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Abstract The presence of symmetries in the solution set of mathematical programs
requires the exploration of symmetric subtrees during the execution of Branch-and-
Bound type algorithms and yields increases in computation times. When some of
the solution symmetries are evident in the formulation, it is possible to deal with
symmetries as a preprocessing step. In this sense, implementation-wise, one of the
simplest approaches is to break symmetries by adjoining Symmetry-Breaking Con-
straints (SBCs) to the formulation. Designed to remove some of the symmetric global
optima, these constraints are generated from each orbit of the action of the symme-
tries on the variable index set. Incompatible SBCs however make all of the global
optima infeasible. In this paper we introduce and test a new concept of Orbital
Independence which we define as independent sets of orbits. We provide necessary
conditions for characterizing independent sets of orbits and also prove that such sets
embed sufficient conditions to exploit symmetries from two or more distinct orbits
concurrently. The theory developed is used to devise an algorithm that potentially
identifies the largest independent set of orbits of any mathematical program. Exten-
sive numerical experiments are provided to validate the theoretical results.

Keywords combinatorial optimization · symmetry breaking · group theory ·
quadratic programming

1 Introduction

Mathematical Programming (MP) is a descriptive language used to formalize several
types of optimization problems by defining a class of corresponding mathematical
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programs [15]. Let MP denote such a class. In this context, we consider problems
P ∈MP in the following general form:

min
x

f(x)
∀i ∈ II gi(x) ≤ 0,
∀i ∈ IE gi(x) = 0,

x ∈ B.

 (P )

In problem P , f, gi : Rn → R are functions for which we have closed form expres-
sions. The set B might contain nonfunctional constraints such as ranges [xL, xU ] for
the decision variables, and/or integrality constraints. For a mathematical program
P we let F (P ) denote its feasible region and G (P ) the set of its global optima.

Quite often researchers and practitioners face formulations P which contain un-
desired mathematical properties. In such cases, casting the given problem P into
a different one, say P ′ ∈ MP, is a natural strategy: P ′ is called a reformulation
of P . Any reformulation P ′ shares (numerical) properties with P (e.g. the set of
global optima), but is in some sense better than the original program. There are
indeed many types of reformulations such as relaxations, approximations, variable
changes, and all of them play an essential role in MP [15]. In our context, recall that
the Branch-and-Bound (BB) algorithm paradigm is the most widely used technique
for solving optimization problems formulated as P . Briefly, a tree-based search for
global optima is performed in F (P ). These algorithms may however converge slowly
on problems whose feasible region has many symmetric global optima because all the
symmetric leaf nodes in the BB tree must be visited in order to assert convergence.
In fact, it was found that roughly 18% of the MP instances in commonly employed
public libraries have nontrivial symmetry [16]. Symmetries are therefore investigated
in MP mainly to reduce the computation time of BB type algorithms. In this sense,
we aim to derive reformulations P ′ whose sets G (P ′) contain less symmetric global
optima than G (P ), meaning that G (P ′) ⊆ G (P ); and P ′ will be derived by addjoining
Symmetry-Breaking Constraints (SBCs) to P .

In general, any strategy designed to cope with symmetries in MP can be divided
into two main phases: (a) symmetry detection and (b) symmetry exploitation. When
both phases (detection and exploitation) are performed before running the solution
algorithm, we call such strategy a Static Symmetry Breaking (SSB) approach. Oth-
erwise, a Dynamic Symmetry Breaking (DSB) approach [22]. This work concerns a
general-purpose automated SSB strategy that advocates the usage of SBCs. Overall,
we can further describe our methodology in a subtle higher level of detail w.r.t. the
exploitation phase as follows: (a) detect formulation symmetries, (b) generate new
constraints and (c) reformulate the original problem. The main contribution of this
paper relates to the second step: constraint generation. Symmetry-breaking devices
are usually derived from orbits of the action of the formulation group on the set
of decision variables; however, one cannot simply use such devices for all the or-
bits simultaneously because some orbits depend on each other in a very precise
mathematical sense. We devise herein a concept of Orbital Independence (OI) called
independent set of orbits which allow us to overcome this limitation. We provide nec-
essary conditions for characterizing independent sets of orbits and also prove that
such sets embed sufficient conditions to exploit symmetries from two or more distinct
orbits concurrently.

More precisely, this paper extends the content of [5] in three fronts: first we char-
acterize independent sets of orbits via direct product of groups (Lemma 3) and prove
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that the OI conditions provided by Corollary 1 (see Section 3.3) are not sufficient
to characterize independent sets of orbits (Example 2); second, we introduce a fam-
ily of highly symmetric Binary Quadratic Programs (denoted by BQP); and lastly,
besides the original tests using symmetric instances from MIPLIB2010, we enlarge
our dataset with symmetric instances from MINLPLib2 and randomly generated
symmetric Binary Quadratic Programs.

The rest of the paper is organized as follows: in Section 2 we introduce notation,
recall concepts of Group Theory and review some previous work related to sym-
metries in MP; in Section 3 we present all the theoretical developments concerning
the OI framework; in Section 4 we describe in details the SBCs generation algo-
rithm devised based on the recently constructed theory; and finally, computational
experiments are provided and analysed in Section 5.

2 Notation and previous work

2.1 Group Theory

We consider that permutation groups act on vectors in Rn by permuting its compo-
nents and that permutations act on sets of vectors by acting on each vector individ-
ually. For a vector v ∈ Rn and a subset N ⊆ [n] = [1, . . . , n], we let v[N ] denote the
projection of v on the coordinates indexed by N .

Nomenclature-wise, Sn and Cn are the symmetric and cyclic group of order
n, respectively. Sym(X) is the symmetric group on a set X (e.g. Sn = Sym([n])).
Throughout the paper, let H and G denote permutation groups and � denote the
group operator. If H is a subgroup of G, we write H ≤ G. If H is isomorphic to G,
we write H ∼= G. If H is a normal subgroup of G, we write H �G. 〈∆〉 denotes the
group generated by the set ∆ of generators and G ×H denotes the direct product
of groups.

Consider a set X. We recall that an orbit is an equivalence class of the quotient
set X/∼, where i ∼ j if there is a permutation g ∈ G such that g(i) = j. This way,
the group G partitions X into a set ΩG of orbits ω1, . . . , ωp, for p ∈ [1, . . . , |ΩG|].
Moreover, we let ω(`) denote the `-th element of ω (stored as a list).

Let Y ⊆ X. The pointwise stabilizer of Y w.r.t.G is the subgroup of permutations
of G fixing each element of Y , i.e., GY = {g ∈ G | ∀y ∈ Y (g � y = y)}. The setwise
stabilizer of Y w.r.t. G is the subgroup of those permutations of G under which Y
is invariant, i.e., stab(Y,G) = {g ∈ G | ∀y ∈ Y (g � y ∈ Y )}.

A group action is transitive on a set X if s ∼ t for each s, t ∈ X. If a group G
acts transitively on a set X, then X is an orbit of G.

2.2 Literature review

Apart from problem oriented breaking techniques [17], most of the work regarding
symmetries in MP was dedicated to develop general-purpose symmetry group com-
putations and breaking techniques embedded in BB-type algorithms. The work in
this sense follows three main streams.

The first is devoted to DSB techniques and was established by Margot [20,21].
He defined the relaxation group of Binary Linear Programs (denoted BLP) and used
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it to derive pruning strategies and cuts by means of isomorphism; this technique is
known as isomorphism prunning. The idea was later extended and named orbital
branching in [25] by using valid disjunctions to orbits of the formulation group to
derive BB braching rules.

The second refers to SSB techniques and the usage of SBCs to tighten the search
space. It was established by Kaibel and coworkers [14,6], with the introduction of
the packing and partitioning orbitopes. Inspired by orbitopes, Friedman proposed a
more general approach named fundamental domains [10]. Liberti then studied and
extended the use of general purpose SBCs to Mixed-Integer Nonlinear Programs
(denoted by MINLP) in [17,16].

Developed at first to Mixed-Integer Linear Programs (denoted by MILP), the
third stream (named orbital shrinking by Fischetti and Liberti [7]) focus on deriving
compact symmetry free relaxations by replacing whole orbits by single variables. The
technique was extended to convex MINLPs and some nonconvex MINLPs having a
special structure. A recent survey on the subject is available in [8].

As concerns symmetry detection, the formal description of P in the language L
can be parsed into a Directed Acyclic Graph (DAG) data structure T using a fairly
simple context-free grammar [2]; we refer to [4] for further details and an example
about this procedure. In practice, one can write P using a modelling language such
as AMPL [9] and use an unpublished AMPL API to derive T and its set of nodes
V (T ) [11]. Since T is a labelled graph, we know how to compute the group G of
its label-invariant isomorphisms [23,24]. Furthermore, it was shown in [16] that the
action of G can be projected to the leaf nodes of V (T ), which represent the set of
decision variables of P , and that this projection induces a group homomorphism φ
mapping G to a certain group image known as the formulation group of P .
Definition 1 The formulation group GP of P is the group of permutations which
acts on the set of decision variables of P while keeping the objective function f(x)
and the feasible region {gi(x) | i ∈ II ∪ IE} unchanged.

