
Noname manuscript No.
(will be inserted by the editor)

A new algorithm for the DMDGP subclass of
Distance Geometry problems
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Abstract The fundamental inverse problem in distance geometry is the one
of finding positions from inter-point distances. The Discretizable Molecular
Distance Geometry Problem (DMDGP) is a subclass of the Distance Geometry
Problem (DGP) whose search space can be discretized and represented by a
binary tree, which can be explored by a Branch-and-Prune (BP) algorithm.
It turns out that this combinatorial search space possesses many interesting
symmetry properties that were studied in the last decade. In this paper, we
present a new algorithm for this subclass of the DGP, which exploits DMDGP
symmetries more effectively than its predecessors. Computational results show
that the speedup, with respect to the classic BP algorithm, is considerable for
sparse DMDGP instances related to protein conformation.
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E-mail: douglas.goncalves@ufsc.br

C. Lavor
IMECC, University of Campinas, 13081-970, Campinas, Brazil
E-mail: clavor@ime.unicamp.br

L. Liberti
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1 Introduction

Given a simple, undirected, weighted graphG = (V,E, d), with weight function
d : E → (0,∞) and an integer K > 0, the Distance Geometry Problem (DGP)
consists in finding a realization x : V → RK such that,

∀{u, v} ∈ E, ||xu − xv|| = duv, (1)

where || · || denotes the Euclidean norm, xv := x(v),∀v ∈ V and duv :=
d({u, v}), ∀{u, v} ∈ E. Each equation in (1) is called a distance constraint. We
say that a realization x satisfies duv if the corresponding distance constraint is
verified. A realization satisfying all distance constraints in (1) is called a valid
realization. We shall call a pair (G,K) a DGP instance.

There are many applications of Distance Geometry, mainly related to K ∈
{1, 2, 3} [3,4,27]. An application to Data Science can be found in [16], and a
very recent survey on this subject is [15]. An important class of the DGP arises
in the context of 3D protein structure calculations (K = 3), with distance
information provided by Nuclear Magnetic Resonance (NMR) experiments [6,
24,31].

Existence and uniqueness of DGP solutions, among other theoretical as-
pects of the problem, are discussed in [19]. Henceforth, we will consider that
the DGP admits a solution.

Assumption 1 The solution set of (1) is non-empty.

The DGP is naturally cast as a search in continuous space. Depending on
the graph structure, however, combinatorial search algorithms can be defined,
notably via the identification of appropriate vertex orders [5,11,14]. Although
DGP is NP-hard [30], these combinatorial approaches allowed to show that
it is Fixed Parameter Tractable (FPT) on certain graph structures, as those
arising in protein conformation [20].

The aforementioned vertex orders define a DGP subclass, called the Dis-
cretizable Molecular Distance Geometry Problem (DMDGP) [12,13], formally
given as follows.

Definition 1 A DGP instance (G,K) is a KDMDGP if there is a vertex order
v1, ..., vn ∈ V , such that

1. G[{v1, ..., vK}] is a clique;
2. (a) For every i > K, vi is adjacent to vi−1, , ..., vi−K ,

(b) CM(vi−1, ..., vi−K) 6= 0.

In the above definition, G[·] denotes the induced subgraph and
CM(vi−1, ..., vi−K) is the Cayley-Menger determinant of vi−1, ..., vi−K [19,
Sec. 2]. Its squared value is proportional to the (K−1)-volume of a realization
xi−1, . . . , xi−K for vi−1, ..., vi−K . Condition CM(vi−1, ..., vi−K) 6= 0 means
that the points xi−1, . . . , xi−K span an affine subspace of dimension K − 1.

Although Definition 1 applies to any dimension K, therefore covering other
applications rather than molecular conformation where K = 3, the term
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“molecular” is commonly kept in the related literature [12,19,5], regardless
of the dimension, to enforce the property that the adjacent predecessors of vi
are contiguous (the term “contiguous K-lateration order” to mean KDMDGP
is used in [5]), a desirable property when ordering atoms of a protein [12,11].

When the dimension K is clear from the context, we shall simply use
DMDGP rather than KDMDGP. Moreover, without loss of generality, when-
ever we denote an edge by {vi, vj} ∈ E, we will assume that i < j, i.e vi
precedes vj in the vertex order of Definition 1.

