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Abstract—NMR experiments can provide distances between
pairs of hydrogens of a protein molecule. The problem of
identifying the coordinates of such hydrogens by exploiting the
information on the distances is a Molecular Distance Geometry
Problem (MDGP). In a previous work, we defined an artificial
backbone of hydrogens related to the protein backbones, where
a particular ordering was given to the hydrogens. This ordering
allows to formulate the MDGP as a combinatorial optimization
problem, to which we refer as the Discretizable MDGP (DMDGP)
and that we efficiently solve by an exact algorithm, the Branch
and Prune (BP) algorithm. Once the coordinates of the hydrogens
have been found, the problem of finding the remaining backbone
atoms (N, Cα and C) is another MDGP. In this short paper, we
propose a simple method for solving the MDGP related to the
backbone atoms N, Cα and C of a protein, where the coordinates
of the hydrogens previously found by the BP algorithm are
exploited.

I. INTRODUCTION

Nuclear Magnetic Resonance (NMR) experiments are able
to detect the distances between pairs of atoms of a protein
molecule. Even though molecules can be formed by differ-
ent kinds of atoms, NMR usually detects distances between
hydrogen atoms shorter than 6Å. All these distances can be
used to find the conformation of the molecule. This problem
is known in the literature as the Molecular Distance Geometry
Problem (MDGP) [1], [3].
In its basic form, the MDGP is a constraint satisfaction

problem, because a set of constraints on the distances must be
satisfied in the possible solutions to the problem. However, the
problem is usually faced by global continuous optimization
techniques, where a penalty function is defined in order to
measure how much a given conformation satisfies the con-
straints (for a survey on methods for the MDGP, see [6]).
The global minima of the penalty function correspond to the
conformations in which all the constraints (or the majority of
the constraints) are satisfied. One of the most used penalty

function is the Largest Distance Error (LDE):

LDE({x1, x2, . . . , xn}) =
1

m

∑

{i,j}

| ||xi − xj ||− dij |

dij
,

where m is the total number of available distances, xi is the
generic atom of the conformation, dij is the known distance
between xi and xj , and ||xi − xj || is the computed distance
between xi and xj .
We recently proposed the Discretizable MDGP (DMDGP)

[5], [7], [9], [11], [12], which consists in a subclass of
instances of the MDGP for which a discrete formulation can
be supplied. This subclass contains instances that satisfy two
particular assumptions:

• for each quadruplet of consecutive atoms, all the relative
distances must be known;

• for each triplet of consecutive atoms x1, x2 and x3, the
distance between x1 and x3 cannot be perfectly equal to
sum of the distance between x1 and x2 and the distance
between x2 and x3.

In practice, the second assumption is always satisfied, es-
pecially when the distances are considered in the floating-
point arithmetic of a computer machine. The first assumption,
instead, is harder to be satisfied.
The reformulation of the MDGP as a combinatorial problem

allows to reduce the search domain from a continuous to
discrete set. However, both the MDGP and the DMDGP
are NP-hard problems [5], [13]. The DMDGP has particular
symmetry properties that can be exploited in order to find
solutions to the problem in a more efficient way [5].
The Branch and Prune (BP) algorithm [9] is an exact

algorithm for the DMDGP. Our computational experiences
showed that it is very efficient in solving the discrete problem,
in both terms of CPU time and quality of the solutions [5], [7],
[9]. We also implemented a modified version of the algorithm
which is able to handle experimental errors [12]. In its basic
form, the BP algorithm is able to deal with exact values dij



Fig. 1. An artificial backbone of hydrogens related to the protein backbones. Note that some of the hydrogens are considered twice and that the considered
ordering is specified by the labels associated to the edges.

for the known distances that form an instance of the problem.
Moreover, we are also working on a new version of the
BP algorithm that can manage intervals [lij , uij ], where the
distances dij are contained, instead of exact distances [10].

We proposed in [8] a special ordering for the hydrogens
related to the backbones of protein molecules for which the
two assumptions for the DMDGP are satisfied. We named this
sequence of atoms artificial backbone of hydrogens. Since the
two necessary assumptions are satisfied, the problem of finding
the coordinates of all the atoms of this artificial backbone is
a DMDGP. As a consequence, we can solve this problem by
applying the BP algorithm.