The solution group of P is the group of permutations which keeps the set G (P )
invariant, i.e. G∗P = stab(GP , Sn). It is easy to show that GP ≤ G∗P . It is impractical
however to compute solution groups because it requires aprioristic knowledge of GP .
On the other hand, if GP is nontrivial, one can use the methodology proposed in
[16] to computing generators for GP and extract symmetries from P prior to solving
it. In [16, §8.3] one can find many examples of formulation groups that operate in
MP, such as symmetric, cyclic, dihedral and groups which are represented by means
of the direct product operator. Moreover, it is important to note that formulation
groups act on the set of decision variables only because mathematical programs are
invariant under constraint-order permutations.

Symmetry is exploited in MP in a number of different ways, however their most
efficient exploitation appears to be their usage within DSB strategies [20,21,25].
Such approaches are, unfortunately, difficult to implement, as each solver code must
be addressed separately. Their simplest exploitation is the SSB approach [22, §8.2]
which consists in adjoining some SBCs to the original formulation P in the hope of
making all but one of the symmetric global optima infeasible. This procedure yields
a reformulation of the narrowing type [15].
Definition 2 Given a problem P , a narrowing P ′ of P is such that (a) there is a
function η : F (P ′) → F (P ) for which η(G (P ′)) ⊆ η(G (P )) and (b) P ′ is infeasible
only if P is.
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Following the usual trade-off between efficiency and generality, approaches which
offer provable guarantees of removing symmetric optima are limited to special struc-
tures [14], whereas approaches which hold for any mathematical program in the large
class P are mostly common-sense constraints designed to work in general [17].

As concerns symmetry exploitation via SBCs, the projection homomorphism φ
defined above for G and the leaf nodes of the parsing tree can be restricted to act on
GP and generalized to project its action to any subset Y ⊆ X. Let φY denote this
generalized action projection homomorphism, which is defined as follows: for each
π ∈ GP , φY (π) is the product of the cycles of π having all components in Y . If Y is
some orbit ω ∈ ΩGP , then (a) the image of φY is a group GP [ω] called the transitive
constituent of ω, (b) GY is the kernel of φY and (c) stab(Y,G) = G.

Now let x∗ ∈ G (P ). If GP [ω] ∼= Sym(ω) on the orbit, G (P ) contains vectors which
yield every possible order of x∗[ω] when projected onto ω. Thus we can arbitrarily
choose one order, e.g.:

∀` < |ω| xω(`) ≤ xω(`+1), (1)

enforce this order by means of SBCs, and still be sure that at least one global opti-
mum remains feasible. The constraints in Eq. (1) are called strong SBCs. If GP [ω]
has any other group structure, we observe that, by transitivity of the transitive con-
stituent, at least one permutation in GP [ω] will map the component having minimum
value in x∗[ω] to the first component. This yields the weak SBCs:

∀` ∈ ω r {ω(1)} xω(1) ≤ xω(`). (2)

Strong SBCs select one order out of |ω|! many, and hence are able to break all the
symmetries in GP [ω]. Weak SBCs may unlikely achieve that. We let g(x[N ]) ≤ 0
denote SBCs involving only variables xj with j in the set N .

Remark 1 The choice of minimum value and first components are arbitrary; alter-
native sets of SBCs can occur for other distinct choices.

Lastly, we refer readers to surveys [22,17] for an assessment of the state of the
art in symmetry handling methods in Mathematical Programming.

3 Orbital independence

In this section we start introducing our OI theoretical results. First we exemplify
how incompatible SBCs cut global optima from a mathematical program; then we
recall the OI conditions originally introduced in [16] and [19]; finally we introduce
the concept of independent set of orbits and the conditions which we shall use to
identify such sets within the algorithmic framework presented in Section 4.

3.1 Incompatible SBCs

In general, one may only adjoin to P the SBCs associated to one single orbit. Example
1 shows that adjoining SBCs from two or more orbits chosen arbitrarily may result
in all global optima being infeasible.
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Example 1 Let P be the following MILP:

min
x∈{0,1}4

x1 + x2 + 2x3 + 2x4 1 1 0 0
0 0 1 1
−1 0 −1 0
0 −1 0 −1


x1
x2
x3
x4

 ≤
 1

1
−1
−1

 .

This problem has as set of optima G (P ) = {(0, 1, 1, 0), (1, 0, 0, 1)}. In addition, it has
formulation group GP = 〈(1 2)(3 4)〉 and orbits ΩGP = {ω1, ω2} = {{1, 2}, {3, 4}}.
Valid SBCs for ω1 (resp. ω2) are x1 ≤ x2 (resp. x3 ≤ x4). By simple inspection of
the optima set, whereas adjoining either of the two SBCs yields valid narrowings,
adjoining both simultaneously leads to an infeasible mathematical program.

3.2 Some existing OI conditions

Sufficient conditions to concurrently combine sets of SBCs generated by two different
orbits, say ω, θ ∈ ΩGP , into a valid narrowing of MINLPs are provided in [16]: (a)
there is a subgroup H ≤ GP [ω ∪ θ] such that H[ω] ∼= C|ω| and H[θ] ∼= C|θ| and (b)
gcd(|ω|, |θ|) = 1. Two orbits with these properties are called coprime. The author
proposes an algorithm that interatively builds a set ΩC of pairwise coprime orbits: at
iteration k, an orbit ωk is randomly picked and tested against coprime orbits found
in previous iterations; should ωk pairwisely satisfy the conditions above w.r.t. all
previously found coprime orbits, it is added to ΩC . Once ΩC is built, SBCs are
generated for all of the orbits within it. The coprime conditions however are very
restrictive and occur relatively rarely in practice, meaning that in general, most of
information regarding the orbits remains unexploited.

A strategy based on chains of stabilizers is derived to overcome the limitations of
the coprime narrowing in [19]. Based on the result that the map ·[ω] : G→ G[ω] is a
group homomorphism whose kernel is the pointwise stabilizer Gω, which is therefore
a normal subgroup of G, the authors propose an algorithm that, at each iteration
k, identifies the set of orbits resulting from the action of a group Gk and randomly
picks one of them to generate SBCs. The idea underlying this approach is how Gk is
updated in between iterations: if ωk is the orbit used to generate SBCs at iteration
k, Gk+1 = Gω

k

� Gk. Provided that Gk+1 stabilizes ωk pointwise and is a normal
subgroup of Gk, ωk is permanently factored out during the remaining iterations. The
algorithm iterates until Gk becomes trivial, meaning that the stabilizers’chain was
totally exploited.

Remark 2 In both methods, the orbits are arbitrarily chosen at each iteration; for
the same mathematical program, different orbit choices lead to different sets of SBCs.

3.3 New conditions for OI

We will now build the concept of independent set of orbits and provide necessary
conditions for characterizing such sets.
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First, let ω, θ ∈ ΩGP . We look at what happens to ω when θ is pointwise stabi-
lized: either Gθ fixes ω, or a subset of ω, or it does not fix any element of ω at all.
We can thus state the following binary dependence relations on the set ΩGP .

Definition 3 The orbit ω is:

(a) dependent of θ (denoted by ω → θ) if, for any subset σ ⊆ ω, σ 6∈ ΩGθ ;
(b) semi-dependent of θ (denoted by ω  θ) if there is at least one subset σ ( ω

such that σ ∈ ΩGθ ;
(c) independent of θ (denoted by ω

�

θ) if ω ∈ ΩGθ .

Next, let Γω be the set of permutations of GP which move elements of the orbit
ω nontrivially. By definition, Γω does not contain the identity permutation e of
GP and thus it is not itself a group. Moreover, the following properties trivially
hold: (a) Gω ∩ Γω = ∅, (b) stab(ω,GP ) = Gω ∪ Γω = GP and (c), for ω ∈ ΩGP ,
GP [ω] = φω(Γω) ∪ {e}.

Theorem 1 establishes the dependence relation between two orbits ω, θ ∈ ΩGP
by comparing the sets Γω and Γ θ.

Theorem 1 The following statements are true:

(1) If Γ θ = Γω then θ → ω and ω → θ;
(2) If Γ θ ⊂ Γω then θ → ω and either ω

�

θ or ω  θ;
(3) If Γ θ ∩ Γω 6= ∅ then (θ

�

ω or θ  ω) and (ω

�

θ or ω  θ);
(4) If Γ θ ∩ Γω = ∅ then θ

�

ω and ω

�

θ.

Proof (1) Assume Γ θ = Γω and consider ω. Then Gω = GP r Γω ⇒ Gω ∩ Γ θ =
∅ ⇒ θ /∈ ΩGω and θ → ω. Since the same argument holds if we consider θ, we also
have ω → θ.

(2) Assume Γ θ ⊂ Γω and consider ω. Then Gω = GP r Γω ⇒ Gω ∩ Γ θ = ∅ ⇒
θ /∈ ΩGω and θ → ω. Considering θ, we have that Gθ = GP r Γ θ ⇒ Gθ ∩ Γω 6= ∅.
If the action of Gθ is transitive on ω, we have ω

�
θ. Otherwise, we have ω  θ.

(3) Assume Γ θ ∩ Γω 6= ∅ but neither set is wholly contained in the other, and
consider ω. Then Gω = GP r Γω ⇒ Gω ∩ Γ θ 6= ∅. If the action of Gω is transitive
on θ, we have θ

�

ω. Otherwise, we have θ  ω. The same argument holds if we
consider θ.

