
Introduction to Cryptography for the Mathematically Challenged

Leo Liberti∗

Centre for Process Systems Engineering
Imperial College of Science, Technology and Medicine

October 31, 2000

1 Introduction

The need for cryptography is historically linked to
the business of spying and warmaking. If an il-
legal agent has to communicate with his embassy,
he must do it in such a way that even though the
message might fall into the police hands, he and
the embassy staff must not be compromised. Dur-
ing any war, if two regiments have to communicate
in order to synchronize an attack on enemy lines,
they must make sure their message is not inter-
cepted by the enemy; and if it is, at least that it
is not understood. Since the beginning of the in-
dustrial revolution and capitalistic society, there is
also one other widespread application of cryptogra-
phy: that of protecting corporate secrets like man-
ufacturing process descriptions or private business
transactions. Even more recently, with the advent
of a technologically advanced information infras-
tructure, sending messages has become very easy,
but so has interception. Cryptography is nowadays
needed by most everyone who uses electronic and
digital communications.

The literal meaning of “Cryptography” is “un-
intelligible writing” — this is quite different from
“hidden writing” (“steganography”). Cryptogra-
phy is not about preventing the enemy from inter-
cepting a message, but rather about preventing the
enemy from being able to read the message. Thus,
devices like invisible ink, tattoing the message on
the scalp or any other form of information smug-
gling are not in the realm of cryptography.

In the field of cryptography, any message that
is clearly readable by both ally and enemy is called
a “clear text message”. After the message has un-
dergone the process of encryption it is called “en-
crypted message”. In what follows, when we talk
about “clear text message” we will always consider

∗l.liberti@ic.ac.uk

a message written in the english language with the
26-letters English alphabet (A B C D E F G H I J
K L M N O P Q R S T U V W X Y Z), the ten
arabic digits (0 1 2 3 4 5 6 7 8 9) and one punc-
tuation sign – the word separator, the blank (or
space)1. For simplicity we will suppress all other
punctuation signs.

Having said that, any message which does not
use this alphabet or this language is unintelligi-
ble and hence encrypted, but this is not consid-
ered cryptography. Hiring two australian Aborig-
ines as radiotelegraphists for two armies that need
to communicate could probably be very effective in
terms of hiding information to the enemy, but only
if the enemy itself was not in the position of hiring
australian Aborigines radiotelegraphists. Crypto-
graphic processes tend to be “general” – that is, to
hold in every similar situation.

2 Letter Substitution

The cryptographic scheme that is easiest to imple-
ment (and to break) is at the level of letters: we
change the order of the letters of our alphabet (that
is called a “permutation” of the alphabet) and then
we map A to the first letter in the new ordering,
B to the second letter in the new ordering, and so
on. Since in this kind of encryption the process is
always substituting a letter with another letter, it
is also called “letter substitution”.

Since there are 26 letters, ten digits and one
punctuation sign in our alphabet - that is, 37
symbols, we can permute them in any of 37! − 1
ways (that is read “thirtyseven factorial minus one”
and it means 1 × 2 × 3 × · · · × 36 × 37 − 1, that is
13763753091226345046315979581580902399999999
ways). Why this number? Let’s take it one step at

1Usually denoted with the symbol “ ”.

1

2 LETTER SUBSTITUTION 2

a time. if we had only one letter in our alphabet,
there would only be one possible permutation: the
only letter is mapped to itself. This permutation
is called “identity”. If we had two letters in our
alphabet (say A and B), we would have either
the identity (A and B remain the same) or one
other possible permutation (A becomes B and B
becomes A). If our clear text message is “ABBA”,
the encrypted message using the identity is still
“ABBA”, whereas using the other permutation
gathers “BAAB”. It should now become clear why
in counting letter permutations used for encryption
we always have to subtract one from the total
number: we never want to use the identity permu-
tation. If we had three letters in our alphabet, we
have a total of six permutations:

