
A MILP approach for designing robust variable-length codes

based on exact free distance computation

Hassan Hijazia,1, Amadou Diallob, Michel Kiefferb,c,∗,
Leo Libertia, Claudio Weidmannd

aLIX - École Polytechnique - Laboratoire d’Informatique, 91128 Palaiseau Cedex, France
bL2S - CNRS - SUPELEC - Univ Paris-Sud, 91192 Gif-sur-Yvette, France

cLTCI - CNRS - Telecom ParisTech, 75014 Paris, France
dETIS - CNRS UMR 8051 - ENSEA - Univ Cergy-Pontoise, 95014 Cergy-Pontoise, France

Abstract

This paper addresses the design of joint source-channel variable-length codes with
maximal free distance for given codeword lengths. While previous design methods
are mainly based on bounds on the free distance of the code, the proposed algorithm
exploits an exact characterization of the free distance. The code optimization is cast
in the framework of mixed-integer linear programming and allows to tackle practical
alphabet sizes in reasonable computing time.

Keywords: joint source-channel variable-length codes, error correcting codes,
mixed-integer linear programming

1. Introduction

When designing joint source-channel Variable-Length Codes (VLCs), i.e., source
codes robust to transmission errors, one wants to maximize the error correction ca-
pability for a given redundancy level. Redundancy is measured by the difference
between average codeword length and source entropy [4], while the error correction
capability is determined by the distance spectrum, mainly the free distance, see e.g.

[2].
Early work on robust VLC design focused on minimizing the average codeword

length of reversible VLCs, without considering error correction performance, see [13,
15, 9, 16, 17], and [11]. Techniques for evaluating the distance spectrum as well as
bounds on the free distance of VLCs were introduced in [2]. These bounds have then
been extensively used in [3, 8, 10, 11, 12, 14] to develop robust VLC construction
heuristics. Recently, Abedini et al. [1] proposed an efficient SAT-based approach for
designing robust VLCs with minimal redundancy properties, also based on the bounds

∗Corresponding author
Email address: Michel.Kieffer@lss.supelec.fr (Michel Kieffer)

1Financial support by grants: Digiteo Emergence “PASO”, Digiteo Chair 2009-14D “RMNCCO”,
Digiteo Emergence 2009-65D “ARM” is gratefully acknowledged. Michel Kieffer is partly supported
by Institut Universitaire de France.

Preprint submitted to DCC November 14, 2011

in [2]. Methods using these bounds impose a sufficient but not necessary condition
to achieve a target free distance, thus they may disregard certain optimal solutions.

The aim of this paper is to introduce a mixed-integer linear programming approach
to design a VLC maximizing the free distance for a given set of codeword lengths. It
will be shown that prefix, suffix, as well as distance constraints may be formulated as
linear inequalities involving integer-valued as well as real-valued variables. Contrary
to previous approaches, the exact free distance characterization is used in the algo-
rithm, leveraging recent results on low-complexity free distance evaluation for VLCs
proposed in [5].

Section 2 introduces some notations. Efficient free distance evaluation for VLCs
is recalled in Section 3. The robust VLC construction problem is then cast in the
framework of mixed-integer linear programing in Section 4. The main algorithm is
proposed in Section 5, before reporting numerical results in Section 6.

2. Notations

Consider a discrete memoryless source X with alphabet A = {a1, a2, . . . , an} and
corresponding probability vector π = (π1, π2, . . . , πn), where πi = Pr (X =ai). A
binary VLC C for X maps A to a set of codewords C = {c1, c2, . . . , cn}, where ci

is a codeword of ℓi bits associated to ai. The redundancy of code C is ρ (C) =
ℓ̄ (C) − H (X), where ℓ̄ (C) =