(4) Assume Γ θ ∩ Γω = ∅ and consider ω. Then Gω = GP r Γω ⇒ Gω ⊃ Γ θ ⇒
θ ∈ ΩGω and θ

�

ω. The same holds if we consider θ, thus ω

�

θ. ut

Lemma 1 The premise Γ θ ∩ Γω = ∅ to condition (4) in Theorem 1 never holds.

Proof Let ∆ be a set of generators of GP . If there is a permutation g ∈ ∆ such that
g[ω] and g[θ] are nontrivial, then g ∈ Γ θ∩Γω. Otherwise, let ∆θ = {g ∈ ∆ | g[ω] = e}
and ∆ω = {g ∈ ∆ | g[θ] = e}. Because every element of GP can be expressed as
the combination (under the group operation) of finitely many elements of ∆, there
is g ∈ GP such that g = gω � gθ where gω ∈ ∆ω and gθ ∈ ∆θ. Thus g ∈ Γ θ ∩ Γω. ut

Based on the above definitions and results, the following lemma holds.

Lemma 2 The following statements are true:

(1) The relation → is reflexive and the relations  and

�

are irreflexive;
(2) The relation → is symmetric iff Γ θ = Γω and asymmetric iff Γ θ ⊂ Γω;
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(3) The relation → is transitive.

Proof The proof of statements (1) and (2) follows directly from Theorem 1. As
concerns (3), let θ, ω, τ ∈ ΩGP be distinct orbits satisfying θ → ω and ω → τ . From
Theorem 1, θ → ω implies that either Γ θ = Γω or Γ θ ⊂ Γω. Similarly, ω → τ implies
that either Γω = Γ τ or Γω ⊂ Γ τ . Then:

(a) Γ θ = Γω ∧ Γω = Γ τ ⇒ Γ θ = Γ τ ⇒ θ → τ ;
(b) Γ θ = Γω ∧ Γω ⊂ Γ τ ⇒ Γ θ ⊂ Γ τ ⇒ θ → τ ;
(c) Γ θ ⊂ Γω ∧ Γω = Γ τ ⇒ Γ θ ⊂ Γ τ ⇒ θ → τ ;
(d) Γ θ ⊂ Γω ∧ Γω ⊂ Γ τ ⇒ Γ θ ⊂ Γ τ ⇒ θ → τ . ut

Whenever the dependence relations are symmetric, we write ω ↔ θ or ω! θ or
ω

��

θ. Using this notation, we set forth that:

Definition 4 Two orbits ω, θ ∈ ΩGP are dependent if ω ↔ θ, semi-dependent if
ω! θ and independent if ω

��

θ.

Now we describe the independence relation (

��

) by means of the direct product
of groups. Let Hω denote a group that acts transitively on ω and G �H the set of
permutations generated by multiplying each permutation (except the identity) of G
by each permutation (except the identity) of H.

Lemma 3 For ω, θ ∈ ΩGP , if there is a subgroup H ≤ GP [ω ∪ θ] such that H =
Hω ×Hθ, then ω

��

θ.

Proof Assume that there is such a group H. Applying the definition of direct product
of groups, we obtain that

Hω ∪Hθ ∪Hω �Hθ ≤ GP [ω ∪ θ].

Moreover, we know that GP [ω ∪ θ] = φω∪θ(Γω ∪ Γ θ) ∪ {e}. Using elementary set
theory, we can write that Γ θ ∪ Γω = (Gθ ∩ Γω) ∪ (Gω ∩ Γ θ) ∪ (Γω ∩ Γ θ). Thus
φω∪θ(Γω ∪Γ θ) = φω∪θ(Gθ ∩Γω)∪φω∪θ(Gω ∩Γ θ)∪φω∪θ(Γω ∩Γ θ) = φω(Gθ ∩Γω)∪
φθ(Gω ∩ Γ θ) ∪ φω∪θ(Γω ∩ Γ θ) since Gθ ∩ Γω stabilizes θ and Gω ∩ Γ θ stabilizes ω;
we then have that

GP [ω ∪ θ] = φω(Gθ ∩ Γω) ∪ φθ(Gω ∩ Γ θ) ∪ φω∪θ(Γω ∩ Γ θ) ∪ {e}.

Comparing both expressions involving GP [ω ∪ θ], we get by inclusion that Hω ≤
φω(Gθ ∩ Γω) ∪ {e}, Hθ ≤ φθ(Gω ∩ Γ θ) ∪ {e} and Hω �Hθ ≤ φω∪θ(Γω ∩ Γ θ). Thus
Gθ ∩ Γω 6= ∅, Gω ∩ Γ θ 6= ∅ and Γω ∩ Γ θ 6= ∅ since Hω and Hθ are nontrivial
groups by assumption, meaning that premise (3) in Theorem 1 holds. Moreover,
Gθ ∩Γω acts transitively on ω and Gω ∩Γ θ on θ, which means that the action of the
stabilizers Gθ and Gω is also transitive on ω and θ, respectively, since Gθ ∩Γω ≤ Gθ
and Gω ∩ Γ θ ≤ Gω. Thus ω

��

θ. ut

Note the similarity between the conditions presented in Lemma 3 and the co-
prime conditions (Section 3.2), the latter being more restrictive. However, from a
computational point of view, to the best of our knowledge, there is no method avail-
able in the literature capable of efficiently finding a subgroup H ≤ G[ω∪θ] satisfying
Lemma 3 for given orbits ω, θ ∈ ΩGP . This is why we resort to characterize the OI
conditions via pointwise stabilizers.
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Following, we extend the dependence relations presented above to sets of orbits.
In this sense, consider a set Ω ⊆ ΩGP and let Ωω = Ωrω for ω ∈ Ω. The pointwise
stabilizer of a set Ω of orbits is denoted as GΩ hereafter. We look at what happens
to ω when the set Ωω is pointwise stabilized (i.e. when all the orbits in Ωω are
simultaneously pointwise stabilized) and, as previously, state suitable dependence
definitions.

Definition 5 The orbit ω is:

(a) dependent of Ωω (denoted by ω ↪→ Ωω) if , for any subset σ ⊆ ω, σ 6∈ ΩGΩω ;
(b) semi-dependent of Ωω (denoted by ω ; Ωω) if there is at least one subset σ ( ω

such that σ ∈ ΩGΩω ;
(c) independent of Ωω (denoted by ω "

Ωω) if ω ∈ ΩGΩω .

Lemma 4 establishes necessary conditions to have ω "

Ωω.

Lemma 4 If ω "

Ωω, then ω

�

θ for all θ ∈ Ωω.

Proof By definition, ω "

Ωω implies that the action of GΩω on ω is transitive. Since
GΩ

ω is a subgroup of Gθ for every θ ∈ Ωω, Gθ also acts transitively on ω and thus
ω

�

θ. ut

Now we can define an independent set of orbits. Note that similar definitions can
be laid down as for dependent and semi-dependent sets of orbits.

Definition 6 A set Ω of orbits is said to be independent if ω "

Ωω for all ω ∈ Ω.

Corollary 1 provides necessary conditions so as to a set of orbits be independent.

Corollary 1 If the set Ω of orbits is independent, then ω

��

θ for all ω, θ ∈ Ω.

Proof By Definition 6 and Lemma 4. ut

And Example 2 proves that the conditions in Corollary 1 are not sufficient to
guarantee that a set Ω of orbits is independent.

Example 2 Let P be the following MILP:

min
x∈{0,1}6

x1 + x2 + 2x3 + 2x4 + 3x5 + 3x6

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0
0 1 0 1 1 0
1 0 0 1 0 1
0 1 1 0 0 1




x1
x2
x3
x4
x5
x6

 ≤


1
1
1
2
2
2
2


.

The set G(P ) = {(1, 0, 1, 0, 0, 1), (0, 1, 0, 1, 0, 1), (0, 1, 1, 0, 1, 0), (1, 0, 0, 1, 1, 0)} con-
tains its optima. It has formulation group GP = 〈(1 2)(3 4), (3 4)(5 6)〉, which
induces the orbits ΩGP = {ω1, ω2, ω3} = {{1, 2}, {3, 4}, {5, 6}}. It is easy to see that
the elements in ΩGP are pairwise independent (ω1

��

ω2 ∧ ω1

��

ω3 ∧ ω2

��

ω3).
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Consider for instance a restriction of the coefficient matrix to the columns indexed
by orbits ω1 and ω2:

R =



1 1 0 0
0 0 1 1
0 0 0 0
1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0


The action of permutation (1 2) on the columns of R is equivalent to the action of
permutation (1 4)(2 3) on the rows of R, both resulting in the following matrix:

1 1 0 0
0 0 1 1
0 0 0 0
0 1 1 0
1 0 0 1
0 1 0 1
1 0 1 0


.

Since mathematical programs are invariant under constraint-order permutations, we
conclude that ω1

��

ω2. The same argument is valid for the other cases. Nonethe-
less, ω1 ↪→ {ω2, ω3}, ω2 ↪→ {ω1, ω3} and ω3 ↪→ {ω1, ω2}. In order to see this, we
consider the full coefficient matrix (i.e. the three orbits simultaneously) and let the
permutation (1 2) act on its columns; it yields the matrix:

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 1 1 0 1 0
1 0 0 1 1 0
0 1 0 1 0 1
1 0 1 0 0 1


.