Properties 1 and 2(a) of Definition 1 says that G is composed by a chain
of contiguous (K + 1)-cliques. Moreover, properties 1 and 2 allow us to turn
the search space into a binary tree, in the following way.

After fixing the positions for the first K vertices, for each new vertex vi,
with i > K, property 2(a) ensures that the possible positions xi for vertex
vi lie in the intersection of K spheres centered at xi−1, . . . , xi−K with radii
di−1,i, . . . , di−K,i, respectively. Property 2(b) guarantees that there are at most
two points, let us say {x+

i , x
−
i }, in such intersection [23]. This spheres inter-

section can be computed in many different ways that we will not cover in this
paper but are well studied in the literature [1,23].

Remark 1 The above process is known in the literature as K-lateration [19].

Thus, following the vertex order, after fixing the first K vertices, each new
vertex has at most 2 possible positions, which of course depend on the position
of its K immediate adjacent predecessors, leading to a binary tree of possible
positions, where each path, from the root to a leaf node, corresponds to a
possible realization for the graph G.

However, not all of these possible realizations (paths on the tree) are valid,
because G may contain other edges {h, i}, with |h − i| > K, associated to
distance constraints that are not satisfied by such realizations. The edges given
in Definition 1 are called discretization edges and the others, that may be (or
not) available, are called pruning edges.

Henceforth, let us partition E = ED∪EP , where ED is the set of discretiza-
tion edges and EP the set of pruning edges. Clearly, we can also partition
the equations in (1) in discretization edge constraints and pruning edge con-
straints. We remark that, according to Definition 1, ED = {{i, j} ∈ E | |i−j| ≤
K} and therefore EP = {{i, j} ∈ E | |i− j| > K}.

The Branch-and-Prune (BP) algorithm [18] explores the DMDGP binary
tree in a depth first manner and validates possible positions for vertices as
soon as a pruning edge appears. A pseudo-code is given in Algorithm 1.

In Algorithm 1, the phrase “x+
i is feasible” means that the equations

∀h : h < i, {vh, vi} ∈ EP , ‖x+
i − xh‖ = dhi,

are satisfied up to a certain tolerance. In Step 5 positions x+
i and x−i are

computed via K-lateration. See [19,1,23] for details.
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Algorithm 1 BP
1: BP(i, n,G, x) # (i > K)
2: if (i > n) then
3: return x
4: else
5: Find solutions {x+i , x

−
i } for the system: ‖x` − xi‖2 = d2`,i, ` = i−K, . . . , i− 1.

6: if x+i is feasible then

7: Set xi = x+i and call BP(i+ 1, n,G, x). # 1st candidate position
8: end if
9: if x−i is feasible then

10: Set xi = x−i and call BP(i+ 1, n,G, x). # 2nd candidate position
11: end if
12: end if

Computational experiments in [12] showed that BP outperforms methods
based on global continuation [25] and semidefinite programming [10] on in-
stances of the DMDGP subclass, suggesting BP as the method of choice for
this subclass of DGPs.

In addition to the discretization of the DGP search space, the DMDGP
order also implies symmetry properties of such discrete space [21,17,29]. From
the computational point of view, one of the most important of such properties,
in the context of this paper, is that all DMDGP solutions can be determined
from just one solution. This property is related to the DMDGP symmetry
vertices, which can be identified a priori, based on the input graph (see next
section). Once a first solution is found, the others can be obtained by partial
reflections of the first, based on symmetry hyperplanes associated to these
vertices.

Previous works [26,20] exploited symmetry to reconstruct all valid realiza-
tions from the first one found and to prove that the BP algorithm is fixed-
parameter tractable. Others [9,8], considered decomposition-based variants of
BP which leverage DMDGP symmetry information.

In this work, we exploit DMDGP symmetry in order to find the first valid
realization more quickly. We handle the DMDGP as a sequence of nested sub-
problems, each one defined by a pruning edge {i, j} ∈ EP . For each subprob-
lem, we can exploit any realization x (valid or not) for building the symmetry
hyperplanes (which will define partial reflections). Once we have them, we
apply compositions of such partial reflections only to xj to find its correct po-
sition. Only after finding the correct combination of partial reflections do we
use it to obtain the positions of other vertices. After a subproblem is solved,
the set of valid partial reflections is reduced and a single symmetry hyperplane
is enough to handle positions xi+K , . . . , xj in the next subproblem.

