
 Editorial Manager(tm) for Annals of Operations Research

 Manuscript Draft

Manuscript Number: ANOR-122R1

Title: Edge cover by connected bipartite subgraphs

Article Type: Special: In memory of Peter L. Hammer

Keywords: edge cover; connected bipartite subgraph; min cut cover; complexity; constructive

heuristic; local search

Corresponding Author: Dr Leo Liberti, PhD

Corresponding Author's Institution: Ecole Polytechnique

First Author: Leo Liberti, PhD

Order of Authors: Leo Liberti, PhD; Laurent Alfandari, PhD; Marie-Christine Plateau, PhD

Abstract: We consider the problem of covering the edge set of an unweighted, undirected graph

with the minimum number of connected bipartite subgraphs (where the subgraphs are not

necessarily bicliques). We show that this is an NP-hard problem, provide lower bounds through an

integer programming formulation, propose several constructive heuristics and a local search, and

discuss computational results. Finally, we consider a constrained variant of the problem which we

show to be NP-hard, and provide an integer programming formulation for the variant.

Answers to reviewers

Reviewer 1

Major points

1. *Lack of motivation*. We think it is fitting to report these

results on an issue devoted to the memory of Peter Hammer, as he first

proposed the problem. We believe we surveyed most of the literature on

bipartite graphs and their applications, without really finding an

explicit reference to a _native_ application of this

problem. Notwithstanding, since the problem is equivalent to the MCC

and to the Minimum Test Collection Problem, it "inherits" all the

applications of the these two problems, as we underlined in a

paragraph in the introduction.

2. *Correctness of proof of thm. 5.1*. We think the referee considered

the "length of a graph E_k" to be defined as the maximum length of a

shortest path in E_k. In fact, we define the length of E_k to be the

maximum length of a *simple* path in E_k (not necessarily

shortest). We made this definition explicit just before the definition

of the MCBGC problem. So, for L=2 the bipartite subgraph is indeed a

star (hence the problem is equivalent to the vertex cover problem) and

not a complete bipartite graph.

Minor points

1. The numbering of results should be taken care of during production.

2. OK

3. OK

4. OK

5. OK

6. OK

7. OK

8. Since x_{ik} is a decision variable, its value after the

Response to Reviewer Comments

 optimization process will encode the definition of V_k (given

 in the Cut Cover problem definition, page 3).

9. OK ("subgraph of the cover").

10. OK

11. OK

12. OK

13. We explained this in the 2nd paragraph of Sect. 4.3

14. OK

15. We agree unless L is a constant (i.e. not depending on n --- in

 which case all simple paths can be enumerated --- at worst). We

 inserted a remark to this effect after Thm. 5.1

16. OK

17. We removed the first sentence of 5.1 because we had already

 introduced an explicit definition of graph length at the beginning of

 section 5. We remark that we took out the notion of "induced path"

 from the paper, replacing by "path contained in a subgraph".

18. OK

19. OK

Reviewer 2

Major points

1. OK

2. We removed \bar{A},\bar{B}, A_1,B_1,A_2,B_2 from the Lemma statement

3. OK - we added the figure

4. OK - But as far as we know the MCC math prog formulation was never

 introduced previously -- although naturally it's nothing specially

 difficult so it might have already appeared in some book exercise or

 similar.

5. We actually eliminated \tilde{\alpha} entirely and defined \alpha

 straight away

6. We reinforced the explanation of the CTW07 heuristic somewhat and added

 an URL where the paper that describes it in detail can be downloaded from.

7. We noticed that, combined with the "budge the edge" local

 search, heuristic L is good on Torus instances whereas K

 behaves well on Triangle, but the number of instances in

 each class (3 or 4) and the size of the instances seems to

 small to us for stating general and explainable conclusions on this aspect.

8. We inserted a figure explaining the transformation. Thank you

 for pointing out this mistake: it is the length of the path

 connecting v^{ij}_{jp} and v^{jl}_{jp} which is equal to 2p.

 We modified the whole sentence, given that it is not E_k that cannot

 contains more than 2 edges of E'', as the referee pointed out, but

 any path of E_k. We also redefined X more precisely as X={j_k|k in K'}.

Minor points

1. The reference order is carried out automatically by LaTeX. They will

 likely be fixed in production according to journal style

2. OK - We inserted some lines in the introduction to this effect.

3. We think our definition - a bipartite graph not required to be connected

 but spanning V - is OK.

4. OK

5. OK

6. OK

7. OK

8. OK

9. OK

10. OK

11. OK

12. OK

13. OK

14. OK

15. OK

16. OK

17. OK

18. We remarked that we're using v^{ij}_{ip} to mean v^{\{i,j\}}_{ip}

 with a slight abuse of notation.

19. Not true in general: think of the case where j is a leaf in

 graph G

20. OK

21. OK

22. Since V^2 = V x V, and arcs are elements of a subset of V^2,

 it is formally correct to say (u,v) in V^2 whether (u,v) is an arc

 in a graph or not.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Edge cover by connected bipartite subgraphs

Leo Liberti1, Laurent Alfandari2, Marie-Christine Plateau3

1 LIX, École Polytechnique, F-91128 Palaiseau, France

Email:liberti@lix.polytechnique.fr
2 ESSEC, Av. Bernard Hirsch, BP105 95021, Cergy Pontoise, France

Email:alfandari@essec.fr
3 CEDRIC, CNAM, 292 rue St. Martin, 75141 Paris, France

Email:mcplateau@yahoo.fr

November 21, 2008

Abstract

We consider the problem of covering the edge set of an unweighted, undirected graph with the min-
imum number of connected bipartite subgraphs (where the subgraphs are not necessarily bicliques).
We show that this is an NP-hard problem, provide lower bounds through an integer programming
formulation, propose several constructive heuristics and a local search, and discuss computational
results. Finally, we consider a constrained variant of the problem which we show to be NP-hard, and
provide an integer programming formulation for the variant.

1 Introduction

We consider the following problem.

Minimum Bipartite Graph Cover (MBGC). Given a simple undirected graph G = (V, E),
find a family {Hk = (Ak, Bk, Ek) | k ≤ m} of (not necessarily induced nor complete) connected
bipartite subgraphs of G such that E =

⋃

k≤m Ek and m is minimum.

This problem was proposed by P. Hammer to one of the authors during a discussion on reformulations of
pseudo-boolean functions which occurred in Reykjavik during the EURO 2006 conference. The particular
subject under discussion was the struction operation on conflict graphs [2, 13] as an alternative to pseudo-
boolean reformulations. The question of the significance of the posiform that would occur from considering
a bipartite cover instead of a biclique cover arose naturally, for an optimal bipartite cover has fewer
subgraphs than an optimal biclique cover, and would therefore lead to simpler posiforms. The focus of
the discussion then shifted to the problem of finding a bipartite cover as a necessary step for devising
computational experiments. We have no progress yet to report on the main question, i.e. the significance
of the modified posiform; this paper presents the progress on the auxiliary topic of covering the edges
of a graph by a minimum cardinality set of connected not necessarily induced nor complete bipartite
subgraphs.

A related problem is the edge covering where Hk are necessarily induced bicliques (Minimum Biclique

Cover (MBC)), which is relevant to the struction operation [2, 13]. The MBC is NP-hard and well
studied [21, 19, 3, 1], and has many applications (for example the encoding of partial orders by bit
vectors [11], heuristic coloring algorithms [9] and continuous relaxation based methods [7]). Another
related problem is the Minimum Cut Cover (MCC), where Hk are cutsets, namely not required to be
connected but required to have V as vertex set. The MCC is also NP-hard [15, 6, 18].

*Manuscript
Click here to download Manuscript: bgc-aor.tex Click here to view linked References

http://www.editorialmanager.com/anor/download.aspx?id=11573&guid=7a911975-9c20-4218-89c3-b058da2218b6&scheme=1
http://www.editorialmanager.com/anor/viewRCResults.aspx?pdf=1&docID=164&rev=1&fileID=11573&msid={F7A4AC74-5E99-408C-B31F-7C5EC6D57617}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2 WORST-CASE COMPLEXITY OF THE MBGC 2

In this paper we show the NP-completeness of the decision version of the MBGC by reduction from
the MCC; in particular, we also prove the complete equivalence of these two problems with respect to
the minimization of cover cardinality (Sect. 2). This implies that the same approximability results found
for the MCC hold for the MBGC [18, 12]. Since the direct formulation of the MBGC results in a model
whose size makes practical application extremely limited, we provide a Mixed-Integer Linear Programming
(MILP) formulation for the MCC instead, which also yields optimal solutions for the MBGC (Sect. 3).
We then describe four constructive heuristics and a local search for the MBGC (Sect. 4) and discuss some
computational results. Finally, we introduce a constrained variant of the MBGC where the subgraphs in
the cover are of limited length, prove that its decision version is also NP-complete, and provide a MILP
formulation for the variant (Sect. 5).

