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Abstract. Finding communities, or clusters, in networks, or graphs,
has been the subject of intense studies in the last ten years. The most
used criterion for that purpose, despite some recent criticism, is mod-
ularity maximization, proposed by Newman and Girvan. It consists in
maximizing the sum for all clusters of the number of inner edges mi-
nus the expected number of inner edges assuming the same distribution
of degrees. Numerous heuristics, as well as a few exact algorithms have
been proposed to maximize modularity. We apply the Variable Neigh-
borhood Search metaheuristic to that problem. The resulting Variable
Neighborhood Decomposition Search heuristic is applied to the Clus-
tering problems of the 10th DIMACS Implementation Challenge. The
optimal solution is obtained by the heuristic whenever it is known, and
otherwise the best solutions from the literature are improved, except in
the case of three instances for which available memory was too small.
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1 Introduction

Clustering is an important chapter of data analysis and data mining with nu-
merous applications in natural and social sciences as well as in engineering and
medicine. It aims at solving the following general problem: given a set of entities,
find subsets, or clusters, which are homogeneous and/or well-separated. As the
concepts of homogeneity and of separation can be made precise in many ways,
there are a large variety of clustering problems [19, 21, 22, 30]. These problems
in turn are solved by exact algorithms or, more often and particularly for large
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data sets, by heuristics, of which there are frequently a large variety. An exact
algorithm provides, hopefully in reasonable computing time, an optimal solution
together with a proof of its optimality. A heuristic provides, usually in moderate
computing time, a near optimal solution or sometimes an optimal solution but
without proof of its optimality.

In the last decade, clustering on networks, or graphs, has been extensively
studied, mostly in the physics and computer science communities, with recently
a few forays from operations research. Rather than using the term cluster,
the words module or community are often adopted in the physics literature.
We use below the standard notation and terminology for graphs, i.e, a graph
G = (V,E, ω) is composed of a set V of n vertices vj and a set E of m edges
eij = {vi, vj}. These edges may be weighted by the function ω({u, v}). If they are
unweighted ω({u, v}) = 1. A subgraph GC = (C,EC , ω) of a graph G = (V,E, ω)
induced by a set of vertices C ⊆ V is a graph with vertex set C and edge set
EC equal to all edges with both vertices in C. Such a subgraph corresponds
to a cluster (or module, or community) and many heuristics aim at finding a
partition C of V into pairwise disjoint nonempty subsets V1, V2, . . . , VN inducing
subgraphs of G and covering V . Various objective functions have been proposed
for evaluating such a partition. Among the best known are multiway cut [17],
normalized cut [39], ratio cut [3] andmodularity [33]. Initially proposed by Girvan
and Newman in 2002 [16] as a stopping rule for a hierarchical divisive heuristic,
modularity was considered later as an independent criterion allowing determi-
nation of optimal partitions as well as comparison between partitions obtained
by various methods.

Modularity aims at finding a partition of V which maximizes the sum, over
all modules, of the number of inner edges minus the expected number of such
edges assuming that they are drawn at random with the same distribution of
degrees as in G. The following precise definition of modularity is given in [33]:

Q =
∑

C∈C

[aC − eC ] ,

where aC is the fraction of all edges that lie within module C and eC is the
expected value of the same quantity in a graph in which the vertices have the
same expected degrees but edges are placed at random. A maximum value of
Q near to 0 indicates that the network considered is close to a random one
(barring fluctuations), while a maximum value of Q near to 1 indicates strong
community structure. Observe that maximizing modularity gives an optimal
partition together with the optimal number of modules.

Let the vertex function weight function be defined as:

ω(v) =















∑

{u,v}∈E

ω({u, v}) if {v, v} /∈ E

∑

{u,v}∈E,u6=v

ω({u, v}) + 2ω({v, v}) if {v, v} ∈ E.