Note that in this case, there is no permutation of the rows of the coefficient matrix
that produces the same matrix above, which means that we obtain a different set
of constraints (i.e. a different mathematical program) when permuting the columns
indexed by ω1 only. On the other hand, the action of (1 2)(5 6) on the columns of the
coefficient matrix is equivalent to the action of (1 4)(2 3) on its rows, which means
that we must permute the columns indexed by ω3 and ω1 simultaneously in order
to obtain the original set of constraints; thus ω1 ↪→ {ω2, ω3}. The same argument is
valid for the other cases.

3.4 SBCs from independent sets

Let ΩI denote an independent set of orbits. Similarly to the results presented in
[16], the following propositions set appropriate conditions to build weak and strong
SBCs, respectively, from independent sets of orbtis.
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Proposition 1 The constraints (2) are SBCs for P and GΩωI with respect to ω ∈ ΩI .

Proof Let y ∈ G (P ). Since GΩωI acts transitively on ω, there exists π ∈ GΩωI mapping
min y[ω] to yω(1). ut

Proposition 2 Provided that GΩωI [ω] = Sym(ω), the constraints (1) are SBCs for
P and GΩωI with respect to ω ∈ ΩI .

Proof Let y ∈ G (P ). Since GΩωI [ω] = Sym(ω), there exists π ∈ GΩωI such that (πy)[ω]
is ordered by ≤. Thus πy is feasible w.r.t. contraints (1). ut

4 Orbital independence algorithm

In this section we show how to solve the problem of finding an independent set of
orbits of a mathematical program via a classical combinatorial optimization problem,
and describe the algorithm proposed to build SBCs from this set. We also conclude
our theoretical development by proving our main result concerning independent sets
of orbits.

4.1 Independence graph

Our goal is to find the largest possible ΩI ⊆ ΩGP . So far we do not have theoretical
results providing sufficient conditions to find such a set. Yet we can use the necessary
conditions provided by Corollary 1 and search for the largest set ΩK ⊆ ΩGp whose
elements are pairwise independent. Having obtained ΩK , we can then search for the
largest ΩI ⊆ ΩK . We propose to find ΩK by solving the problem of finding the
maximum clique in the (as of now called) independence graph of P .

Definition 7 The independence graph of P is an undirected graph that encodes the
independence relation between orbits of GP , i.e., an undirected graph GI = (V,E)
where V = ΩGP and E is the set of pairwise independent (

��

) orbits of ΩGP .

4.2 OI reformulations

We expect that the larger the number of SBCs adjoined to the original formulation,
the stronger their computational impact. The larger the number of strong SBCs,
the better. In fact it remains an open question what is the best trade-off in terms
of computational impact: to add many weak, few strong or a mix of both SBCs
to the same original formulation? In trying to shed some light on this matter, we
propose two reformulations based on the concept of OI: the first prioritizing the total
number of SBCs generated and the second prioritizing the total number of strong
SBCs generated. In this sense, we look for cliques in GI that either involve large
orbits or mostly orbits which may satisfy the conditions to build strong SBCs.

In order to find such cliques, we associate a weight function w : V → W to
GI = (V,E,w) and solve the Maximum Weight Clique Problem (MWCP) for GI
using the MP formulation described in [3]. In the first reformulation, which we call
orbital independence narrowing, we have W = {|ω1|, . . . , |ω|V ||} and w(ωi) = |ωi| for
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all ωi ∈ V . In the second, which we call strong orbital independence narrowing, we
consider two different weight values W = {w1, w2} with w2 > w1 > 0, and assign w1
to orbits which generate weak SBCs and w2 to orbits which generate strong SBCs.

4.3 Algorithm description

The Algorithm 1 generates a system C of compatible SBCs derived from the largest
independent set of orbits of P . It takes as inputs a nontrivial formulation group
(parameter GP ) and a reformulation strategy (parameter ς). The following functions
simplify the pseudocode of Alg. 1: computeOrbits(GP ) returns the orbits of the group
GP ; computePointStab(ω) returns the pointwise stabilizer of orbit ω; pos(ω) returns
the position of orbit ω in the list ΩGP ; isTransitive(G,ω) returns true if the action
of the group G is transitive on the orbit ω and false otherwise; buildGraph(V,E, ς)
returns a graph with vertices V , edges E and weights appropriate to the strategy
ς; solveMWCP(GI) returns a solution of the MWCP for the graph GI . We remark
that the functions computeOrbits(GP ), computePointStab(ω) and isTransitive(G,ω)
are built-in functions available in the software package we use to carry out all group-
related computations (see Section 5.3).

Algorithm 1 Orbital Independence SBC generator
Require: nontrivial GP and reformulation strategy ς
1: Let C = ∅ and ΩI = ∅
2: Let ΩGP = computeOrbits(GP )
3: if |ΩGP | > 1 then
4: for ω ∈ ΩGP do
5: Let Gω = computePointStab(ω)
6: for θ ∈ ΩGP such that pos(θ) > pos(ω) do
7: Let Gθ = computePointStab(θ)
8: if isTransitive(Gω , θ) ∧ isTransitive(Gθ, ω) then
9: Let E = E ∪ {{ω, θ}, {θ, ω}}

10: end if
11: end for
12: end for
13: if |E| ≥ 2 then
14: Let GI = buildGraph(ΩGP , E, ς)
15: Let ΩK = ΩI = solveMWCP(GI)
16: for ω ∈ ΩK do
17: if not isTransitive(GΩ

ω
I , ω) then

18: Let ΩI = ΩI r ω
19: end if
20: end for
21: for ω ∈ ΩI do
22: Let g(x[ω]) ≤ 0 be SBCs satisfying either Proposition 1 or 2
23: Let C = C ∪ {g(x[ω]) ≤ 0}
24: end for
25: end if
26: end if
27: return C

If GP has more than one orbit (|ΩGP | > 1), the algorithm first iteratively looks
for all the pairs of independent orbits to build the set E. Provided that the premise
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(3) in Theorem 1 is not sufficient to ascertain whether two orbits ω, θ ∈ ΩGP satisfy
ω

��

θ, the algorithm does not compare the sets Γω and Γ θ but rather directly checks
whether the action of the stabilizers Gω and Gθ is transitive on θ and ω, respectively.
Testing transitivity is essential since it allows us to identify whether a set X is an
orbit of a group G or not (see Section 2.1): in our context, if Gω acts transitively on
θ, then θ

�

ω and if Gθ acts transitively on ω, then ω

�

θ. In this case, we can add
the edge (ω, θ) to E since ω

��

θ.
Following the first loop, if at least one pair of independent orbits is found (|E| ≥

2), the algorithm builds the independence graph GI according to the reformulation
strategy ς and calls a third party Mixed-Integer Linear Programming solver to solve
the MWCP for GI . Once ΩK is known, the algorithm converges to a set ΩI by
iteratively removing (from a copy of ΩK stored as ΩI) the orbits that do not satisfy
ω

"

ΩωI .

Remark 3 Our approach here is not optimal since the resulting ΩI may not be the
largest one: evaluating all possible ΩI ⊆ Ωk would require a huge computational
effort owing to many stabilizer computations.

Then, for each orbit in ΩI , the algorithm builds and adds SBCs to the set C.
It is relevant to emphasize that if |ΩGP | = 1 (unique orbit) or |E| = 0 (no pair of
independent orbits in ΩGP ), no reformulation is carried out.

Theorem 2 proves that any system of SBCs generated by Algorithm 1 for a given
GP is a system of compatible SBCs for problem P , or in other words, it proves that
independent sets of orbits embed sufficient conditions to exploit symmetries from
two or more distinct orbits simultaneously.

Theorem 2 The constraint set CΩI = {g(x[ωk]) ≤ 0 | ωk ∈ ΩI} is a system of
compatible SBCs for P .

Proof If P is infeasible then adjoining the constraints in CΩI to P does not change
its infeasibility, so assume P is feasible. Since g(x[ωk]) ≤ 0 are SBCs for P and GΩ

ωk
I

with respect to ωk (i.e. satisfying either Proposition 1 or 2), there exist y ∈ G (P )
and πωk ∈ GΩ

ωk
I such that πωky satisfies g((πωky)[ωk]) ≤ 0. But πωk ∈ GP for

all ωk ∈ ΩI and, due to the closure of the group operation, there exists π ∈ GP
such that π =

∏
πωk . So πy ∈ G (P ). But π[ωk] = πωk [ωk] since πωk′ stabilizes ωk

pointwise for every k′ 6= k and thus (πy)[ωk] = (πωky)[ωk]. Therefore πy satisfies
g((πy)[ωk]) ≤ 0 for all ωk ∈ ΩI . ut

Finally, we would like to remark that the algorithms presented in [16] (coprime),
[19] (stabilizer’s chain) and Algorithm 1, with high probability, generate different sets
of SBCs for the same mathematical program. The main reason for this is the fact
that the coprime and the stabilizer’s chain algorithms perform arbitrary orbit picks
on every execution. As pointed out in Remark 2, for the same mathematical program,
different runs of the same algorithm may result in different sets of SBCs. Moreover,
for a given orbit, the order used to generate the SBCs is also randomly choosen by
each algorithm, each choice leading to a different set of SBCs (see Remark 1). An
exception would be the case where the stabilizer’s chain algorithm luckily picks, at
every iteration, the orbits that constitute the independent set found by Algorithm
1 (on top of the respective order for each orbit), what is unlike to happen as the
number of orbits |ΩGP | increases.
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5 Computational experiments

In this section we show the computational impact on the resolution of symmetric
MILPs, MINLPs and BQPs when adjoining SBCs from independent sets of orbits. We
describe the computational environment involved and analyze the results obtained
from the conducted experiments.