In terms of the system of nonlinear equations (1), we solve a subset of
equations and then gradually include new equations to this subset: the new
equations are solved subject to the original equations in the subset. This pro-
cess is repeated until all equations in (1) are satisfied.

These ideas lead to a new algorithm which deals with pruning edges, one-
by-one, and takes advantage of a valid realization for already solved subprob-
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lems. Computational results illustrate the advantage of the new algorithm,
compared with the classic BP.

This paper is organized as follows. Section 2 briefly reviews the main results
about DMDGP symmetries and Section 3 explains how they can be used to
solve a sequence of nested subproblems. The new algorithm, its correctness and
implementation details are presented in Section 4, and comparisons with the
classic BP in protein-like instances are given in Section 5. Concluding remarks
are given in Section 6.

2 DMDGP symmetries

Before discussing the new algorithm, we shall present a theoretical background
on DMDGP symmetries and recall some results from the literature [20,22,19].

Given a realization x satisfying (1), it is clear that there are uncount-
ably many others, which satisfy the same set of distances, and which can be
obtained by translations, rotations or reflections of x (because these trans-
formations preserve all pairwise distances). Since the assumptions of Defini-
tion 1 ensure that the first K vertices form a clique, a valid realization for
G[v1, . . . , vK ] in RK can be found by matrix decomposition methods [7] or a
sequence of spheres intersections [1], for example. Once the positions of these
first K vertices are fixed, the degrees of freedom of translations and rotations
are removed.

From here on, we say that two realizations are incongruent (modulo trans-
lations and rotations) if they are not translations, rotations or total reflections
of each other. For technical reasons, we only allow the total reflections through
the hyperplane defined by the positions of the first K vertices in the vertex
order (so two realizations, one of which is a reflection of the other through
this hyperplane, will both be considered members of any set of “incongruent
realizations”).

Definition 2 Let X̂ be the set of all incongruent realizations satisfying dis-
tance constraints associated to discretization edges in ED, i.e., ‖xi−xj‖ = dij
such that |i− j| ≤ K. A realization x ∈ X̂ is called a possible realization.

As discussed in Section 1, each x ∈ X̂ corresponds to a path from the
root to a leaf node in the binary tree of a DMDGP instance. Notice that
|X̂| = 2|V |−K .

Definition 3 A realization x ∈ X̂ is said to be valid if x is a solution of (1).
Let X ⊂ X̂ denote the set of all incongruent valid realizations of a DMDGP
instance.

The computational experiments in [12] suggested that |X| is always a power
of 2. A conjecture was formulated and quickly disproved using some instances
constructed by hand, until the conjecture was shown to be true with proba-
bility one in [22].
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d = R4

x′ (c) = R3
x(a)

b = R4
x(a) c = R3

x(b) = R3
x(R4
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Fig. 1 The leftmost path/realization x is represented by a straight line whereas the right-
most x′ by a dashed line. All 4 possible positions for the fourth vertex (denoted by a, b, c
and d) can be generated by x and its induced reflections R3

x and R4
x. Illustration for K = 2.

Given x ∈ X̂, for i > K, let Rix(y) be the reflection of y ∈ RK through the
hyperplane defined by xi−K , . . . , xi−1, with normal pi:

Rix(y) = (I − 2pip
T
i )(y − xi−1) + xi−1,

assuming ‖pi‖ = 1. Let us also define, for all i > K and x ∈ X̂, partial
reflection operators:

gi(x) = (x1, x2, . . . , xi−1, R
i
x(xi), R

i
x(xi+1), . . . , Rix(xn)). (2)

Remark 2 Some direct but useful properties of reflections and partial reflec-
tions are in order:

1. A reflection Rix(y) preserves the distance from y to any point in the hyper-
plane defined by xi−K , . . . , xi−1.

2. The pairwise distances for Rix(xi), R
i
x(xi+1), . . . , Rix(xn) are the same as

those for xi, . . . , xn. As a consequence of this, and the fact that Rix(x`) =
x`, for ` = i − K, . . . , i − 1, all pairwise distances for xi−K , . . . , xn from
x ∈ X̂ are preserved in gi(x).

3. Partial reflections preserve distances related to discretization edges ED, so
that gi(x) ∈ X̂, for every x ∈ X̂.

4. All realizations in X̂ can be generated from a single x ∈ X̂ by the compo-
sition of partial reflection operators gi [19, Sec. 3.3.8].