Let C be a partition of V . The sum over modules of their modularities can
be written as

Q =

∑

C∈C

∑

{u,v}∈EC

ω({u, v})

∑

e∈E

ω(e)
−

∑

C∈C

(

∑

v∈VC

ω(v)

)2

4

(

∑

e∈E

ω(e)

)2
. (1)

Numerous heuristics have been proposed to maximize modularity. They are
based on divisive hierarchical clustering, agglomerative hierarchical clustering,
partitioning, and hybrids. They rely upon various criteria for agglomeration
or division [5, 9, 10, 31, 42], simulated annealing [18, 27, 28], mean field anneal-
ing [24], genetic search [41], extremal optimization [13], label propagation [4,
26], spectral clustering [32, 36, 40], linear programming followed by randomized
rounding [1], dynamical clustering [6], multilevel partitioning [12], contraction-
dilation [29], multistep greedy search [38], quantum mechanics [34] and other
approaches [5, 8, 14, 23, 37, 40]. For a more detailed survey, see [15].

The paper is organized as follows: in Section 2, after giving an outline of
the variable neighborhood search metaheuristic, we discuss its application to
modularity maximization. In Section 3, we recall and extend to the weighted
case an exact method for modularity maximization. Experimental results are
presented in Section 4 in two tables corresponding to the results for Pareto and
Quality challenges respectively. Brief conclusions are drawn in the last section.

2 Description of the heuristic

2.1 Outline of the variable neighborhood search metaheuristic

Variable Neighborhood Search (VNS) is a metaheuristic, or framework for build-
ing heuristics, aimed at solving combinatorial and global optimization problems.
Since its inception, VNS has undergone many developments and has been applied
in numerous fields (see [20] for a recent survey).

Metaheuristics address the problem of escaping, as much as possible, from
local optima. A local maximum xL of an optimization problem is such that

f(xL) ≥ f(x), ∀x ∈ N(xL) (2)

where N(x) denotes the feasible neighborhood of x, which can be defined in
many different ways each one yielding a different neighborhood structure. In
discrete optimization problems, a neighborhood structure consists of all vectors
obtained from x by some simple modification. For instance, for x binary, one
neighborhood structure can be defined by the set of all vectors obtained from x by
complementing one of its components. Another possible neighborhood structure
can be defined as the set of all vectors obtained from x by complementing two
complementary components of x (i.e., one component is set from 0 to 1 and the



other goes from 1 to 0). A local search or improving heuristic consists of choosing
an initial solution x, and then moving to the best neighbor x′ ∈ N(x) in the
case f(x′) > f(x). If no such neighbor exists, the heuristic stops, otherwise it is
iterated.

If many local maxima exist for a problem, the range of values they span may
be large. Moreover, the globaly optimum value f(x∗) may differ substantially
from the average value of a local maximum, or even from the best such value
among many, obtained by some simple randomized heuristic. In order to escape
from local maxima and, more precisely, the mountains of which they are the
top, VNS exploits the idea of neighborhood change. In fact, VNS relies upon the
following observations:

Fact 1: A local maximum with respect to one neighborhood structure is not

necessarily so for another ;

Fact 2: A global maximum is a local maximum with respect to all possible

neighborhood structures ;

Fact 3: For many problems local maxima with respect to one or several neigh-

borhoods are relatively close to each other.

Let us denote with Nt, (t = 1, . . . , tmax), a finite set of pre-selected neighbor-
hood structures, and with Nt(x) the set of solutions in the tth neighborhood of x.
We call x a local maximum with respect to Nt if there is no solution x′ ∈ Nt(x)
such that f(x′) > f(x).

In the VNS framework, the neighborhoods used correspond to various types
of moves, or perturbations, of the current solution, and are problem specific.
The current best solution x found is the center of the search. When looking for a
better one, a solution x′ is drawn at random in an increasingly far neighborhood
and a local ascent is performed from x′, leading to another local maximum x′′.
If f(x′′) ≤ f(x), x′′ is ignored and one chooses a new neighbor solution x′ in a
further neighborhood of x. If, otherwise, f(x′′) > f(x), the search is re-centered
around x′′ restarting with the closest neighborhood. If all neighborhoods of x
have been explored without success, one begins again with the closest one to x,
until a stopping condition (e.g. maximum CPU time) is satisfied.

