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Abstract The interval Distance Geometry Problem (i DGP) consists in finding a
realization in RK of a simple undirected graph G = (V,E) with nonnegative inter-
vals assigned to the edges in such a way that, for each edge, the Euclidean distance
between the realization of the adjacent vertices is within the edge interval bounds.
In this paper, we focus on the application to the conformation of proteins in space,
which is a basic step in determining protein function: given interval estimations of
some of the inter-atomic distances, find their shape. Among different families of
methods for accomplishing this task, we look at mathematical programming based
methods, which are well suited for dealing with intervals. The basic question we
want to answer is: what is the best such method for the problem? The most mean-
ingful error measure for evaluating solution quality is the coordinate root mean
square deviation. We first introduce a new error measure which addresses a partic-
ular feature of protein backbones, i.e. many partial reflections also yield acceptable
backbones. We then present a set of new and existing quadratic and semidefinite
programming formulations of this problem, and a set of new and existing methods
for solving these formulations. Finally, we perform a computational evaluation of
all the feasible solver+formulation combinations according to new and existing er-
ror measures, finding that the best methodology is a new heuristic method based
on multiplicative weights updates.
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1 Introduction

The Distance Geometry Problem (DGP) is defined formally as follows: given an
integer K > 0, a simple undirected graph G = (V,E), and an edge weight function
U : E → R+, establish or deny the existence of a vertex realization function
x : V → RK such that:

∀{u, v} ∈ E ‖xu − xv‖2 = Uuv; (1)

realizations satisfying (1) are called valid realizations. The DGP arises in many
important applications: determination of protein conformation from distance data
[44], localization of mobile sensors in communication networks [21], synchroniza-
tion of clocks from phase information [52], control of unmanned submarine fleets
[6], spatial logic [22], and more [36]. It is NP-complete when K = 1 and NP-hard
for larger values of K [51]. Notationwise, we let n = |V | and m = |E|.

The aim of this paper is to find the quality-wise best and pratically fastest
method for solving a DGP variant arising in finding the shape of proteins using
incomplete and imprecise distance data. We achieve this through an extensive com-
putational benchmark of many (new and existing) heuristic methods and many
instances constructed from Protein Data Bank (PDB) data [11]. First, however, we
make a theoretical contribution related to a new solution quality measure which
is specially suited to evaluate the solution quality of protein isomers (i.e. proteins
which have the same chemical composition but a different shape). This is nec-
essary to evaluating the computationally obtained solutions, since the symmetry
group of protein backbones contains partial reflections [37] (these are visible in
most molecules, which may occur in nature in their left handed or right handed
conformation).

1.1 The number of solutions

Let X̃ be the set of valid realizations of G. If x ∈ X̃, any congruence (translation,
rotation, reflection) of x yields another valid realization of G. We therefore focus on
the quotient set X = X̃/∼, where x ∼ y whenever there is a congruence mapping
x to y.

We have that X = ∅ if the corresponding DGP instance has no solutions;
G is rigid if |X| is finite; G is globally rigid if |X| = 1; and G is flexible if |X| is
uncountable. We note that |X| cannot be countably infinite. By Milnor’s theorem
on the Betti numbers of real algebraic varieties [46], the number of connected
components of X is bounded above by 2× 3nK−1. Suppose that |X| is countably
infinite: then it cannot be flexible. This implies that incongruent elements of X are
on distinct connected components of the manifold containing X. Milnor’s theorem
shows that there are only finitely many such connected components, which implies
that |X| is finite. This result also follows by the cylindrical decomposition theorem
of semi-algebraic sets [7,10].

1.2 Proteins and the Branch-and-Prune algorithm

Our motivating application is finding the shape of protein proteins in space (thus
we fix K = 3) knowing interval estimations of some of the inter-atomic distances
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[16]. The protein backbone graph G belongs to a specific subclass of Henneberg
type I graphs [53], namely there is an order < on V such that, for each v >

3, v is adjacent to v − 1, v − 2, v − 3 [29]. The backbone itself provides such an
order on the atoms, although other orders, which may be more convenient to
algorithmic efficiency, have been defined [28,17]. DGP instances with this property
form a problem called Discretizable Molecular Distance Geometry Problem

(DMDGP), which is also NP-hard [29]. In [35], we proposed a fast and accurate
mixed-combinatorial algorithm for solving the DMDGP, called Branch-and-Prune
(BP). Unsurprisingly, the BP has exponential complexity in the worst case, but
the DMDGP has many interesting properties which hold almost surely:

– G is rigid, so |X| is finite; [35]
– in particular, |X| is a power of two; [39]
– the BP algorithm is Fixed-Parameter Tractable (FPT) on the DMDGP [37],

and in all the protein instances we tested, the parameter was always fixed at
the same constant, yielding polytime behaviour.

By “almost surely” we mean that the set of weighted input graphs for which the
above properties may not hold has Lebesgue measure zero in the set of all weighted
input graphs (assuming the weights to be real numbers). The BP algorithm relies
on the given distances being precise; unfortunately, however, inter-atomic distance
data measured through Nuclear Magnetic Resonance (NMR) are subject to experi-
mental errors, modelled as real intervals [L,U ] assigned to all edges {u, v} whenever
v − u ≥ 3 in the vertex order. To overcome this difficulty, two research directions
have been pursued: (i) the discretization of the uncertainty intervals [30]; (ii) the
analytical description, using Clifford algebra, of the locus of vertex v when the
edge {v, v−3} is weighted by an interval [27]. The formulation study in this paper
moves a first step towards a third direction: the integration of purely continuous
techniques within mixed-combinatorial algorithms such as BP. To this end, in this
paper we pursue a computational study of some these techniques.

1.3 The interval DGP

This brings us to the interval Distance Geometry Problem (i DGP), which is a
variant of the DGP defined as follows: the edge function is an interval function
[L,U ] : E → IR+, where L,U are two nonnegative functions from E → R+ such
that Luv ≤ Uuv for each {u, v} ∈ E, IR+ is the set of nonnegative real intervals,
and Eq. (1) is replaced by:

∀{u, v} ∈ E Luv ≤ ‖xu − xv‖2 ≤ Uuv. (2)

Note that Eq. (2) is often written as:

∀{u, v} ∈ E L2
uv ≤ ‖xu − xv‖22 ≤ U2

uv. (3)

As explained later, Eq. (3) minimizes the chances that numerical solvers, which
rely on the floating-point representation of real numbers, might stumble upon a
negative representation of zero, thereby raising a “not a number” (NaN) error upon
calculating the square root. Note that the i DGP contains (and hence generalizes)
the DGP, since the latter corresponds to the case L = U .
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1.4 Aim of this paper

Most solution techniques for solving i DGP instances require a continuous search
in Euclidean space, even if the given graph is rigid. The most direct approach is to
formulate the i DGP as a Mathematical Program (MP), which can then be solved
by a MP solver. The aim of this paper is to determine the best solver+formulation
combination for the i DGP. To this end, we need to know: (a) how to evaluate
the quality of the solutions computed by the solvers; (b) which formulations to
employ; (c) which solvers to employ. We therefore introduce new and existing error
measures, formulations and solvers, before proceeding to evaluate them all com-
putationally. Since we want our algorithms to be fast and scale well, we focus on
heuristic approaches. This means that we forsake a proof of exactness, so evalu-
ating these algorithms require test sets with given (trusted) solutions. Such test
sets can be put together using the PDB.

1.5 Solution quality evaluation

The simplest measures used for evaluation DGP solution quality are based on
computing the average or maximum relative error of the realization with respect
to the given distance value on the edges. The drawback of these simple edge-
based measures is that even a small error might correspond (in sufficiently large
proteins) to a wrong protein shape. Even worse, plotting the DGP solution versus
the trusted solution usually yields nothing to the human eye, since the alignment
is likely to be completely off.

A more meaningful measure is provided by Procrustes analysis [24], also called
coordinate root mean square deviation (cRMSD) [43]. Informally, this is the error
derived by the best alignment, via translations and rotations, of a DGP solution
to the trusted solution. It provides a visual tool for a human to evaluate the error,
so even when the error is non-zero the visualization helps determine whether the
error is due to floating point issues or structural differences.

Unfortunately, for protein backbones there is an added difficulty: their sym-
metry group includes at least one partial reflection (starting from the fourth atom
along the backbone), and may include many more [39,37,34]: in general, the par-
tial reflection group structure is a cartesian product of cyclic groups of order two,
yielding an exponential number of elements. All of these symmetric solutions are
isomers. They are equivalent from the point of view of the simple, edge-based er-
ror measures, but they may have very different cRMSD values with respect to the
trusted solution. Again, visualizing a trusted solution and a DGP solution from
a heuristic method with a low cRMSD might yield structures which look nothing
like each other.