In this short paper, we present a method for constructing the
real backbone of a protein conformation from the coordinates
of its hydrogens. Let us suppose that NMR found the relative
distances between the hydrogens related to the backbone of a
certain protein. If the hydrogens are sorted by following the
ordering defined by the artificial backbone, the problem of
identifying the coordinates of these hydrogens is a DMDGP.
Once such coordinates have been obtained by applying the BP
algorithm, the remaining backbone atoms, and in particular
the sequence of atoms N − Cα − C, can be obtained by
solving another MDGP. This MDGP is easier to solve, because
assumptions stronger than the ones needed for the DMDGP
are satisfied. We will show how efficiently solve this MDGP.

The rest of the paper is organized as follows. In Section II
we briefly introduce the artificial backbone of hydrogens
proposed in [8]. Then, in Section III, we show a simple method
for constructing the real backbone of a protein starting from
the coordinates of its hydrogens. Preliminary computational
experiments are shown in Section IV and conclusions are given
in Section V.

II. AN ARTIFICIAL BACKBONE OF HYDROGENS

The artificial backbone presented in [8] considers only the
hydrogen atoms related to the real backbone of a protein.
There are 4 hydrogens that are common to all the amino acids.
However, during the protein synthesis, consecutive amino
acids bind to each other through a peptide bond. During this
process, one of the hydrogens bound to the nitrogen N and the
group OH bound to C separate from the other atoms and form
a water molecule (H2O) [14]. Therefore, only two hydrogens
per amino acid are contained in the backbone of a protein: a
hydrogen H bound to N, and a hydrogen Hα bound to Cα.
The two hydrogens H and Hα are used for defining the

artificial backbone. Moreover, another hydrogen per amino
acid is borrowed from the amino acid side chain. Each amino
acid has a different side chain: 19 of the 20 amino acids
involved in the protein synthesis have a carbon atom Cβ in
their side chains which is bound to the carbon atom Cα. At
least one hydrogen is bound to the carbon Cβ , and one of them
is considered in the artificial backbone. The only exception
is given by glycine, whose side chain consists in only one
hydrogen atom. In the particular case of glycine, the third
considered hydrogen is the only one that forms the side chain
of this amino acid. We refer to this hydrogen with the symbol
Hβ .
The artificial backbone of hydrogens is shown in Figure 1.

The same hydrogen can be considered twice in the sequence
in order to reduce the relative distances between pairs of
hydrogens. Moreover, note that the first three atoms of the
artificial backbone are not hydrogen atoms. We added them
because they define a common coordinate system for the
real backbone of the protein and the artificial backbone of
hydrogens. The distances related to these three atoms, needed
for formulating the problem as a DMDGP, do not need to be
detected by NMR, because they are known a priori.



Fig. 2. The atoms and the distances used in the three linear systems used to determine the protein backbone.

III. COMPUTING THE PROTEIN BACKBONE FROM THE
ARTIFICIAL ONE

Let us suppose that the coordinates of the hydrogens of an
artificial backbone have been obtained by BP. The problem of
finding the coordinates of the backbone atoms N, Cα and C is
a MDGP. However, since the coordinates of the hydrogens are
already known, and some distances between hydrogens and the
other backbone atoms are known a priori, this MDGP satisfies
assumptions that are stronger than the ones of the DMDGP.
As a consequence, the MDGP related to the backbone atoms
N − Cα − C can be solved in linear time, by following the
method presented in [2], [15]. Let us suppose that we need
to find the coordinates of the backbone atom a and that the
distances between a and the other four atoms b1, b2, b3 and b4

(with known coordinates) are known. In this hypothesis, the
coordinates of the atom a can be identified if the 4 atoms are
non-coplanar.
Let da,bi

be the Euclidean distance between the atom a
and the atom bi, for all i ∈ {1, 2, 3, 4}. In order to find the
coordinates of a, the following system needs to be solved















||a − b1|| = da,b1

||a − b2|| = da,b2

||a − b3|| = da,b3

||a − b4|| = da,b4 .