The complete equivalence of the MBGC with the MCC means that the MBGC is also equivalent to all
problems equivalent to the MCC. In particular, MBGC is equivalent to the Minimum Test Collection

Problem (MTCP) [12]. This implies that the MBGC inherits all the applications of the MCC and
MTCP: testing of electronic boards [15], fault analysis, medical diagnostics, and pattern recognition [12].
Furthermore, there exists a reduction from the (minimum) Vertex Coloring Problem (VCP) [18]
whereby the minimum cardinality of a cut cover for a graph G is equal to ⌈log χ(G)⌉, where χ(G) is the
chromatic number of G.

Notationwise, we shall indicate a connected bipartite subgraph edge cover by H = {Hk | k ≤ m} for
some integer m, where Hk = (Ak, Bk, Ek) for all k ≤ m. We usually employ m∗ to indicate the optimal
cover cardinality and m̄ to indicate an upper bound on m∗, such as for example the cardinality of a cover
found by a heuristic.

2 Worst-case complexity of the MBGC

We show NP-completeness of the MBGC by reduction from the MCC. The crucial part of the proof
consists in showing that a cut cover can be transformed into a connected bipartite graph cover of the
same cardinality. We first prove three technical lemmata.

2.1 Lemma

Consider two connected bipartite subgraphs H1 = (V1, E1) and H2 = (V2, E2) of G such that:

(a) for k ∈ {1, 2}, Vk is bipartite;

(b) |V1 ∩ V2| = 1.

Then there is a connected bipartite subgraph H̄ = (V̄ , Ē) of G such that V̄ = V1 ∪ V2 and Ē = E1 ∪E2.

Proof. Let Ē = E1 ∪ E2 for subgraph H̄ , and V1 ∩ V2 = {v0}. Every new cycle γ created in H̄ when
joining H1 and H2 is necessarily formed of a cycle of H1 and a cycle of H2 intersected in v0. Since these
two cycles have even length, then γ has also an even length, so H̄ contains no odd cycle and is indeed a
connected bipartite subgraph. 2

2.2 Lemma

Given two connected bipartite subgraphs H1 = (V1, E1) and H2 = (V2, E2) of G such that V1 ∩ V2 = ∅,
there is a connected bipartite subgraph H = (V̄ , Ē) of G such that V̄ ⊇ V1 ∪ V2.

Proof. Since G is a connected graph there must exist vertices v1 ∈ V1 and v2 ∈ V2 connected by a path
p = (v1, u1, . . . , uq, v2) in G, with ul 6∈ V1∪V2 for l ∈ {1, . . . , q}. Since p is a connected bipartite subgraph
of G such that its vertex set intersects V1 (resp. V2) in {v1} (resp. {v2}), by Lemma 2.1 there exists a

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2 WORST-CASE COMPLEXITY OF THE MBGC 3

connected bipartite subgraph H of G whose vertex set consists of V1, V2 and the vertices in p. We remark
that H can be derived from H1, H2 in polynomial time. 2

Let H∗ = {H∗
k | k ≤ m∗} (where H∗

k = (A∗
k, B∗

k, E∗
k) for all k ≤ m∗) be an optimal solution (of

cardinality m∗) to the MBGC problem on G.

2.3 Lemma

There exists an optimal solution H ′ = {H ′
k | k ≤ m∗} of the MBGC such that, for all k ≤ m∗:

(a) H∗
k is a subgraph of H ′

k;

(b) H ′
k has a maximal edge set;

(c) H ′
k spans V .

Proof. First of all notice that any H ′
k satisfying (a) and (c) may be enlarged to be maximal with respect

to the number of edges by simply inserting as many edges as possible without changing the bipartition
property. Now, supposing we can find a maximal spanning H ′

k whose edge set contains all the edges in
H∗

k , H ′ is still a feasible solution (it covers E) and has the same cardinality m∗ as H∗, so it suffices to
show that we can enlarge H∗

k so that its vertex set is V . This can be done as follows, for all k such that
Uk = V r (A∗

k ∪ B∗
k) 6= ∅. For all u ∈ Uk find the shortest path p = (u, w1, . . . , wl, v) in G to the vertex

v ∈ H∗
k closest to u; it is evident that wi ∈ Uk for all i ≤ l, otherwise v would not be closest to u. Now

any path is a connected bipartite graph, and p′ = p r {v} is a connected bipartite graph whose vertex
set has no intersection with H∗

k . Thus by Lemma 2.2 we can enlarge H∗
k to a bipartite graph H ′ whose

vertex set contains all of the vertices of p (see Fig. 1). We can now repeat the same construction for all
remaining vertices in Uk to obtain the desired H ′

k 2

G

H∗
1

H∗
2

H∗
1 H ′

1

Figure 1: Proof of Lemma 2.3. A graph G, an optimal bipartite graph cover H∗
1 , H∗

2 , and the way to
extend H∗

1 so that it stays bipartite and spans V .

We consider the decision problem underlying the MBGC:

Bipartite Graph Cover (BGC). Given an undirected graph G = (V, E) and a positive
integer m, is there a family {Hk = (Ak, Bk, Ek) | k ≤ m} of cardinality m of (not necessarily
induced nor complete) connected bipartite subgraphs of G such that E =

⋃

k≤m Ek?

and the decision version of the MCC problem:

Cut Cover (CC). Given an undirected graph G = (V, E) and a positive integer m, is
there a family {Ck = {Vk, V \ Vk} | k ≤ m} of cardinality m of cutsets of G such that
E =

⋃

k≤m{{i, j} | i ∈ Vk, j ∈ V r Vk}?

2.4 Theorem

The BGC decision problem is NP-complete.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3 BINARY LINEAR PROGRAMMING FORMULATION OF THE MCC PROBLEM 4

Proof. First, we remark that BGC is trivially in NP: checking that every subgraph in the solution is
bipartite, connected and the union of these subgraphs is E can be done in polynomial time. Secondly, we
exhibit a polynomial reduction from the CC problem. Consider an instance (G, m) of the CC problem:
trivially, it is also an instance of the BGC problem. Assume that (G, m) has a solution w.r.t. the CC
problem, namely C = {Ck | k ≤ m} where Ck is a cutset of G defined by a partition {Vk, V \ Vk} of V .
Any cutset of G can be seen as a disconnected graph whose connected components are connected bipartite
subgraphs of G. By Lemma 2.2, these can be joined (in polynomial time) into a single connected bipartite
subgraph of G. We therefore obtain a family H = {Hk | k ≤ m} of connected bipartite subgraphs of G
of cardinality m. Conversely, suppose that H = {Hk | k ≤ m} is a solution of (G, m) w.r.t. the BGC
problem. Then by Lemma 2.3 we can derive a family H ′ = {H ′

k | k ≤ m} which is a solution to (G, m)
and whose components H ′

k are spanning in V . Since any spanning bipartite subgraph of G is also a cutset
of G, H ′ is also a solution to the CC problem of the same cardinality. This concludes the proof. 2

As a corollary, the MBGC is NP-hard. Notice that Thm. 2.4 is stronger than usual reduction proofs,
as the solutions to the two problems have the same cardinality, which implies that an optimal solution
to the MBGC reduced from an optimal solution to the MCC also has the same objective function value.
For this reason, the MBGC inherits all the approximability results derived on the MCC, namely that it
is approximable within 1 + (log |V | − 3 log log |V |)/m∗, and that there is no polynomial time algorithm
with relative error less than 1.5 [18]. Furthermore, it is solvable in polynomial time for planar graphs,
and ⌈log |V |⌉ is always a valid upper bound [4] (this is derived from recursively identifying the maximum
cut in a complete graph and splitting V in two cardinality balanced subsets).

3 Binary Linear Programming formulation of the MCC problem

A mathematical programming formulation of the MBGC involves connectivity constraints. This can be
done in polynomial size by using flow variables [16] but it results in formulations of excessive sizes for all
practical purposes. However, since the MBGC is equivalent to the MCC as explained above, an optimal
objective function value for the MCC is also optimal for the MBGC. We therefore present an Integer
Programming (IP) formulation for the MCC in this section. Let m̄ be an upper bound to m∗ (for instance
m̄ = ⌈log |V |⌉).

We consider three sets of binary variables:

∀k ≤ m̄ yk =

{

1 if the k-th cut is in the cover
0 otherwise,

∀i ∈ V, k ≤ m̄ xik =

{

1 if node i is in Vk

0 otherwise,

∀i ∈ V, j ∈ V, k ≤ m̄ ek
ij =

{

1 if edge {i, j} is in the k-th cut
0 otherwise,

The objective is to minimize the number of cuts in the cover:

min

m̄
∑

k=1

yk.

We consider edge covering constraints, which ensure that every edge {i, j} of E belongs to at least one
subgraph of the cover.

∀{i, j} ∈ E

m̄
∑

k=1

ek
ij ≥ 1.