The first contribution of this paper is the definition of a modified error measure
that extends the cRMSD in that it aligns two structures in the best possible way
using translations, rotations and partial reflections, and which allows us to properly
evaluate the protein backbone solutions proposed by DGP heuristics. Our new
measure could be described as a “cRMSD modulo isomers”.
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1.6 Innovations and outcomes

To sum up, the innovations introduced in this paper are: (i) the new cRMSD
modulo isomers; (ii) some new MP formulations for the iDGP; (iii) the concept of
“pointwise formulation” to be used in alternating-type algorithms; (iv) an adap-
tation of the Multiplicative Weights Update (MWU) algorithm to the iDGP. We
conclude that the MWU algorithm with its pointwise formulation is the best com-
bination, and that the new “square factoring” MP formulation, used within either
a pure MultiStart (MS) or a Variable Neighbourhood Search (VNS) heuristic, is
second best.

1.7 Structure of the paper

The rest of the paper is organized as follows. In Sect. 2, we define error measures to
meaningfully compare protein backbones found algorithmically with those stored
in PDB files [11], and introduce a new cRMSD type measure modulo certain partial
reflection isomers. In Sect. 3, we list several formulations, relaxations and variants
for the i DGP, some of which are new. In Sect. 4, we propose a new algorithm for
solving the i DGP: namely, an adaptation of the Multiplicative Weights Update
method [4]. In Sect. 5, we discuss comparative computational results, which show
that, on average, our newly proposed algorithm provides the best quality solutions.

2 Error measures for realizations of protein graphs

Since we aim at ascertaining which formulation(s) can provide the best and/or
fastest bound, we need a method to benchmark quality and speed with respect to
any solution algorithm. We benchmark speed by simply measuring CPU time.

Benchmarking solution quality is more complicated. In the Turing Machine
(TM) model, decision problems are in NP whenever feasible instances can be
certified feasible in polynomial time. Although the DGP and i DGP are NP-hard
decision problems, they are not known to be in NP: feasible instances of the
DGP and i DGP can in general yield realizations with irrational components, for
which polynomially-sized representations are not generally available (some simple
ideas have been tried in [8] but failed to prove membership of the DGP to NP).
The methods employed in this paper replace irrational numbers by floating point
numbers, and, as such, do not provide a valid certificate. On the other hand,
this is the situation with all real number computations that need to be carry out
efficiently over medium to large-scale problems. Instead, we compute feasibility
errors for the floating point solutions we obtain.

2.1 The edge error

Given a realization x∗ : V → RK , we can measure the error of x∗ with respect to
a given i DGP instance by assigning an `2-norm error to each edge {u, v} of the
graph G = (V,E), given by [38]:

αuv(x∗) = max
(
0, Luv − ‖x∗u − x∗v‖2

)
+ max

(
0, ‖x∗u − x∗v‖2 − Uuv

)
. (4)
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We remark that the corresponding error for non-interval DGP instances is:

βuv(x∗) =
∣∣‖x∗u − x∗v‖2 − Uuv∣∣ .

Accordingly, we define the edge error as follows:

ηuv(x∗) =

{
αuv(x∗) if the instance is i DGP
βuv(x∗) if the instance is DGP.

We can now define the average error associated to the instance graph G and a
realization x∗ as:

Φ(x∗, G) =
1

|E|
∑

{u,v}∈E

ηuv(x∗), (5)

and the maximum error as:

Ψ(x∗, G) = max
{u,v}∈E

ηuv(x∗). (6)

The above are absolute edge error measures. Relative error measures also exist,

where each term Luv − ‖xu − xv‖2 is replaced by Luv−‖xu−xv‖2
|Luv| (and similary for

‖xu − xv‖2 − Uuv. Whether one or the other is used depends on the application
at hand, and how poorly scaled the input data L,U are. In the case of proteins,
bounds are generall well scaled, as they are often between 1 and 6Å; so absolute
error measures are more appropriate.

2.2 The coordinate root mean square deviation

The edge errors go a long way in determining when a realization x∗ is not valid.
In many applications, however, we know a priori that a problem instance should
feasible. Take e.g. the reconstruction of protein conformations from inter-atomic
distances: the protein certainly exists (this is also the case when localizing sensors
in wireless networks: the network is being measured, so it exists). Furthermore,
we might have a given (precise or approximate) realization x̄. In this setting, we
want to evaluate the error with respect to the given realization x̄.

An obvious way to adapt the edge error to this situation is to compute the
average, over edges in E, of an absolute `2-norm distance difference:

∆(x∗, x̄) =
1

|E|
∑

{u,v}∈E

∣∣ ‖x∗u − x∗v‖2 − ‖x̄u − x̄v‖2 ∣∣ . (7)

Unfortunately this approach is wrong, since different congruent realizations yield
different error values, making the comparison impossible.

To this end, the cRMSD is often used instead: i.e., translate both x∗ and x̄ so
that their centroids γ(x∗) = γ(x̄) = 0, where the centroid is the vector γ(x) ∈ RK
defined as:

γ(x) =
∑
v≤K

xv, (8)
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and then find the congruence ρ (consisting of a rotation composed with at most
one reflection) such that ‖x∗−ρ(x̄)‖ is minimum. Note that the norm ‖ · ‖ on RKn
is induced by the `2-norm in RK :

‖x∗ − x̄‖ =
∑
v∈V
‖x∗v − x̄v‖2. (9)

The cRMSD between x∗ and x̄ is defined as minρ ‖x∗ − ρ(x̄)‖.

2.3 Distance error modulo isometries

Although the cRMSD is widely used in computational geometry, it still falls short
in one of the properties of molecules, namely isomers, which are molecules having
the same chemical formula but different 3D structure.

If we consider protein backbones only, their graphs G = (V,E) possess a further
structural property. They have an order < on V such that:

1. the first K vertices in the order form a clique in G (clique property);
2. each vertex v > K is adjacent to v − 1, . . . , v −K (contiguous trilateration order

property).

Although protein backbones have K = 3, we develop the theory for general K.
DGP instances having these properties are also collectively known as KDMDGP,
which are a subclass of Henneberg type I graphs [25]. Contiguous trilateration
orders are also known as cTOP or KDMDGP orders [17]. The edges induced by
these properties in a KDMDGP graph are called discretization edges, and the edges
which are not discretization edges are called pruning edges.

Many mathematical aspects of the KDMDGP have been investigated in the
past (see [39,37,34]). The problem itself is NP-hard. The automorphism group of
X generally contains a subgroup GP consisting of partial reflections gv, called the
pruning group, such that the action of gv over a realization x ∈ X is:

gv(x) = (x1, . . . , xv−1, R
v
x(xv), . . . , Rvx(xn)), (10)

where Rvx is the reflection with respect to the affine subspace spanned by xv−1,
. . ., xv−K , and where v ranges over a vertex set

Z = V r ({1, . . . ,K} ∪
⋃

{u,w}∈E
u+K<w

{u+K + 1, . . . , w}),

or, in other words, v must not be “covered” by any pruning edge.

Example 1 Consider the DGP instance with V = {1, 2, 3, 4},

E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}}

consisting of two triangles on {1, 2, 3} and {2, 3, 4}, and K = 2. There is a partial
reflection ρ1 fixing 1, 2 and reflecting 3, 4 across the line through 1, 2, and another
partial reflection ρ2 fixing 1, 2, 3 and reflecting 4 across the line through 1, 2, 3.
The range of the pruning edge {1, 4} is {1 +K + 1, . . . , 4} = {4}. Therefore, if we
add {1, 4} to E, Z = {3}, which means that the pruning group of this instance has
the single generator ρ1.
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The protein backbone isomers of a valid realization x̄ are given by the orbit
GP x = {gv(x) | v ∈ Z}. It turns out that all backbone isomers in GP x are valid
realizations of the given DGP instance G. So we might obtain a realization x∗

which is a valid isomer (and hence has zero edge errors), but has a large cRMSD
with the given (different) isomer x̄.

A serious issue arises when considering i DGP instances, however: if the cRMSD
between x∗ and x̄ is positive, is it due to the “slack” induced by the interval edge
weights, or is it due to the fact that x∗ and x̄ are different isomers of essentially
the same backbone (a similar issue was described in [43])? This motivates us to
define the following problem:

Distance Error Modulo Isometries (DEMI). Given integers n,K with
n ≥ K, two n-point realizations x, y ∈ RKn such that the centroids γ(x) =
γ(y) = 0, and a description of a pruning group GP , find the rotation ρ and
a partial reflection composition g ∈ GP such that ‖x− gρ(y)‖ is minimum.