As the size of neighborhoods tends to increase with their distance from the
current best solution x, close-by neighborhoods are explored more thoroughly
than far away ones. This strategy takes advantage of the three Facts 1–3 men-
tioned above. Indeed it is often observed that most or all local maxima of com-
binatorial problems are concentrated in a small part of the solution space. Thus,
finding a first local maximum x implies that some important information has
been obtained: to get a better, near-optimal solution, one should first explore its
vicinity.

The algorithm proposed in this work has two main components: (i) an im-
provement heuristic, and (ii) exploration of different types of neighborhoods for
getting out of local maxima. They are used within a variable neighborhood de-
composition search framework [20] which explores the structure of the problem
concentrating on small parts of it. The basic components as well as the decom-
position framework are described in the next sections.



2.2 Improvement heuristic

The improvement heuristic we used is the LPAm+ algorithm proposed by Liu
and Murata in [26]. LPAm+ is composed of a label propagation algorithm pro-
posed by Barber and Clark [4] and a community merging routine. A strong
feature of this heuristic is that label propagation executes in near linear time
(in fact, each iteration of label propagation executes in time proportional to m),
while one round of merging pairs of communities can execute in O(m log n) [38].

From [4], the authors show that when evaluating a vertex, the candidates
labels (clusters) can be confined to those of its neighbors and an unused label.
With that in mind, we decided to evaluate “labels” instead of vertices. We used
LPAm+ modified as follows. A list L of all labels is initialized with all the used
labels. Then, from L, we proceed by picking a label ℓ ∈ L until L is empty. Each
time a label ℓ ∈ L is picked, we evaluate all its vertices for label updating. If a
label is updated, i.e., an improvement in modularity is found, the old and new
labels as well as their neighboring labels are put in L.

This modification induces a considerable algorithmic speed-up since only a
few clusters need to be evaluated as the algorithm proceeds while most of the
other clusters remain fixed.

We then tested this modified LPAm+, and proceeded to improve it based on
empirical observations. In the final version, whenever a vertex relabeling yields
an improvement, the old and new labels are added to L but only together with
the labels of vertices which are adjacent to the relabeled vertex. This version was
selected to be used in our experiments due to its benefits in terms of computing
times and modularity maximization.

2.3 Neighborhoods for perturbations

In order to escape from local maxima, our algorithm uses five distinct neighbor-
hoods for perturbing a solution. They are:

1. SINGLETON: all the vertices in a cluster are made singleton clusters.
2. DIVISION: splits a community into two equal parts. Vertices are assigned

to each part randomly.
3. NEIGHBOR: relabels each vertex of a cluster to one of the labels of its

neighbors or to an unused label.
4. FUSION: merges two or more clusters into a single one.
5. REDISTRIBUTION: destroys a cluster and spreads each one of its vertices

to a neighboring cluster randomly chosen.

2.4 Variable Neighborhood Decomposition Search

Given the size of the instances proposed in the 10th DIMACS Implementation
Challenge, a decomposition framework was used. It allows the algorithm to ex-
plore the search space more quickly since just a small part of the solution is



searched for improvement at a time. This subproblem is isolated for improve-
ment through selecting a subset of the clusters in the incumbent solution.

The decomposition proposed here is combined with the five neighborhoods
presented in the previous section within a variable neighborhood schema. Thus,
the decomposition executes over five distinct neighborhood topologies, with sub-
problems varying their size according to the VNS paradigm. The pseudo-code of
the variable neighborhood decomposition search heuristic is given in Figure 1.