Let us now recall one of the main results about KDMDGP symmetries.

Theorem 1 (Theorem 3.2 in [19]) With probability 1, for all j > K + i,
there is a set Hij of 2j−i−K real positive values such that for each x ∈ X̂, we
have ‖xj − xi‖ ∈ Hij. Furthermore, for all x′, x ∈ X̂ such that x′ 6= x and
x′t = xt, for t ≤ i+K−1, ‖xj−xi‖ = ‖x′j−xi‖ if and only if x′j = Ri+Kx (xj).
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In Theorem 1, “with probability 1” means that the set of KDMDGP in-
stances for which the statements do not hold has Lebesgue measure zero in
the set of all KDMDGP instances [22].

The first part of Theorem 1 says that, for j > K+i, the possible realizations
x ∈ X̂ yield a set of 2j−i−K distinct values for ‖xi−xj‖. Let X̂i+K−1(x) be the

subset of possible realizations x′ ∈ X̂ that agree with x in the first i+K − 1
positions. Given a possible realization x, each of these 2j−i−K distinct values
is associated to a pair of 2j−i−K+1 possible positions for xj from realizations

in X̂i+K−1(x) (see Figure 1 where possible values for ‖x1−x3‖ and ‖x1−x4‖
are represented by the radii of gray and, respectively, black arcs centered at
x1).

Since j − i > K, if the distance dij is available, it must be a pruning

distance. In view of Assumption 1, then ‖xi − xj‖ = dij for some x ∈ X̂. Let

such a x define the set X̂i+K−1(x). Now, from the second part of Theorem 1,
we have that among the possible realizations x′ ∈ X̂i+K−1(x), only those such
that x′j ∈ {xj , Ri+Kx (xj)} are feasible with respect to dij . If vj is the last vertex

in the order, then only two realizations in X̂i+K−1(x) are feasible.
For every DMDGP solution, there is another one symmetric to the hyper-

plane defined by the positions of the first K vertices. Moreover, as a conse-
quence of Theorem 1, the number of solutions doubles for every other symmetry
vertex belonging to the following set [22]:

S := {v` ∈ V | 6 ∃{vi, vj} ∈ E with i+K < ` ≤ j}. (3)

The vertex vK+1 is always in S, because the first K vertices define a sym-
metry hyperplane. The other symmetry hyperplanes are given by the positions
of vi−K , . . . , vi−1, if vi ∈ S, for i > K + 1. As mentioned in the Section 1, S
can be computed before solving a KDMDGP instance, which implies that the
number of solutions is known a priori, and given by 2|S|, with probability one.

Theorem 2 (Theorem 3.4 in [20]) Let (G,K) be a feasible KDMDGP and
S its set of symmetry vertices. Then, with probability 1, |X| = 2|S|.

The 2|S| valid realizations are incongruent modulo translations and rota-
tions, meaning that they differ one from another only by partial reflections (or
a total reflection through the first symmetry hyperplane, as explained above).

It is important to notice from (3) that the addition of new pruning edges
in E may reduce the number of elements (symmetry vertices) in S.

A direct consequence of Theorem 2 is the following corollary.

Corollary 1 Let (G,K) be a feasible KDMDGP instance where |V (G)| =
n > K. If {v1, vn} ∈ E, then (G,K) has only two incongruent solutions which
are reflections of each other through the symmetry hyperplane defined by the
position of the first K vertices.

Proof If {v1, vn} ∈ E, then S = {vK+1}, which implies that the number of
solutions is 2|S| = 21 = 2. If one of these solutions is x, then the other is x′,
the reflection of x through the hyperplane defined by x1, . . . , xK . ut



8 Douglas S. Gonçalves* et al.

A result that will be useful ahead is given in Proposition 1 and illustrated
in Figure 1.

Proposition 1 (Lemma 4.2 in [20]) Let x ∈ X̂, k > i + 1 and pi 6= pk
be the normals to the hyperplanes defining Rix(·) and Rkx(·), respectively. If
y ∈ RK is not in the hyperplanes containing the origin and normal to pi and
pk, then

Rkgi(x)(R
i
x(y)) = Rix(Rkx(y)).