A→ A B → B C → C

A→ B B → A C → C

A→ C B → B C → A

A→ A B → C C → B

A→ B B → C C → A

A→ C B → B C → A

With four letter, we have 24 possible permuta-
tions, and with 5 letter 120 permutations. Notice
2 = 1 × 2, 6 = 1 × 2 × 3, 24 = 1 × 2 × 3 × 4 and
120 = 1× 2× 3× 4× 5. In short, with n letters we
would have 1× 2× · · · × (n− 1)× n. In mathemat-
ical notation, the multiplication of all the numbers
up to (and including) n is indicated with n! and is
called “n factorial”. It is the number of different
permutations of n distinct objects.

By way of an example of this kind of encryption,
we take our alphabet,

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

we “shift” it to the left by one position putting the
leftmost character (A) at the end, and we write the
permutation:

BCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 A

We thus obtain the mapping of letters: A → B,
B → C and so on. If the clear text message is

CAESAR IS ATTACKING

the encrypted message is

DBFTBSAJTABUUBDLJOH

This particular type of permutation is called a
“cyclic” permutation because it just shifts the whole
alphabet but it doesn’t change the relative order of
the letters, save for the first and last. In fact cyclic
permutations are extremely easy to implement and
they were used by the Romans in their conquest
wars.

The mapping between the alphabet and the per-
mutation which permits the encryption of the mes-
sage is called the “encryption key”. More generally,
whatever permits the encryption of a message is an
encryption key, and whatever permits the decryp-
tion of a message (that is, the process that trans-
forms an encrypted message back to the clear text
message) is called the “decryption key”. In the case
of letter cryptography these keys are the same: one
needs the permutation in order to encrypt a mes-
sage (as we have already seen); and to decrypt it, all
one does is reading the mapping backwards. So the
same information used for encryption is also used
for decryption.

Since the point of encrypting a message is mak-
ing sure it is not intelligible by anybody save those
people who possess the decryption key, it is crucial
that there is no way of obtaining the key by unau-
thorised means (this is called “breaking a key”); or
else, that it takes the enemy a longer time to break
the key than it takes the allies to change the old key
with a new one. In the case of letter cryptography
by substitution it is actually quite easy to break
any key in a very short time indeed. Substitution
keys are usually broken by frequency analysis. This
is based on the fact that the relative frequencies
of the mapped letters does not change. Mapping
the word “attacking” with the key given above, we
got the word “buubdljoh”, and we can observe that
the repetition of “a” and “t” in the clear text word
has been transformed into a repetition of “b” and
“u”, but the frequency structure of the encrypted
word has not changed. All the enemy must do in
order to perform frequency analysis is to compile
frequency tables in which to every letter in the al-
phabet there corresponds the average frequency of
appearance of that letter in the English language
(or the language used to write the clear text mes-
sage). Thereafter, the enemy only has to compute
the frequency with which each letter appears in the
encrypted message to find out what the encryption
key is. With modern calculators working on average
length messages, this takes a fraction of a second.
And the longer the message, the more accurate the
frequency tables turn out to be (length of message
is not an issue: even it the encrypted text is forty

3 PUBLIC KEY CRYPTOGRAPHY 3

billion letters long, the enemy need only perform
frequency analysis on the first 500 or 1000 letters
to retrieve the key; and once the key is known, the
whole message can be decrypted very quickly).