The following constraints ensure that if node i belongs to Vk then yk = 1.

∀k ≤ m̄, ∀i ∈ V yk ≥ xik.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 HEURISTICS 5

If cut Ck is not in the cover, then no edges must be assigned to it.

∀k ≤ m̄
∑

{i,j}∈E

ek
ij ≤ |E|yk.

Lastly, we make sure that all edges in the cover have one vertex in Vk and the other in V r Vk:

∀{i, j} ∈ E, ∀k ≤ m̄ ek
ij = (xik − xjk) mod 2. (1)

We remark that (1) is a nonlinear (nonconvex) constraint. The set of points

Q = {(χ, ξ, ζ) | ζ = |χ − ξ| ∧ χ, ξ ∈ {0, 1}}
is represented by the large black dots in Fig. 2. By inspection, it is easy to see that all integral points
are vertices of the convex envelope of Q (thick lines), which is a polytope. We can therefore replace Q
with the set of linear constraints that are facets of the polytope. The representation of the polytope Q

1

1

1

ζ

χ

ξ

Figure 2: The set Q and its convex envelope.

by inequalities is {ζ ≤ χ + ξ, ζ ≤ 2 − χ − ξ, ζ ≥ χ − ξ, ζ ≥ ξ − χ}. We therefore replace (1) with

∀{i, j} ∈ E, ∀k ≤ m̄ ek
ij ≤ xik + xjk

∀{i, j} ∈ E, ∀k ≤ m̄ ek
ij ≤ 2 − xik − xjk

∀{i, j} ∈ E, ∀k ≤ m̄ ek
ij ≥ xik − xjk

∀{i, j} ∈ E, ∀k ≤ m̄ ek
ij ≥ xjk − xik.

The purpose of introducing a mathematical programming formulation for this problem is that of
obtaining exact optima on a test set of small but meaningful instances; these are used to benchmark
heuristic algorithms. This is discussed in Sect. 4.3.

4 Heuristics

In this section we discuss two types of heuristics targeting the MBGC problem. The first one (Sect. 4.1)
is a greedy constructive heuristic scheme along with four different “next best subgraph” procedures. The
second type (Sect. 4.2) is a local search based on iteratively moving edges out of a subgraph in the cover.
We use these two heuristic types conjunctively, finding an initial solution first and trying to improve it
later.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 HEURISTICS 6

4.1 Greedy constructive heuristic

We follow a classic greedy constructive meta-algorithm as follows:

1. Accept G = (V, E) as input

2. Let H = ∅, k = 1, E′ = E

3. Choose a (not necessarily connected) bipartite subgraph Hk = (Ak, Bk, Ek) of G

4. For all {u, v} ∈ E′, if u, v do not both belong to Ak or Bk:

• if u, v 6∈ Ak ∪ Bk then add u to Ak, v to Bk

• if u ∈ Ak and v 6∈ Ak ∪ Bk add v to Bk

• if u ∈ Bk and v 6∈ Ak ∪ Bk add v to Ak

• if v ∈ Ak and u 6∈ Ak ∪ Bk add u to Bk

• if v ∈ Bk and u 6∈ Ak ∪ Bk add u to Ak

finally, add {u, v} to Ek

5. If Hk is disconnected, connect it as per Lemma 2.2

6. Let H = H ∪ {Hk}, E′ = E′
r Ek

7. If E′ 6= ∅ let k = k + 1 and go to Step 3.

8. Let m̄ = |H |

9. Return H , m̄.

According to different ways of constructing Hk in Step 3, we obtain different greedy constructive heuris-
tics. The usual choice would be “choose Hk that maximizes |Ek|”, but since this is equivalent to finding
a maximum cut in a graph, it is itself an NP-hard problem. In the rest of this section we propose four
different implementations of Step 3, which attempt to find reasonably dense bipartite subgraphs Hk. We
remark that Step 4 ensures that each Hk has a maximal number of edges, and that Step 5 marks the
distinction between a greedy heuristic for the MBGC and one for the MCC.

4.1.1 Largest stars order

Notationwise, for a graph G = (V, E) and every u ∈ V we let δ(u) = {v ∈ V | {u, v} ∈ E}. Hk is a
spanning tree of G (hence a connected bipartite subgraph) constructed by Breadth-First-Search (BFS)
on V and depending on an order on V obtained as follows:

∀u, v ∈ V u < v ↔ |δ(u) ∩ E′| < |δ(v) ∩ E′|.

The worst-case time complexity of this algorithm is O(|V |2m̄).

4.1.2 Kruskal’s spanning tree

Hk is a spanning tree of G (hence a connected bipartite subgraph) constructed by using Kruskal’s algo-
rithm, where the edges are ordered by pooling edges in E′ (those still to be covered) before those in E′

rE
(those already covered). The worst-case time complexity of this algorithm is O((|E| log |V | + |V |2)m̄),
which for dense graphs is O(|V |2 log |V |m̄) (some smarter implementations of Kruskal’s algorithms exist,
see [23], Sect. 10.1.2).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 HEURISTICS 7

4.1.3 Maximum Laplacian eigenvalue

For each connected component of the current “remaining” graph (V ′, E′) (where V ′ is the set of vertices
induced by E′), we identify its approximate maximum cut. Hk is the union of all these cuts. Each
maximum cut approximation is obtained by computing the maximum eigenvalue of the graph Laplacian
[8].

Let {A, B} be a partition of V . For all i ∈ V consider decision variables xi = 1 if i ∈ A and xi = −1
if i ∈ B. Then f(x) = 1

4

∑

{i,j}∈E(xi − xj)
2 counts the number of intercluster edges between A and B.

We also note that:

4f(x) =
∑

{i,j}∈E

(x2
i + x2

j) − 2
∑

{i,j}∈E

xixj =
∑

{i,j}∈E

2 −
∑

i,j∈V

xiaijxj =

= 2|E| − x⊤Mx =
∑

i∈V

xidixi − x⊤Mx = x⊤(D − M)x,

where M = (aij) is the adjacency matrix of G and D is the matrix with the degree of vertex i on the
diagonal and zero elsewhere. The matrix L = D − M is known as the graph Laplacian. The function f
can be written as f(x) = 1

4x⊤Lx. Since on average it is more likely to obtain larger cuts out of balanced
{A, B} partitions (i.e. partitions where |A| and |B| are roughly equal), we also require that

∑

i∈V xi = 0
(this obviously only holds for |V | even). In order to find an approximate solution to the following problem:

max
x∈{−1,1}

1
4x⊤Lx

s.t. x⊤1 = 0,

}

(2)

we consider its continuous relaxation (x ∈ [−1, 1]), strengthened by the valid cut x⊤x = |V |. In view of
the fact that we only consider this relaxation in the following, the requirement that |V | is even is not
vital for the approximation to hold.

There is an interesting relation between the solution of (2) in the minimization direction (i.e. the
determination of a minimum balanced cut, which is itself an NP-hard problem) and the second-smallest
eigenvalue of L. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the ordered eigenvalues of L (where n = |V |) and u1, . . . , un

be the corresponding eigenvectors, normalized so that ||ui|| =
√

n for all i ≤ n. Some established results
[17, 5] show that L is symmetric positive semidefinite, that u1 = 1 and that λ1 = 0; and, if G is connected,
that λ2 > 0. By the definition of eigenvalue and eigenvector, we have Lui = λiui ⇒ ui

⊤Lui = λiui
⊤ui =

λin for all i ≤ n. Because of orthogonality of the eigenvectors, if i ≥ 2 we have uiu1 = 0, which implies
u11 = 0. Lastly, we chose the normalization of the eigenvectors in such a way that ui

⊤ui = n. Thus,
since λ1 = 0, λ2 yields the smallest objective function value n

4 λ2 with solution x̄ = u2. Normally, the
values x̄ are not in {−1, 1}, but by approximating x̄i to its closest value in {−1, 1}, breaking ties in such
a way as to keep the bisection balanced, one obtains a practically efficient approximation of the minimum
balanced cut. It now suffices to notice that the maximum eigenvalue λn yields the maximum objective
function value n

4 λn with solution x′ = un feasible in the continuous relaxation of (2) [8].

