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Abstract

Nuclear Magnetic Resonance (NMR) experiments provide distances between
nearby atoms of a protein molecule. The corresponding structure determination
problem is to determine the 3D protein structure by exploiting such distances.
We present a new order on the atoms of the protein, based on information from
the chemistry of proteins and NMR experiments, which allows us to formulate
the problem as a combinatorial search. Additionally, this order tells us what
kind of NMR distance information is crucial to understand the cardinality of
the solution set of the problem and its computational complexity.

Keywords: Nuclear Magnetic Resonance, Molecular structure, Distance
Geometry, Vertex orders

1. Introduction: Distance Geometry

1.1. Protein structure

The 3D protein structure determination problem is of fundamental impor-
tance for studying protein function [19]. Indeed, biochemical reactions taking
place in protein structure are the basic operations hidden behind all biological
processes, including cell division, protein translation, host-pathogen interac-
tions, and cell-cell communication. As a consequence, protein structure deter-
mination effectively builds a bridge between the description of biological cellular
processes and the world of physical chemistry.
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X-ray crystallography was the first method to enable the determination of
protein structures. Crystallized proteins were perceived as rigid objects, dis-
playing mostly a unique conformation, with some harmonic vibrations around
this conformation. Beginning in the nineties, the development of Nuclear Mag-
netic Resonance (NMR) permitted the study of protein structures in solution.
Further developments in NMR relaxation methods exposed the rich internal dy-
namics of proteins, painting a more realistic picture of protein structure [27].
Protein internal flexibility was then recognized as playing a critical role in many
biological processes. For example, many proteins are thought to be functionally
important, despite the fact that they lack a precisely defined 3D structure.

NMR structure determination is mainly based on the measurement of inter-
atomic distances, determined through the observation of the Nuclear Overhauser
Effect (NOE). This is induced by the transfer of magnetization through dipolar
coupling between the observed hydrogens. The obtained distance values contain
both systematic and random errors, due to the numerous paths of magnetization
transfer and to internal molecular dynamics [66]. Nevertheless, NOE-derived
NMR experiments may be used to determine some (short) Euclidean distances
between hydrogen atoms in a protein. Given this partial set of inexact distances,
we are left with the problem of determining the 3D structure of the protein.

We use a weighted simple undirected graph G = (V,E, d) to model this
problem, where V represents the set of atoms and E represents the set of atom
pairs for which a distance is available, given by the function d : E 7→ [0,∞) (the
fact that we allow distances to be zero will be explained in Section 3).

The representation of a molecule as a set of atomic symbols linked by seg-
ments was originally described in [18] and, in fact, the origin of the word graph is
due to this representation of molecules [64]. This relationship between molecules
and graphs is probably the deepest one existing between chemistry and discrete
mathematics. In effect, the graph G = (V,E, d) is a mathematical abstrac-
tion to represent the problem data. The problem itself is to find a function
x : V 7→ R

3 that associates each element of V with a point in R
3 in such a way

that the Euclidean distances between the points correspond to the values given
by d. This is a Distance Geometry Problem (DGP) in R

3, formally described as
follows.

Definition 1. Given an integer K > 0 and a simple undirected graph G =
(V,E, d) whose edges are weighted by a function d : E 7→ [0,∞), find a function
x : V 7→ R

K such that

∀{u, v} ∈ E, ‖xu − xv‖ = duv, (1)

where xu = x(u), xv = x(v), duv = d({u, v}), and ‖xu − xv‖ is the Euclidean
distance between xu and xv.

For the remainer of this work, we will fix K = 3, since we are interested
in the application of the DGP to protein conformation [17]. Recent surveys
on Distance Geometry (DG) are given in [7, 47], an edited book with different
applications can be found in [54], two very recent books are given in [43, 50],
and some historical notes on DG are presented in [48].
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In 1983, the first DG-based method for molecular conformation was proposed
[28] and in 1984, the first protein structure was determined in its native solution
state from NMR data [29].

The simplest approach to the problem is to directly attempt to solve the
set of equations (1). However, there is evidence that a closed-form solution is
not possible [5]. Since the equations are also difficult to solve numerically, a
common approach is to formulate the DGP as a nonlinear global minimization
problem,

min
x1,...,xn∈R3

∑

{u,v}∈E

(‖xu − xv‖
2 − d2uv)

2,

where |V | = n. However, solving such a problem is hard from a computational
complexity point of view, as well as from a practical one [47, 62, 63]. In [37],
some global optimization algorithms were tested, but none of them scale well to
medium or large instances. A survey of different methods to the DGP is given
in [45].

Assuming the input data are correct and precise (see Section 3 for other
cases), the set X of solutions of a DGP will yield all the 3D structures of the
protein that are compatible with the given distances. Any x ∈ X can be trans-
lated and rotated in R

3, implying that the solution set is not only infinite, but
uncountable. However, if we do not consider the effect of translations and rota-
tions, the cardinality of X depends generically on the structure of the associated
graph G = (V,E, d). If the set of edges E contains all possible pairs from V ,
there is only one solution which can be found in linear time [20]. In general, the
problem is NP-hard [59].

Using algebraic geometry, it is possible to prove that there are just two
possibilities regarding the cardinality of the solution set X : it is either finite
or uncountable, supposing that X 6= ∅ [6]. This result is strongly related
to graph rigidity [26]. For example, if the graph is rigid, the solution set is
finite (up to translations and rotations). In this case, a combinatorial search is
better suited than a continuous one, because in addition to the accuracy and
efficiency of combinatorial methods, graph rigidity allows us to obtain more
information about the cardinality and the structure of the solution set X [41, 49]
(in Section 3, we will see that these results change when distance values are not
precise).

