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1 Introduction

The Molecular Distance Geometry Problem, which asks to find the
embedding in R3 of a given weighted undirected graph, is a good model for
determining the structure of proteins given a set of inter-atomic distances [6,4].
Its generalization to RK is called Distance Geometry Problem (DGP),
which has applications in wireless sensor networks [2] and graph drawing.
In general, the MDGP and DGP implicitly require a search in a continuous
Euclidean space. Proteins, however, have further structural properties that can
be exploited to define subclasses of instances of the MDGP and DGP whose
solution set is finite [5]. These instances can be solved with an algorithmic
framework called Branch-and-Prune (BP) [3,5]: this is an iterative algorithm
where the i-th atom of the protein can be embedded in R3 using distances
to at least three preceding atoms. Since the intersection of three 3D spheres
contains in general two points, the BP gives rise to a binary search tree. In the
worst case, the BP is an exponential time algorithm, which is fitting because
the MDGP and DGP are NP-hard [9].
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Compared to continuous search algorithms, the performance of the BP algo-
rithm is impressive from the point of view of both efficiency and reliability. In
this paper we try to explain why the BP algorithm is so much faster than other
approaches notwithstanding its worst-case exponential running time. Specifi-
cally, using the particular structure of the protein graph, we argue that it is
reasonable to expect that the BP will yield a search tree of bounded width.

2 Discretizable instances and the BP algorithm

For all integers n > 0, we let [n] = {1, . . . , n}. Given an undirected graph
G = (V,E) with |V | = n, for all v ∈ V we let N(v) = {u ∈ V | {u, v} ∈ E} be
the set of vertices adjacent to v. Given a positive integer K, an embedding of G
in RK is a function x : V → RK . If d : E → R+ is a given edge weight function
on G = (V,E, d), an embedding is valid for G if ∀{u, v} ∈ E ‖xu − xv‖ = duv,
where xv = x(v) for all v ∈ V and duv = d({u, v}) for all {u, v} ∈ E. For
any U ⊆ V , an embedding of G[U ] (i.e. the subgraph of G induced by U) is a
partial embedding of G. If x is a partial embedding of G and y is an embedding
of G such that ∀u ∈ U (xu = yu) then y is an extension of x. For a total order
< on V and for each v ∈ V , let ρ(v) = |{u ∈ V | u ≤ v}| be the rank of
v in V with respect to <. The rank is a bijection between V and [n], so we
can identify v with its rank and extend arithmetic notation to V so that for
i ∈ Z, v + i denotes the vertex u ∈ V with ρ(u) = ρ(v) + i. For all v ∈ V

and ℓ < ρ(v) we denote by γℓ(v) the set of ℓ immediate predecessors of v. If
U ⊆ V with |U | = h such that G[U ] is a clique, let D′(U) be the symmetric
matrix whose (u, v)-th component is d2uv for u, v ∈ U , and let D(U) be D′(U)
bordered by a left (0, 1, . . . , 1)⊤ column and a top (0, 1 . . . , 1) row (both of size
h+1). Then the Cayley-Menger formula [1] states that the volume in Rh−1 of

the h-simplex defined by G[U ] is given by ∆h−1(U) =
√

(−1)h

2h−1((h−1)!)2
|D(U)|.

Generalized Discretizable Molecular Distance Geometry Prob-

lem (KDMDGP). Given an integer K > 0, a weighted undirected graph
G = (V,E, d) with d : E → Q+, a total order < on V and an embedding
x′ : [K]→ RK such that:
(1) x′ is a valid partial embedding of G[[K]] (Start)
(2) G contains all (K+1)-cliques of <-consecutive vertices as induced sub-

graphs (Discretization)
(3) ∀v ∈ V with v > K, ∆K−1(γK(v)) > 0 (Strict Simplex Inequali-

ties),
is there a valid embedding x of G in RK extending x′?

We denote by X the set of embeddings solving a KDMDGP instance. The
KDMDGP generalizes the Discretizable Molecular Distance Geom-
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etry Problem (DMDGP) [3] from R3 to RK . Furthermore, it is a subclass
of the Discretizable Distance Geometry Problem (DDGP) [8] given
by all DDGP instances where the K adjacent predecessors used to determine
the two positions for the current vertex are immediate. Since for the DDGP
|X| is finite [8], this also holds for the KDMDGP; and since the DMDGP is
NP-hard [3], the same is true for the KDMDGP. For a partial embedding x of
G and {u, v} ∈ E let Sx

uv be the sphere centered at xu with radius duv. The BP

Algorithm 1 BP(v, x̄, X)

Require: A vtx. v ∈ V r [K], a partial emb. x̄ = (x1, . . . , xv−1), a set X.
1: P =

⋂

u∈N(v)
u<v

Sx̄
uv;

2: ∀p ∈ P ( (x← (x̄, p)); if (ρ(v) = n) X ← X ∪{x} else BP(v+1, x, X) ).

algorithm, used for solving the DDGP and its restrictions, is BP(K + 1, x′,
∅) (see Alg. 1). By Strict Simplex Inequalities, |P | ≤ 2. At termination,
X contains all embeddings extending x′ [3,5].