The way to defy frequency analysis is to change
the permutation used to encrypt the message for
each letter in the clear text message. This is called
“one time pad” cryptography because when it was
first introduced after World War I each of the allies
had to have a copy of one-time pads booklet. Each
of the pads contained a key which was totally ran-
dom and long enough to encrypt simple messages.
By way of an example, if we have three different
permutations:

BCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 A
CIBEF05DJKAM OTQRSGLVWUXZH1234G6789NY
ACEGIKMOQSUWY0123987456 BDFHJLNPRTVXZ

we can safely encrypt (that is, safely from frequency
analysis) clear text messages of three letters: the
message MUM would become N Y. As we can see, the
frequency of the letter M (two thirds of the mes-
sage) is not kept constant in the encrypted message;
hence no frequency analysis can be performed. The
trouble with one-time pad cryptography is that the
key to be transmitted to the allies is three times
as long as with simple permutation methods, and
that is just to encrypt/decrypt three letters words!
In general, in order to encrypt an n-letter message
written in an m-letter alphabet in this fashion one
needs to use keys which are n×m letters long! This
is excessive: broadcasting keys needs a secure com-
munication channel (if the key is intercepted the all
messages can be understood), but the lack of secure
channels is exactly the reason why cryptography is
used. One-time pad cryptography is absolutely se-
cure against frequency analysis but it is, in practice,
very difficult to implement.

3 Public Key Cryptography

In order to solve the problem of the difficulty
of broadcasting long keys, mathematicians have
worked on a way to separate encryption from de-
cryption, thus having two separate keys with the
following crucial property: it must be practically
impossible to obtain the decryption key by know-
ing the encryption key. If the allies possess such a
method, the way to go about it is this. Each ally
uses this technique to build an encryption key and a

decryption key. Each ally then sends its encryption
key to all other allies by using whatever channel is
available: it is assumed that the enemy can inter-
cept all the encryption keys. If an ally wants to
send a message to another ally, it encrypts the mes-
sage using the recipient’s (public) encryption key,
which it can do since the encryption keys are pub-
lic. Since only the recipient will have the (private)
decryption key needed to decrypt the message, no-
body else but the intended recipient will be able to
read the message.

The difficult part, then, is how to produce a pair
of keys (encryption/decryption) where the decryp-
tion key cannot be calculated just by knowing the
encryption key. The mathematical operation in-
volved to build such a pair must be a reversible op-
eration (we need both keys) but one direction must
be reasonably easy whereas the opposite direction
must be extremely difficult. Such an operation can
be provided by integer multiplication and its re-
verse, prime factorization. A “prime number” is an
integer number that cannot be divided precisely by
any other number save 1 and itself. Prime numbers
are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 and so on. 21 is
not prime because we can write 21 = 3× 7. Multi-
plying two prime numbers is very fast even when the
primes are very large. The converse, that is, given
a number, finding two primes such that their prod-
uct is the given number, is extremely difficult. For
primes composed of 1000 digits or so, even using
the fastest computer on earth could not calculate
two primes given their product before a century of
continuous computing.

Now we need an encryption scheme based on a
product of primes and a decryption scheme based on
the two prime factors. Such schemes have been first
proposed in the ’70s by three researchers: Riverst,
Shamir and Adleman. Taking after their surname
initials, the encryption/decryption algorithms have
been named “RSA”.

To understand how the RSA encryption scheme
works, one has to understand the basics of number
theory and modular arithmetic. Apart from the no-
tion of prime number, explained above, there is also
a weaker notion of two numbers being “coprime”.
This means that the largest integer dividing exactly
both numbers is 1. Let us now see some modular
arithmetic: given two integers n,m the notation n
mod m (read “nmodulom”) is the remainder of the
integer division of n by m. For example, if m = 5
we have 0 mod 5, 1 mod 5 = 1, 2 mod 5 = 2, 3
mod 5 = 3 and 4 mod 5 = 4 because every number

3 PUBLIC KEY CRYPTOGRAPHY 4

smaller than 5 gives itself as a remainder on divi-
sion by 5. We then have 5 mod 5 = 0 as 5

5 = 1
with remainder of 0. The following table illustrates
the results of the operation mod 5 for a few more
values.