The original contribution of this paper is theoretical. We present a new
order on the vertices V of the protein graph G that uses information from
the chemistry of proteins and NMR experiments (an order on V is a sequence
r : N 7→ V ∪ {0}, for which r(i) = 0 for all i > |r|, where |r| ∈ N is the
length of r). This order guarantees the rigidity of G and most importantly,
“organizes the search space” in such a way that it can be searched efficiently for
all solutions to the problem. Also, it tells us what kind of information from the
NMR experiments is crucial to understanding the cardinality of the solution set
and the computational complexity of the problem.

To explain the properties of the proposed order, important connections be-
tween NMR protein structure, distance geometry, graph rigidity, and graph ver-
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tex orders are established. This is done without excessive formalism, although
all important concepts and results are presented.

In the following subsection, we give the necessary results from graph rigidity.
Subsection 1.3 shows the importance of vertex orders in DGP graphs. Section 2
presents the discrete version of the DGP. In Section 3, the new order is defined
along with its most important properties. Finally, we end with conclusions and
some new research directions in Section 4.

1.2. Graph rigidity

Given a graph G = (V,E, d) of a DGP, a function x : V 7→ R
3 is called a

realization of the graph in R
3. If x satisfies all the equations (1), it is a valid

realization. A pair (G, x) where G is a graph and x is a realization is called a
framework.

In order to use frameworks to model protein structures and to have a precise
notion of framework rigidity [32], we must define two relations: isometry and
congruence.

Two frameworks (G, x) and (G, y) are isometric, denoted as (G, x) ∼ (G, y),
if

∀{u, v} ∈ E, ‖xu − xv‖ = ‖yu − yv‖,

and congruent, denoted as (G, x) ≡ (G, y), if

∀u 6= v ∈ V, ‖xu − xv‖ = ‖yu − yv‖.

Thus, two frameworks are congruent only if all pairs of vertices from V

have the same related distances, not only the pairs in E. Trivially, congruency
implies isometry, but the converse is not true in general. We remark that any
congruence is a composition of translations, rotations, and reflections [8].

(G, x) is a rigid framework if for any other realization y of G

(G, x) ∼ (G, y) =⇒ (G, x) ≡ (G, y).

Geometrically, this means that a framework is rigid if it has no continuous
deformations aside from composition of translations, rotations and reflections.
That is, the only way to continuously move a point in a rigid framework is mov-
ing all points such that all pairwise distances are preserved, and not only those
given by the edges. Using the concept of infinitesimal rigidity of a framework
[65], we can define graph rigidity.

Let (G, x) be a framework in R
3, where |V | = n and |E| = m. Consider the

linear system Rλ = 0, where λ ∈ R
3n and R is the m× 3n matrix each {u, v}th

row of which has exactly 6 nonzero entries given by

xi(u)− xi(v) and xi(v)− xi(u), {u, v} ∈ E and i = 1, 2, 3,

where x1(u), x2(u), x3(u) are the Cartesian coordinates of xu in R
3.

The framework is infinitesimally rigid if the only solutions of Rλ = 0 are
translations or rotations. Infinitesimal rigidity implies rigidity [23], and if a
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graph has a single infinitesimally rigid framework, then almost all its frameworks
are rigid [30].

Consequently, it makes sense to define a rigid graph as a graph having an
infinitesimally rigid framework. There is also a notion of a graph being rigid
independently of the framework assigned to it, known as generic rigidity [14],
which will not be used here.

A characterization of all rigid graphs in R
2 was described by Laman [35],

but no such complete characterization is known in R
3. A heuristic method was

introduced in [61] and current conjectures can be found in [33].
If a DGP graph has a unique valid realization, up to congruences, it is called

globally rigid. In [14], necessary and sufficient conditions for global rigidity
in R

2 were presented. Hendrickson [30] conjectured that the same conditions
would be sufficient for R3, but this was disproved by Connelly [14]. Some graph
properties ensuring global rigidity in R

2 and R
3 are given in [4].

1.3. Vertex orders

The idea of exploiting vertex orders to investigate graph rigidity first ap-
peared in [31]. In fact, vertex orders are important for solving many problems
modeled by graphs [9, 55].

If there is a trilateration order in a DGP graph (every vertex beyond the first
four is adjacent to at least four predecessors) and the first four vertices induce
a clique, the graph is globally rigid in R

3. Such an order makes it possible to
uniquely triangulate the position of each subsequent vertex in the order. This
implies the existence of a linear time algorithm to find the unique solution [21].

Adjacent predecessors in a vertex order are critical: any fewer than three,
and the number of DGP solutions might be uncountable; any more, and the
corresponding DGP can be solved uniquely in linear time [47]. So, the number
of adjacent predecessors in a given order is related to the cardinality of the DGP
solution set and also to the required computational effort to find a solution.

In general, we do not have trilateration orders in protein graphsG = (V,E, d)
[40], but using the information provided by NMR experiments and chemistry of
proteins, we can try to find vertex orders v1, . . . , vn ∈ V such that:

• The first three vertices form a clique:

{v1, v2}, {v1, v3}, {v2, v3} ∈ E;

• Each vertex with rank greater than 3 is adjacent to at least 3 predecessors:

∀i > 3, ∃ j, k, l with j < i, k < i, l < i : {vj , vi}, {vk, vi}, {vl, vi} ∈ E.