The worst-case time complexity of this algorithm (based on computing eigenvalues and eigenvectors of
the graph Laplacian) is O(|V ′

1 |3 + · · ·+ |V ′
γ |3) where γ is the number of connected components of the input

graph and V ′
j is the set of vertices of the j-th connected component. For complete graphs, γ = 2k−1,

where k is the iteration index in the greedy algorithm, and a reasonable average value for |V ′
j | at the

k-th iteration is |V |
2k−1 . We can hence estimate the average time complexity for the k-th iteration of this

algorithm to be γ
(

|V |
2k−1

)3

= 2k−1 |V |3

23(k−1) = 4|V |3

4k . The number of iterations of the greedy algorithm is

m̄, which for complete graphs and supposing the approximation exact is ⌈log2 |V |⌉. So an estimation of

the average time complexity of the whole greedy algorithm is 4|V |3 ∑

k≤⌈log2 |V |⌉

(

1
2k

)2
= 4|V |3Γ where

Γ =

(

(

1
2

)2
+

(

1
4

)2
+ · · · +

(

1
|V |

)2
)

. Since Γ <
∑

k∈N

1
2k = 1, the overall complexity is O(|V |3).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 HEURISTICS 8

4.1.4 DFS Forest

This algorithm, suggested in [6], consists in setting Hk as a Depth-First-Search (DFS) spanning forest
of (V, E′). The worst-case time complexity of this algorithm is O(|E| + |V |) and it is shown in [6] that
the overall greedy algorithm worst-case time complexity based on DFS spanning forests is O((|E| +
|V |) log |V |), which for dense graphs is O(|V |2 log |V |). This algorithm is guaranteed to find solutions H∗

such that |H∗| ≤ ⌈log |V |⌉ (this bound is obtained in [6] by considering the performance on complete
graph as the worst case).

4.2 The “budge the edge” local search

We start from an existing edge cover of G by a family of connected, not necessarily induced bipartite
subgraphs H = {Hk | k ≤ m} for an integer m (usually m = m̄ obtained by some constructive heuristic).
Each Hk has bipartition (Ak, Bk) and edge set Ek = E(Hk). For any k ≤ m and e ∈ Ek we let Hk r e
be the subgraph of G consisting of all edges of Ek but e. Likewise, for f ∈ E r Ek we let Hk ∪ f be the
subgraph of G consisting of all edges of Ek and f . We let H be the set of all connected bipartite edge
covers of G (i.e. all feasible solutions to the MBGC).

The intuitive idea behind the proposed local search is as follows. In order to decrease |H |, we consider
the subgraph of H with the set of edges of minimum cardinality (call it E1) and try to “budge” each edge
in E1 to other subgraphs H such that the resulting cover still consists of connected bipartite subgraphs.
We aim to drive |E1| to zero, which effectively means that the cardinality of the cover is decreased by
one unit. More precisely, for each e ∈ E1 we attempt to find a subgraph in H (say H2, different from
H1) such that E2 ∪ e is a connected bipartite subgraph of G in order to move e from H1 to H2. If no
such H2 exists, it is possible that there are distinct graphs H2, H3 (both different from H1) and edges
e1 ∈ E1, e2 ∈ E2 such that H2 ∪ e1 r e2 and H3 ∪ e2 are connected bipartite subgraphs of G: in this case
we move e1 from H1 to H2 and e2 from H2 to H3.

We now extend this idea to general sequences of indices and edges. Let S be the set of all (finite) pair
sequences 〈(ej , hj) | ∀j (ej ∈ E ∧ hj ≤ m) ∧ ∀i 6= j (ei 6= ej ∧ hi 6= hj)〉. Given a sequence 〈s〉 ∈ S of
length ℓ and H ∈ H, we let α(H, 〈s〉) be the set of subgraphs H ′

k of G constructed as follows:

H ′
h1

= Hh1 r e1

∀j ∈ {2, . . . , ℓ − 1} H ′
hj

= Hhj
∪ ej−1 r ej

H ′
hℓ

= Hhℓ
∪ eℓ−1

(eℓ is a “dummy” edge that plays no role since it does not appear in the above definition, and can
therefore be chosen at leisure). We now define neighbourhoods N (H, ℓ) in H with center H ∈ H and
radius ℓ ∈ N as follows:

N (H, ℓ) = {α(H, 〈s〉) | 〈s〉 ∈ S ∧ |〈s〉| ≤ ℓ} ∩ H.

In practice, we suppose the initial cover H = {H1, . . . , Hm} is ordered by increasing |Hk|. We try to
“empty” H1 by iteratively “budging” edges along sequences of other subgraphs in the cover; if H1 cannot
be emptied, we consider H2, and so on. We therefore need to know what happens when an edge e ∈ E
is added to a bipartite subgraph Hk for some k ≤ m. We remark that for all k ≤ m and e ∈ E r Ek,
recognizing whether Hk ∪ e is a bipartite connected subgraph is an O(1) operation.

Suppose we now want to budge an edge e out of a subgraph Hk and along a sequence 〈s〉 ∈ S of length
at most ℓ. One possible way to construct 〈s〉 = 〈(ej , hj)〉 is as follows. Let β = 0, j = 1, k ≤ m, e ∈ Ek,
I = {1, . . . , m} r {k} be ordered by a given ordering <. Set hj = k and ej = e.

1. If j ≥ ℓ, set q = ℓ and exit.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 HEURISTICS 9

2. If ∃i ∈ I such that Hi ∪ ej is connected and bipartite, let hj+1 = i and ej+1 be any edge in E; set
β = 1, q = j and exit.

3. Otherwise, choose i ∈ I such that Hi ∪ ej is connected, not bipartite, and has one single cycle γ of
odd length. If no such i exists, set q = j and exit.

4. Increase j, let hj = i, ej be any edge of γ but ej−1, and I = I r {i}.

5. Go back to Step 1.

We denote the algorithm above by Budge(H, k, e, ℓ); its return value is a pair (β, 〈s〉). If Budge

terminates with β = 1, it means it has found a sequence 〈s〉 = 〈(h1, e1) . . . , (hq, eq)〉 (with q ≤ ℓ) such
that α(H, 〈s〉) ∈ N (H, q) ⊆ N (H, ℓ), otherwise it terminates with β = 0. The worst-case time complexity
of Budge is O(ℓmω), where ω is the complexity of verifying that a connected graph has exactly one cycle
of odd length incident on a given edge. We remark that Budge is not designed to explore the whole of
N (H, ℓ). Its scope depends on the initial ordering on I, on the choice of ej in Step 4, and on the fact
that for simplicity we do not consider connected but not bipartite graphs where the addition of an edge
creates more than one odd cycle. These limitations were imposed in order to keep Budge practically
functional with respect to CPU time.

The overall local search is given in Alg. 1. The search scope limitations of Budge imply that Alg. 1
cannot explore the whole of H. The worst-case time complexity of Alg. 1 is O(m|E|O(Budge)) =
O(ℓm2ω|E|).

Algorithm 1 The “budge the edge” local search.

INPUT: An initial edge cover H and a positive integer ℓ.
OUTPUT: An edge cover in N (H, ℓ) of (hopefully) smaller cardinality.
Let K = {1, . . . , m}
Order H = {H1, . . . , Hm} by increasing cardinality of the Hk’s (and K accordingly).
while K 6= ∅ do

Let k = mini∈K i and E′ = Ek.
for all e ∈ E′ do

Let (β, 〈s〉) = Budge(H, k, e, ℓ).
if β = 1 then

Let H = α(H, 〈s〉).
else

BREAK
end if

end for

if |Ek| = 0 then

Let H = H r {Hk}.
end if

Let K = K r {k}.
end while

4.3 Computational results

We generated a collection of random instances of various types, densities and sizes, and solved them
using: (a) the MCC formulation of Sect. 3; (b) the heuristics of Sect. 4. All results were obtained on an
Intel Core Duo 1.2GHz with 1.5GB RAM running Linux. The MCC formulation was modelled in AMPL
[10] and solved by ILOG CPLEX 10.1 [14]; the heuristics were coded in GNU C++ 4.1.2.

We used two test suites. The first one, named Small, is composed of 48 small graphs of various types.
We remark that the 18 instances listed in the left hand side part of Table 1 have been generated with

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 HEURISTICS 10

different topological properties (hypercubic, mesh-like, tripartite), but in fact they are all bipartite graphs,
so the optimal cover consists of the graph itself (m = 1). On the instances in the Small suite, we were
able to obtain guaranteed optimal values by means of the MCC formulation — we used these results to
benchmark the heuristics. The second test suite, named Large, consists of a set of 30 randomly generated
undirected graphs with 100 ≤ |V | ≤ 900 where each edge is generated with probability in {0.2, 0.5, 0.8}.
The Large test suite is used to assess the scalability of our heuristics. All graphs can be downloaded
from http://www.lix.polytechnique.fr/~liberti/bipgraphcover; the number of vertices and edges
is reported in Table 1.