∑n

i=1 πiℓi denotes the average codeword length and
H (X) = −

∑n

i=1 πi log2 πi the source entropy [4]. The error correction performance
of C is mainly determined by its free distance, defined as follows. Consider the set
C∞ = C ∪C2 ∪C3 ∪ . . . of all finite and semi-infinite sequences of codewords. The free
distance df(C) is the minimum Hamming distance dH (s1, s2) between any two distinct
sequences s1, s2 in C∞ of equal length in bits (denoted ℓ(s1) = ℓ(s2)), that is

df (C) = min
s1,s2∈C∞ :

ℓ(s1)=ℓ(s2) ∧ s1 6=s2

dH (s1, s2) . (1)

For given redundancy ρ, one is interested in designing a code C that maximizes
df (C). The design parameters are the length vector (the vector of codeword lengths)
ℓ = (ℓ1, . . . , ℓn) and the bit assignment of each codeword of C.

3. Free distance evaluation

A VLC may be regarded as a nonlinear code generated by a trivial Finite-State
Encoder (FSE). This section briefly recalls how FSEs provide an efficient way to eval-
uate the free distance of VLCs, as detailed in [5]. An FSE is a directed graph Γ(S, T),
where S = {s0, s1, . . . , sk−1} is the set of vertices (states) and T = {t0, t1, . . . , tm−1}
is the set of directed edges (transitions). For t ∈ T , σ (t) ∈ S and τ (t) ∈ S denote
the source and target states. A label (ai/c

i) is attached to each edge ti, correspond-
ing to the pair (input symbol/output codeword). In the simple case of a VLC, S
contains a single state s0 from which (to which) all transitions diverge (converge), see
Figure 1(a). Any sequence of codewords in C∞ may be represented by a path in Γ.

2

s0

a/0

b/10

c/111

s0

a/0

b/1

c/1

s1

s2

s3
-/0

-/1

-/1

(a) (b)

Figure 1: (a) Symbol-clock FSE and (b) bit-clock FSE corresponding to A = {a, b, c} and C =
{0, 10, 111}

A bit-clock FSE Γb(Sb, Tb) is obtained by replacing each edge ti in Γ by a sequence
of transitions ti,1, ti,2, . . . , ti,ℓi

with corresponding labels (ai/c
i
1), (−/ci

2), . . . , (−/ci
ℓi
)

and intermediate states si,1, si,2, . . . , si,ℓi−1. Each transition in Tb has thus a single
output bit, see Figure 1(b).

Free distance computation is simplified using the Pairwise Distance Graph (PDG)
ΓP(SP, TP) introduced in [5], which is derived from the product graph Γ2

b(S
2
b , T

2
b) of

the bit-clock FSE. Consider the set Sdiv of states (si, si) ∈ S2
b from which distinct

transitions are diverging, as well as the set Sconv of states to which distinct transitions
are converging. One obtains SP by merging all states in Sdiv into a single state sdiv

and those in Sconv into a single state sconv, as well as merging symmetric states (si, sj)
and (sj, si), i < j, into a single state (si, sj). In the simple case of VLCs, one has
sdiv = (s0, s0) and sconv = (s0, s0). Each transition tij ∈ TP is labeled by the Hamming
distance dH (Out (ti) , Out (tj)) between the output bits of ti ∈ Tb and tj ∈ Tb.

A path p in ΓP is an ordered sequence of transitions p = (θ1, θ2, . . . , θk) such that
τ (θi) = σ (θi+1), 1 6 i < k, and represents a pair of equal-length paths in Γb. The
set of all paths from sdiv to sconv is denoted by P. The weight wH (p) of a path p in
ΓP is the sum of its edge labels. Thus wH (p) equals the Hamming distance between
two sequences of the same length in bits generated by the original encoder. The
free distance of a code C is then the smallest weight of a path in P, which may be
computed efficiently using Dijkstra’s algorithm, see [5].

