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1 Introduction

We present new Static Symmetry-Breaking Inequalities (SSBI) [11,6] for the
problem of packing equal circles in a square [9]. The new SSBIs provide a
marked computational improvement with respect to past work [1], though not
yet at the level where a purely Mathematical Programming (MP) based spatial
Branch-and-Bound (sBB) can be competitive with a Branch-and-Bound (BB)
“boosted” by combinatorial and geometrical devices such as [9]. We consider
the following formulation of Circle Packing in a Square (CPS) problem:
given N ∈ N and L ∈ N, can N non-overlapping circles of unit radius be ar-
ranged in a square of side 2L? This is equivalent to the more usual formulation
where one maximizes the number of non-overlapping circles of unit radius in a
square of side 2L with L ∈ Q+: it suffices to consider the usual correspondence
(via bisection) of optimization and decision problems, and to remark that for
all instances of the second formulation with fractional square side length there
exists an equivalent instance of the CPS described by integer data.

Let N = {1, . . . , N} and N ′ = {1, . . . , N − 1}. The CPS is formulated as the
following MP:

max{α | ∀i < j ∈ N (xi − xj)
2 + (yi − yj)

2 ≥ 4α ∧ x, y ∈ [1 − L,L− 1]N} (1)

where (xi, yi) ∈ R2 are the coordinates of the center of the i-th circle, for all
i ∈ N . For any given N,L > 1, if a global optimum (x∗, y∗, α∗) of (1) has
α∗ ≥ 1 then the CPS instance is a YES one. The CPS formulation (1) can
be solved with standard off-the-shelf Mixed-Integer Nonlinear Programming
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(MINLP) sBB solvers such as Couenne [2]. As the instance size increases,
these solvers yield search trees of disproportionate sizes. This is mostly due to
the symmetries of the problem.

The concepts of solution symmetries and formulation symmetries were intro-
duced in Constraint Programming [3] and brought to MP in the early 2000’s
[10,11]. If z is a solution of a problem P and πz is also a solution (where π
permutes the components of z), π is a solution symmetry. A solution sym-
metry is a formulation symmetry if π also fixes the MP formulation of P .
Most symmetry breaking techniques (including SSBIs) are based on formula-
tion symmetries, because these are easier to detect. The formulation group of
MINLPs (including nonconvex NLPs such as (1)) can be detected automati-
cally using the method described in [6]. This method was shown in [7] to yield
an interesting reformulation for another sphere packing problem, namely the
Kissing Number Problem (KNP) [4]. Adjoining SSBIs to a formulation results
in a reformulation of the narrowing type [5,8]: if Q is a narrowing of P then
there is a mapping from the global optima G(Q) to the global optima G(P )
— thus, if one is able to solve the simpler reformulation Q, then one can find
a global optimum of P through the given mapping.

The automatic symmetry detection method of [6] was deployed in [1] on in-
creasingly larger CPS instances to formulate the conjecture, and then prove,
that the formulation group of the CPS is C2 ×SN , where C2 (the cyclic group
of order 2) refers to swapping x and y axes and SN (the symmetric group of
order N) refers to reindexing the circles in an arbitrary way. The constraints
∀i ∈ N ′ (xi ≤ xi+1) were shown in [1] to provide a narrowing of the CPS when
adjoined to (1). In the rest of this paper we present a different narrowing of
the CPS and discuss its impact on Couenne’s performance.

2 New SSBI-based CPS narrowing

Let N ′′ = {1, L + 1, 2L + 1, . . . , (⌈N/L⌉ − 2)L + 1}, and define the following
constraint sets: S = {xi ≤ xi+1 | i ∈ N ′}, Ai = {xh ≤ xh+1 | h ∈ N ′r{i+L−
1}} and Ci = {yi ≤ yi+L} for all i ∈ N ′′. Notice that these sets contain strings
belonging to the formal MP language [1]: thus, when writing {yi ≤ yi+L}, for
example, we do not refer to the set of all points y satisfying yi ≤ yi+L but
rather to the singleton set containing the string “yi ≤ yi+L” as its element.
Accordingly, we consider the following MP formulations: CPS′ ≡ CPS ∪ S ,
CPSi ≡ CPS ∪ Ai ∪ Ci for all i ∈ N ′′ and CPS′′ ≡ CPS ∪

⋃
i∈N ′′(Ai ∪ Ci),

where P ∪D denotes the MP formulation derived by adjoining constraints in
D to P . The formulation CPS′ was shown in [1] to be a narrowing of CPS.

Proposition 1 For all i ∈ N ′′, CPSi is a narrowing of CPS.