Name |V | |E|
hypercube-2.gph 4 4
hypercube-3.gph 8 12
mesh-3.gph 9 12
mesh-4.gph 16 24
mesh-5.gph 25 40
mesh-6.gph 36 60
tripartite-5 0.2.gph 15 5
tripartite-5 0.4.gph 15 20
tripartite-5 0.6.gph 15 37
tripartite-5 0.8.gph 15 39
tripartite-10 0.2.gph 30 49
tripartite-10 0.4.gph 30 90
tripartite-10 0.6.gph 30 106
tripartite-10 0.8.gph 30 168
tripartite-15 0.2.gph 45 75
tripartite-15 0.4.gph 45 179
tripartite-15 0.6.gph 45 282
tripartite-15 0.8.gph 45 361

Name |V | |E|
complete-5.gph 5 10
complete-6.gph 6 15
complete-7.gph 7 21
complete-8.gph 8 28
torus-3.gph 9 18
torus-4.gph 16 32
torus-5.gph 25 50
torus-6.gph 36 72
triangle-5.gph 15 30
triangle-6.gph 21 45
triangle-7.gph 28 63

Name |V | |E|
random-6 0.2.gph 6 9
random-6 0.4.gph 6 8
random-6 0.6.gph 6 12
random-6 0.8.gph 6 14
random-8 0.2.gph 8 16
random-8 0.4.gph 8 13
random-8 0.6.gph 8 20
random-8 0.8.gph 8 25
random-10 0.2.gph 10 18
random-10 0.4.gph 10 24
random-10 0.6.gph 10 33
random-10 0.8.gph 10 39
random-12 0.2.gph 12 22
random-12 0.4.gph 12 35
random-12 0.6.gph 12 38
random-12 0.8.gph 12 55
random-14 0.2.gph 14 29
random-14 0.4.gph 14 48
random-14 0.6.gph 14 66

Table 1: Problem statistics for the Small test suite: on the left, “hidden” bipartite graphs (for which
m = 1); in the center, other structured graphs; on the right, small random graphs.

Table 2 reports computational results on the Small test suite, comparing exact values (columns
labelled “CPLEX”, which also reports the time taken to find the exact optimum), values obtained using
the constructive heuristic in [22] (labelled “CTW07”), and each of the four greedy constructive heuristics
proposed in: Sect. 4.1.1 (labelled “L”), Sect. 4.1.2 (labelled “K”), Sect. 4.1.3 (labelled “E”), Sect. 4.1.4
(labelled “D”). The first column contains two sub-columns reporting the cardinality m̄ of the cover (left)
and seconds of user CPU time (right). Each other column only contains the cover cardinality m̄, because
the CPU time is negligible. For each heuristic h ∈ {CTW07,L,K,E,D} and instance i ∈ Small, the

average approximation ratio ∆h = 1
|Small|

∑

i∈Small

m̄h
i −m∗

i

m∗

i

, where m̄h
i is the cover cardinality obtained

by heuristic h on instance i, and m∗
i is the minimum cover cardinality determined by CPLEX, is reported

on the last line. The best results in terms of approximation ratio are obtained by CTW07 and D, followed
closely by L, K and E. User CPU times taken by all the heuristics was mostly 0.00s, with 0.01s in a few
cases.

CTW07 Heuristic. This heuristic is described in detail in [22], which can be found at http://www.

lix.polytechnique.fr/~liberti/bgc-ctw07.pdf. It progressively selects the vertex v with highest
star degree, disconnected from Ak but whose star intersects Bk; v is added to Ak, its vertex star to Bk

and its edge star to Ek; when no further vertices may be added to Ak, k is increased and the procedure
is repeated with a smaller edge set E = E r Ek; when E = ∅, the cover is complete. We remark that
although this heuristic performs well on the graphs in the Small instance set, it is the worst-performing
(quality-wise) of the tested heuristics.

Table 3 reports computational results on the Small test suite, listing cover cardinalities obtained
with each constructive heuristic h ∈ {CTW07,L,K,E,D} followed by an application of the “budge-the-
edge” local search heuristic. Because of the relatively high time complexity measure of the latter, we set
ℓ = 1; as this also implies that we never perform Step 3 of Budge (because j = ℓ at the next iteration
anyway), the worst-case time complexity of Alg. 1 is reduced to O(|E|m̄2). We emphasized in boldface
the cardinality of the covers found by heuristics improved by the local search. The improved average

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 HEURISTICS 11

CPLEX CTW07 L K E D
hypercube-2 1 0.00 1 2 2 2 1
hypercube-3 1 0.01 1 2 2 3 1
mesh-3 1 0.02 1 2 2 3 1
mesh-4 1 0.18 1 2 2 4 1
mesh-5 1 1.24 1 2 2 4 1
mesh-6 1 1.16 1 2 2 4 1
tripartite-5 0.2 1 0.01 2 1 1 2 2
tripartite-5 0.4 1 0.22 1 2 2 4 1
tripartite-5 0.6 1 0.06 1 2 3 4 1
tripartite-5 0.8 1 0.06 1 2 3 5 1
tripartite-10 0.2 1 1.19 1 2 2 4 3
tripartite-10 0.4 1 0.32 1 2 4 4 2
tripartite-10 0.6 1 0.43 1 2 4 5 2
tripartite-10 0.8 1 0.62 1 2 6 5 1
tripartite-15 0.2 1 0.50 1 2 2 5 3
tripartite-15 0.4 1 1.08 1 2 5 6 3
tripartite-15 0.6 1 1.42 1 2 7 6 2
tripartite-15 0.8 1 1.72 1 2 9 6 1
complete-5 3 0.16 4 4 4 3 3
complete-6 3 1.10 5 5 5 3 3
complete-7 3 2.54 6 6 6 3 3
complete-8 3 7.75 7 7 7 4 3
torus-3 2 1.58 2 3 3 4 2
torus-4 1 0.12 1 2 3 3 1
torus-5 2 1397.36 2 3 3 4 2
torus-6 1 15.29 1 2 3 4 1
triangle-5 2 7.54 2 4 3 4 3
triangle-6 2 40.53 4 4 3 3 3
triangle-7 2 113.80 4 5 3 4 3
random-6 0.2 2 0.16 2 3 2 3 2
random-6 0.4 2 0.07 3 3 2 3 2
random-6 0.6 2 0.32 3 4 3 3 3
random-6 0.8 3 0.91 4 5 3 3 3
random-8 0.2 2 0.89 2 3 3 3 3
random-8 0.4 2 0.68 2 3 2 3 2
random-8 0.6 2 1.76 3 4 3 3 3
random-8 0.8 3 11.67 5 6 5 3 3
random-10 0.2 2 5.74 2 3 3 4 2
random-10 0.4 2 2.87 3 4 4 4 3
random-10 0.6 3 22.34 4 5 5 3 3
random-10 0.8 3 86.32 6 6 6 4 4
random-12 0.2 2 3.70 4 4 3 4 3
random-12 0.4 2 15.10 4 4 4 4 4
random-12 0.6 3 287.44 4 5 4 4 3
random-12 0.8 3 43.56 6 7 6 4 3
random-14 0.2 2 40.69 2 3 3 4 2
random-14 0.4 2 32.49 4 5 4 4 4
random-14 0.6 3 662.29 6 6 7 4 4
∆h 0.00 0.33 0.88 1.30 1.63 0.34

Table 2: Results for the Small test suite — constructive heuristics. ∆h is the average approximation
ratio computed over the heuristic h. The instance names are self-explanatory, and complete-n stands
for the complete graph Kn.

approximation ratios are on the bottom line. The best results are found by CTW07 and L, closely
followed by D and K. E is last. Again, user CPU times were mostly 0.00s and occasionally 0.01s.

Table 4 reports values on the Large test suite, comparing constructive heuristic performance in terms
of cover cardinality (left) and seconds of user CPU time (right). Since in this case we do not have exact
values, we cannot rely on the approximation ratio to estimate relative performance. Instead, we rely
on the average cover cardinality µh of the sample for h ∈ {CTW07,L,K,E,D} (last line). In the Large

instance set, computation time becomes an issue: we compare by looking at the cumulative user CPU
time τh spent for solving the whole test suite. The best performing heuristic is D (values marked by ∗),
followed by E.

