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Leo Liberti§
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Abstract

Community detection in networks based on modularity maximization is currently done with

hierarchical divisive or agglomerative as well as with partitioning heuristics, hybrids and, in a few

papers, exact algorithms. We consider here the case of hierarchical networks in which communities

should be detected and propose a divisive heuristic which is locally optimal in the sense that each

of the successive bipartitions is done in a provably optimal way. This heuristic is compared with

the spectral-based hierarchical divisive heuristic of Newman [Proceedings of the National Academy

of Sciences, USA 103, 8577 (2006)] and with the hierarchical agglomerative heuristic of Clauset

et al. [Phys. Rev. E 70, 066111 (2004)]. Computational results are given for a series of problems

of the literature with up to 4941 vertices and 6594 edges. They show that the proposed divisive

heuristic gives better results than the divisive heuristic of Newman and than the agglomerative

heuristic of Clauset et al.
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I. INTRODUCTION

Networks, or graphs, are a powerful and versatile tool for the study of complex systems,

with many applications in computer science, engineering, transportation, sociology, political

science, biology, chemistry and other fields. A network consists of a set of vertices (or

nodes) and a set of edges (or lines). Vertices are represented by points and associated with

entities, such as customers, users of the World Wide Web, employees in an organization,

transmitters, road-crossings, railway stations and atoms. Edges are pairs of vertices and

represented by a line joining them. The shape of this line is irrelevant; only its presence

or absence matters. Edges represent relationships between the entities associated with the

vertices: communication, collaboration, existence of a connection such as a road or a railway

line and chemical bonds. A detailed introduction to networks has recently been given by

Newman [1].

A very important and much studied problem in network science and its applications is

the detection of communities (also called modules or clusters). These are sets of entities,

or vertices, which are likely to have some common function. Usually, the number of inner

edges, i.e., edges joining two vertices of the same community, is larger than the density of

outer edges, i.e., edges joining two vertices of different communities. An in-depth survey

of the problem of community detection in graphs has recently been given by Fortunato

[2]. There are several precise definitions of communities, and corresponding criteria, and

many more heuristics as well as a few exact algorithms to find partitions or sets of nested

partitions into communities. A heuristic finds a near optimal partition (or sometimes an

optimal partition but without proof of its optimality) in moderate time. An exact algorithm

finds an optimal partition, with proof of its optimality, hopefully in reasonable time. The

most used definition for the quality of a community or of a partition into communities is that

of modularity, proposed by Newman and Girvan [3]. Modularity of a community is defined

as the difference between the number of edges it contains and the expected number of edges

that it would contain if all edges were drawn at random, keeping the same distribution of

degrees. The modularity of a partition is the sum of the modularities of its communities.

See e.g. [2, 4, 5] for a discussion of the strengths and weaknesses of the modularity function.

Given a network and a partition, modularity can be viewed as a measure of the extent to

which the classes of the partition can be considered to be communities. Alternatively, given
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a network, modularity can be maximized to find an optimal partition, together with its

number of clusters and their modularities.

As traditional in Data Analysis, given a set of n entities, clustering heuristics are either

hierarchical, i.e., they aim at finding a set of nested partitions, or partitioning schemes,

i.e., they aim at finding a single partition (or possibly several partitions into given numbers

of clusters). In turn, hierarchical heuristics are divided into agglomerative and divisive

ones. Hierarchical agglomerative heuristics [6–10] proceed from an initial partition with

n communities each containing a single entity and iteratively merge the pair of entities

for which this operation increases most the objective function (e.g., modularity), until all

entities belong to the same community. Thus, they find 2n − 1 communities which are

pairwise disjoint or included one into the other. Hierarchical divisive heuristics [11] proceed

from an initial partition containing all entities and iteratively divide a community into two in

such a way that the increase in the objective function value (e.g., modularity) is the largest

possible, or the decrease in the objective value is the smallest possible. Bipartitions are

iterated until a partition into n communities having each a single entity is obtained. Thus,

once more, 2n−1 communities are obtained, which are pairwise disjoint or included one into

the other. Note that for some objectives, including modularity, mergings or bipartitions can

be ended once they do not improve the objective function value any more.