Note that groups can be described by listing their elements, or by a set of gener-
ators (and possibly relations) which, when multiplied together up to closure, are
guaranteed to generate the whole group. The latter description is usually much
shorter than the former.

We let ∂(x, y) be the minimum value of ‖x − gρ(y)‖ which solves the DEMI.
We note that ∂ is not a semimetric (hence not even a metric), since ∂(x, y) can be
zero even though x 6= y (just take y as a partial reflection of x).

2.3.1 Complexity of DEMI

The computational complexity class of DEMI depends on the description of the
pruning group. If it is given explicitly, by listing all the partial reflection compo-
sitions in GP , then the trivial Algorithm 1 solves the problem in polynomial time
for fixed K. For a realization x ∈ RKn and an integer h ≤ n, let x[h] be the partial
realization (xi | 1 ≤ i ≤ h). Step 1 takes a polynomial amount of time for fixed

Algorithm 1 SolveDEMI(x, y,GP)

1: Find a congruence ρ minimizing ‖x[K]− y[K]‖
2: Let ∂(x, y) = min{‖x− gρ(y)‖ | g ∈ GP }

K (an O(nK−2 log n) algorithm was described in [2]), but more efficient methods
exist for K = 3, see [5,19]. Step 2 depends linearly on the order of the pruning
group, which was shown in [34] to be 2|Z|. Since Z is usually small in practice (see
Sect. 2.3.2) and on average (see Sect. 2.3.3), assuming the input to DEMI to be
the explicit list of all partial reflection compositions is not out of place.

We have not been able to prove that DEMI can be solved in polynomial time
(for fixed K) if its input is x, n, and the compact group generators description Z,
nor that DEMI is NP-hard under the same conditions. We leave this as an open
question.
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2.3.2 Empirical observations on the size of Z

In this section we exhibit empirical evidence to the effect that |Z| is rarely large.
First, we note that |Z| ≥ 1: this follows by the definition of Z = {v > K |@{u,w} ∈
E (u + K < v ≤ w)}, since v = K + 1 is obviously always in Z (this can also be
shown by other means [29, Sect. 2.1]).

Figures 1-2 show the mean and standard deviations of |Z| relative to samples
of 500 randomly generated KDMDGP instances for each value of K ∈ {2, 3} and
various values of the edge sparsity s. The generation procedure is as follows: given
n = |V | and K, we initially generate a KDMDGP instance with all the necessary
discretization edges in its edge set E (there are K(K − 1)/2 + (n−K)K of them),
but no pruning edges. Then we loop over all {i, j} which are not discretization
edges, and with given probability s we insert a pruning edge in E. So s is in fact
the density of the pruning edges.

The exact dependency of |Z| on the number of pruning edges is given in [37],
and it is used to show that the BP algorithm is FPT. It should be clear by definition
that the denser the graph, the smaller Z must be. Figures 1-2 show (empirically)
that |Z| tends to 1 very fast and very reliably as n and s increase, with n, s as
small as, respectively, 20 and 0.3. Large graphs with |Z| > 1 are very rare.

It is interesting to note that the standard deviation of |Z| as a function of the
sparsity s has a maximum in [0, 0.05] (see Fig. 2). This phenomenon is analyzed
below in more detail.

2.3.3 Expectation and variance of |Z|

As explained in Sect. 2.3, KDMDGP instances consist of a backbone subgraph (a
minimal graph satisfying the clique and contiguous trilateration order properties)
and some pruning edges. Accordingly, random KDMDGP graphs G = (V,E) are
generated as follows:

– a backbone which only depends on K,n and determines the order on V ;
– for each pair {u,w} which is not a discretization edge, we independently add
{u,w} as a pruning edge in E with probability s ∈ [0, 1].

Now consider the subset Z ⊆ V , defined as in Sect. 2.3 as

Z = {v > K |@{u,w} ∈ E (u+K < v ≤ w)}.

We consider |Z| as a random variable depending on the edge probability s (also
known as the sparsity of the KDMDGP graph G), and compute its expected value.
In the following, P(·) is the probability of an event, E(·) is the expectation of a
random variable and Var(·) is its variance.

Proposition 1 E(|Z|) ≤ 1 + (n−K − 1)(1− s)n−K−1.

Proof For all v ∈ {K + 1, . . . , n} define Xv = 0 if v /∈ Z and 1 if v ∈ Z. Then

|Z| =
n∑

v=K+1

Xv, which implies:

E(|Z|) =
n∑

v=K+1

E(Xv) =
n∑

v=K+1

P(v ∈ Z).
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Fig. 1 In each picture: mean (top curve) and standard deviation (bottom curve) of the pruning
group size as a function of n for fixed values of K = 2 (left column), K = 3 (right column),
and the edge sparsity s (values in {0.1, 0.2, 0.3} in top, middle and bottom rows).

Now, for any v ∈ {K+1, . . . , n} there are v−K−1 choices of u with u+K < v, and
there are n−v+1 choices of w with v ≤ w. Therefore, there are (v−K−1)(n−v+1)
possible choices of the pruning edge {u,w} such that u + K < v ≤ w. Moreover,
v ∈ Z if all these pairs are not added to the graph. Thus,

P(v ∈ Z) = (1− s)(v−K−1)(n−v+1),
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Fig. 2 In each picture: mean (top curve) and standard deviation (bottom curve) of the pruning
group size as a function of the edge sparsity s for fixed values of K = 2 (left column), K = 3
(right column), and n (values in {10, 15, 20} in top, middle and bottom rows).

and hence:

E(|Z|) =
n∑

v=K+1

(1− s)(v−K−1)(n−v+1).
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Finally, we remark that (a) the first term of the sum is 1, and (b) (1− s) < 1, so
we can replace all the terms of the sum by the second largest one, and obtain:

E(|Z|) ≤ 1 + (n−K − 1)(1− s)n−K−1, (11)

as claimed. 2

The RHS of Eq. (11) converges to 1 as s→ 1 with n,K fixed, and as n→∞ with
s,K fixed, which is consistent with the empirical results of Sect. 2.3.2. We are
therefore justified in making the qualitative statements that, for random DMGDP,
|Z| ≈ 1.

We now discuss the variance. Since Var(|Z|) = Var(
∑n
v=K+1 Xv), then by a

property of sum of correlated variables [55], we have:

Var(|Z|) =
n∑

v=K+1

Var(Xv) + 2
∑

k+1≤v1<v2≤n
Cov(Xv1 ,Xv2)

=
n∑

v=K+2

Var(Xv) + 2
∑

k+2≤v1<v2≤n
Cov(Xv1 ,Xv2)

(this follows from E(XK+1) = 1 and E(XK+1Xv) = E(Xv) for all v)

=
n∑

v=K+2

E(Xv) +
∑

k+2≤v1<v2≤n
E(Xv1Xv2)+

−
n∑

v=K+2

[E(Xv)]2 − 2
∑

k+2≤v1<v2≤n
E(Xv1)E(Xv2).

By definition of Z, two vertices v1 and v2 are in Z if all pairs {u,w} such that
either u+K < v1 ≤ w or u+K < v2 ≤ w are not edges of G. Assume v1 < v2, then
there are:

(v1 −K − 1)(n− v1 + 1) + (v2 −K − 1)(n− v2 + 1)− (v1 −K − 1)(n− v2 + 1)

= (v1 −K − 1)(n− v1 + 1) + (v2 − v1)(n− v2 + 1)

such edges (by counting all pairs of each type and subtracting the number of
doubly counted ones). So, the probability that v1, v2 ∈ Z is

(1− s)(v1−K−1)(n−v1+1)+(v2−v1)(n−v2+1).

This implies

Var(|Z|) =
n∑

v=K+2

(1− s)(v−K−1)(n−v+1) −
n∑

v=K+2

(1− s)2(v−K−1)(n−v+1)+

+ 2
∑

K+2≤v1<v2≤n
(1− s)(v1−K−1)(n−v1+1)+(v2−v1)(n−v2+1) −

− 2
∑

K+2≤v1<v2≤n
(1− s)(v1−K−1)(n−v1+1)+(v2−K−1)(n−v2+1).

To simplify the analysis of Var(|Z|), we provide an upper bound.
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Lemma 1 For all s ∈ (0, 1) and k ≥ 1, we have
k−1∑
i=1

(1− s)i(k−i) < 2(1−s)k−1

s .