Table 5 includes results on the Large test suite obtained by running the constructive heuristic followed
by the “budge-the-edge” local search with ℓ = 1. User CPU times are cumulative (i.e. they include both
the time taken for carrying out the constructive heuristic and the local search itself) and improved values
are emphasized in boldface. Again, the best performing heuristic is D (values marked by ∗), followed by

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 HEURISTICS 12

CTW07 L K E D
hypercube-2 1 1 2 2 1
hypercube-3 1 1 2 3 1
mesh-3 1 1 2 3 1
mesh-4 1 1 2 3 1
mesh-5 1 1 2 3 1
mesh-6 1 1 2 3 1
tripartite-5 0.2 1 1 1 2 2
tripartite-5 0.4 1 1 2 3 1
tripartite-5 0.6 1 1 1 3 1
tripartite-5 0.8 1 1 1 3 1
tripartite-10 0.2 1 1 2 3 3
tripartite-10 0.4 1 1 1 4 2
tripartite-10 0.6 1 1 1 4 2
tripartite-10 0.8 1 1 1 4 1
tripartite-15 0.2 1 1 2 4 3
tripartite-15 0.4 1 1 1 5 3
tripartite-15 0.6 1 1 1 5 2
tripartite-15 0.8 1 1 1 5 1
complete-5 3 3 3 3 3
complete-6 3 3 3 3 3
complete-7 4 4 4 3 3
complete-8 4 4 4 4 3
torus-3 2 2 2 3 2
torus-4 1 1 3 3 1
torus-5 2 2 2 3 2
torus-6 1 1 3 4 1
triangle-5 2 3 2 3 3
triangle-6 3 3 2 3 3
triangle-7 3 3 2 3 3
random-6 0.2 2 2 2 3 2
random-6 0.4 2 2 2 2 2
random-6 0.6 3 3 3 3 3
random-6 0.8 4 4 3 3 3
random-8 0.2 2 2 2 2 3
random-8 0.4 2 2 2 3 2
random-8 0.6 3 3 3 3 3
random-8 0.8 5 5 4 3 3
random-10 0.2 2 2 3 3 2
random-10 0.4 3 3 4 3 3
random-10 0.6 4 4 5 3 3
random-10 0.8 5 5 5 4 4
random-12 0.2 3 3 2 3 3
random-12 0.4 3 3 4 3 4
random-12 0.6 4 4 4 4 3
random-12 0.8 5 6 6 4 3
random-14 0.2 2 2 3 3 2
random-14 0.4 4 4 4 4 4
random-14 0.6 6 5 5 4 4
∆h 0.19 0.20 0.47 1.22 0.34

Table 3: Results for the Small test suite — chained constructive and “budge the edge” heuristics.
Improvements w.r.t. constructive heuristics are in boldfaces.

E. In both cases, the effect of the local search is minor.

These computational results suggest that CTW07 and L+(local search) manage to identify a bipartite
structure (high number of covers with cardinality 1) but perform poorly, both quality- and CPU time-wise,
on large random graphs. The greedy D heuristic is the clear winner on large random graphs both quality-
and CPU time-wise, closely followed (quality-wise) by the E heuristic. Fig. 3 shows the performance
of the different heuristics (chained with the local search) expressed in cover cardinality vs. |V |. Fig. 4
shows the corresponding CPU-time performance. It appears clear that quality-wise, the performance of
CTW07 grows linearly with |V |, whereas the performance of the other heuristics grows logarithmically
with |V |. CPU time-wise, the kind of growth is superlinear on average. The success of CTW07 and
L+(local search) on graphs that are already bipartite may be explained by the fact that these heuristics
are based on a vertex-based greedy choice with respect to the corresponding vertex stars.

In conclusion, for large graphs the D heuristic is the clear winner. One last interesting remark is
provided by looking at the relative CPU time performance of the D and E heuristic: the ratio of the
CPU times obtained by E divided by the CPU times provided by D against |V |, limited to graphs in

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 HEURISTICS 13

CTW07 L K E D
random-100 0.2 10 0.00 9 0.01 6 0.02 7 0.04 6 0.01
random-100 0.5 21 0.01 11 0.02 10 0.04 8 0.06 7 0.02
random-100 0.8 36 0.02 21 0.08 15 0.08 8 0.11 7 0.03
random-200 0.2 18 0.03 12 0.07 7 0.07 8 0.16 6 0.04
random-200 0.5 32 0.07 16 0.16 12 0.12 8 0.26 8 0.11
random-200 0.8 59 0.16 25 0.58 19 0.31 9 0.42 8 0.20
random-300 0.2 20 0.08 13 0.14 8 0.12 9 0.34 7 0.12
random-300 0.5 47 0.38 15 0.60 12 0.45 9 0.81 8 0.40
random-300 0.8 87 0.70 27 3.68 18 0.97 10 1.40 9 0.76
random-400 0.2 24 0.28 14 0.41 8 0.29 9 0.78 7 0.26
random-400 0.5 60 0.96 18 2.84 14 1.06 10 1.90 9 0.94
random-400 0.8 109 1.70 28 11.23 21 2.22 10 3.15 9 1.76
random-500 0.2 30 0.62 16 1.25 10 0.59 10 1.52 8 0.57
random-500 0.5 68 1.89 19 7.89 14 1.90 10 3.82 9 1.80
random-500 0.8 131 3.30 30 24.83 27 4.36 11 5.76 10 3.11
random-600 0.2 34 1.13 15 2.90 10 1.04 10 2.75 8 1.00
random-600 0.5 79 3.27 18 11.09 14 3.24 10 6.00 9 2.97
random-600 0.8 154 5.72 35 51.78 24 7.34 11 8.78 10 4.85
random-700 0.2 39 1.86 16 5.92 9 1.71 10 4.51 8 1.70
random-700 0.5 91 5.18 20 23.63 14 4.78 11 9.47 10 4.70
random-700 0.8 177 8.98 35 80.19 26 10.58 11 13.64 10 7.78
random-800 0.2 42 2.84 15 8.51 10 2.62 10 6.42 8 2.58
random-800 0.5 102 7.74 21 36.03 14 6.60 11 12.32 10 6.35
random-800 0.8 197 13.38 38 132.83 27 16.41 11 20.25 10 11.03
random-900 0.2 46 4.06 17 15.33 10 3.24 11 8.85 9 3.57
random-900 0.5 113 11.20 23 59.19 15 9.45 11 18.59 10 9.42
random-900 0.8 216 18.96 35 172.12 29 22.78 12 27.65 10 14.41
(µh, τh) 75.62 94.52 20.81 653.31 14.93 102.39 9.81 159.76 8.52∗ 80.49∗

Table 4: Results for the Large test suite — constructive heuristics.

CTW07 L K E D
random-100 0.2 9 0.01 6 0.02 6 0.01 6 0.04 5 0.01
random-100 0.5 20 0.04 8 0.03 10 0.04 8 0.08 7 0.04
random-100 0.8 35 0.14 18 0.09 14 0.10 8 0.11 7 0.05
random-200 0.2 15 0.06 7 0.08 7 0.07 8 0.14 6 0.06
random-200 0.5 32 0.24 12 0.22 12 0.16 8 0.26 8 0.14
random-200 0.8 59 1.13 22 0.68 17 0.42 9 0.47 8 0.23
random-300 0.2 19 0.15 8 0.20 8 0.14 8 0.36 7 0.14
random-300 0.5 47 1.63 11 0.78 12 0.58 9 0.90 8 0.44
random-300 0.8 87 9.04 26 5.16 18 1.78 10 1.79 9 0.97
random-400 0.2 24 0.54 9 0.50 8 0.34 9 0.86 7 0.28
random-400 0.5 59 6.24 11 3.50 14 1.86 10 2.43 9 1.63
random-400 0.8 108 26.51 25 13.71 21 4.06 10 3.82 9 1.90
random-500 0.2 29 1.67 9 1.54 10 0.90 9 1.66 8 1.04
random-500 0.5 68 12.61 14 9.21 14 3.08 10 4.46 9 2.44
random-500 0.8 131 57.50 29 30.64 26 9.24 11 7.74 10 4.82
random-600 0.2 33 3.35 10 3.55 10 1.48 10 3.51 8 1.82
random-600 0.5 79 23.88 13 13.29 14 4.74 10 6.67 9 3.59
random-600 0.8 153 112.09 32 61.01 23 12.33 10 9.44 10 6.10
random-700 0.2 38 5.83 11 8.50 9 2.02 10 5.49 8 2.16
random-700 0.5 91 44.18 15 28.60 14 6.62 11 12.02 10 6.10
random-700 0.8 177 197.54 31 93.65 26 18.42 11 17.37 10 8.61
random-800 0.2 42 9.16 10 10.51 10 3.38 10 7.48 8 2.89
random-800 0.5 102 71.37 14 40.34 14 9.85 10 13.33 10 7.79
random-800 0.8 196 305.86 32 149.51 26 27.54 11 23.24 10 11.94
random-900 0.2 46 14.71 11 18.03 10 4.02 10 9.70 9 6.41
random-900 0.5 113 107.14 15 65.98 15 14.00 11 21.09 10 12.89
random-900 0.8 216 469.57 31 205.60 28 40.63 12 34.39 10 15.52
(µh, τh) 75.11 1482.19 16.29 764.93 14.66 167.81 9.59 188.85 8.48∗ 100.01∗

Table 5: Results for the Large test suite — chained constructive and “budge the edge” heuristics.
Improvements w.r.t. constructive heuristics are in boldface.

