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Abstract

Background: The determination of protein structures satisfying distance constraints is an important problem in
structural biology. Whereas the most common method currently employed is simulated annealing, there have been
other methods previously proposed in the literature. Most of them, however, are designed to find one solution only.

Results: In order to explore exhaustively the feasible conformational space, we propose here an interval Branch-and-
Prune algorithm (iBP) to solve the Distance Geometry Problem (DGP) associated to protein structure determination.
This algorithm is based on a discretization of the problem obtained by recursively constructing a search space having
the structure of a tree, and by verifying whether the generated atomic positions are feasible or not by making use of
pruning devices. The pruning devices used here are directly related to features of protein conformations.

Conclusions: We described the new algorithm iBP to generate protein conformations satisfying distance constraints,
that would potentially allows a systematic exploration of the conformational space. The algorithm iBP has been
applied on three α-helical peptides.

Keywords: Distance geometry, Branch-and-prune algorithm, Molecular conformation, Protein structure, Nuclear
magnetic resonance

Background
Protein structure determination is crucial for understand-
ing protein function, as it paves the way to the discovery
of new chemical compounds and of new approaches to
control the biological processes.
The problem of protein structure determination is cer-

tainly a problem with multiple solutions, as proteins are
flexible polymers. As most of the experimental techniques
of the structural biology obtain measurements averaged
on an ensemble of protein conformations, the usual
approaches for structure determination intend to find an
average structure or a set of conformations describing
fluctuations around an average structure. A path intend-
ing to get a complete coverage of the conformational
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space, given a series of constraints, is usually not taken,
although such an approach could provide precious infor-
mation about the conformational equilibrium, which is
essential in the function of many proteins, as the HIV
protease [1].
An important class of experimental methods for pro-

tein structure determination is based on the measurement
of inter-atomic distances and angles, such as Nuclear
Magnetic Resonance (NMR) spectroscopy [2] and cross-
linking coupled to mass spectrometry [3]. In NMR, dis-
tance intervals between hydrogens are determined from
the measurement of nuclear Overhauser effects (NOE).
The experimentally measured distances are then used as
constraints for protein structure calculations. Pure in sil-
ico approaches have been also developed based on the use
of inter-atomic distance constraints, such as homology
modeling [4] or prediction of protein-protein complexes
[5] and ligand poses [6].
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The Distance Geometry Problem (DGP) [7,8] consists
in identifying the sets of points which satisfy a set of con-
straints based on relative distances between some pairs
of such points. The present work describes an algorithm
developed to solve DGP in the context of protein structure
determination: the points represent the protein atoms.
The DGP is a constraint satisfaction problem. Several

approaches solve this problem by reformulating it [8]
as a global optimization problem having a continuous
search domain, and whose objective function is gener-
ally a penalty function designed to measure the violation
of the distance constraints. Over the years, the solution
of DGPs arising in structural biology have been typically
attempted by Simulated Annealing (SA) approaches based
on molecular dynamics [9]. Other proposed approaches
are based on various optimization methods as in [10]. As
all meta-heuristic approaches, SA may provide approxi-
mate solutions but does not deliver optimality certificates.
In the case of protein structure determination, since the
optimization problem is a reformulation of a constraint
satisfaction problem, solutions given by SA can be succes-
sively verified by checking the violations of the distance
constraints. However, additional solutions may exist but
go undetected by SA. Thus, an algorithm for the sys-
tematic enumeration of the possible conformations of a
given protein could find a widespread field of application.
Branch-and-prune algorithms and similar were proposed
in the general context of protein structure determination
[11-16], (see also [8] and references therein). However,
these studies primarily addressed the question of defining
relative orientations of protein monomers in symmetric
oligomers, not the determination of all possible confor-
mation of a polypeptide chain with a very large number

of degrees of freedom from distance constraints. Sys-
tematic exploration was proved to be useful in the case
of residual dipolar couplings (RDC) constraints [17], for
exploring the sidechains conformations [18,19] and for
assignment of NOEs, provided that the structure is known
[20]. For the structure determination from RDCs, it has
been shown [21] that when using RDCs but only sparse
NOEs the problem can be solved in polynomial time. Such
approaches have also been used for structure determi-
nation in X-ray crystallography for non-crystallographic
symmetry by orienting and translating symmetric protein
subunits [22]. To the best of our knowledge, in this paper
we present the first application of a Branch-and-Prune
algorithm to the problem of full protein structure deter-
mination based on unambiguous distance information.
Under certain conditions, DGPs can be discretized [23]

(see below), which means that the search domain for the
corresponding optimization problem can be reduced to a
discrete set, which has the structure of a tree. The dis-
cretization makes the enumeration of the entire solution
set of DGP instances possible. This is important when
the experimental constraints do not specify the protein
conformation uniquely, i.e., more than one conforma-
tion satisfies all constraints. For solving discretized DGP,
we employ an interval branch-and-prune (iBP) algorithm
[24], which is based on the idea of recursively exploring
the tree while generating new candidate atomic positions
(branching phase) and to verify the feasibility of such
positions (pruning phase) (Figure 1). By making use of
pruning devices, branches rooted at infeasible positions
can be discarded from the tree, so that the search can be
reduced to the feasible parts of the tree (Figure 2). Pruning
devices can be conceived and integrated in iBP to improve

Figure 1 The iBP recursive algorithm. Description of the iBP algorithm.
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Figure 2 The branch-and-prune search tree. Example of
branch-and-prune search tree exploration. With solid line, we depict
the path currently in use, with dotted arcs pruned paths, and with
dashed arcs paths not yet explored. The squared node corresponds
to a feasible solution.

the performances of the pruning phase and thus of the
algorithm.
In the present work, we first describe the branching

phase and the pruning devices used to determine the
solutions to the Distance Geometry problem. Then, an
overall view of the method is given along with the use of
the branching and pruning devices at different steps and
the complexity of the algorithm is analyzed. We finally
illustrate the algorithm application with three proteins
for which α-helical regions are known along with few
long-range NMR constraints (ie. constraints measured
between residues i and j such that |i − j| > 3 in the
protein sequence). The obtained conformations display
good stereochemical quality parameters, and the confor-
mational space explored is larger than the one sampled
with traditional optimization methods such as simulated
annealing.