(1)

This is a quadratic system of 4 equations in 3 variables.
However, as shown in [2], [15], if the system of linear
equations

Ax = b, (2)

where

A = −2







(b1 − b2)
T

(b1 − b3)
T

(b1 − b4)
T







,

x = a,

b =











(

d2
a,b1

− d2
a,b2

)

−
(

||b1||2 − ||b2||2
)

(

d2
a,b1

− d2
a,b3

)

−
(

||b1||2 − ||b3||2
)

(

d2
a,b1

− d2
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−
(

||b1||2 − ||b4||2
)











is solved, its solution is also solution for the quadratic system
(1). Thus, the MDGP related to the protein backbone can be
solved by solving a sequence of 3 × 3 linear systems.
For each atom N, Cα and C of the protein backbone, there

are 4 atoms bi that need to be considered in the linear system.
For computing the position of the nitrogen N of the protein

backbone, for example, the following four atoms with known
positions can be considered: Cα and C of the previous amino
acid, the hydrogen H bound to N and the hydrogen Hα bound
to the following Cα (see Figure 2). The distances between C
and N and between N and H are known because these two
pairs of atoms are chemically bound. The distance between
Cα and N is also known, because the bond lengths Cα − C
and C − N are known, and the angle among the three atoms
Cα −C−N is also known. For the same reason, the distance
between N and Hα is available. The solution of the linear
system (2) allows to identify the coordinates of N. Similar
observations can be made for the other two systems, related
to the backbone atoms Cα and C. See Figure 2 to find out
which atoms and distances can be considered.

IV. PRELIMINARY COMPUTATIONAL EXPERIENCES

We will show in this section how instances of the DMDGP
related to artificial backbones can be efficiently solved by the
BP algorithm, and how the solutions found by BP can be
exploited for reconstructing the real backbone of a protein
conformation. All the codes were written in C programming
language and all the experiments were carried out on an Intel
Core 2 CPU 6400 @ 2.13 GHz with 4GB RAM, running
Linux. The codes have been compiled by the GNU C compiler
v.4.1.2 with the -O3 flag.
The instances we consider are artificially generated. The

method we use for generating such instances is very similar
to the one proposed in [4]. However, in this case, not only
the backbone atoms N, Cα and C are considered, but also
hydrogens H, Hα and Hβ . The atoms of the real backbone
are used only for placing the hydrogen atoms in a way that
they simulate protein conformations, and they are discarded
when creating the final instance. Some hydrogen atoms are
considered twice and they are all sorted in accordance with
the special ordering of the artificial backbone discussed in
Section II. Only distances smaller than 6Å are considered.
We randomly generated a set of instances having a different
number of amino acids. For each amino acid, 3 hydrogen
atoms are defined, and 5 in total are included in the instance.
When the real backbone is reconstructed, each amino acid is
represented by the 3 hydrogens H, Hα and Hβ , the carbons
Cα and C, and the nitrogen N.
All the instances we generated belong to the class of

instances of the DMDGP. We applied the BP algorithm for
solving such instances, and the computational experiments are
shown in Table I. In the table, n is the number of atoms
included in the instance. It is always a number which is



Instance name n m LDE CPU time
rand1 50 444 1.75e-09 0.00
rand2 100 1180 3.42e-09 0.00
rand3 200 2872 1.00e-08 0.01
rand4 400 5867 9.70e-09 0.01
rand5 800 13460 1.40e-08 0.03
rand6 1500 22040 9.13e-09 0.14
rand7 3000 54537 6.43e-08 0.43
rand8 5000 87992 2.35e-08 0.80

TABLE I
RESULTS OBTAINED BY THE BP ALGORITHM ON A SET OF RANDOMLY

GENERATED ARTIFICIAL BACKBONES.

divisible by 5, because each amino acid of the considered
artificial backbone contains exactly 5 hydrogens (two of them
are considered twice). m is the number of known distances,
and the LDE function (modified in order to avoid divisions
by zero, see [8] for more details) is used for evaluating the
quality of the solution. Finally, the CPU time (in seconds) is
given for each experiment. The experiments show that the BP
algorithm is very efficient in finding solutions of the DMDGP
in terms of quality of the solutions and CPU time, as already
shown in previous works. In these experiments, each solution
consists of the set of coordinates of the hydrogen atoms H,
Hα and Hβ of the artificial backbones.
For each found solution, we applied the method discussed

in Section III and we recontructed the real backbones corre-
sponding to the artificial ones. The software procedure we used
just solves a sequence of linear systems. These experiments
show that all the atoms of the protein backbones can be
computed starting from the information obtained from NMR
experiments, that mainly regard hydrogen atoms.