Proof For each 1 ≤ i < bk2 c we have the estimate

(i+ 1)(k − i− 1) = ik + k − i2 − 2i− 1 = i(k − i) + k − 2i− 1 ≥ i(k − i) + 1. (12)

Therefore,

k−1∑
i=1

(1− s)i(k−i) ≤ 2

b k
2
c∑

i=1

(1− s)i(k−i)

≤ 2((1− s)k−1 + (1− s)k + (1− s)k+1 + . . .+ (1− s)k−2+b k
2
c)

< 2(1− s)k−1
∞∑
i=0

(1− s)i

=
2(1− s)k−1

s
.

The second inequality follows because of estimate (12). 2

We can now improve the estimate for the variance (where n,K only appear in the
exponent):

0 < Var(|Z|)

<

n∑
v2=K+2

(1− s)(v2−K−1)(n−v2+1) + 2
∑

K+2≤v1<v2≤n
(1− s)(v1−K−1)(n−v1+1)+(v2−v1)(n−v2+1)

<

n−K−1∑
i=1

(1− s)i(n−K−i) + 2
∑

K+2≤v1≤n

(
(1− s)(v1−K−1)(n−v1+1)

n−v1∑
i=1

(1− s)i(n−v1−i+1)

)

<
2

s
(1− s)(n−K−1) +

4

s

∑
K+2≤v1≤n

[
(1− s)(v1−K−1)(n−v1+1)(1− s)n−v1

]
(Lemma 1)

=
2

s
(1− s)(n−K−1) +

4

s(1− s)

n−K∑
i=2

(1− s)i(n−K−i+1)

<
2

s
(1− s)(n−K−1) +

4

s(1− s)
(
2

s
− 1)(1− s)n−K (Lemma 1)

=

(
8

s2
− 2

s

)
(1− s)n−K−1.

For example, with s = 0.2, n = 35, K = 2, the estimate yields
(

8
s2 −

2
s

)
(1 −

s)n−K−1 = 0.15. With s = 0.3, n = 25, K = 2, we get
(

8
s2 −

2
s

)
x(1 − s)n−K−1 =

0.03.

Fig. 2 shows that the standard deviation (and hence the variance) of |Z| has a
maximum when s is close to zero. Fixing n and K, consider Var(|Z|) as a function
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f(t) of 1− s, let τ(k) = ktk, and rewrite Var(|Z|) as:

Var(|Z|) = f(t) =
n∑

v=K+2

t(v−K−1)(n−v+1) −
n∑

v=K+2

t2(v−K−1)(n−v+1)+

+ 2
∑

K+2≤v1<v2≤n
t(v1−K−1)(n−v1+1)+(v2−v1)(n−v2+1)−

− 2
∑

K+2≤v1<v2≤n
t(v1−K−1)(n−v1+1)+(v2−K−1)(n−v2+1).

Taking the derivative of f(t), we have:

f ′(t) = t−1

 n∑
v=K+2

τ((v −K − 1)(n− v + 1))−
n∑

v=K+2

τ(2(v −K − 1)(n− v + 1)) +

+ 2
∑

K+2≤v1<v2≤n
τ
(
(v1 −K − 1)(n− v1 + 1) + (v2 − v1)(n− v2 + 1)

)
−

−2
∑

K+2≤v1<v2≤n
τ((v1 −K − 1)(n− v1 + 1) + (v2 −K − 1)(n− v2 + 1))

 .

Consider the derivative of τ with respect to k, τ ′(k) = (ktk)′ = tk(1 + k ln(t)),
and take for example k ≥ 20 and t ≤ 0.95. We have (1+k ln(t)) ≤ 1+20 ln(0.95) =
−0.026 < 0. Therefore, when t < 0.95, τ(k) is a decreasing function on the set
{k | k ≥ 20}. It means that, whenever n−K − 1 ≥ 20, τ((v −K − 1)(n− v + 1)) ≥
τ(2(v−K − 1)(n− v+ 1)) for each v ∈ {K + 2, . . . , n}, and τ((v1 −K − 1)(n− v1 +
1)+(v2−v1)(n−v2 +1)) ≥ τ((v1−K−1)(n−v1 +1)+(v2−K−1)(n−v2 +1)) for
each v1 < v2 ∈ {K+2, . . . , n}, since all values under τ are at least 20. We therefore
have that f ′(t) ≥ 0 for all t < 0.95, i.e., whenever s ∈ [0.05, 1], Var(|Z|) decreases
as s increases. In other words, the maximum of Var(|Z|) can only be attained on
[0, 0.05].

We can generalize this example to the following result.

Lemma 2 For fixed n,K, the maximum of Var(|Z|) can only be attained at s ∈
[0, 1

n−K−1 ].

Proof We have

τ ′(k) < 0⇔ 1 + k ln(t) < 0⇔ ln(
1

t
) >

1

k
⇔ 1

t
> e1/k ⇔ t < e−1/k ⇔ s > 1− e−1/k.

Since

e−1/k = 1− 1

k
+

1

2!k2
− 1

3!k3
+ . . . > 1− 1

k
,

we have 1−e−1/k < 1
k . Therefore, if s > 1

k we have τ ′(k) < 0. So, when s > 1
n−K−1 ,

we have τ ′(k) < 0 for all k ≥ n−K−1. Now the same argument as in the example
above shows that Var(|Z|) decreases on the set [ 1

n−K−1 ,∞). 2
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2.3.4 Computing DEMI measures in practice

We believe we made a convincing argument that we can safely use Alg. 1 to
solve DEMI instances. There is, however, a glitch: none of the PDB instances we
consider actually comes with a pre-defined cTOP order. For some of them, the
protein backbone is a cTOP order. For others this is not the case. The state of
the art in automatically finding cTOP orders in graphs is severely limited [17],
and certainly does not scale to hundreds of vertices easily. Thus the DEMI measure

∂(x, y) of a realization x with respect to a given realization y will not be computed
for all instances we test in Sect. 5, but only for some (see Table 10).

3 New and existing i DGP formulations

All formulations we consider are box-constrained to bounds x ∈ [ML,MU ]Kn,
which have to be large enough to accommodate a worst-case realization with the
given distances. One could take for example ML = −1

2

∑
{u,v}∈E Uuv and MU =

−ML, and then tighten these bounds using some pre-processing techniques [9].
We do not write these bounds explicitly in the formulations below. Notationwise,
M = [ML,MU ]m and M+ = M ∩ [0,+∞].

Most formulations come with variants. A common variant, which we refer to
as the square root variant, is the following: replace ‖xu − xv‖22 by ‖xu − xv‖2 and
squared distance bounds by distance bounds. In such variants, because of floating
point issues,

√
α is implemented as

√
α+ δ, where δ is a constant in O(10−10).

In all of our formulations, aside from the semidefinite programming (SDP)
ones, we fix the centroid at the origin, which means that we find solutions modulo
translations. This seems to improve the overall reliability and convergence speed
of the heuristic solution algorithms we use. It is interesting that this ceases to be
the case if we also impose no rotation by fixing the first K vertices, in which case
the algorithms find much worse local optima.

3.1 Validation

With each formulation, we present performances and results on a single PDB
instance called tiny, which describes a graph Gtiny = (V,E) with |V | = 37, |E| =
335 and K = 3. Fig. 3 shows a heat map of the partial Euclidean Distance Matrix
(pEDM) and the correct realization (found in the PDB file) in RK using two types
of plots.

These validation experiments consist in solving the tiny instance using three
different Global Optimization (GO) methods. The first method is a deterministic
GO solver based on spatial Branch-and-Bound (sBB) [9], which we run for at most
900s. The second method is a stochastic matheuristic called Variable Neighbour-
hood Search (VNS), described in [32] with some adaptations from [41]. The third
method is a straightforward MultiStart (MS) algorithm, which is possibly the sim-
plest stochastic metaheuristic, and consists of deploying a certain number of local
descents from randomly sampled initial points. Both VNS and MS were allowed
to run for at most 20s of user CPU time (but terminated whenever they found an
optimum with average error less than 10−6). The results report the average edge
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Fig. 3 The tiny instance: a heat map of the pEDM (upper left) and the correct realization
in RK shown by the Jmol molecular visualization software (lower left) and in a Euclidean
space plot, using the natural vertex order (right). The axes of the two 3D plots are not aligned
to minimize overlap. The atom which appears disconnected in the Jmol plot corresponds to
vertex 28 in the Euclidean plot, and the nine atoms in a pentagonal arrangement correspond
to vertices 29-37.

error Φ (see Eq. (5)), the maximum edge error Ψ (see Eq. (6)), the DEMI measure
∂, and the CPU time in seconds. All statistics referring to stochastic algorithms
are averaged over 10 runs.

These validation experiments were conducted on a single core of a two-core Intel
i7 CPU running at 2.0GHz with 8GB RAM under the Darwin Kernel v. 13.3.0.
Our sBB solver of choice is Couenne [9] in its default setting. We used AMPL [23]
to implement the VNS and MS algorithm, and Ipopt [18,54] as a local solver. The
SDP formulations were modelled using YalMIP [42] running under MATLAB [45]
and solved using Mosek [48].