Methods
In order to sample the conformational space of a pro-
tein, we use a Branch-and-Prune algorithm to build a tree
in which each node represents a solution for one atomic
position. We limit ourselves in the present work to the
calculation of the backbone and Cβ atomic coordinates.
The constraints used to generate atomic coordinates

along the Branch-and-Prune algorithm are the following:

1. covalent distance constraints corresponding to bond
lengths and bond angles, whose values are derived
from high-resolution small molecule X-ray crystal
structures [25];

2. NMR distance constraints;
3. van der Waals radii of atoms between non-bonded

atom pairs (i, j): a fraction of the sum of the van der

Waals radii of each atom provides a lower bound to
the corresponding inter-atomic distances:

dij ≥ σ(rvdwi + rvdwj ), (1)

where σ ∈ [0, 1], and is typically around 0.85. The
values for the radii are given in Table 1 [26,27]. These
lower bounds apply only in the cases where no larger
lower bound has been determined from NMR
distance constraints;

4. distances derived from the backbone torsion angles φ

and ψ ;
5. hydrogen bonds in α-helix;
6. amino-acid chirality;
7. α-helix geometry.

The atom coordinates are calculated, one by one, fol-
lowing the atom order Pato described in Figure 3 and
previously proposed in [24]. In this order, some atoms are
repeated to insure that any entered atom is defined by dis-
tance constraints with respect to three preceding atoms
in Pato [24]. The carbonyl oxygens and the atoms Cβ ,
which were not present in the order Pato, are calculated
separately.
Then, the tree is built using a recursive procedure to

create each node of the tree. This procedure is called
branching phase. The created nodes are then submitted to
the pruning devices in order to decide whether the node
should be kept or removed. If the node is removed, the
possible branches starting from this node are also pruned.
A pruning device is responsible for checking whether a
partial solution is feasible, i.e. to check whether a set of
embedded atoms fulfill the constraints (1)-(7) described
above.
In the following, we describe the branching phase and

the pruning devices. Then, the complexity of the algo-
rithm is described from a theoretical point of view, before
presenting some application cases.

Branching devices
The tree parsed during iBP is formed by nodes, each cor-
responding to one set of atomic coordinates from the
order Pato (Figure 3) [24]. At each level of the tree, the
atomic coordinates of the corresponding atom are cal-
culated by making use of a recursive procedure, called
branching phase. The current atom position is defined
by distance constraints to three other atoms. These dis-
tances are obtained from the constraints (1-3) described
above: (1) the covalent constraints, (2) the NMR distance
constraints, (3) the van der Waals radii.

Table 1 Van derWaals radii (see [26] and [27])

atom O H C N

rvdw (Å) 1.4 1.0 1.7 1.5
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Figure 3 Order Pato of the atoms parsed during the branch-and-prune algorithm.

If the distance constraints specify a unique value rather
than an interval, this signifies that the distances to
three immediate predecessors from the current vertex are
known: these are the centers of the three spheres, and the
distances are the radii of these spheres. The position of
the current vertex/atom is thus defined by the intersec-
tion of three spheres, so there are at most two solutions
for the current atom position: this is called a 2-branching
situation (Figure 4).
When a distance is not uniquely defined, but rather

defined by lower and upper bounds, i.e. di,j ∈[ li,j, ui,j], this
distance is uniformly discretized by sampling b ≥ 1 values
in [ li,j, ui,j], as depicted in Figure 5.

d̃i =
{
li,i−3 + (t − 1)

(ui,i−3 − li,i−3)

b
: t = 1, . . . , b

}
.

(2)

Figure 4 Intersection of three spheres. Intersection of three
spheres, colored in yellow, green and cyan. The two points produced
by the intersection are indicated with red spots.

In this case, we have a b-branching situation.
The algorithm used for calculating the atom coordinates

is then applied to each set of d̃i values sampled for the dis-
tance constraints. The choice of the discretization factor b
is a crucial point: a small value might lead to an infeasible
problem because we may not select any feasible distance;
a larger value increases the computational burden. In gen-
eral, the finer the discretization, the more accurate the
computation is, but it is not trivial to figure out the opti-
mal value for b. One way to choose b is to consider that
the number of nodes in the search tree is bounded by

Figure 5 Discretization of the distance constraints. An example of
discretization of the distance di,i−3. The solid circle represents the
result of the intersection of the spheres centered in i − 1, i − 2 with
radii di,i−1, di,i−2, respectively. The distance di,i−3 is discretized
accordingly to Equation 2 with b = 5: dotted circles represent the
intersections of spheres centered in i − 3 with radii in d̃i with the
plane containing the i − 3, i − 2 and i − 1. Thick gray arcs represent
the feasible regions for the atom i.
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3 + (2lbk) , where l is the number of tree levels where we
have a 2-branching situation, and k is the number of tree
levels where we have a b-branching situation [28]. Appro-
priate values of b should result in a manageable number of
nodes.
Given the position of the three previous atoms k−3, k−

2, k−1 in the order Pato and given the constraints to these
atoms of the atom k to be embedded, the position of k
is calculated by a recursive matrix multiplication by mak-
ing use of the set of distances d = {dk,k−1, dk,k−2, dk,k−3}
between the previous atoms and k. Although there are
several methods to compute sphere intersections [29], in
our experience, the best trade-off between efficiency and
numerical stability is given by the use of recursion matri-
ces [23], and of the two following angles: (i) the torsion
angle ω3 formed by atoms {k, k − 1, k − 2, k − 3} which
depends on the distance between k and k−3, (ii) the angle
θ2 formed by atoms {k, k − 1, k − 2}.
The recursion is applied through the equation:⎡