The structure of the PDG for a VLC may be obtained from the length vector ℓ,
which yields a symbolic codebook

C =
{
c1
1c

1
2 . . . c1

ℓ1
, c2

1c
2
2 . . . c2

ℓ2
, . . . , cn

1c
n
2 . . . cn

ℓn

}
. (2)

When no bit of C is specified, instead of having a PDG with edges labeled by 0 or 1,
one obtains symbolic labels such as ci1

j1
⊕ ci2

j2
(where ⊕ is the exclusive-or operation),

corresponding to the Hamming distance between two bits of codewords of C; see
Figure 2 for the case C = {c1

1, c
2
1c

2
2, c

3
1c

3
2c

3
3}. This is an important property, since it

enables one to obtain a symbolic expression for the Hamming weight of any path from
sdiv to sconv as a function of bits of C, without specifying any of those bits.

4. Mixed-Integer Linear Programming

A Mixed-Integer Linear Program (MILP) is an optimization problem described by
a linear objective function and linear inequality constraints. A MILP can be written

3

s2,3

s0,1

sconvsdiv
s0,2

s0,3s1,2

s1,3

c1
1 ⊕ c1

2

c1
1 ⊕ c1

3

c1
2 ⊕ c1

3

c1
2 ⊕ c2

2

c1
1 ⊕ c2

2c2
2 ⊕ c1

3

c1
2 ⊕ c2

3

c1
3 ⊕ c2

3

c1
1 ⊕ c2

3

c2
2 ⊕ c2

3

c1
3 ⊕ c3

3

c1
2 ⊕ c3

3

c1
1 ⊕ c1

3

c2
3 ⊕ c3

3

c2
2 ⊕ c3

3

Figure 2: Pairwise distance graph derived from the B-FSE of C =
{
c1
1, c

1
2c

2
2, c

1
3c

2
3c

3
3

}

in canonical form as follows:

maxx α
Tx

s.t. Ax 6 b,
x > 0,
x ∈ Rn,xI ∈ Z|I|

(M)

where I ⊆ {1, 2, . . . , n} is the set of indices corresponding to integer variables, α ∈ Qn

represents the cost vector, A ∈ Qm×n is the coefficient matrix, and b ∈ Qn denotes
the right hand side vector. The subvector xI contains all integer entries of x. Very
efficient techniques based on continuous linear optimization theory are available to
solve large-scale MILPs, see e.g. [18].

Given a length vector ℓ corresponding to a code C, the aim in the remainder of
this section is to cast the bit assignment problem into a MILP maximizing df (C).

4.1. Objective function

The vector xI in (M) contains binary decision variables, which are the bit com-
ponents of the codewords in C, as well as one integer variable d corresponding to the

free distance to maximize. Thus xI =
(
d, c1

1, . . . , c
1
ℓ1

, . . . , cn
1 , . . . , c

n
ℓn

)T
. Without loss

of generality, one may choose xI to form the first entries of x. The cost vector is then
α = (1, 0, . . . , 0)T and the objective function α

Tx leads to the maximization of d.

4.2. Constraints derived from bounds on the free distance

A first set of inequalities may be derived from the following bounds on free distance
in [2, 3]:

db (C) > df (C) > min(db (C) , ddiv (C) + dconv (C)) (3)

where

db (C) = min
{

dH(ci
1c

i
2 . . . ci

ℓi
, cj

1c
j
2 . . . cj

ℓj
) : (ci, cj) ∈ C2, i 6= j, and ℓi = ℓj

}
(4)

4

is the overall minimum block distance (between codewords of the same length),

ddiv (C) = min
{

dH(ci
1c

i
2 . . . ci

ℓj
, cj

1c
j
2 . . . cj

ℓj
) : (ci, cj) ∈ C2, ℓi > ℓj

}
(5)

is the minimum diverging distance (between prefixes), and

dconv (C) = min
{

dH(ci
ℓi−ℓj+1 . . . ci

ℓi
, cj

1 . . . cj
ℓj

) : (ci, cj) ∈ C2, ℓi > ℓj

}
(6)

is the minimum converging distance (between suffixes).
From (3) and (4), one may deduce the following set of constraints which have to

be satisfied by an optimal code:

∑ℓi

k=1 ci
k ⊕ cj

k > d, ∀(ci, cj) ∈ C2 such that ℓi = ℓj. (7)

As in [1], one may search for codes maximizing the free distance with bit assignments
such that ddiv (C) > ⌈d/2⌉ and dconv (C) > ⌊d/2⌋ , where ⌊·⌋ and ⌈·⌉ denote rounding
towards −∞ and ∞, respectively. From (5) and (6) one then gets the set of constraints

∑ℓj

k=1 ci
k ⊕ cj

k > ⌈d/2⌉ , ∀(ci, cj) ∈ C2 such that ℓi > ℓj , (8)

and ∑ℓj

k=1 ci
(ℓi−k+1) ⊕ cj

(ℓj−k+1) > ⌊d/2⌋ , ∀(ci, cj) ∈ C2 such that ℓi > ℓj . (9)

However, constraints (8) and (9) may discard many optimal codes, especially ones
having a minimum codeword length ℓmin such that ℓmin < ⌊df (C) /2⌋. For example,
C = {01, 10000010} has df (C) = 6, but would not satisfy (8) nor (9) with d = 6, and
thus can not be obtained as a solution of algorithms imposing such constraints.

4.3. Constraints for prefix-free or suffix-free codebooks

Prefix-free codebooks are obtained by imposing that the diverging distance be at
least one, i.e., that

∑ℓj

k=1 ci
k ⊕ cj

k > 1, ∀(ci, cj) ∈ C2 such that ℓi > ℓj. (10)

Similar inequalities can be derived for suffix-free codebooks:

∑ℓj

k=1 ci
(ℓi−k+1) ⊕ cj

(ℓj−k+1) > 1, ∀(ci, cj) ∈ C2 such that ℓi > ℓj . (11)

Fix-free codebooks are then obtained by simultaneously imposing (10) and (11).

4.4. Exact free distance constraints

Consider the PDG ΓP associated to some codebook C and let Pe denote the set of
elementary (cycle-free) paths going from sdiv to sconv. Based on the definition of free
distance one has

df(C) > d if and only if ∀p ∈ Pe, wH (p) > d. (12)

5

Assume that a path p ∈ Pe may be written as p = (θ1, θ2, . . . , θk), then each θκ is

associated to a unique pair of codeword bits (ciκ
jκ

, c
i′κ
j′κ

) such that wH (θκ) = ciκ
jκ
⊕ c

i′κ
j′κ

.
Thus, the following constraint may be obtained from (12) for a given path p =
(θ1, θ2, . . . , θk) in Pe ∑k

κ=1 ciκ
jκ
⊕ c

i′κ
j′κ

> d. (13)

Let us emphasize that the number of cycle-free paths in ΓP grows exponentially
with the size of C. Therefore, the number of constraints (13) associated to all cycle-
free paths in Pe may become intractable. This issue is addressed in Section 5.

4.5. Transforming exclusive-or operations

All previously-introduced constraints feature exclusive-or operations (⊕). The
corresponding inequalities do not fit in the MILP framework. This issue is addressed
in Proposition 1, where it is shown that each exclusive-or operation can be translated
into a set of linear inequalities by introducing real-valued variables.

Proposition 1. Consider two binary variables x and y, and a real-valued variable z.
Then

z = x ⊕ y if and only if






z > x − y,

z > y − x,

z 6 x + y,

z 6 2 − (x + y),

0 6 z 6 1.

(14)

Proof. If z = x⊕ y, one may easily verify that all inequalities in (14) are satisfied. In
the opposite direction, one only needs to check all possible combinations of x and y.
If (x, y) = (0, 0) then the third constraint in (14) induces z 6 0. If (x, y) = (1, 0) then
the first constraint induces z > 1. If (x, y) = (0, 1) then the second constraint induces
z > 1. Finally, if (x, y) = (1, 1) then the last constraint induces z 6 0. Intersecting
each of these constraints with the bounds 0 6 z 6 1 completes the proof.