The partitioning and hybrid heuristics rely upon simulated annealing [12–14], mean

field annealing [15], genetic search [16], extremal optimization [17], linear programming fol-

lowed by randomized rounding [18], dynamical clustering [19], multilevel partitioning [20],

contraction-dilation [21], multistep greedy search [22], quantum mechanics [23] and many

more [24–28].

Hierarchical heuristics are in principle devised for finding a hierarchy of partitions implicit

in the given network when it corresponds to some situation where hierarchy is observed or

postulated. Such situations include the description of hierarchies in social organization

and networks describing evolutionary processes. Results are presented on a dendrogram

which displays visually mergings or divisions of communities together with the values of

a characteristic of each community (a variant of the dendrogram, called espalier, allows

displaying simultaneously two characteristics of the communities [29]).

The subproblem of choosing at each iteration which pair of communities should be merged

is easy. It suffices to consider all O(n2) merging of pairs of entities and compute each time the
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objective function value for the new community. Moreover, a careful use of data structures

often reduces complexity. Low order polynomial hierarchical agglomerative heuristics have

been obtained in several classical papers. These include O(n2) algorithms for single-linkage

[30], complete linkage and minimum variance [31] and several others have a complexity of

O(n2 log n) [32]. However, in a divisive hierarchical heuristic, the subproblem of finding

a bipartition locally optimizing the adopted criterion is more difficult. For some criteria

there exists a polynomial algorithm for bipartitioning. For instance, this is the case for

the minimum diameter criterion for which there is a O(n2) algorithm. With careful use of

data structures, this gives a O(n2 log n) locally optimal algorithm for hierarchical divisive

clustering with the minimum diameter criterion [33]. The situation is less favorable for the

maximum modularity criterion. Indeed, this problem is NP-hard even in the case of two

clusters [34]. Nevertheless, as shown below, a non-polynomial algorithm can solve instances

with up to 4941 vertices.

We consider only networks with unweighted and undirected edges in the present paper.

Its purpose is to propose a locally optimal divisive heuristic for the maximum modularity

criterion. To that effect, in the next section the bipartition subproblem is expressed as a

quadratic mixed-integer program with a convex relaxation. This problem can then be solved

by the CPLEX solver [35]. In Sect. III the full hierarchical divisive algorithm is described as

well as the previous spectral hierarchical divisive heuristic of Newman [11] and the fast

hierarchical agglomerative heuristic of Clauset, Newman and Moore [7]. A computational

comparison of the three heuristics, detailing also the respective contributions of Newman’s

spectral results and the Kernighan-Lin heuristic, is given in Sect. IV. Conclusions are drawn

in Sect. V.

II. AN EXACT ALGORITHM FOR BIPARTITION

We present in this section an exact algorithm for bipartition with maximization of mod-

ularity. We model this bipartitioning problem using binary variables to identify to which

community each vertex and each edge belongs. In this respect, our model is similar to that

of Xu et al. [36]. These authors proposed in 2007 a modularity maximization model to

obtain a partition (generally with more than two communities) of a network. This model is

expressed as a mixed integer convex quadratic program. Xu et al. were able to solve exactly
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instances with up to 104 vertices.

Let G = (V, E) be a graph, or network, with set of vertices V of order n = |V | and set of

edges E of size m = |E|. We next recall two equivalent definitions of modularity Q. In the

first one, it is expressed as a sum over communities of their modularities [3]:

Q =
∑

s

[as − es],

where as is the fraction of all edges that lie within community s and es is the expected value

of the same quantity in a graph in which the vertices have the same degrees but edges are

placed at random. In the second one, modularity Q is expressed as a function, for each

community, of its number of inner edges and of the sum of degrees of its vertices:

Q =
∑

s

[

ms

m
−

(

ds

2m

)2
]

, (1)

where ms denotes the number of edges in community s, i.e., the subgraph Gs = (Vs, Es)

with set of vertices Vs ⊂ V and set of edges Es having both vertices in Vs, and ds denotes

the sum of degrees ki of the vertices of community s. Since we aim to find a bipartition, only

two sub-modules of the original community have to be considered, i.e., s ∈ {1, 2}. We can

express the sum of degrees d2 of vertices belonging to the second community as a function

of the sum of degrees d1 of vertices belonging to the first one:

d2 = dt − d1, (2)

where dt is the sum of degrees in the community to be bipartitioned and it is equal to 2m

at the outset. We rewrite (1) for s ∈ {1, 2}, using (2):