Proof. Let i ∈ N ′′ and (x̄, ȳ, ᾱ) ∈ G(CPS). For a permutation π ∈ SN we assume

π(x̄, ȳ, ᾱ) = (πx̄, πȳ, ᾱ) where π acts on a vector in RN by permuting the indices of
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its components; notice that since π is simply a reindexing of the circles, π(x̄, ȳ, ᾱ) ∈

G(CPS). Furthermore, since CPS′ is known to be a narrowing of CPS, we can assume

WLOG that (x̄, ȳ, ᾱ) satisfies S . If ȳi ≤ ȳi+L the result holds, otherwise assume

ȳi > ȳi+L. Consider the permutation σi =
∏L−1

ℓ=0 (i+ ℓ, i+ L+ ℓ) in SN ; σi(x̄, ȳ, ᾱ)

has the following properties: (a) by the action of the 2-cycle (i, i + L) (appearing

in σi when ℓ = 0) we have ȳi < ȳi+L; (b) ∀ℓ ∈ {0, . . . , L − 2} we have σix̄i+ℓ =

x̄i+L+ℓ ≤ x̄i+L+ℓ+1 = σix̄i+ℓ+1 and σix̄i+L+ℓ = x̄i+ℓ ≤ x̄i+ℓ+1 = σix̄i+L+ℓ+1; (c)

∀h ∈ N ′ such that h 6∈ Hi = {i, . . . , i+2L−1} we have σix̄h = x̄h ≤ x̄h+1 = σix̄h+1

because σi fixes all h 6∈ Hi. Thus σi(x̄, ȳ, ᾱ) ∈ G(CPS) and satisfies the constraints

of CPSi. 2

Lemma 2 Let n = ⌈N/L⌉ − 1 and Σ = {σi | i ∈ N ′′}. Then 〈Σ〉 ∼= Sn.

Proof. Notice N ′′ = {(j−1)L+1 | 1 ≤ j ≤ n}, and define a map ϕ((j−1)/L+1) =

j, under which ϕ(Σ) = {(1, 2), (2, 3), . . . , (n − 1, n)}. This map induces a group

homomorphism ϕ̄ : 〈Σ〉 → Sn given by ϕ̄(σi) = (ϕ(i), ϕ(i) + 1), which can be

verified to be injective and surjective. 2

Similarly, for all h < k ∈ N ′′ we have 〈Σhk〉 = 〈{σi | h ≤ i < k}〉 ∼=
Sym(Ihk), the symmetric group on the set Ihk = {ϕ(h), . . . , ϕ(k)}. Thus, for
all h, k ∈ N ′′, the permutation τhk =

∏L−1
ℓ=0 (h + ℓ, k + ℓ) can be obtained

as a certain product of the σi’s for i ∈ ϕ−1(Ihk). More precisely, we have
τhk = (ϕ(k)− 1, ϕ(k))(ϕ(k)− 2, ϕ(k)− 1) · · · (ϕ(h), ϕ(h)+ 1)(ϕ(h)+ 1, ϕ(h)+
2) · · · (ϕ(k) − 1, ϕ(k)).

Theorem 3 CPS′′ is a narrowing of CPS.

Proof. Let (x̄, ȳ, ᾱ) ∈ G(CPS), and consider the set V of all constraints Ci ≡

{yi ≤ yi+L} violated by (x̄, ȳ, ᾱ). Let ψ be the (invertible) map given by ψ(Ci) =

(ϕ(i), ϕ(i) + 1); then ψ(V ) is a set of transpositions that can be partitioned into

maximal non-disjoint subsets Shk = {(ϕ(h), ϕ(h) + 1), . . . , (ϕ(k) − 1, ϕ(k))}; let T

be the set of pairs (h, k) for which Shk is in the partition of ψ(V ). It can be verified

that if πhk =
∏h+ℓL<k−ℓL

ℓ=0 τh+ℓL,k−ℓL then πhkȳ satisfies the constraints in ψ−1(Shk).

Furthermore, by maximality of the Shk, the permutations πhk are disjoint. Now, if

π =
∏

(h,k)∈T
πhk, π(x̄, ȳ, ᾱ) is such that πȳ satisfies all constraints in V and πx̄

satisfies all constraints in
⋃

i∈N ′′ Ai by Prop. 1. Thus π(x̄, ȳ, ᾱ) ∈ G(CPS′′). 2

3 Computational results

CPS
′

CPS
′′

Inst. f∗
nodes tree f∗

nodes tree

16 4 0.660 2381772 642285 1 2795501 839240

25 5 1 461224 188835 1 521487 222846

36 6 0 49962 23784 1 76409 34825

49 7 0 12577 6090 1 21366 10136

68 8 0 4 1 0.943 1057 497

86 9 0 4 1 0.640 5 1

We compare Couenne’s
performance on formula-
tions CPS′ and CPS′′ for
some “limit” instances of
CPS (i.e. N circles fit
in the square but N + 1
do not). Our compara-
tive results, shown below, have been obtained on a 2.4GHz Intel Xeon CPU
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with 24 GB RAM running Linux. The table displays the following statistics at
termination (10h of CPU time): objective function value f ∗ of the incumbent,
number of BB nodes closed, number of BB nodes still on the tree. The best
upper bound at termination was fixed at 2 (and hence the gap was always
> 100%) for all reformulations and instances. However, the statistics on the
number of nodes show that CPS′′ is a better reformulation than CPS′. The
incumbent statistics also show that CPS′′ behaves better than CPS′ when used
to derive heuristic solutions.
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