulation, and
still claim validity of all of the results in [10].

Next, we note that Eq. (1) can be reformulated exactly as follows:

∀{i, j} ∈ E Xii − 2Xij +Xjj = d2ij
X = xx>.

}
(5)

This reformulation is at the basis of the SDP relaxation of the DGP, which replaces X = xx> by
X � 0. The linear subsystem A �X = b, written as ∀{i, j} ∈ E 〈Aij , X〉 = d2ij , is defined on a set of

m = |E| symmetric n× n matrices Aij having

(
1 −1
−1 1

)
as their {i, j}-th main 2× 2 minor.

We now apply a k×n2 RP T to Eq. (5) so that only the first m rows are projected. For the {i, j}-th
row of A�X = b, the application of T to (vec(Aij), d2ij) yields a random combination of all of the rows
of (A, b), hence:

∀h ≤ k vec((TA)h) =
∑
{i,j}∈E

Th,{i,j}vec(A
ij) =

∑
{i,j}∈E

Th,{i,j}d
2
ij .

In particular, we have

∀h ≤ k
∑
{i,j}∈E

Th,{i,j}(Xii − 2Xij +Xjj − d2ij) = 0. (6)

We now substitute all of the X variables back with their definition X = xx>, which yields:

∀h ≤ k
∑
{i,j}∈E

Th,{i,j}(‖xi − xj‖22 − d2ij) = 0. (7)

The derivation of Eq. (7) is valid as long as the DGP instance is feasible (otherwise [10, Thm. 3.2]
no longer holds, since it is based on conic duality). We address this issue heuristically, by employing
Eq. (7) in the slack DGP formulation, which is always feasible. Our projected DGP formulation turns
out to be:

TP ≡


min

x∈RnK

s+≥0,s−≥0

∑
h≤k

(s+h + s−h )

∀h ≤ k
∑

{i,j}∈E
Th,{i,j}(‖xi − xj‖22 − d2ij) = s+h − s

−
h .

(8)

As for the error of Eq. (7) w.r.t. Eq. (5), we prove the following result.

Theorem 1. Assume the DGP instance G = (V,E, d) is feasible, and X̄ is a solution of Eq. (6) that
also satisfies rk(X̄) = x̄x̄> for some x̄ ∈ RnK . Then

∀u > 0 Prob
[
‖A� X̄ − b‖2 ≤ δθ2(C

√
lnn+ 2u)/

√
k
]
≥ 1− 2e−u

2
,

where δ = max
v∈V

√
deg(v), θ is an upper bound to ‖x‖1 over every feasible realization x of the DGP, and

C is a universal constant.

Proof. Let C = {A�X − b | X = xx> ∧ ‖x‖1 ≤ θ}. By [18, Ex. 9.1.8], we have that, for all u > 0, the
following holds with probability 1− 2e−u

2
:

sup
A�X−b∈C

∣∣ ‖TA�X − Tb‖2 −√k‖A�X − b‖2 ∣∣ ≤ Cw(C) + urad(C),
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where w(C) is the Gaussian width and rad(C) = supY ∈C ‖Y ‖2. Since A� X̄ − b ∈ C, we can apply the
above to x̄. Since TA� X̄ = Tb by definition of X̄, we obtain:

√
k‖A�X − b‖2 ≤ Cw(C) + urad(C).

We now compute estimates of w(C) and rad(C). By the definition of the Gaussian width, we
have w(C) = Eg∼N(0,Im) supA�X−b∈C〈g,A � X − b〉. Since Gaussian widths are invariant by affine

translations, we obtain w(C) = Eg∼N(0,Im) supA�X∈C+b〈A>g, vec(X)〉. By definition of C, we replace

X by xx> and rewrite the sup quantification, yielding w(C) = Eg∼N(0,Im) sup‖x‖1≤θ〈A
>g, vec(xx>)〉.

By Hölder’s inequality, 〈A>g, vec(xx>)〉 ≤ ‖A>g‖∞ ‖vec(xx>)‖1. Now, note that

‖vec(xx>)‖1 =
∑
ij

∣∣∑
h

xihxjh
∣∣ ≤∑

ijh

|xih| |xjh| ≤ θ2 (9)

by the triangular inequality, so w(C) = θ2Eg∼N(0,Im)‖A>g‖∞. Next, note that the p-th component of

A>g is distributed like N(0, ‖Ap‖2), so by [18, Ex. 2.5.10], we obtain w(C) = θ2Cmaxp≤n2 ‖Ap‖2
√

lnn2.

By re-defining C as C
√

2 we get w(C) = θ2Cmaxp≤n2 ‖Ap‖2
√

lnn. Note that, by the structure of A in
the DGP, for the p-th vertex couple (v, z) ∈ V × V , the p-th column Ap of A has at most a single −1
entry if v 6= z, and deg(v) 1 entries if v = z, so maxp ‖Ap‖2 = maxv∈V

√
deg(v).

Since the DGP instance is feasible, there exists X̂ s.t. A� X̂ = b and X̂ = x̂x̂>. We therefore have
rad(C) = supA�X−b∈C ‖A� (X − X̂)‖2 (by replacement of b with A� X̂), whence

rad(C) ≤ sup
‖x‖1≤θ

‖A vec(xx>)‖2 + ‖A vec(x̂x̂>)‖2

by the triangular inequalities and X = xx>. Now we have

‖A vec(xx>)‖2 ≤
∑
p≤n2

‖Ap‖2
∣∣∑
h

xiphxjph
∣∣ ≤ sup

p
‖Ap‖2 θ2 = θ2 max

v∈V

√
deg(v)

by Eq. (9), where (ip, jp) is the p-th vertex pair in V × V .