⎢⎢⎣
xk
yk
zk
1

⎤
⎥⎥⎦ = B1B2B3 . . .Bk(d, σ)

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦

= Qk−1Bk(d, σ)

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ = Qk

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ ,

(3)

where:

Bk(d, σ) =

⎡
⎢⎢⎢⎢⎢⎣

− cos θ2 −σ sin θ2 0 −dk,k−1 cos θ2

σ sin θ2 cosω3 − cos θ2 cosω3 − sinω3 σdk,k−1 sin θ2 cosω3

σ sin θ2 sinω3 − cos θ2 sinω3 cosω3 σdk,k−1 sin θ2 sinω3

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦
,

(4)

and σ ∈ {+1,−1}. The series of recursion matrices is
initialized as:

B1 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,B2 =

⎡
⎢⎢⎣

−1 0 0 −d2,1
0 1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦ ,

B3 =

⎡
⎢⎢⎣

− cos θ3 − sin θ3 0 −d3,2 cos θ3
sin θ3 − cos θ3 0 d3,2 cos θ3
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

(5)

d2,1 being the distance between the first and the second
atom, and d3,2 the distance between the third and the
second atom in the order Pato.
The total number of Bk matrices to be calculated along

the parsing of the tree is bounded by 2 |Pato | b, where
|Pato| is the size of the ordered atom list Pato. The product
Qk−1Bk is calculated in two steps: (1) the fourth column of

Qk , which gives us the coordinates of k, is computed; (2)
only if k is not pruned, the three remaining columns are
computed.
We must distinguish two cases when embedding an

atom k. If it is the first appearance of k in Pato, we use
equation 3 to compute all possible embeddings of k for
σ ∈ {+1,−1} and the set of distances d. If it is not the first
appearance of k in Pato, we need to take into account the
fact that numerical instabilities generate matrices which
will lead to slightly different coordinates for k than those
computed the first time. In order to decrease the impact of
these numerical errors, we compute the set of distances d,
the angles θ2,ω3 and for σ ∈ {+1,−1} the corresponding
matrices Bk(d,+1),Bk(d,−1), which lead to two possible
embeddings of k (Equation 3), as k+ = Qk−1Bk(d,+1)
and k− = Qk−1Bk(d,−1). We choose the value of k that
yields the updated coordinates of k being the closest to the
previous coordinates of this atom.
Each carbonyl oxygen Oi−1 is uniquely determined for

residue i, once Ci−1, Ni and Hi have been embedded,
since these atoms are all part of the peptide plane [30].
As is common practice (see, e.g., [31-33]), we fix here the
torsion angle ω of the peptide plane to -180° or 0°. In a
previous implementation [34], the positions of the car-
boxylic oxygens were not stored. Although this approach
leads tomemory savings, the availability of carboxylic oxy-
gen positions can improve the definition of the α-helix
secondary structure.
The positions of the carbonyl oxygens are thus now cal-

culated in the following way. If k = Oi−1 is the carboxylic
oxygen atom located at the vertex k, and {v1, v2, v3} are the
vertices corresponding to atoms {Ci−1,Ni,Hi}, belonging
on the same peptide plane π , we denote nπ the normal
vector to π . The coordinates of k can then be computed
by solving the following non-linear system:

{ ‖k − vi‖2 = d2ki, i = 1, 2, 3
nTπ (v1 − k) = 0 . (6)

where dki are the distances between atoms k and i. Using
an approach similar to those employed in [35], we obtain
the equivalent linear system:

⎧⎨
⎩
2(v2 − v1)Tk = d2k1 − d2k2 − ‖v1‖2 + ‖v2‖2
2(v3 − v1)Tk = d2k1 − d2k3 − ‖v1‖2 + ‖v3‖2
nTπ (v1 − k) = 0

(7)

The parameter dk1 is the length of the bond connect-
ing Oi−1 and Ci−1, the parameters dk2 and dk3 are the
distances between k = Oi−1 and Ni, Hi, calculated from
bond angles and bond lengths between atoms of the pep-
tide plane, and the angle ω of 180° in a trans peptide plane.
The case of the cis peptide plane can be treated in the same
way, modifying the value of ω to be 0°.
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Following the idea proposed for carbonyl oxygens, the
coordinates k of a Cβ atom can be computed from previ-
ously calculated atoms, because the four distances of k to
atoms {v1 = Cα, v2 = Hα, v3 = N , v4 = C} are exactly
known, and because these five atoms are not coplanar. The
coordinates k are calculated by solving the linear system:⎧⎪⎪⎨

⎪⎪⎩
2(v2 − v1)Tk = d2k1 − d2k2 − ‖v1‖2 + ‖v2‖2
2(v3 − v1)Tk = d2k1 − d2k3 − ‖v1‖2 + ‖v3‖2
2(v4 − v1)Tk = d2k1 − d2k4 − ‖v1‖2 + ‖v4‖2

(8)

The parameter dk1 is the length of the bond connecting
k = Cβ and Cα, the parameters dk2, dk3 and dk4 are the
distances between k = Cβ and Hα, N , C, calculated from
bond angles and bond lengths between these atoms.

Pruning devices
Once the set of possible coordinates of the atom k has
been determined in the branching phase described above,
pruning devices are used to check whether the coordi-
nates of k are feasible. In some cases described below,
the coordinates of k along with the coordinates of previ-
ously embedded atoms are checked together. If the check
is negative, the solution obtained for k is discarded, which
prunes all tree branches originating from the node k. In
this section, we present the pruning devices used to accept
or discard the coordinates of the atom k generated by the
branching devices. The pruning device applies all these
tests as soon as the involved atoms have been embedded.