Large with density 0.8, is shown in Fig. 5 (left). The sample average is 1.89 and the standard deviation
(0.16) is low enough to suggest an asymptotically constant, or even decreasing, time complexity ratio.
This behaviour somehow appears also in Fig. 5 (right), which plots the ratio of the CPU times of D and
E over complete graphs ranging from 500 to 1400 vertices against the number of vertices. Although we
were not able to test larger graphs due to a limitation in RAM size on the test hardware, this behaviour
would lead one to suppose that for larger and larger graphs, the time complexity of E becomes favourable

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 HEURISTICS 14

 0

 50

 100

 150

 200

 250

 100 200 300 400 500 600 700 800 900

0.2
0.5
0.8

 5

 10

 15

 20

 25

 30

 35

 100 200 300 400 500 600 700 800 900

0.2
0.5
0.8

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700 800 900

0.2
0.5
0.8

 6

 7

 8

 9

 10

 11

 12

 100 200 300 400 500 600 700 800 900

0.2
0.5
0.8

 5

 6

 7

 8

 9

 10

 100 200 300 400 500 600 700 800 900

0.2
0.5
0.8

Figure 3: Plot of cover cardinality against |V | on Large. From the top left: CTW07, L, K, E, D.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 200 300 400 500 600 700 800 900

0.2
0.5
0.8

 0

 5

 10

 15

 20

 25

 30

 35

 100 200 300 400 500 600 700 800 900

0.2
0.5
0.8

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 100 200 300 400 500 600 700 800 900

0.2
0.5
0.8

 0

 1

 2

 3

 4

 5

 6

 7

 100 200 300 400 500 600 700 800 900

0.2
0.5
0.8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100 200 300 400 500 600 700 800 900

0.2
0.5
0.8

Figure 4: Plot of user CPU time against |V | on Large. From the top left: CTW07, L, K, E, D.

with respect to the time complexity of D. This contrasts with the time complexity analysis provided in
Sect. 4.1.3: a possible explanation may lie in the fact that finding eigenvalues and eigenvectors of an
n× n matrix is in general an O(n3) task, but this figure does not keep into account the special structure
of the graph Laplacian; another explanation may be that Γ (defined in Sect. 4.1.3) is close to O(1

|V |) or

some other decreasing function of |V |

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5 THE CONSTRAINED MBGC 15

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 100 200 300 400 500 600 700 800 900

E/D vs |V|

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 500 600 700 800 900 1000 1100 1200 1300 1400

E/D vs |V|

Figure 5: Plot of ratio between user CPU time of heuristic E and D against |V | on dense instances (0.8)
in Large (left) and on complete graphs ranging from 500 to 1400 vertices (right).

5 The constrained MBGC

In Network Design, covering a graph by short subgraphs is a classical issue, we refer for example to the
k-hop spanning tree problem or the minimum bounded-diameter spanning forest problem where paths
between any node and the root of the subgraph tree must have limited length. So, we study and obtain
some interesting results on the following length constrained variant of the problem. We define the length
of a graph G to be the maximum number of edges of a simple path in G.

Minimum Constrained Bipartite Graph Cover (MCBGC). Given an undirected graph
G = (V, E) and a positive integer L, find a family {Hk = (Ak, Bk, Ek) | k = 1, . . . , m} of (not
necessarily induced nor complete) connected bipartite subgraphs of G such that

⋃

k≤m Ek =
E, the length of every subgraph Hk is at most L, and m is minimum.

In this section we prove NP-hardness of the MCBGC and provide a MILP formulation.

5.1 Theorem

MCBGC is NP-hard for any length bound L = 2 + 4p, p ∈ N.

Proof. The reduction is from the Minimum Vertex Cover problem (Min-VC — this consists in finding
a subset X ⊆ V such that |X | is minimum and for all {i, j} ∈ E, either i ∈ X or j ∈ X or both). For
a length bound L = 2 (p = 0), the bipartite subgraph is a star, so in that case Min-CBGC consists in
covering edges of G by a minimum number of stars, which is exactly the NP-hard Vertex Cover problem.
For a lenght bound L = 2 + 4p, p ≥ 1, we transform an instance G = (V, E) of Min-VC into a graph
G′ = (V ′, E′) the following way (see Fig. 5). For every pair {i, j} ∈ E, we create 2p new vertices

vij
i,1, . . . , v

ij
i,p and vij

j,1, . . . , v
ij
j,p in G′ (with a slight abuse of notation we take vij

ip to mean v
{i,j}
ip), so that:

V ′ = V ∪ {vij
i,1, . . . , v

ij
i,p | i ∈ V, {i, j} ∈ E}

E′ =
⋃

{i,j}∈E

E′
ij

with E′
ij = {(i, vij

i,1), (v
ij
i,1, v

ij
i,2), . . . , (v

ij
i,p−1, v

ij
i,p), (v

ij
i,p, v

ij
j,p), (v

ij
j,p, vij

j,p−1), . . . , (v
ij
j,2, v

ij
j,1), (v

ij
j,1, j)}.

In the following, we write eij for (vij
ip, vij

jp) to ease notation. We now show that every vertex cover X ⊂ V
can be transformed into a L-length bipartite cover of size |X | in G′ and vice-versa.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5 THE CONSTRAINED MBGC 16

Figure 6: Illustration of a technical point in the proof of Thm. 5.1 (eij = (vij
ip, vij

jp)).

(i) Indeed, for j ∈ X , take in the bipartite cover

Ej =
⋃

{i,j}∈E

E′
ij

As X is a vertex cover in G, V = X ∪ {i ∈ V | ∃j ∈ X, {i, j} ∈ E}, then ∪j∈XEj = E′ so {Ej : j ∈ X} is
indeed a cover of E′. Ej is a tree so it is connected and bipartite. Its length is at most twice the length
of the path induced by any edge subset E′

ij inside Ej , i.e., at most 2(2p + 1) = 4p + 2 = L, so we obtain
a L-length bipartite cover of size at most |X |.

(ii) Conversely, suppose that {H1, H2, . . . , Hm}, with Hk = (Ak, Bk, Ek) for k = 1, . . . , m, is a L-length
bipartite cover of G′. Let E′′ = {eij | {i, j} ∈ E}, and K ′ = {k ∈ {1, . . . , m} | Ek∩E′′ 6= ∅}. Since for any
edges eij , ejs, est the length of the unique path starting with the last edge is exactly 3+2(2p) = 4p+3 > L,
then no path in Ek for k ∈ K ′ can contain more than 2 edges of E′′. So, for k ∈ K ′, Ek is a tree (as all
cycles in G′ contain at least 3 edges of E′′) and its restriction to edges of E′′ is a star, i.e., there exists a
vertex jk ∈ V and a subset Ik ⊂ V \ {jk} such that

Ek ∩ E′′ = {eijk | i ∈ Ik}

Then, if we take

{
⋃

(i,jk)∈E

E′
i,jk

| k ∈ K ′}

we still have a bipartite cover of size m and length bounded by twice the length of any subpath E′
i,jk

,
i.e., bounded by 2(2p + 1) = L. We finally obtain that X = {jk | k ∈ K ′} is indeed a vertex cover for G
of the same size m as the one of the initial bipartite cover for G′, which ends the proof. 2

We remark that the MCBGC is in NP if and only if L is a constant, as computing longest paths in
a bipartite graph is NP-hard [20].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5 THE CONSTRAINED MBGC 17

5.1 Mixed-Integer Linear Programming formulation of the MCBGC problem

We consider the arc set A = {(i, j), (j, i) : (i, j) ∈ E}, i.e. edges are replaced by two antiparallel arcs.
Let m̄ be an upper bound to m, for example m̄ = ⌈n

2 ⌉. We consider four sets of binary variables and a
set of continuous multicommodity flow variables:

∀k ≤ m̄ yk =

{

1 if the k-th bipartite subgraph is in the cover
0 otherwise,

∀i ∈ V, j ∈ V, k ≤ m̄ ek
ij =

{

1 if edge {i, j} belongs to the k-th bipartite subgraph
0 otherwise,

∀i ∈ V, k ≤ m̄ ak
i =

{

1 if node i is in Ak

0 otherwise,

∀i ∈ V, k ≤ m̄ bk
i =

{

1 if node i is in Bk

0 otherwise,

∀(i, j) ∈ A , k ≤ m̄, u ∈ V, v ∈ V : u 6= v fuvk
ij ∈ [0, 1],

where the continuous flow variables f identify a path connecting u and v in the k-th bipartite subgraph
in order to ensure that bipartite subgraphs are connected, i.e., fuvk

ij = 1 if {i, j} ∈ E and either (i, j) or
(j, i) ∈ A belongs to the path connecting u and v, 0 otherwise.

5.2 Lemma

The following constraints:

ak
i + bk

i ≤ yk ∀ k = 1, . . . , m̄, i ∈ V (3)

ak
i + ak

j ≤ 2 − ek
ij ∀ k = 1, . . . , m̄, {i, j} ∈ E (4)

bk
i + bk

j ≤ 2 − ek
ij ∀ k = 1, . . . , m̄, {i, j} ∈ E (5)

ak
i + bk

i + ak
j + bk

j ≥ 2ek
ij ∀ k = 1, . . . , m̄, {i, j} ∈ E (6)

ensure that subgraph Hk = (Ak, Bk, Ek), where Ak = {i ∈ V : ak
i = 1}, Bk = {i ∈ V : bk

i = 1},
Ek = {(i, j) ∈ A : i < j ∧ ek

ij = 1}, is bipartite.

