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Abstract

In [6], the complexity of finding KDMDGP re-orders was stated to be NP-complete by
inclusion, which fails to provide a complete picture. In this paper we show that this problem
is indeed NP-complete for K = 1, but it is in P for each fixed K ≥ 2.
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1. Introduction

The fundamental problem in Distance Geometry (DG) is the DG Problem (DGP):
given an integer K > 0 and a simple, undirected, non-negatively edge-weighted graph
G = (V,E, d), with d : E → R+, find positions in RK for each vertex such that each
edge, drawn as a segment, has length equal to the weight [25, 26, 28]. The set of positions
of all the vertices in V is called a realization of G. Many variants replace equality with
inequalities to address data measurement error and noise [1, 2, 7, 10, 14, 18, 21, 33, 34].
The DGP has applications to many fields of science and engineering, including clock syn-
chronization protocols, sensor network localization, robotics, nanostructures, and protein
structure determination [3, 4, 9, 11, 19, 31].

Most of the solution methods for the DGP on arbitrary graphs consist of search algo-
rithms in continuous space [23], but if an appropriate vertex order is given, the DGP solution
space becomes discrete [13, 15, 30].

Our motivation is based on a particular subclass of DGP graphs which arise in the
modelling of proteins, where K = 3 [8, 32]. More specifically, we look at graphs which are
models of protein backbones. The edge set of these graphs, related to the pairs of atoms
whose distances are known theoretically and experimentally, contains:
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1. a Hamiltonian path which is used to number the vertices from v1 to vn, where n = |V |;
2. a clique defined on the first three vertices v1, v2, v3 (in general, up to vK);

3. for each vertex vi in the Hamiltonian path, i > 3, edges connecting vi to its three
immediate predecessors, namely vertices vi−1, vi−2, vi−3 (in general, for each i > K,
edges connecting vi to its K immediate predecessors);

4. possibly other edges not described by (1)-(3).

Assuming that the strict triangular inequality is satisfied for vi−3, vi−2, vi−1, i > 3, these
graphs are rigid in R3 (a similar generalized statement holds for K and strict simplex in-
equalities). The associated DGP subclass is called the Discretizable Molecular Distance
Geometry Problem (DMDGP) [16, 17]. In [27], it is proved that the number of its real-
izations is almost always a power of two, implying interesting symmetric properties in the
solution space [12, 24, 29], where a Branch-and-Prune algorithm can be applied to find all
these realizations [5, 22].

We now look at an auxiliary problem: given an arbitrary graph, does its edge set satisfy
the conditions (1)-(4) given above? In other words, can we find a vertex order such that
(1)-(3) hold? The problem, informally known as “DMDGP order”, was named Contiguous
Trilateration Ordering Problem (CTOP) in [6], where it was shown (by reduction from
Hamiltonian Path) that CTOP is NP-complete.

In order to address this computational complexity issue arising in protein structure de-
termination applications of the DGP, “hand-crafted” vertex orders were proposed based on
the atomic sequences in protein backbones [18, 20]. The novelty introduced by such orders
is that they allow the repetition of vertices in the order. More precisely, the vertex of rank
i in the order (for i > 3) also has the possibility of being the same vertex having rank less
than i− 2. Such orders are called repetition orders (or re-orders).

We generalize the fact that proteins exist in at most three spatial dimensions by replacing
the number three with a general integer K > 0. In this setting, the problem of finding a
re-order relative to K in an arbitrary graph is called the Re-Order Problem (ReOP). In [6,
§3.3] it was stated that “because a re-order which never repeats any vertices is a KDMDGP
order, the ReOP is also NP-complete for any fixed K by restriction to the CTOP”. This
sentence is wrong: the correct sentence is “the ReOP is NP-complete by inclusion of the
case when K = 1”. In finding a re-order, since we are free to repeat vertex vi at rank i+K,
it follows that re-orders do not need to be Hamiltonian paths. The ReOP is NP-complete
for K = 1 because repeating vertex vi at rank i + 1 is equivalent to “failing to progress
in the construction of the order”. Therefore, for K = 1, the reduction from Hamiltonian
Path to ReOP is trivial. This implies that ReOP is NP-complete for K = 1, and that it is
NP-complete by inclusion of this case. For higher values of K, however, it turns out that
re-orders can be found in polynomial time, including the case of interest for proteins K = 3.

2. Finding a KDMDGP re-order in polynomial time for K > 1

We start by giving the precise definition of a KDMDGP re-order for a graph G and the
definition of an auxiliary K-clique incidence graph GK derived from G. We consider K > 1.
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Figure 1: An example of G and G2.

Definition 1. Given a simple undirected graph G = (V,E), a KDMDGP re-order for G is
a surjective function r : {1, . . . ,m} → V , with length m ∈ N bounded by a polynomial in
|V |, such that (we simplify the notation using ri instead of r(i)):

1. {r1, . . . , rK} defines a K-clique in G;

2. For i ∈ {K + 1, . . . ,m}, {ri−K+1, ri}, {ri−K+2, ri}, . . . , {ri−1, ri} ∈ E;

3. For i ∈ {K + 1, . . . ,m}, {ri−K , ri} ∈ E or ri−K = ri.

Definition 2. Given a simple undirected graph G = (V,E), the graph GK = (VK , EK) is
defined as follows:

1. u ∈ VK iff u is a set defined by the vertices of a K-clique in G;

2. {u, v} ∈ EK iff u ∪ v is a set given by the vertices of a (K + 1)-clique in G.