Q =
m1 + m2

m
−

d2

1

4m2
−

d2

2

4m2
=

=
m1 + m2

m
−

d2

1

4m2
−

d2

t + d2

1
− 2dtd1

4m2
=

=
m1 + m2

m
−

d2

1

2m2
−

d2

t

4m2
+

dtd1

2m2
.

(3)

We then introduce binary variables Xr1, Xr2 and Yi1 to model the assignment of vertices

and edges to the two communities of the bipartition. These variables are defined as follows:

Xrs =







1 if edge r belongs to community s

0 otherwise
(4)
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for r = 1, 2, . . .m and s = 1, 2 and

Yi1 =







1 if vertex i belongs to community 1

0 otherwise, i.e. if vertex i belongs to community 2
(5)

for i = 1, 2, . . . n. Two sets of variables Xr1 and Xr2 are needed as an edge may belong to

the first community, or to the second one, or be a bridge between both of them. One set

of variables Yi1 suffices as any vertex which does not belong to the first community must

belong to the second.

Moreover, we impose for consistency that any edge r = {vi, vj} with end vertices indiced

by i and j can only belong to community s if both of its end vertices belong also to that

community:

Xr1 ≤ Yi1 ∀r = {vi, vj} ∈ E

Xr1 ≤ Yj1 ∀r = {vi, vj} ∈ E
(6)

and

Xr2 ≤ 1 − Yi1 ∀r = {vi, vj} ∈ E

Xr2 ≤ 1 − Yj1 ∀r = {vi, vj} ∈ E.
(7)

Furthermore, we exploit the following expressions in terms of variables X and Y for the

number of edges of each of the two communities and the sum of vertex degrees of the first

one:

ms =
∑

r

Xrs ∀s ∈ {1, 2}, (8)

d1 =
∑

i∈V1

kiYi1. (9)

The sum of vertex degrees of the first community only is needed, because of expression (2).

Maximizing modularity (3) subject to constraints (6)-(7) and (8)-(9) gives a quadratic

convex mixed-integer program that can be solved by CPLEX [35]. Indeed, this model contains

a single nonlinear but concave term, i.e., −d2

1
/2m2, in the objective function, which is

to be maximized. Hence, its continuous relaxation, obtained by removing the integrality

constraints on the variables, is a convex quadratic program and easy to solve.

Note that in Xu et al.’s [36] model a number of other constraints are imposed. For in-

stance, constraints are used to express that community s can be nonempty only if community

s − 1 is so, and lower and upper bounds on the cardinality of the modules are added as an

option. Furthermore, symmetry-breaking constraints avoid the computation of equivalent

alternative optimal solutions.
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III. HEURISTICS

In this section, we first recall the hierarchical agglomerative heuristic of Clauset, New-

man and Moore [7] (CNM), and the hierarchical divisive spectral heuristic of Newman [11]

(divisive spectral), to which we compare the heuristic of the present paper. We then describe

the new heuristic itself.

The CNM heuristic fits into the general scheme for hierarchical agglomerative heuristics

of cluster analysis [32]. It can therefore be implemented with a complexity of O(n2 log n) in

worst case. However, a careful exploitation of sparsity of the graph under study reduces its

worst-case complexity to O(m log n) and its complexity in practice to O(n log2 n), which is

close to linear time. Results in terms of partitions and the dendrograms obtained are the

same for both implementations. The CNM heuristic proceeds from an initial partition with

n clusters each containing a single entity. Then, it merges iteratively the two clusters in the

current partition for which the modularity increases the most. The formula

∆Qij =







1/2m − kikj/(2m)2 if vi, vj are connected

0 otherwise

is used initially, then the ∆Qij for all edges are updated each in constant time. Mergings

take place as long as the best of them increases modularity (or, in other words, there is a

positive ∆Qij).