Direct distance feasibility (DDF)
As the coordinates for an atom k are determined, we first
check that all distances between k and the other embed-
ded atoms respect the given lower and upper bounds
arising from the constraints (1-3) listed in section “Solving
the DGP with iBP”.

Torsion angle feasibility (TAF)
The values of the backbone torsion angles φ,ψ , are used
as a pruning device, checking whether they are located
in the permitted regions of the Ramachandran plot. The
pruning device, first introduced in [34], is implemented
in the following way. The torsion angle ξijkl defined by a
quadruple of atoms {i, j, k, l} falls into a domain�ijkl, up to
a certain tolerance εt > 0. In general, �ijkl is the union of
κ dis-joined intervals, i.e.

�ijkl =
κ⋃

c=1
�c

ijkl (9)

From the bounds on a torsion angle ξijkl it is possible to
derive bounds on the distance dil, noticing that

dil(ξijkl) =
√
d2ij + d2lj − 2(cos(ξijkl)

√
ef + bc)dijdlj,

(10)

where:

b = 1
2
d2lj + d2jk − d2lk

dljdkj

c = 1
2
d2ij + d2jk − d2ik

dijdjk
e = 1 − b2, f = 1 − c2.

(11)

Taking the maximum and minimum values of d(ξijkl)
for ξijkl ∈ �ijkl, we obtain an interval [lil, uil] for the dis-
tance dil. The sign of the angle ξijkl is used as an additional
pruning criterion along with the dil interval.

Dijkstra shortest-path (DSP)
As introduced in [23], we can exploit the fact that the dis-
tances are Euclidean to improve the iBP pruning capabil-
ities. We extend and generalize the procedure presented
in [36] in the following way. We introduce an auxiliary
graph G+ with the same topology as the graph connect-
ing the atoms in the protein, but such that the weight of
each edge (i, j) is the upper bound of the distance dij. For
every pair of atoms i, j, the shortest-path between i, j in
G+ is a valid over-estimate of dij. Thus we used an all-to-
all shortest-path algorithm, the Floyd-Warshall algorithm
[37], to refine the upper bound for each pair of atoms.
The Dijkstra Shortest-Path pruning device uses the

refined upper bounds of inter-atomic distances in the fol-
lowing way. According to Lemma 4 in [23], for an atom k
and for each atom pair i, j such that i < j < k in the order
Pato and for which dik is known, the embedding of k can
be pruned if:

‖i − j‖ − dik > ujk (12)

where ujk is the upper bound of the atom pair (j, k)
obtained using the Floyd-Warshall algorithm [37].

Chirality (CHI)
The pruning of atom coordinates through the amino-
acid chirality is implemented through the so-called CORN
rule of thumb: in amino acids, the groups COOH, R
(sidechain),NH2 and H are bonded to the chiral center Cα

carbon. Starting with the hydrogen atom away from the
viewer, if these groups are arranged clockwise around the
Cα carbon, then the amino-acid is in the D-form. If these
groups are arranged counter-clockwise, the amino-acid is
in the L-form. The CORN rule was restated by imposing
that the torsion angle defined by the atoms C,Cβ ,N ,Hα

of residue i for the D-form or C,N ,Cβ ,Hα of residue i for
the L-form, is positive.

α-helix secondary structure
We proposed the use of α helix information as a prun-
ing device in the context of the iBP algorithm first in [34].
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The α helix location can be determined from an anal-
ysis of the NMR chemical shifts by TALOS [38]. Four
criteria are used to enforce the formation of an α helix:
(i) the formation of backbone hydrogen bonds between
amide hydrogens and carbonyl oxygens, (ii) the alignment
of the amide and carbonyl functions checked by a quali-
tative condition on the energy of the hydrogen bond, (iii)
the definition of backbone φ and ψ torsion angles already
described in the Torsion Angle Feasibility, (iv) the defini-
tion of three additional angles θ , θ ’ and θ” similar to the
ones introduced by Grishaev et al. [39].
On a sequence ofm+ 1 contiguous residues Iα = {i, i+

1, . . . , i + m} forming an α helix, for any pair of residues
(i − 4, i) belonging to Iα , the lower and upper bounds on
the distance between the carboxylic oxygen Oi−4 and the
amide hydrogen Hi should be compatible with the forma-
tion of an hydrogen bond. The upper and lower bounds
are defined in an input parameter file of iBP, and were set
to 1.9 and 3.0 Å in the present work.
The condition checking the alignment of atoms involved

in the hydrogen bond is implemented by calculating a
local energy information defined in the DSSP package
[40]:

q1q2
[

1
dOi−4Ni

+ 1
dCi−4Hi

− 1
dOi−4Hi

− 1
dCi−4Ni

]
· f < −0.5,

(13)

with q1 = 0.42, q2 = 0.2 and f = 332, and dAB correspond
to the distance between atoms A and B.
The last criterion enforces the angles θ , θ ’, θ” to be

respectively into the interval values 0/70°, 0/90° and
110/180°.

Implementation details
In this section we provide an overview of the main imple-
mentation features. The iBP algorithm has been coded in
C++ with extensive use of template meta-programming
[41], STL [42,43], and BOOST (www.boost.org). Linear
systems, as for instance (7), are solved using the LAPACK
library [44].
Discretizable DGP instances were represented by sim-

ple weighted undirected graphs G = (V , E, d), which
were handled by the Boost Graph Library (BGL) [45]. The
points in R

3 were represented using the Boost Geometry
Library (also known as Generic Geometry Library, GGL:
www.boost.org).
Constraints on distances, angles or energy are typically

expressed by enforcing a variable x to take values in a
domain D, which is generally the union of intervals and
singletons:

D =
⎧⎨
⎩

m⋃
j=1

x̄j

⎫⎬
⎭ ∪

⎧⎨
⎩

k⋃
i=1

[
xli, x

u
i

]⎫⎬
⎭ . (14)

The Boost Interval Library (BIL – see [46,47]) was used
to store such representation, and to perform basic opera-
tions for intervals and singletons. On top of the BIL, we
define the type domain which contains a set of intervals
and operations as intersection, scaling, etc. The BIL allows
also to select the underlining data format for the interval
(single/double precision real, integer).