Proposition 1 tells us that compositions of partial reflections that depend
on more than one realization (e.g x and x′ := gk(x)) can be described in terms
of reflections based on a single realization. For example, for k > i, we have

(gk ◦ gi)(x) := gk(gi(x))

= gk(x1, . . . , xi−1, R
i
x(xi), . . . , R

i
x(xn))

= (x1, . . . , xi−1, R
i
x(xi), . . . , R

i
x(xk−1), Rkx′(R

i
x(xk)), . . . , Rkx′(R

i
x(xn))

= (x1, . . . , xi−1, R
i
x(xi), . . . , R

i
x(xk−1), Rix(Rkx(xk)), . . . , Rix(Rkx(xn)),

where the last equality follows from Proposition 1.
Therefore, for a DMDGP, given x ∈ X̂, problem (1) can be cast as finding

a binary vector s ∈ {0, 1}n−K , such that

x(s) := U(x, s) = gs1K+1 ◦ · · · ◦ g
sn−K
n (x) (4)

satisfies ||xi(s) − xj(s)|| = dij , for all {i, j} ∈ E. Here, g1
i (·) = gi(·) and

g0
i (·) = I(·), where I(x) = x. In Section 3 we shall explain how to efficiently

perform the search of this binary vector taking into account DMDGP symme-
try information.

To close this section, let us describe how to generate other valid realization
x(s′) ∈ X from a given one x(s) ∈ X. Let x(s) be a valid realization for (G,K).
The vertices in the set S determine which components of the binary vector
s ∈ {0, 1}n−K from (4) are allowed to change in order to obtain another
valid realization for (G,K). In other words, the search space for the new
s′ ∈ {0, 1}n−K is reduced to

s′ ∈ B := {s′ ∈ {0, 1}n−K | s′` = s` if vK+` /∈ S}. (5)

Lemma 1 Let S 6= ∅ and x(s) be a valid realization for (G,K). For every
s′ ∈ B, x(s′) ∈ X.

Proof Since x(s′) from Eq. (4) involves only partial reflections, in view of
Property 3 in Remark 2, x(s′) ∈ X̂, i.e ‖xi(s′)− xj(s′)‖ = dij ,∀{i, j} ∈ ED.

It remains to show that x(s′) does not violate distance constraints associ-
ated to pruning edges {i, j} ∈ EP . Since the reflections are applied to positions
x` such that ` ≥ K + 1, edges {i, j} ∈ E with i < j ≤ K are not affected.
Thus, assume that K + 1 ≤ j ≤ n.

We have that vi+K+1, . . . , vj 6∈ S, and from (4) and (2), the positions
x`, . . . , xi+K+1, . . . , xj are updated by reflections R`x(x`), . . . , R

`
x(xi+K+1),
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. . . , R`x(xj), for K + 1 ≤ ` ≤ i + K such that v` ∈ S. Since either i ≤ ` − 1,
i.e xi is in the hyperplane associated to v`, or i ≥ `, i.e. xi comes after this
hyperplane, in view of Remark 2, Property 2, these reflections are such that
‖xi(s′)− xj(s′)‖ = dij . ut

3 Nested DMDGP subproblems

Given a DMDGP instance, properties 1 and 2 of Definition 1 give rise to a
rich symmetric structure for the corresponding DGP problem, as discussed in
Section 2.

It is interesting to observe that, on one hand, the absence of pruning edges
turns the DMDGP into a trivial problem, because any path from the root to a
leaf node of the search tree corresponds to a valid realization, i.e X̂ = X, and
all other solutions can be built by partial reflections. On the other hand, one
of the most challenging DMDGP instances to solve with BP is the one where
the only pruning edge is {v1, vn}. In that case, feasibility can only be verified
at a leaf node, and for a standard depth-first search (DFS), it may represent
a costly backtracking process until the first valid realization is found.

Differently, given x ∈ X̂, the present proposal is to iteratively handle the
pruning edge constraints following a given order < on EP .

As mentioned in Section 2 (after Theorem 2), each pruning edge {i, j}
may reduce the set of valid partial reflection operations that can be applied
to realizations of the vertices vi+K , . . . , vj . Thus, by keeping track of valid
partial reflections (or equivalently their corresponding symmetry vertices), it
is possible to consistently modify a given realization satisfying a subset of
distance constraints to also satisfy a new pruning edge constraint. This process
is repeated until all distance constraints are satisfied.