Two remarks are in order. First, in hierarchical agglomerative heuristics, errors, i.e.,

assignment of two entities to the same cluster while they should be in different clusters in

the (or all) optimal partition(s), are never corrected. Second, as n is usually much larger

than the number of clusters in the optimal partition, there are close to n mergings before

reaching the best partition obtained by the heuristic and hence many occasions of error.

The hierarchical divisive heuristic of Newman proceeds from an initial partition containing

all entities by iteratively splitting one of its clusters, as long as this operation increments

modulatity. Two questions have to be answered to specify this heuristic: which cluster

should be selected for splitting at each iteration and how should the splitting be made. The

answer to the former question is unimportant as the best partition obtained does not depend

on the order of the splittings but only on the way they are performed. The second question

is difficult: indeed, finding the optimal, i.e., modularity maximizing, splitting of a cluster

contains the problem of maximum modularity bipartition, which, as shown by Brandes et
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al. [34], is NP-hard.

For large instances, splitting will have to be done in a heuristic way. Newman [11] proposes

two ways to do so. The first is based on spectral graph theory. The first eigenvector of the

modularity matrix B = (bij) with

bij = aij − kikj/2m

is computed. The entities corresponding to positive components of this eigenvector form

one community and the remaining ones the other.

Results of splitting according to the first eigenvector can be improved by a variety of

heuristics. Newman suggests the use of the Kernighan-Lin heuristic [37]. This heuristic

proceeds from an initial bipartition to a sequence of re-assignments of one entity from a

community to the other. At each step the re-assignment which improves most, or deteriorates

least, the objective function value, is selected, performed and further re-assignments of

the moved entity forbidden. Once no more re-assignments are allowed, the best partition

found among the n partitions considered in the sequence is selected as new initial partition.

The whole procedure stops when a full sequence of n re-assignments does not lead to any

improvement.

Again two remarks are in order. First, errors, i.e., assigning two entities to different

communities when both belong to the same community in the optimal partition are never

corrected. Second, as the number of communities in the optimal partition tends to be small,

few splittings will take place and thus there are few occasions for errors to be made.

The heuristic of the present paper proceeds along the same lines as the hierarchical divisive

heuristic of Newman. The difference is that the exact bipartitioning method of Sect. II is

used for the splitting step. Due to the difficulty of this subproblem and present limitations

of nonlinear integer programming, the exact bipartitioning could be applied only to small or

medium-size networks with up to 4941 vertices. The proposed heuristic is locally optimal in

that the splitting step is done optimally, but not globally optimal in that the new heuristic is

a greedy one, i.e., each splitting step is done without considering the consequences on further

steps, but better results might be obtained if this was done. Note that there are some cases

where a greedy heuristic is optimal, the best known one in the field of cluster analysis being

the single-linkage heuristic which maximizes the split (or minimum dissimilarity between

pairs of entities in different communities) of the partitions obtained at all levels [30, 38].

9



This is not the case for the proposed hierarchical divisive heuristic, as shown by an example

in Sect. IV.

IV. COMPUTATIONAL RESULTS

In all experiments, we considered a set of 12 well known problems from the literature.

They are listed together with their order n and size m in the first three columns of Table I.

They are all undirected and unweighted networks without loops. All data are available

on sites listed in [39]. Optimal solutions of these test problems are given in [40]. The

bipartition subproblem is solved using CPLEX [35]. Other solvers for convex mixed-integer

quadratic programs did not perform as well in preliminary tests.

In a first series of experiments, we compared the maximum modularity values and the

corresponding number of clusters for the hierarchical agglomerative heuristic of Clauset et

al. [7], and for the locally optimal divisive heuristic of the present paper. We also list

maximum modularity and number of clusters obtained by an exact algorithm of [40], when

possible, i.e., for datasets from 1 to 11. The modularity obtained by the proposed divisive

heuristic CHL for the 12th dataset is 0.9394. This appears to be the best value currently

known for this dataset. Indeed, using the best heuristic from the extensive comparison by

Noack and Rotta [39], gives a value of 0.93854.

It appears that:

• the locally optimal hierarchical divisive heuristic always gives partitions with smaller

modularity than the exact algorithm. The difference, however, is moderate and goes

from 0.18018% to 2.36603% of the optimal value. The average error is 0.82540%.