5.1 Symmetric BQP

First we define the symmetric Binary Quadratic Programs used in our computational
experiments. We are interested in BQPs in the form:

min
x

x>A0x

∀i ∈ IE ai
>x = bi,

x ∈ {0, 1}n.

 (3)

where A0 denotes a n × n real (possibly indefinite) symmetric matrix, ai denotes
a vector of dimension n for all i ∈ IE , b denotes a vector of dimension |IE | and x
represents a n dimensional vector of binary decision variables.

Let 1 denote the n dimensional all-ones vector. The first definition relates to the
feasible region.

Definition 8 The feasible region has one single equality constraint of the type
1>x = dn/2e.

Being invariant to permutations, the constraint in Definition 8 allows us to specify
the structure of the formulation groups by controlling the strutucture of the matrix
A0 alone, which is defined next.

Definition 9 A0 is a block diagonal matrix.

Recall that the action of the formulation group on the index set defines a parti-
tion; and every member of the partition which has two or more indices is an orbit.
We use this observation in our (quite simple) generation procedure: it first divides
the indices of the decision variables into a partition P, and then randomly decides
whether each subset s ∈ P shall become an orbit or not (all according to some input
data provided by the user). Each s corresponds to a block in the matrix A0. If s
is an orbit, the entries of the block Bs are computed by sampling a pair (z1, z2) of
natural numbers and defining

Bs =
{
z1 + (|s| − 1)z2 if i = j,

−z2 if i 6= j.
(4)

These blocks are Diagonal Dominant matrices. Otherwise (s is not an orbit), the
entries of the block Bs are computed by sampling a (|s|×|s|)-matrix Ms and defining

Bs = Ms
>Ms. (5)

These blocks are Gram matrices. Since all blocks of A0 are Positive Semidefinite
(PSD), the matrix A0 is PSD as well and the continuous relaxations of the BQPs
are convex.
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Definition 10 The blocks of A0 are build according to Eq. (4) for orbits and ac-
cording to Eq. (5) otherwise.

When the three definitions above are put together, they induce the following
symmetry properties on the formulation group of the BQPs: (a) ΩI = ΩGP and
(b) GP [ω] = Sym(ω) for every orbit ω ∈ ΩGP . These conditions allow us to concur-
rently use SBCs derived from all orbits of these BQPs. Example 3 illustrates one of
these programs.

Example 3 Let P be the following BQP:

min
x∈{0,1}9

x>A0x

1>x = 5,

where

A0 =



6 −3 −3 0 0 0 0 0 0
−3 6 −3 0 0 0 0 0 0
−3 −3 6 0 0 0 0 0 0
0 0 0 12 −6 −6 0 0 0
0 0 0 −6 12 −6 0 0 0
0 0 0 −6 −6 12 0 0 0
0 0 0 0 0 0 3 1 3
0 0 0 0 0 0 1 5 −2
0 0 0 0 0 0 3 −2 5


.

Since n = 9, it is easy to see that it satisfies Def. 8: d9/2e = 5. It is also clear that
Def. 9 is satisfied since A0 has a block diagonal shape. The indices are partioned
into P = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. The first two subsets ({1, 2, 3}, {4, 5, 6}) are
choosen to become orbits, and the pairs (0, 3) and (0, 6) are used to build the blocks
associated to them, respectively. As concerns subset {7, 8, 9}, the matrix

Ms =

1 1 −1
2 0 1
0 1 −2


is used to build its block. As a result,ΩGP = {ω1, ω2} = {{1, 2, 3}, {4, 5, 6}}, ω1

��

ω2
holds, and the transitive constituent of both orbits is isomorphic to S3.

These BQP instances are particular cases of the Binary Quadratic Knapsack
Problem (BQKP) [12] where (a) each orbit represents a set of identical objects,
(b) all objects have the same size, (c) the knapsack has size dn/2e, and (d) a pick
within an orbit (variable set to 1) does not affect a pick within a different orbit
cost-wise (because of the block-diagonal structure of matrix A0). As an example, for
n = 23 and |ΩGP | = 3, orbit ω1 could represent ten apples, orbit ω2 seven oranges
and orbit ω3 six pears; all apples, oranges and pears would have size one in our case,
and the knapsack would have size d23/2e = 12. However, since we are not using any
of the classical BQKP formulations, we prefer to present them simply as symmetric
BQP instances.

Moreover, we could not find BQP instances in public libraries where Definitions
8, 9 and 10 occur simultaneously. Since we could not assume that such an application
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does not exist in practice, we designed these highly symmetric instances to at least
provide guidelines and help readers to decide whether to employ or not the OI
theory when solving the application they have in hands. By explicitly showcasing
the symmetry properties under which the OI theory performs usefully, we highlight
what sort of characteristics should be looked for in mathematical programs.

5.2 Datasets

Our test bed consists of three groups of instances: (a) symmetric MILPs found in
MIPLIB2010; (b) symmetric MINLPs found in MINLPLib2 and (c) symmetric BQPs
generated via procedure described previously.

We found 89 instances within the public libraries, 47 from MIPLIB2010 and
42 from MINLPLib2. We refer to [26] for a detailed description of the presence of
symmetries in public MP instances. The third group contains a total of 74 con-
vex medium-sized BQPs, named as bqp n oxs, where n represents the number of
variables, o the number of orbits and s the orbits’ size (R means random sizes).

5.3 Environment

The reformulations were obtained on a 4-CPU Intel Xeon at 2.66GHz with 24Gb
RAM. Automatic group detection is carried out using ROSE [18] and TRACES
[24]. Other group computations are carried out using GAP v. 4.7.4 [27]. The MP
results were obtained on a 24-CPU Intel Xeon at 2.53GHz with 48Gb RAM. We
used CPLEX 12.6 [13] to solve the MILPs and the BQPs, and SCIP 3.0.1 [1] to solve
the MINLPs, all under the AMPL [9] environment. The BQP generator was coded
in Python 2.7.

The computation time was limited to 7200 seconds of user cpu time. In order
to try and provide a fair assessment of our methodology, we disabled the symmetry
handling methods built into CPLEX and ran it in single thread mode. SCIP does
not contain internal symmetry handling methods.

5.4 MILP and MINLP Results

We first comment the results of the reformulation process. Tables 1 and 2 report, per
instance, the number of variables (n) and orbits (|ΩGP |) of the original formulation,
and the number of variables indexed by orbits ΩGP (#svar); for each OI narrowing
type, they report the maximum clique (|ΩK |) and the largest independent set (|ΩI |)
sizes, the number of variables indexed by orbits ΩI (#var), the number of weak
(#wea) and strong (#str) SBCs, and the parameters σ, ρ and υ (described later on).

Original formulation OI-narrowing
Instance n |ΩGP | #svar |ΩK | |ΩI | #var #wea #str σ ρ υ

bab5 21600 1936 3872 4 4 8 0 4 .17 0* 0*
blp-ar98 16017 2 4 2 2 4 0 2 0* 1.00 1.00
blp-ic97 8445 2 4 2 2 4 0 2 0* 1.00 1.00

core2536-691 15288 88 187 12 12 29 3 14 .01 .13 .15
core4872-1529 24605 505 1046 46 46 96 0 50 .04 .09 .09

gmu-35-40 842 40 111 4 4 13 0 9 .13 .10 .11
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gmu-35-50 1177 40 111 4 4 13 0 9 .09 .10 .11
gmut-75-50 36164 64 242 6 6 19 0 13 0* .09 .07
gmut-77-40 13140 70 280 7 7 26 0 19 .02 .10 .09
iis-bupa-cov 345 2 7 2 2 7 0 5 .02 1.00 1.00

lectsched-4-obj 3513 267 557 17 17 36 0 19 .15 .06 .06
macrophage 2260 251 566 18 18 42 5 19 .25 .07 .07

map06 46015 107 245 10 10 20 0 10 0* .09 .08
map10 46015 107 245 10 10 20 0 10 0* .09 .08
map14 46015 107 245 10 10 20 0 10 0* .09 .08
map18 46015 107 245 10 10 20 0 10 0* .09 .08
map20 46015 107 245 10 10 20 0 10 0* .09 .08

mcsched 1669 45 90 15 15 30 0 15 .05 .33 .33
mzzv11 10240 155 310 16 16 32 0 16 .03 .10 .10