The point of these preliminary experiments is to visually show how the DEMI
error measure ∂ impacts structural differences versus floating point errors. Each
3D plot contains two realizations (seen from the angle which best emphasizes their
differences): the trusted solution found in the PDB, and the output of the corre-
sponding algorithm. Floating point errors can be remarked when two realizations
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are almost aligned but not quite superimposed. Structural errors are evident when
no alignment is visible.

3.2 Exact formulations

These formulations will yield a valid realization at every global optimum.

3.2.1 Penalty minimization

This formulation minimizes the sum of non-negative penalties suv deriving from
the fact that ‖xu − xv‖2 is smaller than Luv or larger than Uuv:

min
s∈M+,x

∑
{u,v}∈E

suv

∀{u, v} ∈ E L2
uv − ‖xu − xv‖22 ≤ suv

∀{u, v} ∈ E ‖xu − xv‖22 − U2
uv ≤ suv

∀k ≤ K
∑
v∈V

xvk = 0.

 (13)

Variants: (i) replace
∑

with max; (ii) use different variables sL, sU to represent
penalties w.r.t. L,U ; (iii) replace the objective by any positive linear form in the
penalty variables.

This formulation and its variants have the property that an optimum is global
if and only if the objective function value is identically zero. An unconstrained
and weighted version of this formulation appeared in [47]. The performance of the
penalty minimization formulation and its variants on the tiny instance is shown
in Table 1.

3.2.2 Square factoring

This formulation has been adapted to the interval case from [20]. It exploits the
identity ‖xu − xv‖22 = (xu − xv)(xu − xv):

min
x,σ∈MK ,τ∈MK

∑
{u,v}∈E

∑
k≤K

(σuvk − τuvk)2

∀{u, v} ∈ E, k ≤ K xuk − xvk = σuvk
∀{u, v} ∈ E

∑
k≤K

σuvkτuvk ≥ L2
uv

∀{u, v} ∈ E
∑
k≤K

σuvkτuvk ≤ U2
uv

∀k ≤ K
∑
v∈V

xvk = 0.


(14)

We propose no variants for this formulation. The performance of the square
factoring formulation on the tiny instance is shown in Table 2.

3.3 Relaxations

These are formulations which relax some feasibility constraints. The obtained so-
lution may or may not be a valid (feasible) solution to the given instance. One
should always therefore verify that the solution satisfies (2). On the other hand,
if a relaxation is infeasible, then so must be the original i DGP instance.
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Original Var. (i) Var. (ii) Var. (iii)
Solver Φ Ψ CPU Φ Ψ CPU Φ Ψ CPU Φ Ψ CPU
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Table 1 Performance of penalty minimization on tiny. For each solver and formulation
(variant), we report the edge errors Φ, Ψ , the CPU time, a 3D plot of the solution xtiny
given in the PDB file versus the solution xDEMI found by solving the DEMI instance with
x = xtiny and y given by the solution of the solver, and the corresponding DEMI measure
∂(x, y) = min

g,ρ
‖x− gρ(y)‖.
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Table 2 Performance of square factoring on tiny. For each solver, we report the edge errors
Φ, Ψ , the CPU time, a 3D plot of the solution xtiny given in the PDB file versus the solution
xDEMI found by solving the DEMI instance with x = xtiny and y given by the solution of the
solver, and the corresponding DEMI measure ∂(x, y) = min

g,ρ
‖x− gρ(y)‖.
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3.3.1 Convexity and concavity

This formulation, adapted to the interval case from [20], exploits the convexity
and concavity of the equations in Eq. (3) separately:

max
x

∑
{u,v}∈E

‖xu − xv‖22

∀{u, v} ∈ E ‖xu − xv‖22 ≤ U2
uv

∀k ≤ K
∑
v∈V

xvk = 0.

 (15)

Variants: replace the objective with a positively weighted version thereof.
Eq. (15) is an exact reformulation (in the sense of [31]) of

min
x

∑
{u,v}∈E

(‖xu − xv‖2 − U2
uv)2, (16)

which is possibly the best known Mathematical Programming (MP) formulation of
the (non-interval) DGP so far. That Eq. (16) and Eq. (15) have the same solutions
can be intuitively visualized the edges {u, v} of the underlying graph G as a set
of interconnected cables, each of length Uuv: the objective of Eq. (15) “pulls”
the adjacent vertices u, v apart as far as possible. As a result, all cables can be
straightened if and only if the DGP has a valid solution. A formal proof of this
fact is given elsewhere [40].

If the given instance is an i DGP one, however, Eq. (15) is a relaxation of
the lower bounding constraints: by attempting to maximize the distance between
adjacent points, one hopes that ‖xu−xv‖2 ≥ Luv will hold, but this need not nec-
essarily be the case. The performance of the convexity and concavity formulation
and its variants on the tiny instance is shown in Table 3.

3.3.2 Semidefinite programming relaxation

This is a natural SDP relaxation, similar to many which already appeared in the
literature, where ‖xu − xv‖22 is linearized to Xuu +Xvv − 2Xuv:

max
X�0

∑
{u,v}∈E

(Xuu +Xvv − 2Xuv)

∀{u, v} ∈ E Xuu +Xvv − 2Xuv ≥ L2
uv

∀{u, v} ∈ E Xuu +Xvv − 2Xuv ≤ U2
uv,

 (17)

where X � 0 means that X is required to be positive semidefinite. Several SDP
formulations for the DGP have been proposed in the literature over the years, see
e.g. [56,1,13,14]. Our formulation, which addresses the i DGP, is directly inspired
by those in [12], since it employs a linearization of the constraints in Eq. (3). As
objective function, we employ a linearization of

∑
{u,v}∈E ‖xu − xv‖2, which is

unusual. We observed empirically that this yields a good performance on datasets
arising from protein conformation.

Variants: replace the objective with min Tr(X) as a proxy to rank minimization
[15]. The performance of the SDP relaxation and its variant on the tiny instance
is shown in Table 4.
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Original Var. (i)
Solver Φ Ψ CPU Φ Ψ CPU
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Table 3 Performance of convexity and concavity on tiny. For each solver and formulation
(variant), we report the edge errors Φ, Ψ , the CPU time, a 3D plot of the solution xtiny
given in the PDB file versus the solution xDEMI found by solving the DEMI instance with
x = xtiny and y given by the solution of the solver, and the corresponding DEMI measure
∂(x, y) = min

g,ρ
‖x− gρ(y)‖.
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Original Var. (i)
Solver Φ Ψ CPU Φ Ψ CPU
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Table 4 Performance of semidefinite programming on tiny. For each formulation (variant),
we report the edge errors Φ, Ψ , the CPU time, a 3D plot of the solution xtiny given in the PDB
file versus the solution xDEMI found by solving the DEMI instance with x = xtiny and y given
by the solution of the solver, and the corresponding DEMI measure ∂(x, y) = min

g,ρ
‖x− gρ(y)‖.

3.3.3 Yajima’s SDP relaxation

This formulation was proposed in [56]. The term 2
∑
{u,v}∈E Xuv added to the

objective function is equal to Tr(1X) (where 1 is the all-one matrix) and has a
regularization purpose, ensuring that Tr(1X) = 0 and hence that rk(X) ≤ n− 1.

min
s∈M+,X�0

∑
{u,v}∈E

(suv − (Xuu +Xvv − 2Xuv) + L2
uv) + 2

∑
{u,v}∈E

Xuv

∀{u, v} ∈ E (Xuu +Xvv − 2Xuv)− L2
uv ≤ suv

∀{u, v} ∈ E 2(Xuu +Xvv − 2Xuv)− L2
uv − U2

uv ≤ suv

 (18)

We propose no variants for this formulation. The performance of Yajima’s SDP
relaxation on the tiny instance is shown in Table 5.

3.4 A pointwise reformulation

Pointwise reformulations are only exact for a specific set of values assigned to
certain parameters. Typically, replacing variables or entire terms by parameters
makes it possible to obtain formulations for which there exist very efficient solution
methods. This reformulation will be used in a stochastic search setting (see Sect. 4
below) where the global search phase occurs over the parameter values.

We replace the term (xuk − xvk)2 = (xuk − xvk)(xuk − xvk) by a linear term
θuvk(xuk − xvk) whenever it occurs in Eq. (3) and (15) in a nonconvex way:

max
x

∑
{u,v}∈E

∑
k≤K

θuvk(xuk − xvk)

∀{u, v} ∈ E ‖xu − xv‖22 ≤ U2
uv

∀{u, v} ∈ E
∑
k≤K

θuvk(xuk − xvk) ≥ L2
uv.