For this, we enumerate edges in EP as e1, e2, . . . , em, with m = |EP |, and
use ek < e` to mean that edge ek precedes e` in this order. We define the set
of pruning edges preceding edge {i, j} by

P ij := {{u,w} = e′ ∈ EP | e′ < e = {i, j}}. (6)

Then, we define a sequence of subproblems spanned by {i, j} ∈ EP follow-
ing the above pruning edge order.

Definition 4 Let (G,K) be a feasible KDMDGP with G = (V,E, d). Let
Gij = (V,Eij , d|Eij ), where Eij = ED ∪ P ij ∪ {i, j}, {i, j} ∈ EP and d|Eij is

the restriction of d to Eij . We say that (Gij ,K) is a KDMDGP subproblem
of (G,K) spanned by pruning edge {i, j}.

It is clear that (Gij ,K) is itself a DMDGP problem. Let us denote by
X(Gij) the solution set of (Gij ,K).

Proposition 2 Let G = (V,E, d) and H = (V, F, d̂) such that (G,K) and

(H,K) are feasible KDMDGPs. If E ⊂ F and d({i, j}) = d̂({i, j}),∀{i, j} ∈
E, then X(G) ⊃ X(H).
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Let (Guw,K) and (Gij ,K) be DMDGP subproblems spanned by edges
{u,w} and {i, j}, respectively, such that {u,w} < {i, j}. In view of Proposi-
tion 2, we have X(Guw) ⊃ X(Gij).

Moreover, in this sequence of DMDGP subproblems, each time a new prun-
ing edge is included, e.g Eij = Euw ∪ {i, j}, the set of symmetry vertices (see
Eq. (3)) for (Guw,K) may be reduced. This motivates us to define the set of
necessary symmetry vertices for subproblem (Gij ,K) as:

Sij = {v` ∈ {vi+K+1, . . . , vj} | 6 ∃{u,w} ∈ P ij , u+K < ` ≤ w}. (7)

Let x(s) be the current realization which is valid for (Guw,K) and let
ek+1 = {i, j} > {u,w} = ek. The vertices in the set Sij determine which
components of the binary vector s ∈ {0, 1}n−K from Eq. (4) are allowed to
change in order to obtain a valid realization for (Gij ,K). In other words, the
search space for the new s′ ∈ {0, 1}n−K is reduced to

s′ ∈ Bij := {s′ ∈ {0, 1}n−K | s′` = s` if vi+K+` /∈ Sij}. (8)

Lemma 2 Let Sij 6= ∅ and ek+1 = {i, j} > {u,w} = ek. Let x(s) be a valid
realization for (Guw,K). For every s′ ∈ Bij, x(s′) ∈ X(Guw).

Proof The proof is similar to the one of Lemma 1 and therefore is left in the
Appendix. ut

Remark 3 From Proposition 2 and Lemma 2, if ek+1 = {i, j} > {u,w} = ek,
then, given x(s) ∈ X(Guw) ⊃ X(Gij), to obtain x(s′) ∈ X(Gij) it suffices to
find s′ ∈ Bij such that ‖xi(s′)− xj(s′)‖ = dij .

Furthermore, in the following we show that there is a unique s′ ∈ Bij

satisfying such condition. For this, let us recall a simple fact that follows from
Definition 1.

Proposition 3 If (G,K) is a KDMDGP instance, so is (G[vi, . . . , vj ],K), for
j > K + i.

Thus, given a KDMDGP instance (G,K), any subgraph induced by at least
K + 1 consecutive (w.r.t. the vertex order) vertices of V (G) is a KDMDGP
itself. Proposition 3 implies that each {vi, vj} ∈ EP defines a DMDGP instance
based on the subgraph G[vi, . . . , vj ].

Proposition 4 Any DMDGP instance (G[vi, . . . , vj ],K) spanned by {vi, vj} ∈
EP has only two solutions.