In Figure 1, we give an example of G and GK , for K = 2. The next theorem identifies
KDMDGP re-orders for G with particular walks in GK .

Theorem 1. Given a simple undirected graph G = (V,E), there is a KDMDGP re-order r
in G if and only if there exists a walk γ = (γ1, . . . , γm−K+1) in GK = (VK , EK) such that
γi ∈ VK for all i ≤ m−K + 1 and

⋃
i≤m−K+1

γi = V .

Proof. Given a KDMDGP re-order r in G, with length m ∈ N, we define γi, for i ∈
{1, . . . ,m−K + 1}, in the following way:

γ1 = {r1, r2, . . . , rK},
γ2 = {r2, r3, . . . , rK+1},

...

γm−K+1 = {rm−K+1, rm−K+2, . . . , rm}.
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Since γi = {ri, ri+1, . . . , ri+K−1} defines a K-clique in G (by definition of KDMDGP re-
order), it follows that γi ∈ VK for each i ∈ {1, . . . ,m −K + 1}. Moreover, since γi 6= γi+1,
by definition of GK we have {γi, γi+1} ∈ EK , which implies that γ is a walk in GK such that⋃

i γi = V (because r is a surjection).
Conversely, let us suppose that there exists a walk γ of length p in GK with

⋃
i≤p

γi = V .

Consider an arbitrary ordering on γ1 given by γ1 = (γ11 , γ
2
1 , . . . , γ

K
1 ). For i ∈ {2, . . . , p} and

j ∈ {1, . . . K} define:

γji =

{
γji−1 if γji−1 ∈ γi
γ∗i otherwise,

where γ∗i is the unique element of γi r γi−1. We claim that the function r : {1, . . . , pK}→V
defined by

ri = γ
i−(di/Ke−1)K
di/Ke

is a KDMDGP re-order. We will show it satisfies the requirements of the definition:

1. {r1, . . . , rK} is a K-clique in G: by definition {r1, . . . , rK} = {γ11 , γ21 , . . . , γK1 } = γ1,
where γ1 is a K-clique in G by definition of GK .

2. For ` ∈ {K+1, . . . , pK}, {r`−K+1, r`}, {r`−K+2, r`}, . . . , {r`−1, r`} ∈ E: by definition of
r, {r`−K+1, r`−K+2, . . . , r`} ⊂ γd`/Ke−1 ∪ γd`/Ke, for ` ∈ {K + 1, . . . , pK}, which implies
that {r`−j, r`} ∈ E for j ∈ {1, . . . , K − 1} by definition of GK .

3. For ` ∈ {K + 1, . . . , pK}, {r`−K , r`} ∈ E or r`−K = r`: again by definition of r and
GK , for ` = K + 1, . . . , pK we have that r`−K = r` if r` ∈ γd`/Ke−1 ∩ γd`/Ke, and
{r`−K , r`} ∈ E if r`−K ∈ γd`/Ke−1 and r` ∈ γd`/Ke.

This concludes the proof.

The next result states the relationship between KDMDGP re-orders in G and the con-
nectivity of GK .

Corollary 1. There is a KDMDGP re-order in a simple undirected graph G = (V,E) if and
only if there exists a connected component of GK = (VK , EK) whose vertex union is V .

Proof. This follows immediately from the Theorem 1.

The last two results ensure that KDMDGP re-orders can be found in polynomial time.

Lemma 1. Given a simple undirected graph G = (V,E), the graph GK = (VK , EK) can be
constructed in O(K3|V |K+1) steps.

Proof. Constructing GK requires constructing its edge set EK . Each vertex of each (K+1)-
clique in G yields an incidence of two K-cliques in G. By definition, this means that there
are K + 1 edges in EK for each (K + 1)-clique in G. In the worst case, the number of
(K + 1)-cliques in G is

( |V |
K+1

)
= O(|V |K+1), which yields an O(K|V |K+1) worst-case time

complexity bound. Furthermore, considering the time for verifying whether a set of vertices
is a clique is O(K2), we conclude that the worst case time complexity for constructing GK

is O(K3|V |K+1).
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Theorem 2. A KDMDGP re-order for G = (V,E) can be found in O(|V |2K) steps.

Proof. Using DFS or BFS, we find connected components in O(n + m) steps for a graph
with n vertices and m edges; the worst case is on dense graphs where m is O(n2). GK

has at worst
(|V |
K

)
vertices and O(

(|V |
K

)2
) edges. As mentioned above,

(|V |
K

)
is dominated by

O(|V |K), so this step of the algorithm yields a O(|V |2K) time bound. Finding a spanning
tree requires O(m+n log n) steps using Prim’s algorithm with Fibonacci heaps; in the worst
case the O(m) = O(n2) term dominates, so that also yields a O(|V |2K) time bound. A walk
is obtained from a tree by replacing each edge with two antiparallel arcs, and then exploring
the corresponding Eulerian cycle, which can be done in O(n) = O(|V |K) steps. Constructing
GK from G requires O(K3|V |K+1) steps by Lemma 1. The whole algorithm has a worst-case
time complexity O(K3|V |K+1 + 2|V |2K + |V |K) = O(|V |2K), since K < |V |.

In conclusion, we have the following theorem which summarizes our discussion.

Theorem 3. Given a simple undirected graph G = (V,E), the problem of finding a KDMDGP
re-order is NP-complete for K = 1, and in P for each fixed K ≥ 2.
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