Theory
In this section we give some details about the worst-
case asymptotic complexity behavior of the iBP algorithm.
The description given above includes many details which
are useful for finding the structure of proteins but which
somewhat complicate the precise mathematical treat-
ment. We first give a very brief abstract description of the
iBP and of the formal problem it solves, and then proceed
to discuss its complexity.
Formally speaking, the DGP is the following decision

problem: given an integer K > 0, a simple undirected
graph G = (V , E) and an edge weight function d : E →
R+, is there a realization x : V → R

K such that for each
{u, v} ∈ E we have ‖xu − xv‖2 = duv? Note that we are
writing xu for x(u) and duv for d(u, v). We also remark that
in the more “applied” interpretation given in the preced-
ing section, the range of the edge function d is IR+, i.e. the
set of all non-negative closed real intervals, and K = 3.
The DGP is NP-hard for any K > 1 and NP-complete for
K = 1 [48]. Since we are interested in finding all solutions
of the DGP rather than just one, we denote by X the set of
all realizations of G.

Assumptions on the DGP input data
In fact, due to the fact that our data come from a pro-
tein structure setting, we can also make the following
assumptions about G and d:

1. there is an order 1, 2, . . . , n on the vertices such that
1,2,3 is a triangle in the graph G and, for each vertex
v > 3, v is adjacent to v − 1, v − 2, v − 3;

2. the set of edges E can be partitioned in two subsets
ED and EP , such that EP consists of all edges {u, v}
with v > 4 and |v − u| > 3, and ED = E � EP ;

3. ED can be further subdivided in E′
D and E′′

D, so that
E′′
D consists of all edges {u, v} with |v − u| = 3, and

E′
D = ED � E′′

D;
4. the distance function d is such that: (a) duv is a scalar

for each {u, v} ∈ E′
D; (b) duv consists of a discrete set

of b scalars for each {u, v} ∈ E′′
D; (c) duv is a general

interval for all {u, v} ∈ EP .

We remark that the above definitions can be appropri-
ately extended to Euclidean spaces of any dimension K >

0, not just K = 3. We call ED the discretization edges and
EP the pruning edges. Discretization edges ensure that the

www.boost.org
www.boost.org
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graphG is rigid, which implies that there are finitely many
realizations ofG inRK . Pruning edgesmake some of those
realizations infeasible, and thereby make the solution set
X smaller. A few remarks are in order:

• we consider that distances which are known because
of covalent bond relations are sufficiently precise to
be represented by a scalar;

• we consider that distances which are known from
NOESY (or other) experiments can be represented by
intervals;

• we assume that a limited number of the intervals can
be discretized into sets containing a finite number b
of values within the intervals;

• the edges in E′
D represent atom pairs of the form

{v, v− 1} or {v, v− 2} for any v > 2: these are
involved in covalent bonds;

• the edges in E′′
D represent atom pairs which are

assigned a certain number b of possible values
(optionally b = 1 for certain pairs);

• the edges in EP represent atom pairs for which the
distance might be a general interval.

We remark that the order on V was initially intended to
follow the protein backbone [49], but new orders which
better exploit the hydrogen atoms in or close to the back-
bone have been defined in [50,51]: these are the orders on
which the above assumptions are based.
The DGP with the restrictions above, but where all

intervals are replaced by scalars, is called DISCRETIZ-
ABLE MOLECULAR DGP (DMDGP). Both the DMDGP
and its generalization to any K (denoted by KDMDGP) are
NP-hard [52,53]. The problem defined above, involving
intervals, obviously contains the DMDGP as a sub-case
and is hence also NP-hard by inclusion.

When all distances are precise
We first focus on the simplest case, where all intervals are
replaced by scalar values. Then d : E → R+, and b = 1. In
this simplified setting, the iBP is simply called BP [52], and
the order on V is called a contiguous trilateration order
[54] or a DMDGP order [55].
The BP can be defined as a recursive procedure: assum-

ing we already found a realization x1, . . . , xv−1 for the
vertices 1, . . . , v− 1, and that we mean to find a consistent
realization xv for v, the discretization edges ED guarantee
that there will be at most two positions for xv compati-
ble with the distances restricted to ED [49]. This can be
intuitively understood in R

3 by considering the intersec-
tion of three spheres centered at xv−1, xv−2, xv−3 with radii
dv,v−1, dv,v−2, dv,v−3: the first two spheres either do not
meet or their intersection is in general a circle, and the
intersection of the third sphere with this circle is either

empty or consists in general of two points [56]. We can
now consider the distances defined on pruning edges in
EP , linking v to its preceding vertices in order to accept or
reject these two points. For each accepted point we recur-
sively call BP with v replaced by v + 1, for all v < n.
When v = n we have a valid realization of the graph: we
save it in X, and proceed to complete the recursive search.
This yields a search tree which is explored depth-first.
The recursion starts after placing the initial triangle 1,2,3
(either arbitrarily or by using BP restricted to subspaces),
so this tree starts branching at level 4. It can be proved
that, at completion, X contains all incongruent (modulo
translations and rotations) realizations of G.
In the case where EP = ∅, the search tree is a complete

binary tree with 2n−3 nodes at the n-th (and last) level: in
other words, its depth is n and its width is 2n−3. This is the
worst case, since the BP must explore all of the nodes in
the tree, and proves that the BP (and hence the iBP, since
it generalizes the BP) is an exponential-time algorithm
in n.
When EP �= ∅, it was shown that X almost always

contains a number of solutions which is either zero or a
power of two [55]; this discovery led to a set of results
where the BP search tree width can be kept polynomial
in n during the search [53]. Since the exponential behav-
ior is only due to the tree width, this yields a set of
cases where the BP is actually fixed-parameter tractable
(FPT). Throughout all our experiments with protein data
we were always able to fix the parameter controlling the
exponential growth of the tree width to a universal con-
stant, which makes BP “polynomial on proteins” (this is
an informal statement — the precise statement is given in
[53]).