Note that the artificial variables such as z in (14) required to transform exclusive-or
operations into inequality constraints constitute the real-valued entries of the vector
x introduced in (M).

5. Codebook generation algorithm

For a given length vector ℓ, using the results of Section 4, the search for a codebook
optimizing the free distance may be cast in the framework of MILP. A first MILP
may be obtained by imposing block, diverging, and converging distance constraints
as suggested in [1]. The resulting model is

max d
s.t. (7), (8), and (9).

(MB)

All exclusive-or are transformed into linear inequalities as proposed in (14).

6

Table 1: Codebook generation algorithm

CGA
(
(ℓ1, . . . , ℓn) , d̄, (ĉ1, . . . , ĉm)

)

1 Build ΓP from (ℓ1, . . . , ℓn);

2 Store in P
(0)
e the µ shortest paths in ΓP;

3 k = 0; d̄f = d̄;

4 Define MILP (M
(k)
P) using d̄f and

the constraints ci
j = ĉi

j, i = 1, . . . , m, j = 1, . . . , li;

5 Solve (M
(k)
P) to get C(k) and d

(k)
f ;

6 d̄f = d
(k)
f ;

7 If C(k) = ∅, return (∅, 0); End If;

8 Update Γ
(k)
P from C(k);

(
p̂(k), d(k)

)
= Dijkstra

(
Γ

(k)
P

)
;

9 If d(k) = d̄f, return
(
C(k), d

(k)
f

)
; End If;

10 Add to P
(k)
e the path corresponding to p̂(k) in ΓP

and ν additional shortest paths in ΓP to get P
(k+1)
e ;

11 k = k + 1; Go to 4.

A second MILP may be obtained imposing the prefix constraints (10) as well as
distance constraints (13) on paths of the PDG, leading to the following model

max d
s.t. (10),

(12) for all p ∈ Pe,
d 6 d̄,

(MP)

where d̄ is a given upper bound on the free distance (this last constraint helps to
reduce the size of the search space; without prior knowledge on d̄, one may take
d̄ = ∞). Nevertheless, the number of paths in Pe may be too large to be manageable.

The main idea of the Codebook Generation Algorithm (CGA) in Table 1 is to
consider first the µ shortest paths (in terms of number of visited states) in the product
graph ΓP associated to the length vector (ℓ1, . . . , ℓn) (Step 2). The µ paths are
obtained via a breadth-first exploration of ΓP from sdiv to sconv. In the corresponding
MILP (M

(k)
P), a subset of binary variables are fixed based on the entries of (ĉ1, . . . , ĉm).

This allows to design codebooks with already determined codewords. (M
(k)
P) is then

solved and the upper bound d̄f on the free distance is updated (Steps 5 and 6). If
no codebook is obtained (for example when the length vector does not satisfy Kraft’s
inequality [4]), an empty codebook is returned (Step 7). The codebook C(k) obtained

at iteration k is used to build the PDG Γ
(k)
P on which Dijkstra’s algorithm is applied to

get a shortest weight path p̂(k) and the free distance d(k) of C(k) (Step 8). If d(k) = d̄f,

then d(k) is the optimal free distance and C(k) is a solution (Step 9). Otherwise, P(k)
e

has to be supplemented with the path corresponding to p̂(k) in ΓP and with a set of ν
additional shortest paths in ΓP to get P

(k+1)
e (Step 10). This algorithm is finite since

the number of cycle-free paths in a graph is finite.
In order to reduce the size of MILPs solved at each step, an iterative version of

7

CGA is proposed in Table 2. This algorithm exploits the fact that the largest free
distance df (ℓ

n) that may be obtained for a VLC with length vector ℓ
n = (ℓ1, . . . , ℓn)

is an upper bound on the largest free distance df

(
ℓ

n+1
)

that may be obtained for a

length vector ℓ
n+1 = (ℓ1, . . . , ℓn, ℓn+1).