The class of DGP instances possessing these orders, where the initial clique
has a valid realization and the strict triangular inequalities relating the adjacent
predecessors vj , vk, vl to vi, i > 3, are satisfied (i.e. dvjvk + dvkvl > dvjvl), is
called the Discretizable Distance Geometry Problem (DDGP), and the orders
themselves DDGP orders [24, 52].
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The initial clique guarantees that the solution set X will contain just in-
congruent solutions (aside from a single reflection) and the strictness of the
triangular inequality prevents an uncountable number of solutions [52]. In the
same paper, it was proved that the graph of any DDGP instance is rigid. An
exact solution method, called Branch-and-Prune (BP), was presented for finding
all incongruent solutions. The BP algorithm can be exponential in the worst
case, which is consistent with the fact that the DDGP is an NP-hard problem
[10, 44, 52].

In a DDGP order, the fourth vertex v4 can be realized by solving the fol-
lowing quadratic system (to simplify the notation, we will use xi instead of xvi
and di,j instead of dvivj )

‖x4 − x1‖
2 = d21,4

‖x4 − x2‖
2 = d22,4

‖x4 − x3‖
2 = d23,4,

which can result in up to two possible positions for v4 [40]. Using the same
strategy, for each position already determined for v4, we obtain other two posi-
tions for v5, and so on. Because of the rigidity of the DDGP graph, the search
space is finite and has 2n−3 possible solutions.

If we have any “extra” distance information, {vr, vi} ∈ E with r < i, we can
add more one equation to the system related to vi, i > 3, resulting in

‖xi − xj‖ = dj,i

‖xi − xk‖ = dk,i

‖xi − xl‖ = dl,i

‖xi − xr‖ = dr,i.

Squaring both sides of these equations, we obtain (x⊤i denotes the transpose of
xi):

‖xi‖
2 − 2(x⊤i xj) + ‖xj‖

2 = d2j,i

‖xi‖
2 − 2(x⊤i xk) + ‖xk‖

2 = d2k,i

‖xi‖
2 − 2(x⊤i xl) + ‖xl‖

2 = d2l,i

‖xi‖
2 − 2(x⊤i xr) + ‖xr‖

2 = d2r,i.

Now, subtracting one of these equations from the others, we eliminate the term
‖xi‖

2 and obtain a linear system in the variable xi. If the points xj , xk, xl, xr are
not in the same plane, we have a unique solution x∗i for vi, supposing ‖x

∗
i −xr‖ =

dr,i. When there are other adjacent predecessors of vi besides vj , vk, vl, one or
both possible positions for vi may be infeasible with respect to those additional
distances. If both are infeasible, it is necessary to backtrack and try a different
position for previous vertices [52].

The DDGP order organizes the search space in a binary tree and the addi-
tional distance information can be used to reduce the search space by pruning
infeasible positions in the tree.
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The tree begins with the three fixed positions for the initial clique, x1, x2, x3.
At level i > 3, the tree contains all (2i−3) possible positions for vertex vi, if
no pruning occurs. The search ends when a path from the root (i = 1) of
the tree to a leaf node (i = n) is found by the BP algorithm: the positions
relative to vertices in the path satisfy the DGP equations (1), and thus encode
a valid realization of G. Considering precise input data, the BP performance
is impressive from the points of view of both efficiency and reliability [37, 40].
Although the DDGP is NP-hard, a DDGP order can be found in polynomial
time [39].

In the definition of the DDGP, the only requirement on the adjacent pre-
decessors vj , vk, vl to vi (for i > 3) is that the associated strict triangular in-
equality must be satisfied. However, depending on the instance, if the distances
dj,i, dk,i, dl,i are not well scaled, the influence of numerical floating point error
in solving the related quadratic system is increased. In some cases, this prevents
the BP from finding solutions [52].

Protein graphs provided by NMR experiments have enough information to
allow definition of vertex orders involving immediately contiguous adjacent pre-
decessors that can avoid those kinds of problems in DDGP instances.

2. The Discretizable Molecular Distance Geometry Problem (DMDGP)

The class of DGP instances that replaces a DDGP order by one with contigu-
ous adjacent predecessors is called the Discretizable Molecular Distance Geom-
etry Problem (DMDGP) and the order itself is a DMDGP order [40]. Formally,
the DMDGP is defined as follows:

Definition 2. Given a DGP graph G = (V,E, d) and a vertex order v1, . . . , vn
such that

• there exists a valid realization for v1, v2, v3 and

• ∀i > 3, the set {vi−3, vi−2, vi−1, vi} is a clique with di−3,i−2 + di−2,i−1 >

di−3,i−1,

find a function x : V 7→ R
3 such that

∀{u, v} ∈ E, ‖xu − xv‖ = duv.

We remark that the DMDGP is a subclass of instances of the DDGP. However,
the structural properties and hardness of the DMDGP and DDGP are very
different, which justifies Defn. 2.

The distance information in the clique {vi−3, vi−2, vi−1, vi} allows us to get
the following values:

• d1,2, . . . , dn−1,n (distances associated to consecutive vertices),

• θ1,3, . . . , θn−2,n (angles in (0, π) defined by three consecutive vertices),
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• cos(ω1,4), . . . , cos(ωn−3,n) (cosines of torsion angles in [0, 2π] defined by
four consecutive vertices), given by [36]:

cos(ωi−3,i) =
2d2i−2,i−1(d

2
i−3,i−2 + d2i−2,i − d2i−3,i)− (di−3,i−2,i−1)(di−2,i−1,i)

√

4d2i−3,i−2d
2
i−2,i−1 − (d2i−3,i−2,i−1)

√

4d2i−2,i−1d
2
i−2,i − (d2i−2,i−1,i)

,

(2)

where

di−3,i−2,i−1 = d2i−3,i−2 + d2i−2,i−1 − d2i−3,i−1

di−2,i−1,i = d2i−2,i−1 + d2i−2,i − d2i−1,i.