Intervals and discrete distance sets
The theory supporting the case where d might map edges
to discrete sets of distance values or intervals, which is
the case treated in this paper, is not so clearly understood
yet. As it generalizes the simpler case sketched above, in a
certain sense it inherits its properties, but this is an over-
simplification: for instance, if all intervals are [0,∞], it
is obvious that the problem is easy independently of the
graph topology, since every realization is valid.
Some bounds on the cardinality of X in the pres-

ence of discrete sets and intervals are given in [55]. Our
understanding is that if the intervals are small enough,
the theory which led to fixed-parameter tractability goes
through with few changes, but we have no way so far of
establishing an aprioristic maximum width for the inter-
vals. If the intervals are very large the problem might
become tractable, as mentioned above, for the purposes
of finding at least one solution. The iBP would still behave
exponentially, however.
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Results and discussion
We applied the presented algorithm to three examples of
proteins displaying α helical secondary structures. Before
presenting the obtained results, we emphasize that the
method proposed here has a completely different philos-
ophy than classical optimization approaches commonly
used in the field of NMR structure determination. In
the present approach, each constraint is treated in the
strict sense, that is, no violation, however small, is toler-
ated. This is why we consistently use the word constraint
in the paper. This is what potentially allows us to sys-
tematically explore the entire search space. However, the
use of the procedure demands that the data have been
pre-processed accordingly, and all geometric inconsis-
tencies that exist in three–dimensional space have been
removed.
For the proteins studied here, if one includes the ensem-

ble of NMR interval distance constraints stored in the .mr
file at the Protein Data Bank (PDB) [57] as well as all
pruning devices described above, all solutions are pruned
out, indicating that no solution to the distance geome-
try problem exists with the deposited data. This is not
really surprising, since the optimization algorithms gen-
erally used in NMR structure determination are based
on optimization of a target function or hybrid energy
rather than on strict constraint satisfaction. That is, there
is always a phase where the algorithm tries to find a
trade-off when inconsistencies exist between constraints.
The optimization thus produces solutions in which chem-
ical and NMR constraints are optimized, but in which
small violations are always present. These inconsistencies
are present in any structure determination, in particu-
lar because distance constraints are imprecise, due to
experimental limitations.
Since the data in the PDB for the examples presented

here were not pre-processed the way our algorithm
requires, we decided to use a subset of the stored data sets:
the definition of α-helix regions and a few long-range dis-
tance constraints arbitrary selected from the set of NMR
constraints for structures with more than one α-helix.
In order to further reduce the risk of all solutions being
pruned, we used tolerance values for atomic positions and
angles between atoms (Table 2).
The three examples we chose to illustrate the algorithm

display an increasing structural complexity: (i) a single α

helix, corresponding to the structure of peptide CM15
determined in micelles (PDB id: 2JMY [58]), (ii) an α heli-
cal hairpin (PDB id: 2KXA [59]), (iii) the insecticidial toxin
TAITX-1a, formed as a bundle of four α helices, restrained
by three disulphide bridges (PDB id: 2KSL). The main
characteristics of the studied proteins are given in Table 2.
All three examples were originally determined by NMR
spectroscopy, and the corresponding constraint lists are
available from the PDB. The analysis by PROCHECK

[60] of the Ramachandran diagram of these three PDB
structures shows that more than 85% of the residues are
located in the core region. For 2KXA and 2KSL,more than
95% of the residues are located in the core and allowed
region, whereas in 2JMY, 7% of the residues are located
in the generously allowed region. For 2KXA, one PRO
residue was replaced by an ALA, as the PRO cycle has
not yet been included in the current version of the iBP
algorithm.
We generated conformations using the branching phase

and the pruning devices described above. The long-range
constraints added for the calculations of 2KXA and 2KSL,
are:

(i) for 2KXA, one constraint between Hα hydrogen and
carbonyl oxygen of Ala-5 and Met-17, enforcing the
pairing of the two α-helices,

(ii) for 2KSL, three constraints between Carbons β of
Cys-7 and Cys-37, of Cys-23 and Cys-33 and of
Cys-26 and Cys-46, corresponding to the formation
of the three disulphide bridges.

For all calculations, except the one of 2JMY with the α

helix defined along the whole sequence, the obtained con-
formations were filtered according to the coordinate root
mean-squared deviation (RMSD: 1.5 Å) with respect to
the previously obtained conformation in the iBP proce-
dure. Enforcing an RMSD value larger than 1.5 Å between
two successively stored conformations, avoids an over-
sampling of the conformational space. Each calculation
was stopped after storing 10000 filtered conformations.
For our three examples, five calculations were performed
in total: three on 2JMY with different definitions of the
α helix (residues 1-15, 3-13 and 5-11), and one each for
2KXA and 2KSL. For the first calculation on 2JMY, one
conformation was obtained and saved. The second and
third calculations on 2JMY were quite short, of the order
of minutes (Table 2), which is due to the small size of
the corresponding tree. For the 2KXA and 2KSL calcu-
lations, 10000 conformations were obtained in about 30
mins of calculation. Large total numbers of conformations
were generated: this number increases from ∼634,000
(2JMY_1) up to ∼3,400,000 (2KXA) with the size of the
considered problem, depending on the number of residues
and on the number of constraints. Despite 2KSL being
the largest example, the second smallest number of con-
formations was generated, which is the sign of a severe
pruning arising from a rather restricted conformational
space.
The reliability of the obtained conformations was

checked in three ways. First, the whole set of NMR
constraints deposited along with the PDB entries and
involving backbone hydrogens, were probed on the
conformations. Second, the quality of the obtained
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Table 2 Analysis of conformations obtained by the branch-and-pruning algorithm on the three proteins targets: 2JMY,
2KXA and 2KSL