V. CONCLUSIONS

Data from NMR experiments can be used for finding the
conformations of molecules and, in particular, of proteins.
Such data mostly regard the hydrogens contained in the
molecule, and therefore the first problem that one can solve
is related to the subset of hydrogens of the molecule. We
showed in previous works that this can be efficiently done
by organizing the hydrogens on an artificial backbone and
by reformulating the problem as combinatorial. Moreover,
we showed in this work that the other atoms bound to the
hydrogens can be successively identified by solving a sequence
of linear systems.
In this short paper, our focus was on the protein backbones.

This idea can also be extended to entire protein conformations.
To this aim, the artificial backbone of hydrogens needs to be
extended in order to consider all the hydrogens in the protein,
and the method presented in this paper needs to be extended
for considering the side chains of the amino acids. We are also
working on a formal definition of the artificial backbone and
on proofs showing that it belongs to the DMDGP subclass.
We plan to present these results in future publications.

ACKNOWLEDGMENTS
The authors would like to thank the Brazilian research

agencies FAPESP and CNPq, the French research agency
CNRS and École Polytechnique, for financial support.

REFERENCES
[1] G.M. Crippen and T.F. Havel, Distance Geometry and Molecular Con-

formation, John Wiley & Sons, New York, 1988.
[2] Q. Dong, Z. Wu, A Linear-Time Algorithm for Solving the Molecular

Distance Geometry Problem with Exact Inter-Atomic Distances, Journal
of Global Optimization 22, 365–375, 2002.

[3] T.F. Havel, Distance Geometry, D.M. Grant and R.K. Harris (Eds.),
Encyclopedia of Nuclear Magnetic Resonance, Wiley, New York, 1701-
1710, 1995.

[4] C. Lavor, On generating Instances for the Molecular Distance Geometry
Problem, In: Global Optimization From Theory to Implementation, Leo
Liberti and Nelson Maculan (Eds.), Series: Nonconvex Optimization and
Its Applications 84, Springer, 405–414, 2006.

[5] C. Lavor, L. Liberti, and N. Maculan, Discretizable Molecular Distance
Geometry Problem, Tech. Rep. q-bio.BM/0608012, arXiv, 2006.

[6] C. Lavor, L. Liberti, and N. Maculan, Molecular Distance Geometry
Problem, In: Encyclopedia of Optimization, C. Floudas and P. Pardalos
(Eds.), 2nd edition, Springer, New York, 2305–2311, 2009.

[7] C. Lavor, L. Liberti, A. Mucherino, and N. Maculan, On a Discretizable
Subclass of Instances of the Molecular Distance Geometry Problem,
ACM Conference Proceedings, 24th Annual ACM Symposium on
Applied Computing (SAC09), Hawaii USA, 804–805, 2009.

[8] C. Lavor, A. Mucherino, L. Liberti, and N. Maculan, Computing
Artificial Backbones of Hydrogen Atoms in order to Discover Protein
Backbones, IEEE Conference Proceedings, International Conference IM-
CSIT09, Workshop on Combinatorial Optimization (WCO09), Poland,
October 2009.

[9] L. Liberti, C. Lavor, and N. Maculan, A Branch-and-Prune Algorithm for
the Molecular Distance Geometry Problem, International Transactions
in Operational Research 15 (1), 1–17, 2008.

[10] A. Mucherino, C. Lavor, The Branch and Prune Algorithm for
the Molecular Distance Geometry Problem with Inexact Distances,
World Academy of Science, Engineering and Technology (WASET),
Proceedings of the “International Conference on Bioinformatics and
Biomedicine” (ICBB09), Venice, Italy, October 2009.

[11] A. Mucherino, C. Lavor, and N. Maculan, The Molecular Distance
Geometry Problem Applied to Protein Conformations, Proceedings of
the 8th Cologne-Twente Workshop on Graphs and Combinatorial Opti-
mization (CTW09), S. Cafieri, A. Mucherino, G. Nannicini, F. Tarissan,
L. Liberti (Eds.), 337–340, Paris, 2009.

[12] A. Mucherino, L. Liberti, C. Lavor, and N. Maculan, Comparisons
between an Exact and a MetaHeuristic Algorithm for the Molecular Dis-
tance Geometry Problem, ACM Conference Proceedings, Genetic and
Evolutionary Computation Conference (GECCO09), Montréal, Canada,
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