Using cos(ωi−3,i), for i = 4, . . . , n, we obtain two possible values for each tor-
sion angle, implying that we do no longer need to solve quadratic systems. Com-
putational results presented in [40] show that avoiding resolution of quadratic
systems guarantees more stability in the branching phase of BP.

Considering that the vertex order v1, . . . , vn represents bonded atoms of a
molecule, the values di−1,i, θi−2,i, ωi−3,i are exactly the internal coordinates of
the molecule that can also be used to describe its 3D structure [40] (Fig. 1).

Another advantage of the DMDGP order is that it is enough to apply the
BP (or other algorithm) to find only one solution, since all the others can be
easily obtained using symmetry properties defined in the BP tree [49, 53]. These
properties are also related to the cardinality of the DMDGP solution set, which
can be computed based on the DMDGP graph [46], prior to actually finding
realizations. In [49], possible extensions of this result when distances are not
precise are also discussed.

Figure 1: Cartesian and internal coordinates.

There is a price to pay for all these results: in contrast to DDGP orders,
finding a DMDGP order is an NP-complete problem [11], even considering cases
when the initial clique is given. However, exploiting the chemistry of proteins
and NMR data, it is possible to design a “hand-crafted” DMDGP order for any
protein graph. We will see that this order can also be used to solve DMDGP
instances that incorporate uncertainties from NMR data [15].
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3. A new DMDGP order for protein graphs

In order to reduce the number of variables and also the computational effort
required to solve problems related to protein structure, it is common to assume
that all bond lengths and bond angles are fixed at their equilibrium values,
which is known as the rigid geometry hypothesis [22]. This means that, in
terms of internal coordinates, all the values di−1,i, for i = 2, . . . , n, and θi−2,i,
for i = 3, . . . , n, are given a priori, and that the 3D protein structure can be
determined by the values ωi−3,i, for i = 4, . . . , n. Because of the properties
of DMDGP orders, we can also know a priori all the values cos(ωi−3,i), for
i = 4, . . . , n, implying that the protein structure is defined by choosing + or −
from sin(ωi−3,i) = ±

√

1− cos2(ωi−3,i), for i = 4, . . . , n. These signs (+ or −)
are related to the branches of the BP tree.

We will consider protein graphs related to the backbone of a protein, the
“skeleton” of the molecule, from which its general 3D structure is determined.
The protein backbone is a chain of smaller molecules, called amino acids, which
are chemically bound to each other. The backbone is defined by a sequence of
three atoms, N,Cα, C, where each Cα is bound to another group of atoms (the
side chains of the protein) that distinguishes one amino acid from another. The
atoms attached to N,Cα, C, respectively H,Hα, O, will be very important to
establishing our results (Fig. 2 presents a backbone with three amino acids).
More details about protein graphs including side chains are given in [16, 57, 58].

Figure 2: Protein backbone.

3.1. Repetition orders

Since we are interested in determining the 3D structure of the backbone of
a protein, the sequence of atoms N i, Ci

α, C
i, for i = 1, . . . , p (where p is the

number of amino acids), would be the first candidate for defining the DMDGP
order we are looking for. However, for this kind of order, we do not have all the
distances di−3,i necessary to define a DMDGP instance. On the other hand,
NMR experiments, in general, provide distances between hydrogen atoms that
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are close enough (less than 5 Å apart). An order involving only hydrogens was
defined in [38]; unfortunately, this order has some limitations, mainly because
of uncertainty in NMR data [38]. These limitations have been partially ad-
dressed by simultaneously using hydrogen atoms bonded to the backbone and
the backbone itself [42].

As in [42], we allow the repetition of some vertices in the order, so that at
least three adjacent predecessors can always be chosen to be contiguous. Such
orders are called repetition orders (or re-orders), defined below. First, the set
of edges E of the protein graph G = (V,E, d) is partitioned into E = E′ ∪ E′′,
where {u, v} ∈ E′ if duv ∈ (0,∞), and {u, v} ∈ E′′ if duv = [duv, duv], with
0 < duv < duv. Note that the function d is now more general: the interval
values represent the uncertainties in NMR data. As we will see, E′ represents
pairs of atoms separated by one and two covalent bonds and E′′ represents pairs
of hydrogen atoms whose distances are provided by NMR.

Definition 3. A re-order is a sequence r : N 7→ V ∪ {0}, with length |r| ∈ N

(for which ri = r(i) = 0 for all i > |r|), such that

1. {r1, r2}, {r1, r3}, {r2, r3} ∈ E′;

2. ∀i ∈ {4, . . . , |r|}, {ri−1, ri}, {ri−2, ri} ∈ E′;

3. ∀i ∈ {4, . . . , |r|}, {ri−3, ri} ∈ E′ ∪E′′ or ri−3 = ri.

The first property says that dr1r2 , dr1r3 , dr2r3 ∈ (0,∞) and the second one
says that dri−1ri , dri−2ri ∈ (0,∞), for i = 4, . . . , |r|. That is, all of them must
be precise distances and greater than zero.