Algorithm VNDS(P )1

Construct a random solution x ;2

x← LPAm+(x, P ) ;3

s← 1;4

while stopping condition not satisfied do5

Construct a subproblem S from x with a randomly selected cluster and s− 16

neighboring clusters ;
Select randomly α ∈ {singleton, division, neighbor, fusion, redistribution} ;7

x′ ← shaking(x, α, S);8

x′ ← LPAm+(x′, S) ;9

if cost(x′) > cost(x) then10

x← LPAm(x′, P ) ;11

s← 1;12

else13

s← s+ 1;14

if s > min{MAX SIZE,#clusters(x)} then15

s← 1;16

end17

end18

end19

return x20

Algorithm 1: Pseudo-code of the decomposition heuristic.

The algorithm VNDS starts with a random solution for an input problem P in
line 2. Then, in line 3 this solution is improved by applying our implementation
of LPAm+. Note that LPAm+ receives two input parameters, they are: (i) the
solution to be improved, and (ii) the space on which an improvement will be
searched. In line 3, the local search is applied in the whole problem space P ,
which means that all vertices are tested for label updating, and all clusters
are considered for merging. In line 4, the variable s which controls the current
decomposition size is set to 1.

The central part of the algorithm VNDS consists of the loop executed in
lines 5-19 until a stopping criterion is met (this can be the number of non im-
proving iterations for the Pareto Challenge or maximum allowed CPU time for
the Quality Challenge). This loop starts in line 6 by constructing a subproblem
from a randomly selected cluster and s− 1 neighboring clusters. Then, in line 7
a neighborhood α is randomly selected for perturbing the incumbent solution x.
Our algorithm allows choosing α by specifying a probability distribution on the
neighborhoods. Thus, the most successful neighborhoods are more often selected.
The shaking routine is actually performed in line 8 in the chosen neigborhood α



and in the search space defined by subproblem S. In the following, the improving
heuristic LPAm+ is applied over x′ in line 9 only in the current subproblem S. If
the new solution x′ is better than x, a faster version of the improving heuristic,
denoted LPAm, is applied over x′ in the whole problem P . In this version, the
improving heuristic does not evaluate merging clusters. The resulting solution of
LPAm application is assigned to x in line 11 and s is reset to 1 in line 12. Other-
wise, if x′ is not better than x, the size of the decomposition is increased by one
in line 14. This value is reset to 1 in line 16 if it exceeds the minimum between a
given parameter MAX SIZE and the number of clusters (i.e., #clusters(x)) in the
current solution x (line 15). Finally, a solution x is returned by the algorithm in
line 20.

3 Description of the exact method

Column generation together with branch-and-bound can be used to obtain the
optimal partition. Column generation algorithms for clustering implicitly take
into account all possible communities (or, in other words, all subsets of the set
of entities under study). They replace the problem of finding simultaneously all
communities in an optimal partition by a sequence of optimization problems for
finding one community at a time, or more precisely and for the problem under
study a community which improves the modularity of the current solution. In [2],
several stabilized column generation algorithms have been proposed for modu-
larity maximization and compared on a series of well-known problems from the
literature. The column generation algorithm based on extending the mixed inte-
ger formulation of Xu et al. [43] appears to be the most efficient. We summarize
below an adaptation of this algorithm for the case of weighted networks.

Column generation is a powerful technique of linear programming which al-
lows the exact solution of linear programs with a number of columns exponential
in the size of the input. To this effect, it follows the usual steps of the simplex
algorithm, apart from finding an entering column with a positive reduced cost in
case of maximization which is done by solving an auxiliary problem. The precise
form of this last problem depends on the type of problem considered. It is often
a combinatorial optimization or a global optimization problem. It can be solved
heuristically as long as a column with a reduced cost of the required sign can
be found. When this is no longer the case, an exact algorithm for the auxiliary
problem must be applied either to find a column with the adequate reduced cost
sign, undetected by the heuristic, or to prove that there remains no such column
and hence the linear programming relaxation is solved.