ICGA starts with the optimization of a codebook containing only two codewords
(Step 1). At iteration k, the first m codewords of the codebook obtained at iteration
k − 1 are reused to get an optimized codebook of k codewords (Step 4). If the free

distance d
(k)
f obtained at iteration k, using the m = k−1 codewords from iteration

k−1, is equal to its upper bound d
(k−1)
f , the obtained codebook is again optimal. If

d
(k)
f < d

(k−1)
f , the number of reused codewords is decreased and CGA is restarted until

d
(k)
f = d

(k−1)
f or m = 0. In the latter case, no previously obtained codeword is used,

indicating that the additional length ℓk reduces the free distance of the best VLC.

Table 2: Iterative codebook generation algorithm

ICGA(ℓ1, . . . , ℓn)
1 ((c1, c2), df) = CGA((ℓ1, ℓ2), ∅);
2 For k = 3 to n
3 m = k − 1;

4
(
(c1, . . . , ck), d

(k)
f

)
= CGA

(
(ℓ1, . . . , ℓk), d

(k−1)
f , (c1, . . . , cm)

)
;

5 If d
(k)
f < d

(k−1)
f and m > 0

6 m = m − 1; Go to 4.
6 End If;
7 End For;

8 Return
(
(c1, . . . , cn), d

(n)
f

)
;

6. Numerical experiments

Experimental results were obtained for alphabets of different sizes. All MILPs
were solved using the Branch & Cut algorithm implemented in Cplex 12.2 [7] and ran
on an Intel Xeon at 2.66 Ghz.

Table 3 provides CPU computing times (in seconds) for various codebook genera-
tion algorithms. ICGA with µ = 10 and ν = 500 (column TA) is compared to a MILP
with model (MB) (Column TMB

) and to a Branch & Cut method introduced in [6]
(Column TD). The optimal free distance obtained solving (MB) is in Column dMB

,
that of ICGA is in Column dA. If a solver is unable to prove optimality in less than
two hours, lower and upper bounds are reported. For each instance, the number of
nodes (resp. edges) of the corresponding PDG is given in Column |SP | (resp. |TP |).
The total number of paths generated by ICGA is reported in column |P|.

For all length vectors of Table 3, ICGA was able to generate a codebook with
df = 7. The values of the free distance reported in column dMB

illustrate the sub-
optimality of the model imposing converging and diverging distance constraints (MB).
Moreover, computing time performance shows the efficiency of the iterative algorithm

8

which converges in few minutes compared to the solution of (MB) and the approach
provided in [6], both becoming intractable even for small alphabets.

An optimal codebook with df = 7 for the 26-symbol English alphabet obtained by
ICGA is presented in Table 4. This codebook is not a solution of (MB). Considering
the probability vector given in [2], it has an average codeword length of 10.11. To
the best of our knowledge, this is the best performance for an error-correcting VLC
with df = 7. In [10], an optimized heuristic returns a solution with an average length
of 10.738 within 14 hours of computing time.

Since the optimal solution of (M
(k)
P) constitutes an upper bound for the value of the

best free distance, one can think of an enumeration technique for finding dominant
length vectors for error-correcting VLCs as suggested in [1], based on these tight
bounds. In our experiments, the solver provided a tight upper bound in an average
computing time of 3 seconds on all instances.

7. Conclusion

This paper provides an efficient variable-length error-correcting code design tech-
nique optimizing the free distance. The design problem is cast in the framework of
mixed-integer linear programming. It involves exact free distance evaluation in the
design phase, and is thus able to provide an optimal codebook with respect to free
distance for any given length vector.

With the proposed tools, one may determine dominant length vectors for the exact
free distance criterion, instead of the lower bounds used in [1]. This allows to find
the shortest average codeword length for a given source and a desired free distance.