 (19)
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Original
Solver Φ Ψ CPU
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Table 5 Performance of Yajima’s SDP on tiny. We report the edge errors Φ, Ψ , the CPU
time, a 3D plot of the solution xtiny given in the PDB file versus the solution xDEMI found
by solving the DEMI instance with x = xtiny and y given by the solution of the solver, and
the corresponding DEMI error ∂(x, y) = min

g,ρ
‖x− gρ(y)‖.

It should be clear that for each solution x∗ of Eq. (3), there is a parameter matrix
θ∗ ∈ RmK such that x∗ is a feasible solution of Eq. (19): it suffices to choose
θ∗uvk = (x∗uk − x

∗
vk) for each {u, v} ∈ E and k ≤ K. Note that Eq. (19) is a convex

MP, and can therefore be solved efficiently. We let PtwCvx(θ) be the solution of
Eq. (19) with input parameters θ.

4 A new i DGP algorithm

In this section we discuss an adaptation to the i DGP of the well-known MWU
method [4]. As explained in [4], the MWU is in fact a meta-algorithm: it has been
rediscovered along the years applied to many different optimization problems.
Differently from most meta-heuristics, the MWU is as much a theoretical tool
as a practical method, insofar as it provides a “generic” asymptotic performance
guarantee which works for all problems where the MWU applies. The performance
guarantee proof can be modified according to the specific features of the given
problem to yield theoretical results. Among the problems listed in [4], possibly
the most interesting for the GO community are the Plotkin-Shmoys-Tardos LP
feasibility approximation algorithm [50] and the SDP approximation algorithm in
[3].

The MWU is applied to a multi-iteration setting over a given horizon {1, . . . , T}
where, at each iteration t ≤ T , m “advisors” express an opinion about a certain
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decision. The advisors’ opinion yield a gain/loss vector ψt = (ψti | i ≤ m) in
[−1, 1]m. The MWU method associates a discrete distribution ρt = (ρti | i ≤ m) on
the advisors, which is updated using the rule

ωti = ωt−1
i (1− ηψt−1

i ) (20)

for each t > 1, where ρti =
ωt

i∑
` ω

t
i

and η ≤ 1
2 is a user-defined parameter. This

distribution essentially measures the reliability of each advisor. The method then
stochastically takes the decision given by advisor i with probability ρti. The average
gain/loss made by MWU is therefore given by the weighted average Ωt = ψt · ρt.
It is shown in [4] that the following bound holds:∑

t≤T
Ωt ≤

∑
t≤T

ψt` + η
∑
t≤T
|ψt`|+

lnm

η
, (21)

where ` is the index of the best advisor on average over all iterations. For fixed
m and T → ∞, Eq. (21) states that the cumulative gain/loss made by the MWU
method is bounded by a (piecewise) linear function of the gain/loss made by the
best advisor, which is somewhat counterintuitive, given that ` is not known in
advance.

4.1 The MWU method in the i DGP setting

We now reinterpret the MWU method in the setting of the i DGP, which aims
to solve the problem via the pointwise reformulation Eq. (19). Consider a loop
over T iterations: the convex pointwise reformulation Eq. (19) is solved at each
iteration and efficiently yields a candidate realization x̄. This is then refined using
x̄ as a starting point to a local Nonlinear Programming (NLP) solver applied to
the penalty minimization formulation of Eq. (13), which yields a current iterate x.

We now explain how x is used to stochastically update θ at iteration t ≤ T

along the lines of the MWU method (see the summary in Fig. 4):

– let (Duv) = (‖xu − xv‖ | u, v ∈ V ) be the distance matrix corresponding to x;
– for each {u, v} ∈ E and t ≤ T , let:

ψtuv =
αuv

max
{w,z}∈E

αwz
(22)

be the relative error of D with respect to [L,U ], where αuv is defined in Eq. (4)
— note that ψt is a scaled edge error vector with every component in [0, 1];

– for each {u, v} ∈ E and 1 < t ≤ T let

ωtuv = ωt−1
uv (1− ηψt−1

uv ); (23)

– let θuvk be a random value sampled from the uniform distribution on [0, ωuv(xuk−
xvk)].

We remark that the distribution ρt is defined in terms of the edge weights ωt:

ρtuv =
ωtuv∑

{w,z}∈E
ωtwz

. (24)

The MWU method applied to the i DGP is given as Alg. 2.
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θ x

Dψt

x = PtwCvx(θ)

D = EDM(x)
error

ψtuv = αuv
maxwz αwz

scaled error

θuvk ∼ [0, ωtuvψ
t
uv(xuk − xvk)]

ωt updated as per Eq. (23)

Fig. 4 The update of θ from a candidate realization x at each iteration t of the MWU method.
The oracle PtwCvx(θ) solves the pointwise reformulation Eq. (19) parametriezd with θ, and
uses the solution as a starting point to a local NLP algorithm solving an exact formulation of
the i DGP, say Eq. (13).

Algorithm 2 MultiplicativeWeightsUpdate(η, T )

1: let ω0 = 1
2: let x be the output of a local NLP solver applied to Eq. (13)
3: let x′ = x be the best solution so far
4: for t ≤ T do
5: derive θ from x as explained above
6: compute a new candidate realization x̄ = PtwCvx(θ)
7: let x be the solution returned by a local NLP solver on Eq. (13) with x̄ as starting point
8: if x is an improvement with respect to x′ according to the average error Ωt, let x = x′

9: end for

4.2 The MWU approximation guarantee for the i DGP

One specific feature of the i DGP is that the “advisors” never yield gains but only
a cost vector ψt having components in [0, 1]. This allows us to prove the following
result:

Proposition 2 After T iterations of the MWU method, the following relationship

holds:

min
t≤T

Ωt ≤ 1

T

 lnm

η
+ (1 + η) min

{u,v}∈E

∑
t≤T

ψtuv

 . (25)

Proof By Line 8 in Alg. 2, min
t≤T

Ωt is the per-edge error (weighted by the distribution

pt) associated to x′. From Eq. (21), because ψtuv ≥ 0 for all {u, v} ∈ E, t ≤ T , we
get ψtuv = |ψtuv|, whence, by definition of ` in Eq. (21):∑

t≤T
Ωt ≤ (1 + η) min

{u,v}∈E

∑
t≤T

ψtuv +
lnm

η
.
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Since x′ is the realization with lowest error over all t ≤ T , then T min
t≤T

Ωt ≤
∑
t≤T

Ωt,

which implies:

T min
t≤T

Ωt ≤ (1 + η) min
{u,v}∈E

∑
t≤T

ψtuv +
lnm

η
.

Dividing through by T yields the result. 2

We remark that the RHS of Eq. (21) is the average weighted error of the best
realization found by the MWU in T iterations. Prop. 2 states that this error is in
the order of a linear function of the smallest scaled error (see Eq. (22)) over all
edges.

4.3 Pointwise reformulation feasibility

Although the pointwise reformulation is exact for a certain value of θ, it may fail
to even be feasible for certain other values of θ. Since this would be an issue for
the MWU method, we further relax it to the following (always feasible) form:

max
x,s

∑
{u,v}∈E

( ∑
k≤K

θuvk(xuk − xvk)− suv

)
∀{u, v} ∈ E ‖xu − xv‖22 ≤ U2

uv

∀{u, v} ∈ E
∑
k≤K

θuvk(xuk − xvk) ≥ L2
uv − suv

s ≥ 0.


(26)

5 Computational assessment

The aim of this section is to present results obtained by four solvers (MS, VNS,
MWU, and Mosek) over 19 different formulations, for each of 61 i DGP instances.
Since not every solver can be applied to every formulation, and sometimes errors
are generated for combinations of solver+formulation with some of the instances,
the number of measure vectors is less than 4× 19× 61.

5.1 Solver+formulation combinations

More precisely, we apply MS and VNS to Eq. (13) and its 4 variants (the square
root variant and 3 explicitly listed ones), Eq. (14) and its square root variant,
Eq. (15) and its positively weighted objective function variant, for a total of 9
formulations. We apply MWU to Eq. (19), and Mosek to Eq. (17) and its trace
variant, and to Eq. (18). We therefore consider 22 different solver+formulation
combinations.