For modularity maximization clustering, as for other clustering problems
with an objective function additive over the clusters, the columns correspond to
the set T of all subsets of V , i.e., to all nonempty modules, or in practice to a
subset T ′ of T . To express this problem, define ait = 1 if vertex i belongs to



module t and ait = 0 otherwise. One can then write the model as

max
∑

t∈T

ctzt (3)

s.t.
∑

t∈T

aitzt = 1 ∀i = 1, . . . , n (4)

zt ∈ {0, 1} ∀t ∈ T, (5)

where ct corresponds to the modularity value of the module indexed by t with t =
1 . . . 2n − 1. The problem (3)-(5) is too large to be written explicitly. A reduced
problem with few columns, i.e., those with index t ∈ T ′, is solved instead. One
first relaxes the integrality constraints and uses column generation for solving
the resulting linear relaxation.

The auxiliary problem, for the weighted case, can be written as follows:

max
x∈Bn,D∈R

∑

e

xe

M
−

(

D

2M

)2

−
∑

u∈V

λuyu

s.t. D =
∑

u∈V

ω(u)yu

xe ≤ yu ∀e = {u, v} ∈ E

xe ≤ yv ∀e = {u, v} ∈ E

where M =
∑

e∈E ω(e). Variable xe is equal to 1 if edge e belongs to the com-
munity which maximizes the objective function and to 0 otherwise. Similarly,
yu is equal to 1 if the vertex v belongs to the community and 0 otherwise. The
objective function is equal to the modularity of the community to be determined
minus the scalar product of the current value λu of the dual variables times the
indicator variables yu. As in [2], the auxiliary problem is first solved with a vns

heuristic as long as a column with a positive reduced cost can be found. When
this is no more the case, CPLEX is called to find such a column or prove that
none remain. If the optimal solution of the linear relaxation is not integer, one
proceeds to branching on the condition that two selected entities belong to the
same community or to two different ones.

4 Experimental Results

The algorithms were implemented in C++ and compiled by gcc 4.5.2. The in-
stances are taken from the Clustering chapter of the 10th DIMACS Implementa-
tion Challenge (http://www.cc.gatech.edu/dimacs10/archive/clustering.shtml).
Computational experiments were performed on a AMD 64 bits platform with a
3 GHz clock and 8 Gbytes of RAM memory, except for instance road central,
which was executed in a Intel X3353 2.6 Ghz platform with 24Gbytes of RAM
memory. Instances road usa, uk-2002 and uk-2007-05 were not executed due
to memory limitations.



Limited computational experiments allowed to set the parameters of the
VNDS algorithm as follows:

– MAX SIZE = 15
– Probability distribution for selecting α is drawn with:

• 30% of chances of selecting SINGLETON
• 30% of chances of selecting DIVISION
• 30% of chances of selecting NEIGHBOR
• 5% of chances of selecting FUSION
• 5% of chances of selecting REDISTRIBUTION

The stopping condition in algorithm VNDS was defined depending on the
challenge, Pareto or Quality, in which VNDS is used. Thus, the same algorithm
is able to compete in both categories by just modifying how it is halted.

4.1 Results for Pareto Challenge

In this challenge, VNDS stops whenever it attains either N iterations without
improving the incumbent solution or after 1 hour of CPU. For this challenge we
divided the instances into two categories. For the instances in category P1, VNDS
uses N = 1000, while for those in category P2, the algorithm uses N = 100.

Table 1 shows computational results obtained in five independent runs of
algorithm VNDS. The first column refers to the category of the instance indicated
in the second column. The third and fourth columns refer to the number of
nodes (n) and edges (m) of each instance. The fifth and sixth columns refer to
average modularity values and average computing times, respectively. Finally,
the seventh and eighth columns present, for the best solution obtained in the
five runs, the modularity value and the corresponding number of clusters.