Table 3: Computing times (in s) and free distances for different codebook generation algorithms as
a function of the size of the alphabet

n ℓ dMB
TMB

TD dA TA |SP | |TP | |P|
4 (3,7,8,9) 6 0.03 23.6 7 4.3 278 351 511
5 (3,7,8,9,11) 5 0.12 1232 7 9 563 703 1012
6 (3,7,8,9,11,12) 5 0.4 > 2h 7 32 992 1225 1012
7 (3,7,8,9,11,12,13) 5 0.4 > 2h 7 33 1598 1953 511
8 (3,7,8,9,11,12,13,14) 4 97 > 2h 7 35 2417 2926 511
9 (3,7,8,9,11,12,13,14,15) 4 336 > 2h 7 36 3488 4186 1012
10 (2@7,8,9,2@10,4@11) 6 143 > 2h 7 3 3657 4465 511
11 (2@7,8,9,2@10,4@11,12) (6,7) > 2h > 2h 7 4 4658 5671 511
12 (2@7,8,9,2@10,4@11,2@12) 6 182 > 2h 7 7 5780 7021 1012
13 (7,8,9,2@10,4@11,4@12) 6 385 > 2h 7 9 7023 8515 511
14 (7,8,9,2@10,4@11,4@12,13) (6,7) > 2h > 2h 7 15 8387 10153 1513
15 (7,8,9,2@10,4@11,4@12,2@13) (6,7) > 2h > 2h 7 25 10013 12090 2014
16 (7,8,9,2@10,4@11,4@12,3@13) (6,7) > 2h > 2h 7 51 11783 14196 3517
17 (7,8,9,2@10,4@11,4@12,4@13) (6,7) > 2h > 2h 7 62 13697 16471 1513
18 (7,8,9,2@10,4@11,4@12,5@13) (6,7) > 2h > 2h 7 80 15755 18915 2014
19 (7,8,9,2@10,4@11,4@12,6@13) (6,7) > 2h > 2h 7 157 18338 21945 5020
20 (7,8,9,2@10,4@11,4@12,6@13,14) (6,7) > 2h > 2h 7 263 21117 25200 5521
21 (7,8,9,2@10,4@11,4@12,6@13,2@14) (6,7) > 2h > 2h 7 278 24092 28680 1012
22 (7,8,9,2@10,4@11,4@12,6@13,3@14) (6,7) > 2h > 2h 7 352 27263 32385 3517
23 (7,8,9,2@10,4@11,4@12,6@13,4@14) (6,7) > 2h > 2h 7 426 30630 36315 3016
24 (7,8,9,2@10,4@11,4@12,6@13,5@14) (6,7) > 2h > 2h 7 567 34193 40470 4519
25 (7,8,9,2@10,4@11,4@12,6@13,5@14,15) (6,7) > 2h > 2h 7 691 37952 44850 3517
26 (7,8,9,2@10,4@11,4@12,6@13,5@14,2@15) (6,7) > 2h > 2h 7 811 41907 49455 3016

9

Table 4: VLC for the English alphabet with df = 7 and ℓ̄ = 10.11.
Symbol Probability ℓ Codeword Symbol Probability ℓ Codeword
a1 = E pa1