neos-1311124 1092 52 1092 4 4 84 0 80 1.00 .07 .07
neos-1426635 520 52 520 4 4 40 0 36 1.00 .07 .07
neos-1426662 832 52 832 4 4 64 0 60 1.00 .07 .07
neos-1436709 676 52 676 4 4 52 0 48 1.00 .07 .07
neos-1440460 468 52 468 4 4 36 0 32 1.00 .07 .07
neos-1442119 728 52 728 4 4 56 0 52 1.00 .07 .07
neos-1442657 624 52 624 4 4 48 0 44 1.00 .07 .07
neos-555424 3815 132 3810 8 8 190 107 75 .99 .06 .04
neos-826841 5516 156 5436 3 3 200 191 6 .98 .01 .03
neos-849702 1737 128 1737 2 2 36 34 0 1.00 .01 .02
neos-911880 888 259 888 7 7 24 0 17 1.00 .02 .02
neos-952987 31329 37 81 4 4 8 0 4 0* .10 .09

neos18 963 53 248 5 5 26 0 21 .25 .09 .10
ns1631475 22696 105 210 11 11 22 0 11 0* .10 .10
ns2081729 661 300 600 3 3 6 0 3 .90 .01 .01

p2m2p1m1p0n100 100 25 92 3 3 12 0 9 .92 .12 .13
protfold 1835 558 1800 2 2 4 0 2 .98 0* 0*

rocII-4-11 3409 2 27 2 2 27 0 25 0* 1.00 1.00
rococoC10-001000 2566 41 82 4 4 8 0 4 .03 .09 .09

rvb-sub 33765 113 226 12 12 24 0 12 0* .10 .10
satellites1-25 9013 200 400 20 20 40 0 20 .04 .10 .10

seymour-disj-10 1209 49 106 5 5 12 0 7 .08 .10 .11
seymour 1255 55 156 5 5 41 29 7 .12 .09 .26
swath 6404 21 163 2 2 8 0 6 .02 .09 .04

transportmoment 9099 85 189 17 17 38 0 21 .02 .20 .20
toll-like 2883 386 1091 26 26 91 44 21 .37 .06 .08
uc-case3 36921 2687 5374 2 2 4 0 2 .14 0* 0*

uct-subprob 2236 136 306 7 7 14 0 7 .13 .05 .04
Original formulation SOI-narrowing

Instance n |ΩGP | #svar |ΩK | |ΩI | #var #wea #str σ ρ υ

core2536-691 15288 88 187 12 12 27 0 15 .01 .13 .14
macrophage 2260 251 566 18 18 39 0 21 .25 .07 .06
neos-555424 3815 132 3810 8 8 145 58 79 .99 .06 .03
neos-826841 5516 156 5436 4 4 46 0 42 .98 .02 0*
neos-849702 1737 128 1737 2 2 9 0 7 1.00 .01 0*

toll-like 2883 386 1091 26 26 59 0 33 .37 .06 .05

Table 1: OI-narrowings of symmetric instances from MIPLIB2010. 0* indicates values of
O(10−3) or less.

Original formulation OI-narrowing
Instance n |ΩGP | #svar |ΩK | |ΩI | #var #wea #str σ ρ υ

arki0002 2456 384 2304 2 2 12 0 10 .93 0* 0*
arki0005 2370 9 18 9 9 18 0 9 0* 1.00 1.00
arki0006 2370 9 18 9 9 18 0 9 0* 1.00 1.00

autocorr bern25-03 26 12 24 2 2 4 0 2 .92 .16 .16
carton7 230 49 162 3 3 13 8 2 .70 .06 .08
carton9 266 83 266 3 3 13 8 2 1.00 .03 .04
cecil 13 733 18 36 9 9 18 0 9 .04 .50 .50

chp partload 2080 82 164 5 5 10 0 5 .07 .06 .06
crudeoil li21 1236 134 268 2 2 4 0 2 .21 .01 .01

ex9 2 6 16 7 16 2 2 6 3 1 1.00 .28 .37
gastrans 89 6 12 2 2 4 0 2 .13 .33 .33

hmittelman 16 3 6 3 3 6 0 3 .37 1.00 1.00
kport20 98 25 55 5 5 11 0 6 .56 .20 .20
kport40 217 48 150 8 8 28 0 20 .69 .16 .18
lop97ic 1626 3 127 3 3 127 0 124 .07 1.00 1.00
lop97icx 986 8 777 8 8 777 0 769 .78 1.00 1.00

mbtd 210 61 210 2 2 12 9 1 1.00 .03 .05
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netmod kar1 456 48 132 3 3 9 0 6 .28 .06 .06
netmod kar2 456 48 132 3 3 9 0 6 .28 .06 .06

powerflow2383wpr 15882 12 24 3 3 6 0 3 0* .25 .25
powerflow2383wpp 15882 12 24 3 3 6 0 3 0* .25 .25

risk2bpb 434 12 72 12 12 72 0 60 .16 1.00 1.00
routingdelay bigm 1115 18 36 12 12 24 0 12 .03 .66 .66
routingdelay proj 1115 18 36 12 12 24 0 12 .03 .66 .66
sepasequ complex 485 5 27 5 5 27 9 13 .05 1.00 1.00

st rv9 50 10 20 10 10 20 0 10 .40 1.00 1.00
super1 1263 12 26 12 12 26 0 14 .02 1.00 1.00
super2 1274 11 24 11 11 24 0 13 .01 1.00 1.00
super3 1281 11 24 11 11 24 0 13 .01 1.00 1.00
super3t 1032 11 24 11 11 24 0 13 .02 1.00 1.00
syn15m 55 2 5 2 2 5 0 3 .09 1.00 1.00

torsion100 5004 2 4 2 2 4 0 2 0* 1.00 1.00
torsion25 1254 2 4 2 2 4 0 2 0* 1.00 1.00
torsion50 2504 1227 2454 3 3 6 0 3 .98 0* 0*
torsion75 3754 2 4 2 2 4 0 2 0* 1.00 1.00

transswitch2383wpr 18768 15 30 3 3 6 0 3 0* .20 .20
transswitch2383wpp 18768 15 30 3 3 6 0 3 0* .20 .20

turkey 512 4 8 4 4 8 0 4 .01 1.00 1.00
unitcommit1 738 2 30 2 2 30 0 28 .04 1.00 1.00
unitcommit2 738 2 30 2 2 30 0 28 .04 1.00 1.00

waste 1425 30 76 15 15 38 0 23 .05 .50 .50
waterund28 760 106 216 2 2 4 0 2 .28 .01 .01

Original formulation SOI-narrowing
Instance n |ΩGP | #svar |ΩK | |ΩI | #var #wea #str σ ρ υ

carton7 230 49 162 3 3 8 0 5 .70 .06 .04
carton9 266 83 266 3 3 8 0 5 1.00 .03 .03

Table 2: OI-narrowings of symmetric instances from MINLPLib2. 0* indicates values of
O(10−3) or less.

Both reformulation strategies yielded the same narrowings for the most part of
the instances. In these cases, we do not present results concerning the SOI reformu-
lation. Recall that Algorithm 1 can yield suboptimal independent sets in terms of
size (see Remark 3 in Sect. 4.3). The reformulation results show that the size of the
maximum cliques is equal to the size of the largest independent sets for all instances;
we thus judge that Algorithm 1 yields good results on average as concerns symmetry
detection.

Original formulation OI-narrowing SOI-narrowing
Dataset # Best Time (h) # Best Time (h) # Best Time (h)

MIPLIB2010 22 49.52 20 48.16 4 48.15
MINLPLib2 14 52.00 17 51.3 2 51.29

Total 36 101.52 37 99.46 6 99.44

Table 3: Aggregated solution statistics for datasets MIPLIB2010 and MINLPLib2.

Table 3 provides aggregated solution statistics. Per dataset and for each formu-
lation, the table reports the number of best performances and the total time com-
sumed in hours to solve all instances. The statistics are more expressive regarding
the MIPLIB2010 library.

Finally, Tables 4 and 5 report details of the optimization results. Per instance and
for each formulation, the table exhibits the best solution found, the user cpu time (in
seconds), the gap (%), the number of BB nodes and the solver status at termination
(opt = optimum found, lim = time limit reached, inf = infeasible instance). Best
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values are emphasized in boldface. Two intances (namely powerflow2383wpp and
transswitch2383wpp) do not appear in Table 5 due to SCIP technical limitations.

We observe that the total computation time of the OI-narrowings is 2 hours
inferior (Table 3), which means that we improved overall, despite the factors that
play against us (as explained below). Instance-wise the results may not be significant
in some cases, but this goes both ways (original formulation vs oi-narrowings): the
SBCs slightly helped to improve the performance of the solvers in 43 cases and
were detrimental in 36 cases out of 87. Despite of providing good results, the SOI-
narrowings did not achieve outstanding performances.

Our investigation indicates that strong OI reformulations occur seldomly in prac-
tice (it was found in 9% of the symmetric public instances tested), yet we encourage
its use since the computational experiments also show that such narrowings helped
to improve the solver’s performance in 75% of the cases (6 out of 8 instances). This
is a fairly good percentual when compared to the overall performance of the OI
reformulations.