The following observations can be made regarding the results presented in
Table 1:

– VNDS finds the optimal solution, proved by the exact method of Section 3,
of instances karate, chesapeake, dolphins, lesmis, polbooks, adjnoun,
football, and jazz. Except for instance adjnoun, where the optimal solu-
tion is found in 2 out of 5 runs, the optimal solutions of the aforementioned
instances are obtained in all runs.

– VNDS is stopped due to CPU time limit in the instances for which the
average computing time tavg = 3600.00.

In particular, the results presented for the instance road central in the next
section can also be used in this category of the challenge.

4.2 Results for Quality challenge

Since the amount of work to compute a solution is not taken into consideration
for this challenge, the VNDS algorithm was allowed to run for a longer period of
time than before, the CPU time limit being the unique stopping condition. In



Table 1. Results for the Pareto Challenge in the Clustering instances of the 10th

DIMACS Implementation Challenge.

category instance n m Qavg tavg Qbest |C|
best

karate 34 78 0.419790 0.00 0.419790 4
chesapeake 39 170 0.265796 0.00 0.265796 3
dolphins 62 159 0.528519 0.00 0.528519 5
lesmis 77 254 0.566688 0.00 0.566688 6
polbooks 105 441 0.527237 0.00 0.527237 5
adjnoun 112 425 0.312268 0.09 0.313367 7
football 115 613 0.604570 0.00 0.604570 10
jazz 198 2742 0.445144 0.01 0.445144 4
celegansneural 297 2148 0.503485 0.02 0.503485 6
celegans metabolic 453 2025 0.452713 0.91 0.453209 9
e-mail 1133 5451 0.582575 3.49 0.582769 10
polblogs 1490 16715 0.427105 0.10 0.427105 278
netscience 1589 2742 0.959900 0.02 0.959900 407
power 4941 6594 0.939356 2.45 0.940615 44
hep-th 8361 15751 0.855869 25.48 0.856486 1378
PGPgiantcompo 10680 24316 0.885538 44.95 0.885695 113

P1

cond-mat 16706 121251 0.852140 123.83 0.852779 1262

astro-ph 16726 47594 0.740415 20.95 0.742530 1086
as-22july06 22963 48436 0.676344 53.44 0.677174 46
cond-mat-2003 31163 120029 0.771163 51.60 0.772827 1703
cond-mat-2005 40421 175691 0.740288 174.45 0.742244 1927
preferentialAttachment 5 100000 499985 0.314008 1431.27 0.315957 9
smallworld 100000 499998 0.791888 63.33 0.792505 256
G n pin pout 100000 501198 0.491101 3005.74 0.495370 135
caidaRouterLevel 192244 609066 0.867855 2160.12 0.868722 513
coAuthorsCiteseer 227320 814134 0.901568 1847.30 0.902181 320
citationCiteseer 268495 1156647 0.819532 3600.00 0.819964 228
coAuthorsDBLP 299067 977676 0.831789 3600.00 0.832233 542
cnr-2000 325557 2738969 0.912926 1282.92 0.912929 474
coPapersCiteseer 434102 16036720 0.917655 3600.00 0.917741 465
coPapersDBLP 540486 15245729 0.857130 3600.00 0.857700 385
eu-2005 862664 16138468 0.940836 3600.00 0.941250 438

P2

in-2004 14081816 16933413 0.980278 3600.00 0.980345 1702

our set of experiments, the instances were split into three different categories.
The algorithm was allowed to run for 180 seconds (3 minutes) for instances in
category Qu1, 1800 seconds (30 minutes) for instances in category Qu2, 10800
seconds (3 hours) for instances in category Qu3, and 36000 seconds (10 hours)
for the instance in category Qu4 (i.e., road central).

Table 2 presents the computational results obtained in five independent runs
of algorithm VNDS. The columns in the table have the same meaning of those

5 The results for this instance were obtained by a VNS [20] code without decomposi-
tion.



in Table 1. One column is added to the end of the table, Qlit, which refers to
the best results found in the literature6 7.