From the third property, there are three possibilities for dri−3ri , i = 4, . . . , |r|:

• dri−3ri = 0, meaning that there is a vertex repetition (ri−3 = ri);

• dri−3ri ∈ (0,∞), when ri−3, ri are related to atoms separated by one or
two covalent bonds;

• dri−3ri = [dri−3ri
, dri−3ri ], with 0 < dri−3ri

< dri−3ri (these distances are
called interval distances).

If ri = rj for some i 6= j (ri−3 = ri is a specific case), then drirj = 0.
However, if vertex repetition is used inappropriately, we might end up with a
triangle with a side of zero length, which might in turn imply an infinity of possi-
ble positions for the next atom (we emphasize the importance of strict triangular
inequalities in the definition of the DMDGP). Thus, to preserve discretization,
vertex repetition can occur only between pairs {ri, rj} with |i− j| ≥ 3. In this
case, there is no branching at level max(i, j).

A repetition of a vertex only increases the length of the sequence without
affecting the search, since its position in R

3 is already known. However, it can
be recomputed in order to control possible numerical instabilities and to check
if there are any inconsistencies in the distance information.
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To understand what happens when {ri−3, ri} ∈ E′′, let us rewrite expression
(2) as

cos(ωi−3,i) =
a+ bd2i−3,i

c
,

where a, b, c ∈ R and di−3,i ∈ [dri−3ri
, dri−3ri ]. The fact that a, b, c are precise

numbers is a consequence of the second condition above, i.e. {ri−1, ri}, {ri−2, ri} ∈
E′.

Considering the cases ωi−3,i = 0 and ωi−3,i = 2π, we get the minimum value
for dri−3ri

, denoted by dmin
ri−3ri

, and the maximum value for dri−3ri , denoted by

dmax
ri−3ri

, respectively. Thus, [dri−3ri
, dri−3ri ] ⊂ [dmin

ri−3ri
, dmax

ri−3ri
]. When di−3,i is

a precise number (di−3,i ∈ R), with dmin
ri−3ri

< di−3,i < dmax
ri−3ri

, we obtain two

possible values for ωi−3,i, associated to two positions in R
3 for ri. However, when

di−3,i = [dri−3ri
, dri−3ri ], with d

min
ri−3ri

< dri−3ri
< dri−3ri < dmax

ri−3ri
, we have two

possible intervals for ωi−3,i, associated to two arcs in R
3 for ri. In Fig. 3, we

illustrate these two arcs given as the intersection of two spheres (centered at
xi−1, xi−2 with radii di−1,i, di−2,i, respectively) and a spherical shell, defined by
two other spheres with the same center xi−3 but with radii given by dri−3ri

and

dri−3ri [51]. This is the geometrical interpretation of the branching phase of BP.

Figure 3: Geometric interpretation of branching in BP.

Thus, any re-order corresponds to a DMDGP order, where some of the pairs
{ri, rj}, with |i− j| ≥ 3, may not correspond to precise distances, but rather to
intervals.

The concept of a re-order was an important step to apply all the properties
of the DMDGP as a mathematical model for problems related to 3D protein
structure determination using NMR data. In the same paper that introduced
re-orders [42], an extension of the BP algorithm, called iBP, was developed. The
basic idea to deal with interval distances is to sample values from the intervals
[dri−3ri

, dri−3ri ], implying that the search space will no longer be a binary tree.
Computational results presented in [12, 25] reveal the main difficulty of iBP:
even for large samples, there is no guarantee that a solution will be found.

Essentially, there are two reasons for this difficulty:
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• The re-orders presented in [25, 42] have some pairs of vertices {ri−3, ri}
whose interval distances may not be associated to NMR data, i.e.

[dri−3ri
, dri−3ri ] = [dmin

ri−3ri
, dmax

ri−3ri
], (3)

implying that sample values will be taken from a circle instead of two arcs;

• The sampling process “transforms” the iBP into a heuristic: we can no
longer guarantee that a solution may be found.

Very recent results [2, 3] using Clifford algebra propose an alternative that
avoids the sampling process in the branching phase of iBP. However, in order
to apply these results to protein structure calculations, a new re-order must
be defined that avoids the situation (3). The most important property of the
re-order we will describe now is that it allows branches (in the iBP search) only
at hydrogen atoms that are bonded to the protein backbone. Previous re-orders
[25, 42] do not have this property.

3.2. The hand-crafted vertex order

Let us define a protein graph G = (V,E, d) associated to the backbone of a
protein ({Nk, Ck

α, C
k}, for k = 1, . . . , p), including oxygen atoms Ok, bonded to

Ck, and hydrogen atoms Hk and Hk
α, bonded to Nk and Ck

α, respectively (see
Fig. 2, for p = 3).

The hand-crafted vertex order (hc order) we propose is the following:

hc =
{

N1, H1, H1′ , C1
α, N

1, H1
α, C

1, C1
α, . . . , (4)

Hi, Ci
α, O

i−1, N i, Hi, Ci
α, N

i, Hi
α, C

i, Ci
α, . . . ,

Hp, Cp
α, O

p−1, Np, Hp, Cp
α, N

p, Hp
α, C

p, Cp
α, O

p, Cp, Op′ }

,

where i = 2, . . . , p− 1, H1′ is the second hydrogen bonded to N1 and Op′

is the
second oxygen bonded to Cp (Fig. 4 illustrates this order for p = 3).