Overall, we think that two facts contribute to explain the average-to-poor com-
putational results we have achieved with the public instances. First, apart from the
structure of the group GP , the ratio σ = (#svar/n) may also indicate how symmetric
a formulation P is. Similarly, the ratios ρ = (|ΩI |/|ΩGP |) and υ = (#var/#svar)
may indicate how extensively one has exploited the symmetries of P . All together, we
expect SBCs to make a strong computational impact whenever the triplet (σ, ρ, υ)
tends to (1, 1, 1). However, Tables 1 and 2 show the two patterns in which the ma-
jority of the instances fit into: either the instance is highly symmetric (σ ≈ 1) and
we cannot explore much of its symmetries (ρ, υ) ≈ (0, 0), or it does not exhibit many
symmetries (σ ≈ 0) and we explore almost all of them (ρ, υ) ≈ (1, 1). Second, re-
call that BB type algorithms are complex systems whose performance depend on
many factors (Linear Programming (LP) solutions, branching policies, cut genera-
tion schemes and so on). The presence of SBCs may change LP solutions computed
in the nodes of the BB tree, which means that SBCs can also unduly impact on
branching policies and on cut generation schemes. Since there are elements of arbi-
trary choice regarding the generation of SBCs (recall Remarks 1 and 2), forcing these
choices may, in some cases, prevent the BB algorithm to take the correct decisions.

5.5 BQP Results

Again we start off commenting the results related to the OI reformulation process.
As the content of Table 6 indicates, the BQPs are highly symmetric. We observe
that (σ, ρ, υ) = ([0.5, 1], 1, 1) holds for all cases. Moreover, per BQP generated, every
orbit satisfies the conditions in Proposition 2 and thus we could build nothing but
strong SBCs for all instances.

Original formulation OI-narrowing
Instance n |ΩGP | #svar |ΩK | |ΩI | #var #wea #str σ ρ υ

bqp 70 2xR 70 2 49 2 2 49 0 47 .70 1.00 1.00
bqp 70 3xR 70 3 45 3 3 45 0 42 .64 1.00 1.00
bqp 70 4x14 70 4 56 4 4 56 0 52 .80 1.00 1.00
bqp 70 4xR 70 4 70 4 4 70 0 66 1.00 1.00 1.00
bqp 70 5xR 70 5 58 5 5 58 0 53 .82 1.00 1.00
bqp 70 6x10 70 6 60 6 6 60 0 54 .85 1.00 1.00
bqp 70 7xR 70 7 63 7 7 63 0 56 .90 1.00 1.00
bqp 70 9x7 70 9 63 9 9 63 0 54 .90 1.00 1.00
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bqp 75 2x25 75 2 50 2 2 50 0 48 .66 1.00 1.00
bqp 75 2xR 75 2 39 2 2 39 0 37 .52 1.00 1.00
bqp 75 3xR 75 3 60 3 3 60 0 57 .80 1.00 1.00
bqp 75 4x15 75 4 60 4 4 60 0 56 .80 1.00 1.00
bqp 75 4xR 75 4 54 4 4 54 0 50 .72 1.00 1.00
bqp 75 5x15 75 5 75 5 5 75 0 70 1.00 1.00 1.00
bqp 75 5xR 75 5 66 5 5 66 0 61 .88 1.00 1.00
bqp 75 6xR 75 6 67 6 6 67 0 61 .89 1.00 1.00
bqp 75 7xR 75 7 63 7 7 63 0 56 .84 1.00 1.00
bqp 75 8xR 75 8 66 8 8 66 0 58 .88 1.00 1.00
bqp 80 2x20 80 2 40 2 2 40 0 38 .50 1.00 1.00
bqp 80 2xR 80 2 55 2 2 55 0 53 .68 1.00 1.00
bqp 80 3x20 80 3 60 3 3 60 0 57 .75 1.00 1.00
bqp 80 3xR 80 3 64 3 3 64 0 61 .80 1.00 1.00
bqp 80 4x16 80 4 64 4 4 64 0 60 .80 1.00 1.00
bqp 80 4xR 80 4 65 4 4 65 0 61 .81 1.00 1.00
bqp 80 5x16 80 5 80 5 5 80 0 75 1.00 1.00 1.00
bqp 80 5xR 80 5 70 5 5 70 0 65 .87 1.00 1.00
bqp 80 6xR 80 6 72 6 6 72 0 66 .90 1.00 1.00
bqp 80 7x10 80 7 70 7 7 70 0 63 .87 1.00 1.00
bqp 80 8xR 80 8 68 8 8 68 0 60 .85 1.00 1.00
bqp 85 12x5 85 12 60 12 12 60 0 48 .70 1.00 1.00
bqp 85 16x5 85 16 80 16 16 80 0 64 .94 1.00 1.00
bqp 85 2x17 85 2 34 2 2 34 0 32 .40 1.00 1.00
bqp 85 2xR 85 2 59 2 2 59 0 57 .69 1.00 1.00
bqp 85 3xR 85 3 68 3 3 68 0 65 .80 1.00 1.00
bqp 85 4x17 85 4 68 4 4 68 0 64 .80 1.00 1.00
bqp 85 4xR 85 4 67 4 4 67 0 63 .78 1.00 1.00
bqp 85 5xR 85 5 64 5 5 64 0 59 .75 1.00 1.00
bqp 85 6xR 85 6 75 6 6 75 0 69 .88 1.00 1.00
bqp 85 7xR 85 7 76 7 7 76 0 69 .89 1.00 1.00
bqp 85 8xR 85 8 80 8 8 80 0 72 .94 1.00 1.00
bqp 85 9xR 85 9 85 9 9 85 0 76 1.00 1.00 1.00
bqp 90 2x30 90 2 60 2 2 60 0 58 .66 1.00 1.00
bqp 90 2xR 90 2 65 2 2 65 0 63 .72 1.00 1.00
bqp 90 3x30 90 3 90 3 3 90 0 87 1.00 1.00 1.00
bqp 90 3xR 90 3 75 3 3 75 0 72 .83 1.00 1.00
bqp 90 4x18 90 4 72 4 4 72 0 68 .80 1.00 1.00
bqp 90 4xR 90 4 73 4 4 73 0 69 .81 1.00 1.00
bqp 90 5x15 90 5 75 5 5 75 0 70 .83 1.00 1.00
bqp 90 5xR 90 5 77 5 5 77 0 72 .85 1.00 1.00
bqp 90 6xR 90 6 76 6 6 76 0 70 .84 1.00 1.00
bqp 90 7xR 90 7 70 7 7 70 0 63 .77 1.00 1.00
bqp 90 8x10 90 8 80 8 8 80 0 72 .88 1.00 1.00
bqp 90 9x9 90 9 81 9 9 81 0 72 .90 1.00 1.00
bqp 95 18x5 95 18 90 18 18 90 0 72 .94 1.00 1.00
bqp 95 2xR 95 2 51 2 2 51 0 49 .53 1.00 1.00
bqp 95 3xR 95 3 77 3 3 77 0 74 .81 1.00 1.00
bqp 95 4x19 95 4 76 4 4 76 0 72 .80 1.00 1.00
bqp 95 4xR 95 4 90 4 4 90 0 86 .94 1.00 1.00
bqp 95 5xR 95 5 88 5 5 88 0 83 .92 1.00 1.00
bqp 95 6xR 95 6 89 6 6 89 0 83 .93 1.00 1.00
bqp 95 7xR 95 7 95 7 7 95 0 88 1.00 1.00 1.00
bqp 95 8xR 95 8 95 8 8 95 0 87 1.00 1.00 1.00
bqp 95 9xR 95 9 86 9 9 86 0 77 .90 1.00 1.00
bqp 100 2xR 100 2 70 2 2 70 0 68 .70 1.00 1.00
bqp 100 3x25 100 3 75 3 3 75 0 72 .75 1.00 1.00
bqp 100 3xR 100 3 77 3 3 77 0 74 .77 1.00 1.00
bqp 100 4x20 100 4 80 4 4 80 0 76 .80 1.00 1.00
bqp 100 4xR 100 4 81 4 4 81 0 77 .81 1.00 1.00
bqp 100 5x20 100 5 100 5 5 100 0 95 1.00 1.00 1.00
bqp 100 5xR 100 5 93 5 5 93 0 88 .93 1.00 1.00
bqp 100 6xR 100 6 96 6 6 96 0 90 .96 1.00 1.00
bqp 100 7xR 100 7 88 7 7 88 0 81 .88 1.00 1.00
bqp 100 8xR 100 8 89 8 8 89 0 81 .89 1.00 1.00
bqp 100 9x10 100 9 90 9 9 90 0 81 .90 1.00 1.00

Table 6: OI narrowings of symmetric BQPs. 0* indicates values of O(10−3) or less.

Table 7 presents the aggregated statistics for the BQP dataset. In the majority
of the cases, 51 out of 74, the narrowings performed better, against 21 of the original
formulations. Note however the large difference in terms of execution time: more
than 11 hours in total for the original problems against less than 17 seconds for
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Original formulation OI-narrowing
Dataset # Best Time (s) # Best Time (s)

BQP 21 42054.31 51 16.66

Table 7: Aggregated solution statistics for the BQP dataset.

the OI narrowings. Table 8 exhibits detailed results. All narrowings were solved to
optimality. As a side note, these results somehow support out claim that SBCs may
eventually prevent BB algorithms to take correct decisions since some narrowings
(21 in total) performed worse even under favorable conditions.