Unlike in the validation experiments, we did not consider the sBB solver as
most instances are excessively difficult. The rest of the solver set-up is the same.
The solvers MS, VNS, MWU, which are all implemented in AMPL, solve NLP
subproblems at each iteration using the local NLP solver Ipopt. The SDP formu-
lations were modelled using YalMIP running under MATLAB and solved using
Mosek. Like the validation experiments, all results were obtained on an Intel i7
CPU running at 2.0GHz with 8GB RAM under the Darwin Kernel v. 13.3.0.
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5.2 User-configurable parameters

Each of the MP solvers was given at most 20s of user CPU time, excluding the time
taken by Ipopt. Each call to Ipopt was also limited to 20s; however, the Ipopt

documentation warns that its stopwatch is not checked regularly, but only after
certain operations, which on certain instances appear to take place very rarely.
This is apparent in Table 9, where many solvers exceed the 20s CPU time limit.
Mosek was given no time limit, since we wanted to find the optimal solution of
the SDP.

All tolerances in the AMPL code were set to 1×10−6. Ipopt was used in its de-
fault configuration. The VNS maximum neighbourhood radius and the maximum
number of local searches deployed in each neighbourhood were both set to 5. The
η parameter in MWU was set to 0.5 (its maximum value) after some preliminary
testing. Mosek was used in its default configuration.

5.3 Instances

Instances were obtained from a selection of PDB files by extracting all the atomic
coordinates, computing all of the inter-atomic distances, and discarding all those
distances exceeding 5Å (so as to mimic NMR data). More precisely, covalent bonds
and angles are known fairly precisely; since each covalent angle is incident to two
covalent bonds, the remaining side of the triangle they define can also be com-
puted precisely. Other known distances can be found through NMR experiments,
which yield an interval measurement. We extracted the protein backbone from
each considered PDB dataset, computed all precise distances, and then we replace
all other distances duv smaller than 5Å by the interval [duv−0.1duv, duv + 0.1duv].

The mean pruning group generator size |Z| over the test instances is 1.78
and the standard deviation is 4.92, but this is due to a single outlier with |Z| =
34. Removing the outlier, we have mean |Z| 1.04 and standard deviation 0.30,
consistent with Sect. 2.3.2. The sparsity of the pruning edges over the test instances
is 0.14.

Table 6 reports the instance names, their sizes, and whether they are classified
as easy or hard (last column), see Sect. 5.5.

5.4 Weeding out obvious losers

Not every combination of solver and formulation variant is worth considering.
Those which find a solution with high average edge error Φ and/or maximum edge
error Ψ should be excluded. We proceeded to record Φ, Ψ , and seconds of user CPU
time for every combination on every instance, and we computed the average values
(over all instances) of Φ, Ψ , and CPU time.

The statistics for the MS, MWU, and VNS solvers are shown in Fig. 5 (more
precisely, if µ is an average, we plotted log(1 + µ)). All variants involving square
roots perform really poorly in terms of edge errors. The statistics for the Mosek

solver, limited to instances where n ≤ 200 because of RAM limitations, are given
below.
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Fig. 5 Histogram plots of the statistic log(1 + µ) whenever µ is the average of Φ (top),
Ψ (middle), and CPU time (bottom) over all instances, for each relevant combination of
solver+formulation, with “solver” in MS (left), MWU (middle) and VNS (right).

Formulation Φ Ψ CPU

sdprel 0.037 0.516 51
sdprel1 0.123 0.678 45

yajima 0.113 0.717 45

The relevant figure in this table is that the SDP relaxation sdprel has much lower
average edge error than the other formulations, lower maximum error, and slightly
higher CPU time.
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These tests show that, on average, the SDP trace variant, Yajima’s relaxation,
and all square root variants are not worth considering. The reason why introducing
square roots results in performance losses may be related to the use of the same
local subsolver (Ipopt) within all global optimization solver, since it carries out
most floating point computations.

A remark about Yajima’s relaxation: although it was introduced specifically
for the i DGP, it was originally solved using an ad-hoc interior point method. Even
though our results show it underperforms on average with respect to Mosek, this
does not negate the (good) results reported in [56].

We call bad the solver+formulation combinations we excluded, and good the
rest. The good combinations are shown below, marked by a “1” in the correspond-
ing entry.

Formulation Solver

Description Notation Name MS MWU VNS Mosek

(13) (13) Idgp1 1 1
(13) variant (i) (13).1 Idgp1var1 1 1
(13) variant (ii) (13).2 Idgp1var2 1 1
(13) variant (iii) (13).3 Idgp1var3 1 1
(14) (14) Idgp3 1 1
(15) (15) Idgp4 1 1
(15) variant (i) (15).1 Idgp4var1 1 1
(19) (19) Imwu 1
(17) (17) sdprel 1

5.5 Focusing on the hard instances

We also make a qualitative distinction between easy and hard instances. We call
an instance easy if at least one third of the good combinations find a solution
with Φ, Ψ approximately zero within 1s of user CPU time, and hard the rest. The
classification is reported in the last column of Table 5: hard instances are marked
“H”. We marked H∗ the instances which are “borderline hard”, i.e., there is at
least one good combination which finds a solution with Φ, Ψ approximately zero
within 1s of user CPU time.

The computational results below will focus on the hard instances for Φ, Ψ ;
because of excessive computational requirements, however, we shall relax this con-
straint for the results on the DEMI measure ∂.

5.6 Testing heuristics without averages

When benchmarking heuristic algorithms, such as MS, VNS, or MWU, it is cus-
tomary to present results based on a number of runs (the higher the better) of
the same instance. Because of the complexity of this computational comparison,
and the absolute time taken to perform it, it was ungainly for us to multiply this
effort by a significant factor (say 10 or 100). Does this mean that our results are
unreliable? Though it could be argued that the instance-by-instance results are
in fact unreliable, as can be gleaned by the difference in ∂ measure for the tiny

instance in Sect. 3 and those in Table 10, we think the averages (reported in Tables
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7-10) are not. Since we never claim in our computational comparisons that one
method is best for a certain instance, but only suggest first and second best over
all tested instances, we think our computational benchmark is significant.

5.7 Comparative results on edge errors and CPU

In this section we discuss an overarching comparison yielding an overall “winner”.
Our most meaningful measure, if Φ and Ψ are nonzero, is the DEMI measure ∂(·, y),
where y is a given solution of the KDMDGP instance being solved. By Sect. 2.3.4,
however, we are not able to compute it for every instance, and hence we focus
on Φ, Ψ for our global comparison, and only look at δ on a subset of instances
(Sect. 5.8).

Tables 7-9 report the average edge errors Φ, the maximum edge error Ψ , and
the CPU time taken by the good combinations when solving hard instances. We
remark that the MWU algorithm is best with respect to the edge errors Φ and
Ψ , and the worst with respect to CPU time. However, since CPU time is of least
consequence in protein conformation computations, CPU time information has a
much lower priority than solution quality. We can therefore make the following
claim.

The MWU algorithm is the best solver on average.

Given the consequential CPU time difference between MWU and the other solvers,
it is worth ranking the solver+formulation combinations by Φ, Ψ , and CPU time
(see below).

Rank Φ Ψ CPU
1 mwu+Imwu 0.029 mwu+Imwu 1.111 vns+Idgp1var1 41.53
2 ms+Idgp1var2 0.031 ms+Idgp1var1 1.237 ms+Idgp1var1 55.11
3 vns+Idgp1 0.032 vns+Idgp1var1 1.259 ms+Idgp4var1 96.85
4 vns+Idgp1var2 0.032 ms+Idgp3 1.265 vns+Idgp4var1 99.05
5 ms+Idgp1 0.033 mosek+sdprel 1.267 vns+Idgp4 105.70
6 vns+Idgp1var3 0.045 vns+Idgp3 1.281 ms+Idgp1var3 107.41
7 ms+Idgp4 0.046 ms+Idgp1var2 1.560 vns+Idgp1var3 108.15
8 ms+Idgp1var3 0.047 vns+Idgp1 1.752 ms+Idgp1var2 108.63
9 vns+Idgp4 0.047 ms+Idgp1 1.828 ms+Idgp1 109.26

10 ms+Idgp3 0.048 vns+Idgp1var2 1.849 vns+Idgp1var2 109.83
11 vns+Idgp4var1 0.049 ms+Idgp1var3 1.939 ms+Idgp4 111.16
12 ms+Idgp4var1 0.052 vns+Idgp1var3 2.007 vns+Idgp1 113.35
13 vns+Idgp3 0.064 vns+Idgp4var1 2.027 vns+Idgp3 146.98
14 mosek+sdprel 0.078 ms+Idgp4var1 2.028 ms+Idgp3 170.79
15 vns+Idgp1var1 0.129 ms+Idgp4 2.064 mosek+sdrel 472.82
16 ms+Idgp1var1 0.147 vns+Idgp4 2.140 mwu+Imwu 27669

This ranking shows that mwu+Imwu has the only consistent ranking in both Φ

and Ψ . It also shows that no other solver+formulation combination has the same
desirable property of approximately equal rank w.r.t. both Φ and Ψ . The issue
is not only relative: values of Φ higher than 0.1 and of Ψ higher than 1.5 may
well imply that the realization is fundamentally wrong, and the only combinations
with Φ < 0.1 and Ψ < 1.5 are ms+Idgp3, vns+Idgp3, mosek+sdprel. However, the
statistics for the latter were computed on a subset of instances (all those with
n ≤ 200) due to the high RAM requirements of Mosek when applied to large
instances (see Sect. 5.4). Based on these observations, we claim that:
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the formulation Idgp3 in Eq. (14), when used with MS or VNS, is

second best.