• The agglomerative heuristic always gives partitions with smaller modularity than the

divisive one and, by transitivity, than the exact one. The difference this time is much

more substantial and goes from 1.21494% to 12.9848%, relative to the exact solution.

The average error is 5.52342%. The error between the divisive and the agglomerative

heuristics goes from 0.780214% to 10.9013% of the value obtained by the divisive

heuristic. The average error is 4.75179%, which is again substantial.

• The divisive heuristic gives a partition with fewer communities than the exact one in

3 cases out of 11, the same number in 3 cases and a larger number in the remaining
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5 cases. The average number of communities obtained with the divisive heuristic is

9.27273 vs. 8.81818 for the exact method, so it is slightly in excess.

• The agglomerative heuristic gives a partition with fewer communities than the exact

one in 7 cases out of 11, a partition with the same number of communities than the

exact one in 2 cases out of 11, and a partition with more communities in the remaining

2 cases. The average number of communities obtained with the agglomerative heuristic

is 8 vs. 8.81818 for the exact method, so somewhat smaller.

In a second series of experiments we compared the divisive heuristic of the present paper

with the previous divisive heuristic of Newman [11]. To better understand the performance

of Newman’s heuristic, we consider three versions of it. In the first one, the bipartition at

each iteration is done solely on the basis of the leading eigenvector of the modularity matrix.

In the second one, the Kernighan-Lin heuristic is applied at each iteration to a randomly

generated solution. In the third one, the Kernighan-Lin heuristic is applied at each iteration

to the solution given by the leading eigenvector. Results are presented in Tables II,III,IV.

It appears that

• the first version always gives partitions with substantially smaller modularities than

the divisive heuristic of the present paper or the exact algorithm. The error relative

to the partition given by the exact algorithm goes from 5.81428% to 18.5189%. The

average error is 10.7419%. The error relative to the partition given by the divisive

heuristic of the present paper goes from 5.63859% to 18.0227%. The average error is

9.99712%.

• The second version gives results even worse than those of the first version. The error

relative to the partition given by the exact algorithm goes from 5.95934% to 28.6442%.

The average error is 14.5856%.

• The third version gives better results The error relative to the partition given by the

exact algorithm goes from 0.09863% to 6.07995%. The average error is 3.02627%.

The error relative to the partition given by the divisive heuristic of the present paper

goes from −0.081704% to 5.46305%. The average error is 2.21592%. Observe that in

the case of the political books instance, the modularity obtained with the divisive

spectral + KL heuristic, i.e., 0.52672, is slightly better than that one obtained with
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the heuristic of the present paper, i.e, 0.52629. This is not a numerical error but

illustrates, as mentioned above, that the proposed heuristic is locally but not globally

optimal. The observation that version 3 is better than version 1 and that version 1 is

better than version 2 was already made by Newman [11].

• Computing times of the heuristic proposed in this paper and an exact column gen-

eration algorithm for modularity maximization of [40] are given in Table V. As the

computers used are not the same for the two cases, these results should only be consid-

ered as indicative. Ratios between these computing times are given in the last column.

The time of the heuristic CHL is less than the time of the exact algorithm in 9 cases

over 12 and in several cases very substancially so. Moreover, the heuristic could solve

the last problem, which is about 10 times larger than the penultimate, in reasonable

time, while the exact algorithm could not.

• Currently, it is not possible to solve very large instances with the heuristic of the

present paper or large ones with the exact column generation algorithm for mod-

ularity maximization of [40]. One cannot therefore be sure that the differences in

performances between the heuristics described above and/or the exact algorithm ex-

tend to the resolution of large instances, except in a few cases. A comparison between

the agglomerative heuristic CNM and the complete version of the divisive heuristic

of Newman is part of Table 1 of [11]. The corresponding columns are reproduced

in Table VI, together with the percentage errors in the modularities obtained. This

confirms that the agglomerative heuristic of Clauset et al. gives poor results for small

as well as for large instances.