Table 2. Results for the Quality Challenge in the Clustering instances of the 10th

DIMACS Implementation Challenge.

category instance Qavg Qbest |C|
best

Qlit

karate 0.419790 0.419790 4 0.4198 [1, 4, 25, 26, 35, 40, 43]
chesapeake 0.265796 0.265796 3 ukn

dolphins 0.528519 0.528519 5 0.529 [1, 43]
lesmis 8 0.566688 0.566688 6 ukn

polbooks 0.527237 0.527237 5 0.527 [1, 25, 26]
adjnoun 0.313367 0.313367 7 0.308 [25]
football 0.604570 0.604570 10 0.605 [1, 25, 26]
jazz 0.445144 0.445144 4 0.445 [1, 26]
celegansneural 0.503782 0.503782 5 ukn

Qu1

celegans metabolic 0.453240 0.453248 9 0.452 [26, 40]

e-mail 0.582636 0.582799 12 0.582 [26]
polblogs 0.427105 0.427105 278 0.426 [25]
netscience 0.959900 0.959900 407 0.9555 [4]
power 0.940776 0.940874 41 0.93937 [7]
hep-th 0.857601 0.857692 1379 ukn

PGPgiantcompo 0.885989 0.886043 111 0.8841 [26, 35]
cond-mat 0.853247 0.853402 1264 ukn

astro-ph 0.744559 0.744887 1080 ukn

as-22july06 0.677403 0.677825 38 ukn

cond-mat-2003 0.776422 0.776717 1686 ukn

Qu2

cond-mat-2005 0.744534 0.744882 1917 ukn

preferentialAttachment 9 0.315266 0.316778 9 ukn

smallworld 0.792823 0.792910 252 ukn

G n pin pout 0.498791 0.499332 177 ukn

caidaRouterLevel 0.869898 0.870414 499 ukn

coAuthorsCiteseer 0.902691 0.902994 291 ukn

citationCiteseer 0.820328 0.820750 207 0.8037 [11]
coAuthorsDBLP 0.833034 0.833569 513 0.8269 [11]
cnr-2000 0.912997 0.913029 431 ukn

coPapersCiteseer 0.920414 0.920493 448 ukn

coPapersDBLP 0.861000 0.861514 347 ukn

eu-2005 0.941113 0.941359 400 ukn

Qu3

in-2004 0.980454 0.980513 1733 ukn

Qu4 road central 0.997216 0.997294 1215 ukn

6 Qlit values are indicated with the same precision as reported in the referred papers.
7 For some instances, we have not found available results in the literature. Their
associated results are indicated by the label ukn in Table 2.

8 The instance lesmis is often tested in the literature in its unweighted version. In
the DIMACS challenge, the instance is weighted.



A few remarks are in order regarding the results shown in Table 2:

– Instances in category Qu1 were always solved up to optimality proved by
algorithm in Section 3, except for instance celegans metabolic in which
optimality of the best know solution is not proved but was found by the
heuristic 4 out of 5 times.

– Particularly for instance jazz, Duch and Arenas reported in [13] a solution
with cost 0.4452 and 5 clusters. However, either the jazz instance used in
the paper is different from the one of the DIMACS challenge or the authors
commited a slight mistake, since the solution with cost 0.4551 and 4 clusters
was proved optimal by the exact approach presented in Section 3.

– Out of the 34 instances tested, 14 had been previoulsy used in the litera-
ture. In 9 of them, the decomposition algorithm proposed here improved the
best known solutions. In the remaining five, the algorithm matched the best
known solutions (in fact, they were already optimal as proved by the exact
algorithm of Section 3).

5 Conclusion

Several integer programming approaches and numerous heuristics have been ap-
plied to modularity maximization. They are due mostly to the physics and com-
puter sciences research communities. We have applied the variable neighborhood
search metaheuristic to that problem and it proves to be very effective. For prob-
lems with known optimum values, the heuristic always found an optimal solution
at least once. For the other instances, the best know solution was improved in all
cases except for large instances for which memory lacked for the implementation.
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