Figure 4: The hc order.
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We will now prove that hc is a re-order. We have assigned the following
order to the atoms of the first amino acid of a protein:

{

N1, H1, H1′ , C1
α, N

1, H1
α, C

1, C1
α

}

. (5)

Since we are assuming that all bond lengths and bond angles are fixed at their
equilibrium values (the rigid geometry hypothesis mentioned in the beginning of
Section 3), the first and the second requirements of a re-order are satisfied. The
third requirement is also satisfied, with the following distances for {ri−3, ri} (we
will denote by I(Hi, Hj) the interval distance related to the pair of hydrogens
{Hi, Hj}):

• d(N1, C1
α) ∈ (0,∞),

• d(H1, N1) ∈ (0,∞),

• d(H1′ , H1
α) = I(H1′ , H1

α),

• d(C1
α, C

1) ∈ (0,∞),

• d(N1, C1
α) ∈ (0,∞).

The nitrogen N1 and the carbon C1
α appear twice in the sequence, but they

are related to the pairs {r1, r5} and {r4, r8}.
To prove that hc is a re-order, we have to check the connection between the

order (5) and the order for the second amino acid, given by the last three atoms
of (5) and the first six atoms of the second amino acid:

{

H1
α, C

1, C1
α, H

2, C2
α, O

1, N2, H2, C2
α

}

. (6)

Here, in addition to the rigid geometry hypothesis, we also have to use
the properties of the so-called peptide plane [19], which states that the atoms
{C1

α, C
1, O1, N2, H2, C2

α} are in the same plane (Fig. 5). This implies that
d(C1

α, H
2) (related to the pair {r8, r9}), d(C

1
α, C

2
α) (related to the pair {r8, r10}),

d(H2, O1) (related to the pair {r9, r11}), d(C
2
α, O

1) (related to the pair {r10, r11}),
and d(O1, H2) (related to the pair {r11, r13}) are all precise distances, satisfying
the second requirement for a re-order. The third requirement is also satisfied,
with the following distances for {ri−3, ri}:

• d(H1
α, H

2) = I(H1
α, H

2),

• d(C1, C2
α) ∈ (0,∞),

• d(C1
α, O

1) ∈ (0,∞),

• d(H2, N2) ∈ (0,∞),

• d(C2
α, H

2) ∈ (0,∞),

• d(O1, C2
α) ∈ (0,∞).
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Figure 5: Peptide plane.

The atomsH2 and C2
α are repeated, but they are related to the pairs {r9, r13}

and {r10, r14}, respectively.
We have assigned the following order to the atoms of a generic amino acid

of a protein:
{

Hi, Ci
α, O

i−1, N i, Hi, Ci
α, N

i, Hi
α, C

i, Ci
α

}

. (7)

By the same arguments used for the orders (5) and (6), the second and
the third re-order requirements are satisfied, with the following distances for
{ri−3, ri}:

• d(Hi, N i) ∈ (0,∞),

• d(Ci
α, H

i) ∈ (0,∞),

• d(Oi−1, Ci
α) ∈ (0,∞),

• d(N i, N i) = 0,

• d(Hi, Hi
α) = I(Hi, Hi

α),

• d(Ci
α, C

i) ∈ (0,∞),

• d(N i, Ci
α) ∈ (0,∞).

In the order (7), Hi, Ci
α, N

i are repeated, where Hi and Ci
α are related to

pairs {ri, rj}, with i−3 < j, andN i is related to a pair {ri−3, ri}, which explains
d(N i, N i) = 0 above.

The connection between two generic amino acids, given by
{

Hi
α, C

i, Ci
α, H

i+1, Ci+1
α , Oi, N i+1, Hi+1, Ci+1

α

}

,

and the one between a generic amino acid and the last one, given by
{

Hp−1
α , Cp−1, Cp−1

α , Hp, Cp
α, O

p−1, Np, Hp, Cp
α

}

,

both have the same order given in (6).
The result above implies the following distances for {ri−3, ri}, related to the

connection between two generic amino acids,

14



• d(Hi
α, H

i+1) = I(Hi
α, H

i+1),

• d(Ci, Ci+1
α ) ∈ (0,∞),

• d(Ci
α, O

i) ∈ (0,∞),

• d(Hi+1, N i+1) ∈ (0,∞),

• d(Ci+1
α , Hi+1) ∈ (0,∞),

• d(Oi, Ci+1
α ) ∈ (0,∞),

and related to the connection between a generic amino acid and the last:

• d(Hp−1
α , Hp) = I(Hp−1

α , Hp),

• d(Cp−1, Cp
α) ∈ (0,∞),

• d(Cp−1
α , Op−1) ∈ (0,∞),

• d(Hp, Np) ∈ (0,∞),

• d(Cp
α, H

p) ∈ (0,∞),

• d(Op−1, Cp
α) ∈ (0,∞).

Finally, we have assigned the following order to the atoms of the last amino
acid of a protein:

{

Hp, Cp
α, O

p−1, Np, Hp, Cp
α, N

p, Hp
α, C

p, Cp
α, O

p, Cp, Op′ }

. (8)

Using once more the rigid geometry hypothesis and the peptide plane prop-
erties, the second and the third requirements of a re-order are satisfied, with
the following distances related to {ri−3, ri}:

• d(Hp, Np) ∈ (0,∞),

• d(Cp
α, H

p) ∈ (0,∞),

• d(Op−1, Cp
α) ∈ (0,∞),

• d(Np, Np) = 0,

• d(Hp, Hp
α) = I(Hp

α, H
p),

• d(Cp
α, C

p) ∈ (0,∞),

• d(Np, Cp
α) ∈ (0,∞),

• d(Hp
α, O

p) = I(Hp
α, O

p),

• d(Cp, Cp) = 0,

• d(Cp
α, O

p′

) ∈ (0,∞).