We also note that θ can be computed from the DGP instance G = (V,E, d) by assuming that the
realization centroid is at the origin, and taking the worst case of a realization x on a single segment:
the realization diameter is then

∑
{i,j}∈E dij , whence one can easily derive bounds for x and hence θ.

2.1 A new DGP solution algorithm

We note that Eq. (8) is another nonconvex NLP, albeit with fewer constraints than Eq. (3). We can
therefore only solve it locally in practically acceptable times.

Instead, we turn to Barvinok’s naive algorithm applied to the DGP [11]: the solution X̄ of the SDP
relaxation of Eq. (5)

∀{i, j} ∈ E Xii − 2Xij +Xjj = d2ij
X � 0

}
(10)

is “close” to a feasible solution of the DGP, if it exists. This closeness is more precisely defined as
follows: given a random n ×K matrix y with each yij ∼ N(0, 1/

√
K), the n ×K matrix x̄ =

√
X̄y is

close to a feasible solution of Eq. (5), in the sense that the Euclidean distance between x̄ and each of
the submanifolds of RnK defined by ‖xi − xj‖2 = d2ij is bounded above by O(

√
‖X̄‖2 ln(n)) (wahp).

Barvinok’s naive algorithm also naturally applies to the projected SDP formulation derived from
Eq. (6):

∀h ≤ k
∑

{i,j}∈E
Th,{i,j}(Xii − 2Xij +Xjj − d2ij) = 0

X � 0.

 (11)

Any solution X̄ of Eq. (11) should be close (in the sense specified above) to a feasible solution of
Eq. (7), i.e. Eq. (8) with zero objective value. We therefore solve Eq. (11), obtain X̄, then compute
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x̄ =
√
X̄y with y ∼ N(0, 1/

√
K)nK , and use it as a starting point for a local NLP solver deployed on

Eq. (8): this will yield a solution x̃, which we can then use as a starting point for a local NLP solver
deployed on the quartic formulation Eq. (4).

3 Computational assessment

We consider the application of the DGP to the problem of finding the conformation of proteins in space
using NMR data, which fixes K = 3. Typically, atomic distances up to 5.5Å can be found using NMR
experiments and chemical information. We considered three small instances for validation purposes
(lavor30 6-5, tiny, names), then derived some realistic instances from the Protein Data Bank (PDB)
as follows: we downloaded the protein realization (given with a O(10−3) precision), we computed all
atomic distances, then ignored all distances larger than 5.5Å. We compare our solution methodology,
labelled M1, with a standard method M0 consisting in deploying a local NLP solver from a random
starting point.

We used Mosek 9.3 [13] in order to solve Eq. (11) (minimizing trace(X) in an attempt to lead the
search towards matrix solutions with low rank), and IPOpt [2] to solve Eq. (3)-(4) locally. The whole
testing code, including Barvinok’s naive algorithm, was implemented in Python 3.

Instance n m k mde lde rmsd cpu (sec.)
M0 M1 M0 M1 M0 M1 M0 M1

k/m = 0.05
lavor30 6-5 30 195 10 0.058 0.028 0.560 0.583 1.857 1.797 0.10 0.30
tiny 37 335 17 0.000 0.000 0.003 0.000 2.356 0.000 0.01 0.04
names 86 849 42 0.306 0.269 2.889 2.156 5.151 4.082 0.23 1.99
1guu 150 955 48 0.118 0.107 1.104 1.910 8.569 9.582 2.85 9.06
1guu-1 150 959 48 0.092 0.092 1.096 1.157 10.217 7.667 0.47 3.14

k/m = 0.01
2kxa 177 2711 27 0.300 0.281 3.223 3.102 5.196 5.770 1.98 5.83
100d 488 5741 57 0.304 0.286 3.689 3.260 9.345 10.526 5.50 25.80

k/m = 0.005
water 648 11939 60 0.528 0.486 4.139 4.282 9,423 8.402 11.46 67.03
3al1 678 17417 87 0.320 0.146 4.169 3.312 6.712 7.192 16.03 134.01
1hpv 1629 18512 93 0.429 0.425 3.853 3.704 16.710 17.178 48.44 436.52

k/m = 0.001
il2 2084 45251 45 0.163 0.062 4.770 4.220 12.042 3.214 410.67 947.92
1tii 5684 69800 70 0.434 0.453 4.682 4.327 26.149 25.680 549.77 4581.21

Table 1: The test set and results.

The results we obtained are given in Table 1. We indicate the instance name, the number n of
vertices, the number m of edges, the number k of constraints in the projected formulation, the mean
distance error (mde(x) = avg(| ‖xi − xj‖2 − dij | | {i, j} ∈ E)), the largest distance error (lde(x) =
max(| ‖xi − xj‖2 − dij | | {i, j} ∈ E)) and the root mean square deviation (rmsd) of the solutions given
by methods M0 (standard) and M1 (our new method) with respect to the PDB realization, as well as
the CPU times (we note, however, that protein conformation is not a time-critical task; and that it is
generally preferable to obtain better conformation slowly, than worse conformations fast).

Our results show that the application of RPs to the DGP is successful, and can scale up to large
sizes. We are able to retrieve slightly better results than those obtained with the standard method.
The fact that it takes longer should not come as a surprise, given that the standard method M0, aside
from the choice of starting point, is essentially the last step of our new algorithm M1.
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