= 0.1270 7 1010100 a14 = M pa14
= 0.0241 12 00111011111

a2 = T pa2
= 0.0906 7 0101011 a15 = W pa15

= 0.0236 13 0000000100000
a3 = A pa3

= 0.0817 8 00011101 a16 = F pa16
= 0.0223 13 1100010001111

a4 = O pa4
= 0.0751 9 111100010 a17 = G pa17

= 0.0202 13 1110111011000
a5 = I pa5

= 0.0697 10 0010010011 a18 = Y pa18
= 0.0197 13 0111101000101

a6 = N pa6
= 0.0674 10 1100001000 a19 = P pa19

= 0.0193 15 001100101000001
a7 = S pa7

= 0.0633 11 00100011010 a20 = B pa20
= 0.0149 15 111001000100010

a8 = H pa8
= 0.0609 11 11011111000 a21 = V pa21

= 0.0098 15 010000001001110
a9 = R pa9

= 0.0599 11 10110100101 a22 = K pa22
= 0.0077 15 110010111010001

a10 = D pa10
= 0.0425 11 01001000111 a23 = J pa23

= 0.0015 15 101101110101100
a11 = L pa11

= 0.0403 12 010110000000 a24 = X pa24
= 0.0015 15 001011101011010

a12 = C pa12
= 0.0278 12 100001101000 a25 = Q pa25

= 0.001 15 111110101110110
a13 = U pa13

= 0.0276 12 011001010011 a26 = Z pa26
= 0.0007 15 011011110000111

References

[1] N. Abedini, S. P. Khatri, and S. A. Savari. A SAT-based scheme to determine optimal fix-free
codes. In Proc. Data Compression Conference (DCC), pages 169–178, 2010.

[2] V. Buttigieg. Variable-Length Error Correcting Codes. Ph.D. dissertation, University of Manch-
ester, Manchester, U.K., 1995.

[3] V. Buttigieg and P.G. Farrell. Variable-length error-correcting codes. IEE Proceedings on
Communications, 147(4):211–215, Aug. 2000.

[4] T. M. Cover and J. M. Thomas. Elements of Information Theory. Wiley, New-York, 1991.
[5] A. Diallo, C. Weidmann, and M. Kieffer. Efficient computation and optimization of the free

distance of variable-length finite-state joint source-channel codes. IEEE Trans. Commun.,
59(4):1043–1052, April 2011.

[6] A. Diallo, C. Weidmann, and M. Kieffer. New free distance bounds and design techniques for
joint source-channel variable-length codes. Submitted to IEEE Trans. Commun., October 2011.

[7] IBM. ILOG CPLEX 12.2 User’s Manual. IBM, 2010.
[8] K. Lakovic and J. Villasenor. On design of error-correcting reversible variable length codes.

IEEE Commun. Lett., 6(8):337–339, 2002.
[9] K. Lakovic and J. Villasenor. An algorithm for construction of efficient fix-free codes. IEEE

Commun. Lett., 7(8):391–393, 2003.
[10] C. Lamy and J. Paccaut. Optimised constructions for variable-length error correcting codes.

In Proc. Information Theory Workshop, pages 183–186, 2003.
[11] C.-W. Lin, J.-L. Wu, and Y.-J. Chuang. Two algorithms for constructing efficient Huffman-code

based reversible variable length codes. IEEE Trans. Commun., 56(1):81–89, 2008.
[12] R. Maunder and L. Hanzo. Genetic algorithm aided design of component codes for irregular

variable length coding. IEEE Trans Commun, 57(5):1290 –1297, May 2009.
[13] Y. Takishima, M. Wada, and M. Murakimi. Reversible variable length codes. IEEE Trans. on

Commun, 43(2/3/4):158–162, 1995.
[14] R. Thobaben and J. Kliewer. An efficient variable-length code construction for iterative source-

channel decoding. IEEE Trans. Commun., 57(7):2005–13, 2009.
[15] C.-W. Tsai and J.-L. Wu. On-constructing the Huffman-codes based reversible variable-length

codes. IEEE Trans. Commun., 49(9):1506–1509, 2001.
[16] H.-W. Tseng and C.-C. Chang. Construction of symmetrical reversible variable length codes

using backtracking. The Computer Journal, 46(1):100–105, 2003.
[17] J. Wang, L.-L. Yang, and L Hanzo. Iterative construction of reversible variable-length codes

and variable-length error-correcting codes. IEEE Commun Letters, 8(11):671– 673, 2004.
[18] L. A. Wolsey and G. L. Nemhauser. Integer and Combinatorial Optimization. Wiley-

Interscience, 1999.

10

	Introduction
	Notations
	Free distance evaluation
	Mixed-Integer Linear Programming
	Objective function
	Constraints derived from bounds on the free distance
	Constraints for prefix-free or suffix-free codebooks
	Exact free distance constraints
	Transforming exclusive-or operations

	Codebook generation algorithm
	Numerical experiments
	Conclusion