The distance d(Hp
α, O

p) is an interval, but the last level of the search tree
can be related to the position of Cp, already determined using d(Cp

α, C
p).

The presented analysis can be summarized in the following theorem:

Theorem 4. The hc order is a re-order.
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3.3. Minimal NMR distance information

In NMR experiments, the protein is placed within a magnetic field, inducing
an alignment of the magnetic moments of the observed nuclei. The through-
space transmission of this magnetization between nuclei is called the Nuclear
Overhauser Effect (NOE), which is approximately proportional to d−6, where d
is the distance between the nuclei of two different atoms [13]. In general, if two
nuclei are more than 5 Å apart, the NOE signal is too weak to be measured for
estimating distances.

The measured signal recorded during NOE experiments may be distorted,
due to dynamics of the protein under study, experimental noise, and the influ-
ence of neighboring atoms [56]. NOE measurements are often converted into
upper distance bounds, where the corresponding lower bounds are given by the
sum of the van der Waals radii of the involved atoms [34]. Therefore, interval
distances may be defined for hydrogen pairs that are close enough, implying the
following result.

Theorem 5. Using the hc order, the rigid geometry hypothesis, and the prop-
erties of peptide planes, the set of distances between the pairs of hydrogen atoms

{H1′ , H1
α}, . . . , {H

i−1
α , Hi}, {Hi, Hi

α}, {H
i
α, H

i+1}, . . . , {Hp, Hp
α}, (9)

where i = 2, . . . , p − 1 and p is the number of amino acids of a protein, are
sufficient conditions to represent the solution space of the associated DGP as a
search tree.

Let us consider this search tree more carefully. Since the hc order is a re-
order, all distances di−1,i and di−2,i are precise values, greater than zero. Thus,
concerning the size of the search space, we have to analyze all distances di−3,i

(recall that the branching of the search tree is the result of intersecting two
spheres with precise radii di−1,i, di−2,i with a third one of radius di−3,i, possibly
given by an interval distance (Fig. 3)).

In addition to the rigid geometry hypothesis and the peptide plane proper-
ties, we also need the chirality property [19], which defines the orientation of the
tetrahedra formed by {N1, H1, H1′ , C1

α} and {Ci
α, N

i, Hi
α, C

i}, implying only
one possible position for C1

α and Ci, i = 1, . . . , p (Fig. 6).

Figure 6: Chirality property.

Considering the first amino acid and the links to the second one, we have:
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• d(N1, C1
α) > 0 =⇒ 2 possible positions in R

3 for C1
α, but we can fix

one of them because of chirality defined on {N1, H1, H1
′

, C1
α}.

• d(H1, N1) > 0 =⇒ 2 possible positions in R
3 for N1, but we can fix

one of them, since N1 is repeated.

• d(H1′ , H1
α) = I(H1′ , H1

α) =⇒ 2 possible arcs in R
3 for H1

α.

• d(C1
α, C

1) > 0 =⇒ 2 possible positions in R
3 for C1, but we can fix

one of them because of chirality defined on {C1
α, N

1, H1
α, C

1}.

• d(N1, C1
α) > 0 =⇒ 2 possible positions in R

3 for C1
α, but we can fix

one of them, since C1
α is repeated.

• d(H1
α, H

2) = I(H1
α, H

2) =⇒ 2 possible arcs in R
3 for H2.

• d(C1, C2
α) > 0 =⇒ 2 possible positions in R

3 for C2
α, but we can fix

one of them because of the plane already defined by {C1, C1
α, H

2
α}.

• d(C1
α, O

1) > 0 =⇒ 2 possible positions in R
3 for O1, but we can fix

one of them because of the plane already defined by {C1, C1
α, H

2
α}.

These are the distances di−3,i in the generic amino acid (with the links to
the next one):

• d(Hi, N i) > 0 =⇒ 2 possible positions in R
3 for N i, but we can fix

one of them because of the plane already defined by {Ci−1, Ci−1
α , Hi}.

• d(Ci
α, H

i) > 0 =⇒ 2 possible positions in R
3 for Hi, but we can fix

one of them, since Hi is repeated.

• d(Oi−1, Ci
α) > 0 =⇒ 2 possible positions in R

3 for Ci
α, but we can fix

one of them, since Ci
α is repeated.

• d(N i, N i) = 0 =⇒ 1 possible position in R
3 for N i (the related torsion

angle is 0).

• d(Hi, Hi
α) = I(Hi, Hi

α) =⇒ 2 possible arcs in R
3 for Hi

α.

• d(Ci
α, C

i) > 0 =⇒ 2 possible positions in R
3 for Ci, but we can fix one

of them because of chirality defined on {Ci
α, N

i, Hi
α, C

i}.

• d(N i, Ci
α) > 0 =⇒ 2 possible positions in R

3 for Ci
α, but we can fix

one of them, since Ci
α is repeated.

• d(Hi
α, H

i+1) = I(Hi
α, H

i+1) =⇒ 2 possible arcs in R
3 for Hi+1.

• d(Ci, Ci+1
α ) > 0 =⇒ 2 possible positions in R

3 for Ci+1
α , but we can fix

one of them because of the plane already defined by {Ci, Ci
α, H

i+1
α }.