0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 0 1 2 3 4 0 1

Computing “modulo n”, loosely speaking, is akin
to making a normal computation, then taking the
remainder of the division of the result by n. For
example, 5 × 4 + 3 mod 7 is equal to 23 mod 7
which is equal to 2 (because 23 = 3 ∗ 7 + 2). In fact
modular arithmetic is much faster to perform than
normal arithmetic because usually it is possible to
reduce intermediate results. For example, instead
of computing 5×4 + 3 and then reducing the result
modulo 7, we could have computed 5×4 = 20, then
reduced 20 mod 7 = 6, then computed 6 + 3 = 9
and finally 9 mod 7 = 2. When large numbers are
involved, this speeds up computations enormously.
This is especially true when computing powers. For
example, the number 102745907 is unmanageably
large, but if we are only interested in that number
modulo 5, we can always reduce all intermediate re-
sults modulo 5 (so that in each new multiplication
the operands are necessarily less than 5 — that is,
quite small). We only need one more theoretical
notion in order to understand RSA. That of a mod-
ular inverse. Let m and n be integers. Then m−1

mod n is the number t such that t × m mod n is
equal to 1. For example, 2−1 mod 5 = 3 because
2 ∗ 3 mod 5 = 6 mod 5 = 1.

Let p and q two large primes (as large as it is
needed to make the encryption secure), letN = p×q
be their product, let n = (p − 1)(q − 1) and let e
be any number coprime to n. The two numbers
(e,N) form the public key. This is how the encryp-
tion process works: first we transform the clear text
message in a number M (this can be done in a num-
ber of ways: the most natural — but not necessarily
the most effective — is to assign a number to each
letter of the alphabet, for example: A=10, B=11,
C=12 and so on. The message “CAB” is then trans-
formed in the number 121011), making sure that M
is coprime to N (if it is not, it is always possible to
add a few spurious letters to the clear text message
in order that its numeric encoding M is coprime to
N). We then compute E = Me mod N : E is the
encrypted message. There are two more require-
ments: that Me has to be larger2 than N , and that

2If this were not the case, we would have a situation m
mod n where m < n and we have seen with the example
modulo 5 above that in this case m mod n is just m; that
is, the encrypted message would be the same as the clear

M has to be smaller than N . If Me turns out to
be smaller than N , it can be multiplied by a fixed
constant (remembering that the decryption process
needs to be modified to take this into account). If
M turns out to be bigger than N , it can be split
in chunks and each of the chunk can be encrypted
separately.

Now let us see the decryption process. The de-
cryption key is given by d = e−1 mod n (recall
n = (p − 1)(q − 1)). Of course to calculate d one
needs to know what n is, or equivalently, what the
numbers p and q are. In this sense the private de-
cryption key is based on the large primes p and q,
and knowing the public key (e,N) does not help
in calculating p and q unless one can factor N into
p and q (but if p and q are large enough, this is
a very difficult task). The ally which receives the
message E (encrypted using the ally’s own public
key) can decrypt the message using its own private
key d by calculating D = Ed mod N . It is quite
easy to show that D = M , and we include a sketch
of the proof in a footnote3, to be skipped by the
uninitiated.

Let us see an example of RSA encryption and
decryption process. We shall use very small primes
for simplicity, although this means that the encryp-
tion is not secure at all. Let p = 11 and q = 7.
We have N = 77 and n = (11 − 1)(7 − 1) = 60.
The encryption key e must be coprime to n, and we
choose e = 7 (because the largest integer dividing
exactly both 5 and 24 is 1). The decryption key d
is given by 7−1 mod 60, that is, 43 (because 7×43
mod 60 = 301 mod 60 = 1). Suppose the ally A
has to send a “yes” answer to a question another
ally B had sent to it previously. The ally A wants
to send B a “Y” in encrypted form. According to
the mapping A=10, B=11, etcetera, Y is mapped
to the number M = 35. To encode M , the ally A
looks up the public key of ally B (7, 77) and calcu-
lates 357 mod 77 = 7, thus the encrypted message

text message, and we clearly do not want that.
3Sketch of proof that D = M .