V. CONCLUSIONS

In this paper we presented a hierarchical divisive heuristic for modularity maximization

which is locally optimal, i.e., such that the bipartition obtained at each iteration is guaran-

teed to be optimal. This heuristic can be used for two purposes: approximate modularity

maximization of general networks or modularity maximization of networks which are known

to correspond to some hierarchy either natural or man made. In the former case, experi-

mental results show that the partitions obtained with the proposed divisive heuristic tend
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to have a modularity value close to that of optimal partitions (recall that the average error

observed in our experiments is 0.82540%). So, the partition found can be considered as

a fairly good approximation of the optimal one, or at least as a tentative solution to be

improved upon by various local improvement heuristics.

Our experiments also show that modularity maximization with the hierarchical agglom-

erative heuristic of Clauset, Newman and Moore tends to have a much larger error (with an

average error of 5.52342% for our experiments).

Our heuristic is tailored for the latter case. We therefore compared it with three versions

of the divisive heuristic of Newman. As observed by that author, a two-phase method in

which a first bipartition is made in a splitting step on the basis of the first eigenvector

of the modularity matrix followed by application of the Kernighan-Lin heuristic gives the

best results. Still, the proposed heuristic appears to be even better, indeed the average

error relative to the exact solution is reduced more than threefold, i.e., from 3.02627% to

0.82540%.
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dataset n m agglomerative CNM divisive CHL exact

M Q error(%) M Q error(%) M Q

karate 34 78 3 0.38067 9.31895 4 0.41880 0.23583 4 0.41979

dolphin 62 159 4 0.49549 6.24953 4 0.52646 0.38977 5 0.52852

les miserables 77 254 5 0.50060 10.6087 8 0.54676 2.36603 6 0.56001

A00 main 83 135 7 0.52394 1.31098 7 0.52806 0.53494 9 0.53090

p53 protein 104 226 8 0.52052 2.73018 7 0.52843 1.25203 7 0.53513

political books 105 441 4 0.50197 4.79288 4 0.52629 0.18018 5 0.52724

football 115 613 7 0.57728 4.51395 10 0.60091 0.60539 10 0.60457

A01 main 249 635 12 0.59908 5.34366 15 0.62877 0.65255 14 0.63290

usair97 332 2126 7 0.32039 12.9848 8 0.35959 2.33840 6 0.36820

netscience main 379 914 19 0.83829 1.21494 20 0.84702 0.18619 19 0.84860

s838 512 819 12 0.80556 1.68904 15 0.81663 0.33805 12 0.81940

power 4941 6594 39 0.93402 – 40 0.93937 – - –

average 8 0.55125 5.52342 9.3 0.57525 0.82540 8.8 0.57957

TABLE I: Comparison of results of Clauset et al.’s heuristic (CNM), the proposed locally optimal

divisive heuristic (divisive CHL), and an exact algorithm for modularity maximization [40] (exact)

on real world datasets. M denotes the number of communities and Q the modularity value of the

best solution found. error(%) denotes the percentage error for the two heuristics with respect to

the exact algorithm. Average values are given for the first 11 datasets as the 12-th one cannot be

solved exactly in reasonable time. n and m are the number of vertices and the number of edges

of the networks. We consider Zachary’s karate club dataset [41] describing friendship relationships

between members of a club, Lusseau’s dolphins dataset [42] describing communications between

dolphins in Doubtful Sound New Zealand, Hugo’s Les Misérables dataset describing characters in

Victor Hugo’s masterpiece and their interactions, compiled by Knuth [43], a dataset (A00 main)

on classes and relationships from a software project related to Graph Drawing [44], a network

dealing with protein interactions [45], Krebs’ political books dataset [46], a dataset representing

the schedule of football games between American college teams [47], another dataset on classes

and relationships from a software project [44], a network dealing with connections between US

airports [48], a dataset on a coauthorship network of scientists working on network theory and

experiment, compiled by M. Newman [49], a network describing electronic circuits [50] and a

network representing the topology of the Western States Power Grid of the United States [51].
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dataset n m divisive spectral divisive CHL exact