Proof It follows from Proposition 3 and Corollary 1. ut

Proposition 4 says that each DMDGP instance (G[vi, . . . , vj ],K) spanned
by a pruning edge {i, j} has only two solutions, which are reflections of each
other through the hyperplane defined by xi, . . . , xi+K−1. These two solutions
correspond to a particular configuration of the components s′i+K , . . . , s

′
j . The

only difference between the two is the first component s′i+K . Since vi+K 6∈ Sij
and the components of s′` with ` ≤ i+K or ` > j are kept fixed, we conclude
that s′ ∈ Bij is unique.
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Algorithm 2 SBBU

1: SBBU(G,K, (e1, . . . , em), x ∈ X̂)
2: Set s = 0, x(0) = x
3: for k = 1, 2, . . . ,m do
4: {i, j} = ek
5: if |Sij | > 0 then
6: Find s′ ∈ Bij : ‖xi(s′)− xj(s′)‖ = dij
7: Update s = s′ and x(s) = U(x, s)
8: end if
9: end for

10: return a valid realization x(s)

4 New algorithm

Henceforth, we assume that subproblems (Gij ,K) spanned by pruning edges
{i, j} are solved following a given order < in EP and that a realization x ∈ X̂
is given.

4.1 The conceptual algorithm

First, we present a conceptual algorithm (Algorithm 2) which summarizes the
ideas discussed in the previous sections.

When solving subproblem (Gij ,K), if |Sij | = 0 then this subproblem has
already been solved implicitly, according to the following proposition.

Proposition 5 Let x(s) be a valid realization for (Guw,K), for all {u,w} ∈
P ij. If Sij = ∅, then x(s) is valid for (Gij ,K).

Proof If Sij = ∅, then for every v` ∈ {vi+K+1, . . . , vj}, ∃{u,w} ∈ P ij such
that u+K + 1 ≤ ` ≤ w. Suppose that x(s) is such that ‖xi(s)− xj(s)‖ 6= dij .
(a) By Theorem 1 and Assumption 1, ∃s′ ∈ {0, 1}n−K with some s′` 6= s`,
for u + K + 1 ≤ ` ≤ w, such that ‖xi(s′) − xj(s

′)‖ = dij . (b) Since ` ≥
u+K+1, it follows that xw(s′) /∈ {xw(s), Ru+K

x (xw(s))}. Thus, by Theorem 1,
‖xw(s′) − xu(s′)‖ 6= duw. But (a) and (b) together contradict Assumption 1.
Hence ‖xi(s)− xj(s)‖ = dij and the assertion follows from Lemma 2. ut

Otherwise, for |Sij | > 0, in Step 6 we perform an exhaustive search to find
s′ ∈ Bij such that ‖xi(s′) − xj(s′)‖ = dij . In Step 7, we update the current
realization to x(s′) according to Eq. (4).

Theorem 3 Let (G,K) be a feasible KDMDGP instance. Considering exact
arithmetic, Algorithm 2 finds x ∈ X.

Proof Since x(0) = x ∈ X̂, due to Assumption 1 and Lemma 2, Step 6 is
well-defined. From Remark 3 and Step 6, it follows that x(s′) ∈ X(Gij), for
every ek = {i, j}. Thus, since for the last pruning edge em = {im, jm}, we
have Eim,jm = E, i.e Gim,jm = G, after this last subproblem is solved, x(s) ∈
X(Gim,jm) = X(G) = X. ut
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4.2 A practical algorithm

In this section, based on a particular pruning edge order, we introduce a prac-
tical version of Algorithm 2 which:

1. does not required an initial realization x ∈ X̂;
2. avoids the computation and storage of unnecessary reflectors Rix(·);
3. may result in less operations in the update step (Step 7) of Algorithm 2;
4. allows us to discuss a concrete implementation for the sets Sij .

For this, instead of working with a full realization x(s) ∈ X̂, which is
updated through the binary vector s by Eq. (4), and computing and storing
reflectors Rix(·) based on x = x(0) ∈ X̂, the idea is to grow a partial realization
x1, . . . , xt, where t = arg max{w | {u,w} ∈ P ij}, and compute the necessary
reflectors on the fly based on the current partial realization and Sij . This
way, for each subproblem (Gij ,K), we do not compute full valid realizations
x1, . . . , xn but valid partial realizations x1, . . . , xj , with j ≤ t.

Assumption 2 Pruning edges {i, j}, with i < j, are sorted in increasing
order of j, followed by a decreasing order of i.

Under this order, we can re-write the set of pruning edges preceding {i, j}
as

P ij = {{u,w} ∈ EP | u < w < j ∨ (w = j ∧ w > u > i)}. (9)

Definition 5 We say that x1, . . . , xt, with j ≤ t, is a valid partial realization
for (Gij ,K), if x1, . . . , xt satisfies all distance constraints associated to edges
in {{u,w} ∈ E(Gij) | w ≤ j}.