D = Ed mod N
= (Me mod N)d mod N
= Med mod N
= Me(e−1 mod n) mod N
= M1 mod n mod N
= M1+kn mod N
= M(Mn)k mod N
= M(Mn mod N)k mod N
= M × 1k mod N
= M mod N
= M

QED.

4 QUANTUM CRYPTANALYSIS 5

is 7. Ally B, on receiving 7, sets out to decript it
with its private key: all it has to do is calculating
743 mod 77, which is again 35. The same numeric
code is used to transform 35 into the letter “Y”.

RSA has been considered the most important
breakthrough in cryptography because it dispenses
for the need of a secure channel to communicate
keys. Public key cryptography can be generalized to
provide secure electronic signatures in a straightfor-
ward way: suppose allies B wants to be sure that the
message really comes from ally A. After all anybody
could have looked up the public key of ally B and
encrypted a forged message. This is how it goes:
ally A first encrypts the message using B’s public
key, and then it encrypts it again using its own pri-
vate key (notice that encryption and decryption are
just modular operations so a private decryption key
can be used to encrypt a message as well as decrypt
it). When B receives the doubly-encrypted mes-
sage, it first decrypts it using A’s public key: thus
B is sure that it was really A sending the message,
for nobody else could have had the private key cor-
responding to A’s public key; and then it decrypts
the outcome a second time using its own private key
to retrieve the clear text message.

It has been said that RSA would be the ultimate
cryptographic challenge because it offers scalable se-
curity. Whenever computers get so powerful that
integers with thousands of digits can be factorized
in a few seconds, allies can just pick primes p and q
with millions of digits, and so on — the important
thing is that multiplying p by q takes an amount of
time proportional to the length in digits of p and
q, whereas factoring their product without knowing
p or q takes an amount of time proportional to an
exponential of the length in digits. This means that
the two orders of magnitudes are not even compara-
ble. As long as nobody finds a method for factoring
an integer which takes an amount of time propor-
tional to the length in digits of the integer, RSA is
theoretically secure.

4 Quantum Cryptanalysis

As it turns out, physicists have already designed
a computer which is capable of factoring an integer
quickly, i.e. taking a time proportional to the length
in digits. The only thing is, they can’t build it yet.
So for the time being RSA is really the most secure
cryptographic technology around. But this may be-
come false in the future. The marvellous computer

capable of performing such a task is called a “quan-
tum computer” because it is based on a property
of quantum mechanics which is unique. There is
no corresponding feature in the classical model of
physics. The theory of quantum mechanics says
that energy and matter in the universe come in
chunks, rather than in continuous quantities. From
this postulate stem quite a lot of truly counter-
intuitive notions which are nonetheless thought to
be true, like, for example, the superposition princi-
ple. Until an observable entity is not observed, it is
in fact in a “superposition” of possible states. Only
when a measurement is taken (that is, when the ob-
servable entity is actually observed) the observable
entity collapses in the observed state. For example:
an electron has an observable called “spin”. The
spin can be either “up” or “down”. Until the mo-
ment we observe the spin we don’t know whether
the spin is up or down: we have 50% chance of ob-
serving the spin being up and 50% chance of the
spin being down. In fact, quantum mechanics say
that this is the physical truth: the spin is in a state
1√
2
(|up〉 + |down〉). Some explanations about the

notation: |state〉 just indicates the state the quan-
tum entity is in. The sum means “superposition”.
We multiply both terms by 1√

2
because the proba-

bility of seeing a state is the square of the coefficient
of that state. The coefficient of a state in a super-
position is called the amplitude. In our example,
since the probability of seeing each state is 0.5, we
look for the number x such that x2 = 0.5, that is,
1√
2
.