3 BP tree geometry

Since the definition of the KDMDGP requires G to have at least those edges
used to satisfy the Discretization axiom, we partition E into the sets ED =
{{u, v} | |ρ(v) − ρ(u)| ≤ K} and EP = E r ED. With a slight abuse of
notation we call ED the discretization distances and EP the pruning distances.
Discretization distances guarantee that a DGP instance is in the KDMDGP.
Pruning distances are used to reduce the BP search space by pruning its tree.
In practice, pruning distances might make the set P in Alg. 1 have cardinality
0 or 1 instead of 2. We assume G is a feasible instance of the KDMDGP.

Let GD = (V,ED, d) and XD be the set of embeddings of GD; since GD has
no pruning distances, the BP search tree for GD is a full binary tree and
|XD| = 2n−K . The discretization distances arrange the embeddings so that,
at level ℓ, there are 2ℓ−K possible embeddings xv for the vertex v with rank
ℓ. Furthermore, when P = {xv, x

′

v} and the discretization distances to v only
involve the K immediate predecessors of v, we have that x′

v = Rv
x(xv) [7], the

reflection of xv w.r.t. the hyperplane through xv−K , . . . , xv−1. This also implies
that the partial embeddings encoded in two BP subtrees rooted at reflected
nodes ν, ν ′ are reflections of each other.

Theorem 1 ([7]) With probability 1: ∀v > K, u < v − K ∃ Huv ⊆ R

s.t. |Huv| = 2v−u−K and ∀x ∈ X ‖xv − xu‖ ∈ Huv; also ∀x ∈ X ‖xv − xu‖ =
‖Ru+K

x (xv)−xu‖ and ∀x
′ ∈ X (x′

v 6∈ {xv, R
u+K
x (xv)} → ‖xv−xu‖ 6= ‖x

′

v−xu‖).
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Fig. 1. A pruning distance {1, 4} prunes either ν6, ν7 or ν5, ν8.

Proof. Sketched in Fig. 1; the circles mark distances to vertex 1. 2

4 BP search trees with bounded width

Consider the BP tree for GD and assume that there is a pruning distance
{u, v} ∈ EP ; at level u there are max(2u−K , 1) nodes, each of which is the root
of a subtree with 2v−max(u,K) nodes at level v. By Thm. 1, for each such subtree
only two nodes will encode a valid embedding for v (we call such nodes valid).
Thus the number of valid nodes at level v > K is 2max(u−K+1,1).

Fig. 2 shows a Directed Acyclic Graph (DAG) Duv that we use to compute the
number of valid nodes in function of pruning distances between two vertices
u, v ∈ V such that v > K and u < v−K. The first line shows different values
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Fig. 2. Number of valid nodes in function of the pruning distances.

for the rank of v w.r.t. u; an arc labelled with an integer i implies the existence
of a pruning distance {u+ i, v} (arcs with ∨-expressions replace parallel arcs
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with different labels). An arc is unlabelled if there is no pruning distance
{w, v} for any w ∈ {u, . . . , v −K − 1}. The nodes of the DAG are arranged
vertically by BP search tree level. A path p in this DAG represents the set
of pruning distances between u and v: pℓ is the number of valid nodes in the
BP search tree at level ℓ. For example, following unlabelled arcs corresponds
to no pruning distance between u and v and leads to a full binary BP search
tree with 2v−K nodes at level v.

Each EP corresponds to a longest path in D1n; BP trees have bounded width
when these paths are below a diagonal with constant node labels.

Proposition 2 If ∃v0 ∈ V r [K] s.t. ∀v > v0 ∃!u < v −K with {u, v} ∈ EP

then the BP search tree width is bounded by 2v0−K.

Proof. This corresponds to a path p0 = (2, 4, . . . , 2v0−K , . . . , 2v0−K) that
follows unlabelled arcs up to level v0 and then arcs labelled v0 − K − 1,
v0 − K − 1 ∨ v0 − K, and so on, leading to nodes that are all labelled with
2v0−K (see Fig. 3, left). 2

Proposition 3 If ∃v0 ∈ V r [K] such that every subsequence s of consecutive

vertices >v0 with no incident pruning distance is preceded by a vertex vs such

that ∃us < vs (ρ(vs) − ρ(us) ≥ |s| ∧ {us, vs} ∈ EP ), then the BP search tree

width is bounded by 2v0−K.

Proof. Such instances yield paths that are below the path p0 described in the
proof of Prop. 2 (Fig. 3, right). 2
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Fig. 3. A path p0 with treewidth 8 (left) and another path below p0 (right).

Moreover, For those instances for which the BP search tree width has a
O(log n) bound, the BP has a polynomial worst-case running time O(L2log n) =
O(Ln), where L is the complexity of computing P .

On a set of 16 protein instances from the Protein Data Bank (PDB), twelve
satisfy Prop. 4.1, and four Prop. 4.2, all with v0 = 4. This validates the
expectation that BP has polynomial complexity on real proteins.
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