M Q error(%) M Q error(%) M Q

karate 34 78 4 0.39341 6.28409 4 0.41880 0.23583 4 0.41979

dolphin 62 159 5 0.49120 7.06123 4 0.52646 0.38977 5 0.52852

les miserables 77 254 9 0.51383 8.24628 8 0.54676 2.36603 6 0.56001

A00 main 83 135 4 0.46082 13.2002 7 0.52806 0.53494 9 0.53090

p53 protein 104 226 8 0.49152 8.14942 7 0.52843 1.25203 7 0.53513

political books 105 441 5 0.46718 11.3914 4 0.52629 0.18018 5 0.52724

football 115 613 8 0.49261 18.5189 10 0.60091 0.60539 10 0.60457

A01 main 249 635 8 0.53755 15.0656 15 0.62877 0.65255 14 0.63290

usair97 332 2126 8 0.31666 13.9978 8 0.35959 2.33840 6 0.36820

netscience main 379 914 15 0.79926 5.81428 20 0.84702 0.18619 19 0.84860

s838 512 819 18 0.73392 10.432 15 0.81663 0.33805 12 0.81940

power 4941 6594 11 0.53516 – 40 0.93937 – - –

average 8.36 0.51710 10.7419 9.3 0.57525 0.82540 8.8 0.57957

TABLE II: Comparison of results of Newman’s spectral divisive heuristic (divisive spectral), the

proposed locally optimal divisive heuristic (divisive CHL), and an exact algorithm for modularity

maximization [40] (exact) on real world datasets. M denotes the number of communities and Q

the modularity value of the best found solution. error(%) denotes the percentage error for the two

heuristic with respect to the exact algorithm. Average values are given for the first 11 datasets as

the 12-th one cannot be solved exactly in reasonable time. n and m are the number of vertices and

the number of edges of the networks.
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dataset n m KL divisive CHL exact

M Q error(%) M Q error(%) M Q

karate 34 78 2 0.372 11.43 4 0.41880 0.23583 4 0.41979

dolphin 62 159 4 0.477 9.745 4 0.52646 0.38977 5 0.52852

les miserables 77 254 3 0.489 12.73 8 0.54676 2.36603 6 0.56001

A00 main 83 135 3 0.450 15.31 7 0.52806 0.53494 9 0.53090

p53 protein 104 226 11 0.402 24.83 7 0.52843 1.25203 7 0.53513

political books 105 441 4 0.496 5.959 4 0.52629 0.18018 5 0.52724

football 115 613 5 0.538 11.048 10 0.60091 0.60539 10 0.60457

A01 main 249 635 6 0.512 19.023 15 0.62877 0.65255 14 0.63290

usair97 332 2126 6 0.339 7.992 8 0.35959 2.33840 6 0.36820

netscience main 379 914 8 0.606 28.644 20 0.84702 0.18619 19 0.84860

s838 512 819 5 0.707 13.726 15 0.81663 0.33805 12 0.81940

power 4941 6594 8 0.649 – 40 0.93937 – - –

average 5.2 0.48970 14.5856 9.3 0.57525 0.82540 8.8 0.57957

TABLE III: Comparison of results of the divisive Kernighan-Lin based heuristic (KL), the pro-

posed locally optimal divisive heuristic (divisive CHL), and an exact algorithm for modularity

maximization [40] (exact) on real world datasets. M denotes the number of communities and Q

the modularity value of the best found solution. error(%) denotes the percentage error for the two

heuristics with respect to the exact algorithm. Average values are given for the first 11 datasets as

the 12-th one cannot be solved exactly in reasonable time. n and m are the number of vertices and

the number of edges of the networks. Note that values of Q and error percentage are given with

less digits that elsewhere in this paper due to the fact that the Kernighan-Lin heuristic depends

upon the random partition to which it is applied.
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dataset n m divisive spectral + KL divisive CHL exact