Original formulation OI-narrowing
Instance Best Time (s) Gap (%) Nodes St. Best Time (s) Gap (%) Nodes St.

bqp 70 2xR 580 7212.02 14.69 55721277 lim 580 0.14 0 0 opt
bqp 70 3xR 1132 2.04 0 4644 opt 1132 0.58 0 613 opt
bqp 70 4x14 427 2.85 0 21397 opt 427 0.13 0 79 opt
bqp 70 4xR 648 16.13 0 121652 opt 648 0.12 0 120 opt
bqp 70 5xR 197 0.12 0 245 opt 197 0.17 0 47 opt
bqp 70 6x10 155 0.68 0 3065 opt 155 0.13 0 116 opt
bqp 70 7xR 112 0.05 0 163 opt 112 0.09 0 55 opt
bqp 70 9x7 70 0.02 0 49 opt 70 0.05 0 29 opt
bqp 75 2x25 763 0.07 0 141 opt 763 0.08 0 35 opt
bqp 75 2xR 646 0.05 0 55 opt 646 0.11 0 0 opt
bqp 75 3xR 651 0.06 0 111 opt 651 0.17 0 66 opt
bqp 75 4x15 949 14.61 0 126111 opt 949 0.20 0 71 opt
bqp 75 4xR 981 0.26 0 442 opt 981 0.11 0 42 opt
bqp 75 5x15 931 93.00 0 720167 opt 931 0.15 0 186 opt
bqp 75 5xR 604 0.84 0 3901 opt 604 0.20 0 36 opt
bqp 75 6xR 210 0.07 0 132 opt 210 0.12 0 58 opt
bqp 75 7xR 172 0.06 0 176 opt 172 0.09 0 54 opt
bqp 75 8xR 100 0.06 0 174 opt 100 0.08 0 42 opt
bqp 80 2x20 500 0.01 0 0 opt 500 0.02 0 0 opt
bqp 80 2xR 1760 59.90 0 350488 opt 1760 0.06 0 0 opt
bqp 80 3x20 100 0.01 0 0 opt 100 0.02 0 0 opt
bqp 80 3xR 853 0.25 0 371 opt 853 0.24 0 137 opt
bqp 80 4x16 976 75.01 0 549538 opt 976 0.18 0 61 opt
bqp 80 4xR 715 3.42 0 20751 opt 715 0.19 0 29 opt
bqp 80 5x16 936 27.07 0 206700 opt 936 0.40 0 143 opt
bqp 80 5xR 305 0.66 0 1696 opt 305 0.22 0 80 opt
bqp 80 6xR 78 0.04 0 80 opt 78 0.12 0 30 opt
bqp 80 7x10 170 0.04 0 27 opt 170 0.07 0 12 opt
bqp 80 8xR 100 0.06 0 59 opt 100 0.09 0 22 opt
bqp 85 12x5 147 1.25 0 5825 opt 147 0.66 0 1561 opt
bqp 85 16x5 69 1.76 0 10181 opt 69 1.06 0 3740 opt
bqp 85 2x17 2924 0.04 0 24 opt 2924 0.04 0 24 opt
bqp 85 2xR 5189 3.98 0 19265 opt 5189 0.06 0 8 opt
bqp 85 3xR 695 649.55 0 4322081 opt 695 0.10 0 22 opt
bqp 85 4x17 714 27.94 0 156926 opt 714 0.15 0 44 opt
bqp 85 4xR 1374 61.84 0 477419 opt 1374 0.21 0 60 opt
bqp 85 5xR 827 1.75 0 1942 opt 827 0.86 0 260 opt
bqp 85 6xR 233 1.65 0 2463 opt 233 0.17 0 202 opt
bqp 85 7xR 141 0.07 0 172 opt 141 0.06 0 64 opt
bqp 85 8xR 160 0.65 0 346 opt 160 0.06 0 37 opt
bqp 85 9xR 52 0.14 0 339 opt 52 0.10 0 110 opt
bqp 90 2x30 9420 7212.55 35.51 35350170 lim 9420 0.11 0 23 opt
bqp 90 2xR 1872 7212.53 32.07 36978133 lim 1872 0.08 0 3 opt
bqp 90 3x30 6585 7212.67 34.19 33351114 lim 6585 0.16 0 58 opt
bqp 90 3xR 2735 4.49 0 19974 opt 2735 0.18 0 12 opt
bqp 90 4x18 576 40.24 0 191424 opt 576 0.11 0 23 opt
bqp 90 4xR 1047 3.22 0 14661 opt 1047 0.22 0 70 opt
bqp 90 5x15 225 0.01 0 0 opt 225 0.03 0 0 opt
bqp 90 5xR 215 0.61 0 372 opt 215 0.26 0 89 opt
bqp 90 6xR 183 0.12 0 168 opt 183 0.17 0 49 opt
bqp 90 7xR 283 2.90 0 15893 opt 283 0.55 0 283 opt
bqp 90 8x10 925 65.20 0 411100 opt 925 1.17 0 2345 opt
bqp 90 9x9 117 0.04 0 53 opt 117 0.06 0 44 opt
bqp 95 18x5 95 2.22 0 16397 opt 95 1.40 0 4329 opt
bqp 95 2xR 4226 3.26 0 14109 opt 4226 0.11 0 10 opt
bqp 95 3xR 1843 8.24 0 43460 opt 1843 0.12 0 38 opt
bqp 95 4x19 636 29.29 0 188938 opt 636 0.09 0 69 opt
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bqp 95 4xR 480 0.08 0 9 opt 480 0.07 0 12 opt
bqp 95 5xR 468 0.07 0 65 opt 468 0.37 0 50 opt
bqp 95 6xR 220 0.05 0 1 opt 220 0.04 0 0 opt
bqp 95 7xR 468 1.33 0 232 opt 468 0.17 0 27 opt
bqp 95 8xR 1425 3194.67 0 23845041 opt 1425 0.12 0 0 opt
bqp 95 9xR 209 1.06 0 2046 opt 209 0.29 0 243 opt
bqp 100 2xR 8606 7211.99 43.86 28145015 lim 8606 0.32 0 8 opt
bqp 100 3x25 700 0.12 0 71 opt 700 0.07 0 0 opt
bqp 100 3xR 6942 186.10 0 1036046 opt 6942 0.49 0 67 opt
bqp 100 4x20 4230 1238.27 0 7701248 opt 4230 0.22 0 99 opt
bqp 100 4xR 400 1.36 0 5260 opt 400 0.16 0 61 opt
bqp 100 5x20 1280 161.01 0 971381 opt 1280 0.79 0 167 opt
bqp 100 5xR 884 0.16 0 246 opt 884 0.31 0 33 opt
bqp 100 6xR 725 0.09 0 61 opt 725 0.23 0 5 opt
bqp 100 7xR 358 0.10 0 105 opt 358 0.17 0 25 opt
bqp 100 8xR 294 0.16 0 184 opt 294 0.14 0 71 opt
bqp 100 9x10 70 0.02 0 0 opt 70 0.02 0 0 opt

Table 8: BQP results obtained with CPLEX 12.6.

Lastly, we ran a second round of tests restricted to the instances whose original
formulations were not solved to optimality, now forcing CPLEX to unleash its full
power in terms of symmetry breaking (parameter symmetry of CPLEX’s API set to
level 5). The results are presented in Table 9. Remarkably, there is no significant
change in the final gaps, meaning that these instances are indeed hard to solve;
except if one employs, for instance, the OI reformulations.

Original formulation
Instance Best Time (s) Gap (%) St.

bqp 70 2xR 580 7212.03 14.62 lim
bqp 90 2x30 9420 7212.37 35.51 lim
bqp 90 2xR 1872 7212.13 32.07 lim
bqp 90 3x30 6585 7212.88 34.19 lim
bqp 100 2xR 8606 7212.29 43.86 lim

Table 9: Extended results obtained with CPLEX 12.6 for hard BQP instances.

6 Conclusions

In this paper we discussed the notion of Orbital Independence by presenting theoreti-
cal conditions that allow us to break symmetries from different orbits of mathematical
programs concurrently: we introduced the concept of independent sets of orbits. An
algorithm that potentially identifies the largest independent set of orbits of a mathe-
matical program and generates SBCs to all orbits of such set was also presented. We
evaluated the impact of our algorithm by conducting experiments with symmetric
instances taken from the libraries MIPLIB2010 and MINLPLib2. We observed that
the computational results were coherent in theoretical terms but average-to-poor in
practical terms. We conjecture why the results are not expressive, but we take them
mainly as an evidence of reaching the limit of what we can do in terms of SSB: no
significant impact (for the general case) despite exploiting as many orbits as possi-
ble. It seems like determining automatically (prior to exploring the BB tree) a set
of SBCs capable of producing a strong computational impact timewise is as hard
as solving the original problem itself. Yet we consider the exploitation of OI ideas
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dynamically (e.g. by means of branching rules) as a potential improvement direction
since DSB strategies seem to be most efficient ones. Finally, we have introduced a
family of highly symmetric Binary Quadratic Programs which proved to be relevant
to the OI theory since they purposely embed the conditions under which the usage
of Symmetry-Breaking Constraints is majoritarily advantageous.
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