• d(Ci
α, O

i) > 0 =⇒ 2 possible positions in R
3 for Oi, but we can fix one

of them because of the plane already defined by {Ci, Ci
α, H

i+1
α }.
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Now, let us analyze the distances di−3,i in the last amino acid (as we already
mentioned, we are considering that the last level of the search tree is being
related to the position of Cp):

• d(Hp, Np) > 0 =⇒ 2 possible positions in R
3 for Np, but we can fix

one of them because of the plane already defined by {Cp−1, Cp−1
α , Hp}.

• d(Cp
α, H

p) > 0 =⇒ 2 possible positions in R
3 for Hp, but we can fix

one of them, since Hp is repeated.

• d(Op−1, Cp
α) > 0 =⇒ 2 possible positions in R

3 for Cp
α, but we can fix

one of them, since Cp
α is repeated.

• d(Np, Np) = 0 =⇒ 1 possible position in R
3 for Np (the related torsion

angle is 0).

• d(Hp, Hp
α) = I(Hp, Hp

α) =⇒ 2 possible arcs in R
3 for Hp

α.

• d(Cp
α, C

p) > 0 =⇒ 2 possible positions in R
3 for Cp, but we can fix

one of them because of chirality defined on {Cp
α, N

p, Hp
α, C

p}.

The discussion above implies the following result.

Theorem 6. Using the hc order, the rigid geometry hypothesis, the peptide
plane properties, the chirality property, and the set of distances between the
pairs of hydrogen atoms

{H1′ , H1
α}, . . . , {H

i−1
α , Hi}, {Hi, Hi

α}, {H
i
α, H

i+1}, . . . , {Hp, Hp
α}, (10)

where i = 2, . . . , p − 1 and p is the number of amino acids of a protein, the
branches in the search tree occur only at hydrogen atoms given by

{H1
α, . . . , H

i, Hi
α, . . . , H

p, Hp
α}. (11)

There are two main consequences of this theorem:

1. If the distances related to the pairs (10) are precise values, the search
space of the associated DGP is finite, represented as a binary tree;

2. If the distances related to the pairs (10) are precise values and there is at
least one additional distance (from NMR data) for each hydrogen in the
list (11) to previous hydrogens, there is only one DGP solution that can
be found in linear time.

Although precise and additional distances are very strong hypotheses, this
kind of information emphasizes the relationship of the cardinality of the DGP
solution set with the computational complexity of the problem.

From the definition of the hc order (4) and from Theorem 6, we can note
that the position of atom N i depends on the position of atom Hi and that
the position of atom Ci depends on the position of atom Hi

α. Since the protein
backbone is determined by the torsion angles defined by {N i−1, Ci−1

α , Ci−1, N i}

18



and {Ci−1, N i−1, Ci−1
α , Ci} (the so-called (φ, ψ) angles [19]), the term minimal

NMR distance information is justified by the fact that we require only NMR
distances related to d(Hi, Hi

α) and d(H
i−1
α , Hi).

Since atoms Hi, Hi
α are in the same amino acid, the associated distance

d(Hi, Hi
α) is likely to be detected by NMR. Although atoms Hi−1

α , Hi are in
consecutive amino acids, there is just one torsion angle (the one defined by
{N i−1, Ci−1

α , Ci−1, N i}) related to the position ofHi, because the peptide plane
“constrains” the torsion angle defined by {Ci−1

α , Ci−1, N i−1, Ci
α} to be π radi-

ans. In the worst case, supposing that the distance d(Hi−1
α , Hi) is not available,

we can use “implicit” information associated with the fact that the distance was
not detected [1] or some estimations given in [67].

4. Conclusion and future directions

The contribution of this paper is related to how to combine information
from protein geometry (rigid geometry hypothesis, peptide plane, and chirality)
and NMR experiments in order to model the problem of 3D protein calculation
using NMR data as a DMDGP that also considers interval distances. From the
results of this work, we select four new research directions:

1. Exploit the hc order for the purpose of designing new pruning devices for
the iBP;

2. Apply the hc order and the corresponding pruning devices to the Clifford
algebra approach recently proposed in the literature;

3. Investigate the possibility of designing new NMR experiments that focus
on the accuracy of distances between hydrogen atoms used in the hc order;

4. Develop robust algorithms that can integrate all of the above items.

Regarding item 1, we can do the following: (a) exploit information on lower
and upper bounds to the backbone torsion angles provided by NMR chemical
shifts [60]; (b) and exploit information on hydrogen bonds defined between a
hydrogen (bound to N) of one amino acid and the oxygen (bound to C) of
another one. More precisely:

• Since the position of atom Oi−1 is determined by the position of atom Hi,
hydrogen bond distances can be used to prune infeasible positions of Hi;

• Since the position of atom N i is also determined by the position of atom
Hi, NMR chemical shift information on the torsion angle defined by
{N i−1, Ci−1

α , Ci−1, N i} can be used to prune infeasible positions of Hi;

• Since the position of atom Ci is determined by the position of atom
Hi

α, NMR chemical shift information on the torsion angle defined by
{Ci−1, N i−1, Ci−1

α , Ci} can be used to prune infeasible positions of Hi
α.

Of course, all the information related to the NMR distances

d(Hj , Hi), d(Hj−1
α , Hi) and d(Hj−1, Hi

α), d(H
j
α, H

i
α),

where j < i, can also be used to prune infeasible positions of Hi and Hi
α.
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[66] B. Vögeli, S. Olsson, P. Güntert, R. Riek, The exact NOE as an alternative
in ensemble structure determination, Biophysical Journal, 110 (2016), 113-
126.
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