Proteins 2JMY 2JMY_1 2JMY_2 2KXA 2KSL

Number of

residues 15 15 15 24 51

Number of

vertices 107 107 107 170 359

Definition

of α helices 1-15 3-13 5-11 1-11, 13-23 4-11, 13-27,

29-36, 41-50

Position

tolerance (Å) 0.2 0.2 0.2 0.2 0.2

Angle

tolerance (°) 2 2 2 4 4

b value 4 4 4 8 4

Number of

long-range

constraints 0 0 0 1 3

Number of saved

conformations 1 10000 10000 10000 10000

Number of generated

conformations 1 633,937 928,399 3,380,964 491,498

CPU time - 1 min 1 min 25 min 31 min

Number of violated

constraints (> 1Å) 0 4.0± 2.1 11.6± 3.6 9.6± 2.9 12.8± 1.1

Maximum

violation (Å) 0 3.3± 1.4 4.8± 0.7 3.7± 1.0 8.1 ± 0.6

Mininum RMSD

from PDB structure (Å) 1.4 1.3 2.1 1.1 3.0

RMSD from PDB structure

for minimum violated

conformations (Å) 1.4 2.9 2.8 1.3 3.5

PROCHECK

core residues (%) 100 65.7± 25.9 49.2± 7.6 60.4± 8.1 76.9± 2.4

allowed residues (%) 0 17.9± 9.7 40.9± 8.3 39.6± 8.0 21.3± 2.8

gen.allow. residues (%) 0 3.6± 4.8 9.9± 7.2 0.0± 0.0 1.9 ± 1.7

disall. residues (%) 0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0 ± 0.0

2JMY_1 and 2JMY_2 correspond to the target 2JMYwith shorter definitions of α helices. The total number of generated conformations is given, along with the
number conformations filtered according to RMSD values.

conformations was checked using PROCHECK [60]
analysis of the Ramachandran plot. Third, the obtained
conformations were clustered with an unsupervised clus-
tering method, namely the self-organizing map or SOM
[61-64], in order to investigate the properties of sampled
conformations.

The agreement of the obtained conformations with the
backboneNMR constraints depositedwith the PDB struc-
tures was checked by calculating the distances between
the backbone hydrogens in each obtained conformation.
The distances larger than the upper bound of the con-
straint correspond to violations of this constraint. The
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mean number of violated constraints along with the mean
value of the difference to the upper bound for these con-
straints were calculated on all conformations (Table 2).
For the 2JMY calculation with the 1-15 α helix definition,
no violation of the NMR constraints could be observed. As
expected, when the α helix definition is reduced (2JMY_1
and 2JMY_2), the average number of violations increases
as well as the average maximum violation. Not sur-
prisingly, the most violated constraints involve residues
located at the N and C terminal parts of the α-helix, TRP-
2, PHE-5, LYS-3, LYS-6 and VAL-11, VAL-14, LEU-15 for
2JMY_1 and 2JMY_2. The largest violations and number
of violations are of the same order or value for 2KXA
than for 2JMY_1 and 2JMY_2. In contrast, the largest vio-
lations and number of violations are observed for 2KSL
and involve residues CYS-33, GLU-34, PHE-38, TYR-
43. Such over-restraining of NMR structures have been
put in evidence in the past, through molecular dynamics
simulations [65] and analysis of the structure quality [66].
The average number of violations is similar for 2JMY_2,

2KXA and 2KSL, but the average maximum violation for
2KSL is twice as large as that for 2JMY_2 and 2KXA.
This might be due to the very restrained conformations
of 2KSL, which contain three disulphide bridges. Due to
this restrained conformation, the NMR constraint list is
probably more prone to contain inconsistencies, and large
mechanical strain can be stored in the structure if one uses
an optimization procedure such as simulated annealing.
In contrast, no mechanical strain whatsoever is generated
by the iBP algorithm, and the obtained conformations
might have a stronger tendency to deviate from the PDB
conformations.
For each example, the obtained conformations were

compared to the first conformation deposited in the PDB.
Minimum RMSD values in the range 1.1-2.1 Å were
obtained for all targets, except 2KSL for which the mini-
mum RMSD value was 3.0 Å. Thus the Branch-and-Prune
algorithm was able to capture conformations close to the
PDB conformations, the larger value obtained for 2KSL
arising from the larger mechanical strain quoted above.
For each calculation, the conformation displaying the

smallest number of NMR constraint violations was com-
pared to the first conformation deposited in the PDB. The
RMSD values are smaller than 1.5 Å for 2JMY and 2KXA.
This shows that, in the context of the iBP algorithm,
the measured NMR constraints also push the structure
toward the PDB structure. For 2JMY_1 and 2JMY_2, the
RMSD value increases since the definition of the α helical
region is shorter. For 2KSL, the conformation displaying
the smallest number of constraint violations, displays an
RMSD of 3.5Å with the PDB first conformation, which
agrees with the maximum number of violations observed
for this protein and with the minimum RMSD with the
PDB structure analyzed above.