We observe that the usual trade-off between quality and efficiency is also at play:
solving Eq. (14) takes longest over all formulations solved by both MS and VNS.

5.8 Results on DEMI

Table 10 reports the results on the DEMI measure. Note that the instances in
the test set are not the same as for the tests on Φ, Ψ , and CPU (Tables 7-9). As
mentioned in Sect. 2.3.4, it is not always possible to determine a cTOP order
automatically (or disprove that one exists) in acceptable amounts of CPU time,
which is a requirement for computing the DEMI measure. Table 10 includes all
instances for which this task could be carried out within 150s of CPU time.

Although it is clear that the SDP relaxation Eq. (17) scores the best perfor-
mance in terms of the DEMI measure, we mentioned above that the Mosek solver
is unable to scale up to desired sizes. We must therefore resort to the second best,
which happens to be the MWU algorithm, consistently with Sect. 5.7. We also
observe that VNS attains lower average DEMI measure values more often than
MS.

We recall that the DEMI measure values for tiny differ from those given in
Sect. 3 for the reasons given in Sect. 5.6.

6 Conclusion

Our main aim is to find the best general-purpose continuous search methods for
solving i DGP instances. To answer this question, we need: (i) a set of benchmark-
ing measures; (ii) a set of i DGP formulations; (iii) a set of methods; (iv) extensive
computational results. Since a preliminary study [33] showed that two standard
metaheuristics and the existing benchmark measures were insufficient, we decided
to introduce a new measure and a new method.

Accordingly, this paper presents several notions: (a) a coordinate root mean
square deviation modulo partial reflections (called DEMI measure), for bench-
marking the performance of i DGP algorithms on protein isomers; (b) a zoo of
mathematical programming formulations for the i DGP; (c) a new method for solv-
ing the i DGP, based on the well-known Multiplicative Weights Update (MWU)
algorithm; (d) a complex computational benchmark for the best formulation-based
methods on the hardest instances.

Our study shows that, on average:

– the new MWU-based heuristic yields i DGP solutions of highest quality with
respect to existing measures;

– the Square Factoring formulation in Eq. (14) is second best;
– as concerns the new DEMI measure, the SDP relaxation in Eq. (17) is best,

but only on a limited set of instances, whereas the MWU-based heuristic is
second best.

Future research directions for the topics presented in this paper include: (i) the
algorithmic exploitation of the DEMI measure for more effective pruning within
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the Branch-and-Prune algorithm; (ii) the insertion of a limited diving device within
the Branch-and-Prune: instead of branching in order to find possible positions of
the next atom in the order, it would be desirable to realize a considerable number
of successive atoms by means of one of the continuous methods presented in this
paper.

Acknowledgments

We are grateful two the Editor-in-Chief for simplifying a technical argument, and
to two anonymous referees for helping us improve this paper. The second au-
thor (VKK) is supported by a Microsoft Research PhD Fellowship. The third
author (CL) is grateful to the Brazilian funding agencies FAPESP and CNPq for
financial support. The fourth author (LL) is partly supported by the ANR grant
“Bip:Bip” under contract ANR-10-BINF-0003. The fifth author (NM) is grateful
to the Brazilian funding agencies FAPERJ and CNPq for financial support.

References

1. A. Alfakih, A. Khandani, and H. Wolkowicz. Solving Euclidean distance matrix completion
problems via semidefinite programming. Computational Optimization and Applications,
12:13–30, 1999.

2. H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity and symmetries
of geometric objects. Discrete Computational Geometry, 3:237–256, 1988.

3. S. Arora, E. Hazan, and S. Kale. Fast algorithms for approximate semidefinite program-
ming using the multiplicative weights update method. In Foundations of Computer Sci-
ence, volume 46 of FOCS, pages 339–348. IEEE, 2005.

4. S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing, 8:121–164, 2012.

5. M. Atkinson. An optimal algorithm for geometrical congruence. Journal of Algorithms,
8:159–172, 1987.

6. A. Bahr, J. Leonard, and M. Fallon. Cooperative localization for autonomous underwater
vehicles. International Journal of Robotics Research, 28(6):714–728, 2009.

7. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry. Springer, New
York, 2006.

8. N. Beeker, S. Gaubert, C. Glusa, and L. Liberti. Is the distance geometry problem in NP?
In Mucherino et al. [49].

9. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tightening
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32. L. Liberti and M. Dražic. Variable neighbourhood search for the global optimization of
constrained NLPs. In Proceedings of GO Workshop, Almeria, Spain, 2005.

33. L. Liberti and C. Lavor. Solving large-scale distance geometry problems exactly versus
approximately. In Optimization Society, Proceedings of the Annual Conference, Houston,
2014. INFORMS.

34. L. Liberti, C. Lavor, J. Alencar, and G. Abud. Counting the number of solutions of
kDMDGP instances. In F. Nielsen and F. Barbaresco, editors, Geometric Science of
Information, volume 8085 of LNCS, pages 224–230, New York, 2013. Springer.

35. L. Liberti, C. Lavor, and N. Maculan. A branch-and-prune algorithm for the molecular
distance geometry problem. International Transactions in Operational Research, 15:1–17,
2008.

36. L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean distance geometry and
applications. SIAM Review, 56(1):3–69, 2014.

37. L. Liberti, C. Lavor, and A. Mucherino. The discretizable molecular distance geometry
problem seems easier on proteins. In Mucherino et al. [49].

38. L. Liberti, C. Lavor, A. Mucherino, and N. Maculan. Molecular distance geometry meth-
ods: from continuous to discrete. International Transactions in Operational Research,
18:33–51, 2010.

39. L. Liberti, B. Masson, C. Lavor, J. Lee, and A. Mucherino. On the number of realizations of
certain Henneberg graphs arising in protein conformation. Discrete Applied Mathematics,
165:213–232, 2014.

40. L. Liberti and L. Mencarelli. A multiplicative weights update algorithm for MINLP, 2014.
Working paper.



34 C. D’Ambrosio et al.
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Instance |V | |E| Hard?
100d 489 5741 H
1guu-1 150 959 H
1guu-4000 150 968 H
1guu 150 955 H
1PPT 302 3102 H
2erl-frag-bp1 39 406
2kxa 177 2711 H
C0020pdb 107 999 H
C0030pkl 198 3247 H
C0080create.1 60 681 H
C0080create.2 60 681 H
C0150alter.1 37 335 H∗

C0700odd.1 18 39
C0700odd.2 18 39
C0700odd.3 18 39
C0700odd.4 18 39
C0700odd.5 18 39
C0700odd.6 18 39
C0700odd.7 18 39
C0700odd.8 18 39
C0700odd.9 18 39
C0700odd.A 18 39
C0700odd.B 18 39
C0700odd.C 36 242
C0700odd.D 36 242
C0700odd.E 36 242
C0700odd.F 18 39
C0700.odd.G 36 308
C0700.odd.H 36 308
cassioli-protein-130731 281 4871 H
GM1 sugar 68 610 H

Instance |V | |E| Hard?
helix amber 392 6265 H
labelplot 37 49 E
lavor11 7-1 11 47
lavor11 7-2 11 47
lavor11 7-b 11 47
lavor11 7 11 47
lavor11 11 40
lavor30 6-1 30 192
lavor30 6-2 30 202 H∗

lavor30 6-3 30 195 H∗

lavor30 6-4 30 191 H∗

lavor30 6-5 30 195
lavor30 6-6 30 195
lavor30 6-7 30 195
lavor30 6-8 30 193
mdgp4-heuristic 4 6
mdgp4-optimal 4 6
names 86 849 H
odd01 18 39
odd02 36 308
pept 107 999 H
res 0 108 1410 H
res 1000 108 1506 H
res 2000 108 1404 H
res 2kxa 177 2627 H
res 3000 108 1487 H
res 5000 108 1392 H
small02 36 242
tiny 37 335 H∗

water 648 11939 H

Table 6 The test set: 61 instances, from the PDB and [26], their sizes, and the estimated
difficulty of solution.
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