Proof. If subgraph Hk is non-empty then yk = 1, so by constraints (3) every node in subgraph k is
either in Ak or Bk but not both. Constraints (4)-(6) ensure that if ek

ij = 1, then we have whether

ak
i = 1, bk

i = 0, ak
j = 0, bk

j = 1 or ak
i = 0, bk

i = 1, ak
j = 1, bk

j = 0. This eliminates odd-length cycles as these

cycles would have an edge ek
ij = 1 with ak

i = ak
j = 1 or bk

i = bk
j = 1, so subgraph k is bipartite. 2

5.3 Lemma

The following constraints:

ek
ij ≥ fuvk

ij ∀ k = 1, . . . , m̄, (i, j) ∈ A , (u, v) ∈ V 2 : u 6= v (7)

ek
ij = ek

ji ∀; (i, j) ∈ A : i < j (8)
∑

j∈V :(u,j)∈A

fuvk
uj ≥ ak

u + bk
u + ak

v + bk
v − 1 ∀ k = 1, . . . , m̄, (u, v) ∈ V 2 : u 6= v (9)

∑

i∈V :(i,u)∈A

fuvk
uj = 0 ∀ k = 1, . . . , m̄, (u, v) ∈ V 2 : u 6= v (10)

∑

i∈V :(i,v)∈A

fuvk
iv ≥ ak

u + bk
u + ak

v + bk
v − 1 ∀ k = 1, . . . , m̄, (u, v) ∈ V 2 : u 6= v (11)

∑

j∈V :(v,j)∈A

fuvk
vj = 0 ∀ k = 1, . . . , m̄, (u, v) ∈ V 2 : u 6= v (12)

∑

i∈V :(i,j)∈A

fuvk
ij =

∑

l∈V :(j,l)∈A

fuvk
jl ∀ k = 1, . . . , m̄, (u, v, j) ∈ V 3 : u 6= v 6= j (13)

ensure that subgraph Hk is connected.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 CONCLUSION 18

Proof. We have to show that for every pair of distinct nodes u and v in subgraph k there is a path wholly
contained in subgraph k connecting u and v, represented by flow variables fuvk

ij . First, by constraints
(7), the flow variable associated with an edge is positive only if this edge belongs to the subgraph; so if
these flow variables altogether represent a path, this path is contained in subgraph k. Now, if both nodes
u and v are in subgraph k then in constraints (9) and (11) the right-hand term ak

u + bk
u + ak

v + bk
v − 1 is

1 (given constraints (3)). So, at least one flow unit leaves u and finally (by flow conservation constraints
(13)) arrives at node v, hence defining a path connecting u and v. Constraints (10) and (12) ensure that
the flow is not composed of two disconnected cycles, one passing through u and the other one through v.

2

Consider now the following MIP formulation:

min
m̄
∑

k=1

yk

s.t. (3) − (13)
∑

(i,j)∈A

fuvk
ij ≤ L ∀ k = 1, . . . , m̄, (u, v) ∈ V 2 : u 6= v

(MIP)
m̄
∑

k=1

ek
ij ≥ 1 ∀ (i, j) ∈ A : i < j

yk, ak
i , bk

i , ek
ij ∈ {0, 1}, fuvk

ij ≥ 0

5.4 Theorem

The above Mixed Integer Program (MIP) is a valid formulation for Min-CBGC.

Proof. By Lemmata 5.2 and 5.3, subgraphs Hk = (Ak, Bk, Ek) where Ak = {i ∈ V | ak
i = 1}, Bk = {i ∈

V : bk
i = 1}, Ek = {(i, j) ∈ A : i < j ∧ ek

ij = 1}, are connected bipartite subgraphs. The last block of
constraints in the above MIP formulation ensures that the length of the path connecting any two distinct
vertices u and v in subgraph Hk, represented by flow variables fuvk

ij , is at most L. If the connecting path
is not a simple path, we can obtain one of smaller length by removing cycles, so its length is smaller
than L. The remaining constraints with variables ek

ij are the global covering constraints, ensuring that
every edge of E is covered, i.e., belongs to at least one subgraph. By constraints (6), if Ak = Bk = ∅
then Ek = ∅ so in that case no edge in Ek contributes to the covering constraints, and yk = 0 by the
minimization of the sum of the y-variables. As by constraints (3) yk = 1 as soon as Ak 6= ∅ or Bk 6= ∅,
the objective function

∑

1≤k≤m̄ yk counts indeed the number of non-empty subgraphs in the cover, which
completes the proof. 2

6 Conclusion

We considered the problem of covering the edges of an undirected graph G by a minimum cardinality
set of not necessarily induced (nor complete) bipartite connected subgraphs of G. We proved that this
problem is NP-hard by reduction from the Minimum Cut Cover problem. We provided an IP formulation
for the latter in order to derive bounds for the former. We proposed four greedy constructive heuristics
and a local search, all of which are comparatively discussed though some computational results. Finally,
we introduced a constrained variant of the problem, proved its NP-hardness for appropriate values of a
certain parameter, and provided a MILP formulation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

REFERENCES 19

Acknowledgements

We would like to remember Peter Hammer, who posed the problem, and thank Dr. D. Gonçalves for his
contribution on the NP-completeness proof of the BGC.

References

[1] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. Hammer, and B. Simeone. Consensus algorithms for the
generation of all maximal bicliques. Discrete Applied Mathematics, 145:11–21, 2004.

[2] G. Alexe, P.L. Hammer, V.V. Lozin, and D. de Werra. Struction revisited. Discrete Applied Math-

ematics, 132:27–46, 2004.

[3] J. Amilhastre, M.C. Vilarem, and P. Janssen. Complexity of minimum biclique cover and minimum
biclique decomposition for bipartite domino-free graphs. Discrete Applied Mathematics, 86:125–144,
1998.

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complex-

ity and Approximation — Combinatorial optimization problems and their approximability properties.
Springer, New York, 1999.

[5] B. Bollobás. Modern Graph Theory. Springer, New York, 1998.

[6] M. Bussieck. The minimal cut cover of a graph. Technical Report TR-94-02, Pennsylvania State
University, 1994.

[7] Cornaz and Fonlupt. Chromatic characterizations of biclique covers. Discrete Mathematics,
306(5):495-507, 2006.

[8] C. Delorme and S. Poljak. Laplacian eigenvalues and the maximum cut problem. Mathematical

Programming, 62:557–574, 1993.

[9] D. Eppstein, M.T. Goodrich and J. Yu Meng. Confluent layered drawings Algorithmica, 47(4):439-
452, 2007.

[10] R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

[11] M. Habib, L. Nourine, O. Raynaud, and E. Thierry. Computational aspects of the 2-dimension of
partially ordered sets. Theoretical Computer Science, 312:401-431, 2004.

[12] B.V. Halldórsson, M.M. Halldórsson, and R. Ravi. On the approximability of the minimum test col-
lection problem. In F. Meyer auf der Heide, editor, ESA. LNCS 2161:158-169. Springer, Heidelberg,
2001.

[13] P. Hammer. The conflict graph of a pseudo-boolean function. Technical report, Bell Labs, West
Long Branch, NJ, 1978.

[14] ILOG. ILOG CPLEX 10.1 User’s Manual. ILOG S.A., Gentilly, France, 2006.

[15] R. Loulou. Minimal cut cover of a graph with an application to the testing of electronic boards.
Operations Research Letters, 12(5):301–305, 1992.

[16] N. Maculan. Integer programming problems using a polynomial number of variables and constraints
for combinatorial optimization problems in graphs. In N. Mladenović and Dj. Dugošija, editors, SYM-

OP-IS Conference Proceedings, Herceg-Novi, pages 23–26, Beograd, September 2003. Mathematical
Institute, Academy of Sciences.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

REFERENCES 20

[17] R. Merris. Laplacian matrices of graphs: A survey. Linear Algebra and its Applications, 198:143–176,
1994.

[18] R. Motwani and J.S. Naor. On exact and approximate cut covers of graphs. Technical Report
STAN-CS-TN-94-11, Dept. of Computer Science, Stanford University, 1994.

[19] H. Müller. On edge perfectness and classes of bipartite graphs. Discrete Mathematics, 149:159–187,
1996.

[20] H. Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics, 156:291–298,
1996.

[21] J. Orlin. Contentment in graph theory: Covering graphs with cliques. Proceedings of the Koninklijke

Nederlandse Akademie van Weteschappen, Series A, 80(5):406–424, 1977.

[22] M.C. Plateau, L. Liberti, and L. Alfandari. Edge cover by bipartite subgraphs. In J.L. Hurink,
W. Kern, G.F. Post, and G.J. Still, editors, Proceedings of the 6th Cologne-Twente Workshop on

Graphs and Combinatorial Optimization, Enschede, 2007. University of Twente.

[23] K.H. Rosen, editor. Handbook of Discrete and Combinatorial Mathematics. CRC Press, New York,
2000.