The reason why this feature of quantum mechan-
ics (superposition) can help build a quantum com-
puter capable of factoring integers quickly is that it
is in theory possible to build a device that changes
the amplitude of a state without actually observing
the observable entity. In short, superpositions can
be manipolated to a certain extent without causing
the collapse of the superposition of states on a defi-
nite state. The algorithm for quantum factorization
was invented by Peter Shor in 1995. It is based on a
theorem of number theory that states that one can
factor an integer of N by finding the period of the
function f(x) = ax mod N , where a is any integer
coprime to N . Any function which has the same
set of values repeated in the same order over and
over again as its variable varies is called a “periodic
function”, and the length of the sequence of values
before the first repetition is called the period. For
example, if N = 6 and a = 2 we see that the func-
tion g(x) = 2x mod 15 has the values:

5 QUANTUM CRYPTOGRAPHY 6

0 1 2 3 4 5 6 7 8 9 . . .
1 2 4 8 1 2 4 8 1 2 . . .

We can see that the period of g is 4 as its values are
1,2,4,8 repeated in this order indefinitely. This the-
orem does not matter much if classical computation
(as opposed to quantum computation) is taken into
account, because finding the period of a function
like f(x) above is just as hard a problem as factoring
N directly. But seeing the factorization problem as
a period-finding problem makes it easier for a quan-
tum computer to tackle it. A “quantum register” is
a device that can hold a number of quantum states.
For example, the spin of the electron is a register
that can hold two values. The quantum computer
that calculates the period of arbitrary functions is
built around two registers X and Y . The registers
are big enough to hold all the values that the vari-
able x can take (x can take values from 0 to N).
X Initially the quantum computer is in the state
|0〉|0〉, i.e. each register holds the value 0.

1. Initialize the X register with an equiprobable
superposition of all values the variable x can
take:

1√
n

N∑
x=0

|x〉|0〉

2. Initialize the Y register with all the values of
f(x):

1√
n

N∑
x=0

|x〉|f(x)〉

3. Observe the second register, and suppose the
value f0 is obtained: since f is periodic, there
are many values of x such that f(x) = f0. This
triggers a change in the amplitude coefficients
of states so that all x’s such that f(x) 6= f0

have their coefficients set to 0, whilst all other
amplitude coefficients are emphasized: ∑

x:f(x)=f0

αx|x〉

 |f0〉

where (αx are amplitude coefficients such that
their squares — the probabilities associated
with the quantum states — add up to 1).

4. From now on we are only interested in the first
register, so we can ignore the second register.
The first register now holds all values of x such
that f(x) = f0. Their associated amplitudes
are roughly the same — we can assume for sim-
plicity they are the same: suppose we have k

such x’s, then:

1√
k

∑
x:f(x)=f0

|x〉

5. We apply a special quantum operator which
measures the distance between two consecutive
x’s — i.e. the period of f — and gets the right
answer with over 50% probability.

This allows us to calculate the period of f : the
algorithm just needs to be run a sufficient number
of times to ensure a sufficient success confidence.

The reason why quantum computers can’t be
built yet is that it is extremely difficult to keep a
physical quantum register stable for a period of time
long enough to perform a similar calculation.

5 Quantum Cryptography

Just when it seems that all the enemy needs is a
quantum computer in order to be able to break al-
lies’ encryption schemes, it turns out that allies can
actually use quantum technology at their own ad-
vantage. It is possible to build a quantum-secured
communication line which not only offers the to-
tal security of the one-time pad cryptography, but
it also detects if the line is being tapped. If it is,
both the enemy and the recipient ally only receive
garbage. The technical details of this kind of quan-
tum cryptography go beyond the scope of these
notes. However, quantum cryptography seems to
have a time advantage over quantum cryptanalys,
as in 1988 an experiment was carried out where the
first quantum-encrypted communication line was
designed and implemented by Charles Bennett. In
1995, researchers at the University of Geneva suc-
ceeded in implementing quantum cryptography in
an optic fibre that stretched 23 km from Geneva to
Nyon.