M Q error div(%) error(%) M Q error(%) M Q

karate 34 78 4 0.419 0 0.236 4 0.41880 0.23583 4 0.41979

dolphin 62 159 5 0.508 3.415 3.792 4 0.52646 0.38977 5 0.52852

les miserables 77 254 7 0.538 1.533 3.862 8 0.54676 2.36603 6 0.56001

A00 main 83 135 7 0.527 0.199 0.733 7 0.52806 0.53494 9 0.53090

p53 protein 104 226 6 0.518 1.930 3.158 7 0.52843 1.25203 7 0.53513

political books 105 441 4 0.527 -0.081 0.099 4 0.52629 0.18018 5 0.52724

football 115 613 8 0.579 3.638 4.221 10 0.60091 0.60539 10 0.60457

A01 main 249 635 16 0.594 5.463 6.080 15 0.62877 0.65255 14 0.63290

usair97 332 2126 7 0.358 0.501 2.827 8 0.35959 2.33840 6 0.36820

netscience main 379 914 23 0.820 3.191 3.371 20 0.84702 0.18619 19 0.84860

s838 512 819 13 0.779 4.587 4.910 15 0.81663 0.33805 12 0.81940

power 4941 6594 8 0.791 – 40 0.93937 – - –

average 9.09 0.560731 2.21592 3.02627 9.3 0.57525 0.82540 8.8 0.57957

TABLE IV: Comparison of results of Newman’s spectral divisive heuristic with the Kernighan-

Lin refinement (divisive spectral + KL), the proposed locally optimal divisive heuristic

(divisive CHL), and an exact algorithm for modularity maximization [40] (exact) on real world

datasets. M denotes the number of communities and Q the modularity value of the best found

solution. error(%) denotes the percentage error for the two heuristics divisive spectral + KL and

divisive with respect to the exact algorithm. error div(%) denotes the percentage error for the

divisive spectral + KL with respect to the proposed locally optimal heuristic. Average values are

given for the first 11 datasets as the 12-th one cannot be solved exactly in reasonable time. n and

m are the number of vertices and the number of edges of the networks. Note that values of Q and

error percentage are given with less digits that elsewhere in this paper due to the fact that the

Kernighan-Lin heuristic depends upon the random partition to which it is applied.
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dataset n m time divisive CHL time exact CHL/exact

karate 34 78 0.42 0.34 1.23529

dolphin 62 159 1.40 7.75 0.180645

les miserables 77 254 4.52 7.26 0.62259

A00 main 83 135 0.89 3.66 0.243169

p53 protein 104 226 7.81 11.60 0.673276

political books 105 441 12.09 45.65 0.264841

football 115 613 338.19 249.41 1.35596

A01 main 249 635 656.54 1014.48 0.647169

usair97 332 2126 33157.85 16216.77 2.04466

netscience main 379 914 22.84 1615.14 0.0141412

s838 512 819 38.37 7655.56 0.00501204

power 4941 6594 4498.21 – –

TABLE V: Comparison of times for the proposed locally optimal heuristic and an exact algorithm

for modularity maximization. All results are in seconds of CPU. Solutions obtained with the

proposed heuristic were obtained on a 2.4 GHz Intel Xion CPU of a computer with 8GB RAM

shared by three other similar CPU running Linux. Solutions obtained with the exact algorithm

were obtained on a dual processor computer Intel Pentium with 3.20 GHz, 3GB RAM running

Linux.
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dataset n Q agglomerative CNM Q divisive spectral + KL error(%)

jazz 198 0.439 0.442 0.67873

metabolic 453 0.402 0.435 7.58621

e-mail 1133 0.494 0.572 13.6364

key signing 10680 0.733 0.855 14.269

physicists 27519 0.668 0.723 7.6072

average 0.5195 0.5743 8.8078

TABLE VI: Comparison of results [11] of the Clauset et al.’s agglomerative heuristic (agglomera-

tive CNM) and Newman’s spectral divisive heuristic with the Kernighan-Lin refinement (divisive

spectral + KL). Q denotes the modularity value of the best found solution. error(%) denotes the

percentage error for the first heuristic with respect to the second one. n is the number of vertices.

Jazz dataset describes musicians which worked together [52], metabolic dataset describes chemi-

cal reactions as well as the regulatory interactions that guide these reactions in C. elegans [53],

e-mail dataset describes e-mail interchanges between members of a university [54], key signing

(PGP) datadset describes the giant component of the network of users of the Pretty-Good-Privacy

algorithm for secure information interchange [55], physicists (cond-mat) dataset describes a

collaboration network of scientists posting preprints on the condensed matter archive [56]
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