From the PROCHECK [60] analysis, the percentage
of residues located in core and allowed Ramachandran
regions, is larger than 95% for all targets except 2JMY_1,
2JMY_2, for which the percentages are about 80% due
to the reduced definition of the α helix. For all targets,
the percentage of residues in disallowed regions is equal
to zero. The relatively important percentage of residues
located in the allowed region may arise from the sys-
tematic exploration performed by the Branch-and-Prune
algorithm, the strict nature of the constraints, and the
nature of the pruning devices.
In order to further probe the robustness of the proposed

algorithm, iBP calculations on 2KXA and 2KSL have been
performed, using input data degraded in the following
way: (i) the length of each α helix has been reduced by 1
residues at each extremity, (ii) the lower and upper bounds
of the long-range distance constraints have been increased
by 0.5 Å. The introduction of this noise into the α helical
and long-range constraints makes the iBP solution mov-
ing apart from the PDB structure, as the minimum RMSD
to PDB structure changes from 1.1 to 2 Å for 2KXA,
and from 3.0 to 4.3 Å for 2KSL. Nevertheless, the qual-
ity of the Ramachandran diagram remains satisfying, with
93.3% and 95.4% of the residues located in the core and
allowed regions of the Ramachandran plot for 2KXA and
2KSL.
The conformations were clustered using a self-

organizing map (SOM) approach [62,63], on which
the coordinate RMSD values between the conformers
obtained by Branch-and-Prune and the correspond-
ing PDB structure, were projected on the SOMs
(Figure 6). These RMSD values lay in the 1.3-3.2 Å
range for 2JMY_1, in the 2.4-4.9 Å range for 2JMY_2,
in the 1.5-4.0 Å range for 2KXA, and in the 3.2-6.0 Å
for 2KSL.
In the SOMs for the four calculations (Figure 6), the

RMSD values are colored according to their RMSD from
the PDB entry, violet color indicating values smaller than
the median value of the sampled RMSD value, green
color indicating RMSD values larger than this median
value. For 2JMY_1, 2KXA and 2KSL, a larger number
of neurons of the SOMs belongs to the second group,
which is the sign of an enhanced sampling of the con-
formational space with respect to the region sampled by
simulated annealing. For 2JMY_2, the inverse picture is
observed, which may arise from the more limited con-
formational space available to be sampled for a unique
α-helix.
In 2KSL and 2KXA SOMs, the protein conformations

corresponding to the region displaying the smallest coor-
dinate RMSD values with respect to the PDB structure,
were extracted (Figure 7). These sets of conformers are
similar to the superimposed conformations obtained in a
usual NMR calculation.
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Figure 6 Clustering of the conformations obtained by the iBP algorithm. Self-organizing maps describing the clustering of the conformations
obtained by the iBP algorithm on 2JMY, 2KXA and 2KSL. The contour plots (lines) represent the local similarity between the clustered conformations.
The color scales (on plot left) extend from blue to red (from very similar to very dissimilar conformations). The small red points are drawn on the
SOM neuron for which the largest local similarity is observed between conformations. Each SOM neuron is colored according to the average value
of the coordinates RMSD of the neuron conformations with respect to the PDB structure. The color scales extend (on plot right) from purple to
green (from very similar to very dissimilar to the PDB structure). The similarity between SOM neurons as well as the RMSD to the PDB structure are
expressed in Å for comparison purposes.

Conclusions
We proposed here a Branch-and-Prune algorithm (iBP)
to solve the Distance Geometry Problem, in order to
sample exhaustively the conformational space of the back-
bone of α-helical proteins. The iBP algorithm bears a very
slight reminiscence to variable target function approaches
for example implemented in DISMAN [67], due to
the sequential nature of introducing constraints and
non-bonded interactions. However, the precise way of
introducing the constraints and non-bonded interactions
differs significantly, and DISMAN does not systematically
search space but is an optimization approach.
We introduced new pruning devices integrated in the

iBP algorithm for DGP with intervals and we tested our
iBP implementation on the backbones of α-helical pro-
teins. Several pruning devices have been designed to
enforce amino-acid chirality, α-helix geometry and van

der Waals steric hindrance. The algorithm allowed to
efficiently reconstruct backbone conformations of three
α-helical peptides, of various sizes, and for which the
structure were previously solved by NMR. The obtained
solutions satisfy most of the NMR constraints involving
backbone hydrogen bonds, and display very acceptable
Ramachandran statistics. The present work represents a
first successful step on the way to reconstruct protein
structures using a branch-and-prune algorithm applied to
the Distance Geometry problem.
Applications where this approach could have significant

advantages are cases where there are few distances defin-
ing the tertiary structure of a protein, where it is important
to characterize the space of all solutions. It might also
be useful as part iterative automated assignment algo-
rithms such as ARIA [68], CYANA [69] or UNIO [70],
where in a first iteration all solutions compatible with a
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Figure 7 Superimposed 2KXA and 2KSL conformations.
Superimposition of 2KXA and 2KSL conformations extracted from the
SOM, as the ones displaying the minimum coordinates RMSD with
respect to the first conformer of the corresponding PDB structures.
The N and C terminal extremities are labeled, and the conformations,
drawn in cartoon, are colored from blue to red, according to the
conformational index.

few unambiguous long-range constraints could be gener-
ated to reduce the ambiguity of the remaining constraints.
Another application of the approach proposed here would
be to provide input molecular conformations to model
the structure of multi-subunit complexes into an electron
microscopy density map [71].
Some limitations of the current version of iBP pre-

vent for the moment its use with real nuclear Overhauser
effect (NOE) data. These limitations are the use of unam-
biguous distance constraints, the non-inclusion of pro-
tein side-chains, the loss of information intervals and
the appropriate weighting of the various constraints in
order to overcome the inconsistencies contained among
the whole constraint set. Protein side-chains can be added
to the protein backbone afterward. The discretization
of circle arcs could be tackled using algebraic geome-
try and geometric algebra approaches [72]. The Bayesian
approach [73] developed for the objective weighting of
various NMR contraints according to the data quality
could be used to alleviate the inconsistency problems.
The use of unambiguous distance constraints is proba-
bly the most unavoidable aspect of the current set-up of
the algorithm.
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