Remark 4 Recall that E(Gij) = Eij = ED∪P ij∪{i, j} and thanks to Assump-
tion 2, there is no {u,w} ∈ P ij , with w > j. This allows us to extend a valid
partial realization x1, . . . , xt for (Gij ,K) to a valid full realization x1, . . . , xn
for (Gij ,K), i.e x ∈ X(Gij), by simply growing x1, . . . , xt to x1, . . . , xn using
discretization distances (see Subsection 4.2.1), because no distance constraint
{u,w} ∈ P ij ∪ {i, j} is affected by this operation.

Assumption 2, along with (9), will be used in the results that follow. Using
this concepts we will show in the next subsections that when dealing with
subproblem (Gij ,K):

1. given a partial realization x1, . . . , xt satisfying discretization distances and
distances corresponding to pruning edges in P ij , it can be extended to
x1, . . . , xt, . . . , xj keeping feasibility of such distance constraints and new
discretization constraints;

2. it is possible to apply partial reflections to this extended partial realization
in order to fulfill ‖xi−xj‖ = dij without violating the distance constraints
considered so far.
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4.2.1 Initialization of candidate positions (Growth)

In Section 4.2.2 we shall explain how to find a valid partial realization for
DMDGP subproblems (Gij ,K) by composing reflections through symmetry
hyperplanes and applying them to positions xi+K+1, . . . , xj . This procedure
assumes that candidate positions for xi, . . . , xj are available when we start to
solve (Gij ,K). In this section, we describe how to initialize these positions.

From now on, we assume that initialization of candidate positions must
follow the vertex order from v1 to vn, meaning that if (Gij ,K) is the current
subproblem, and xt is the last initialized position, such that t < j, then we
initialize positions from xt+1 to xj , whereas x1, . . . , xt remain unchanged. In
other words, the candidate positions xt+1, . . . , xj are grown from the current
partial realization x1, . . . , xt using only distance constraints associated to dis-
cretization edges. Moreover, each position xi is initialized only once, although
it can be modified later (see Section 4.2.2) in order to satisfy a distance con-
straint corresponding to a pruning edge e′ ≥ e = {i, j}. This is formalized in
Proposition 6.

Proposition 6 Assume edges in EP are ordered as e1, . . . , em. Then, before
solving (Gij ,K), positions x1, . . . , xj can be initialized such that

∀{`, k} ∈ ED ∩ E(G[v1, . . . , vj ]), ‖x` − xk‖ = d`k, (10)

and

∀{`, k} ∈ P ij , ‖x` − xk‖ = d`k. (11)

Proof We prove this by induction on the edge order. In the base case we con-
sider e1 = {i1, j1} ∈ EP spanning the first subproblem to be solved. The
positions xi, for i = 1, . . . , j1 are initialized right away. From Definition 1,
x1, . . . , xK can be localized uniquely (up to rotations and translations) by dif-
ferent methods [7,1]. Hence, ‖x`−xk‖ = d`k,∀{`, k} ∈ E(G[v1, . . . , vK ]). Then,
by K-lateration (see Remark. 1), there are at most two positions {x+

i , x
−
i } for

vi ∈ V for each K < i ≤ j1. Notice that any partial realization x1, . . . , xj1 is
enough to build partial reflections. The correct alternative will be chosen later
by the appropriate partial reflection composition which satisfies constraints
defined by pruning edges (Section 4.2.2 gives more details). Thus, without loss
of generality, let x1, . . . , xj1 be the partial realization obtained by choosing x−i ,
for every i = K + 1, . . . , j1. Since P i1j1 = ∅, this partial realization satisfies
(10) and (11) for {i, j} = {i1, j1}.

The induction hypothesis is that (10) and (11) hold for pruning edges
e1, . . . , ek, i.e x1, . . . , xt is a valid partial realization for all subproblems spanned
by these edges, where

t := max{w | {u,w} ∈ P ij} = max{w | {u,w} ∈ {e1, . . . , ek}}.

In the inductive step, let us prove that (10) and (11) also hold for pruning
edge ek+1 = {i, j} spanning subproblem (Gij ,K).
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Algorithm 3 InitializePositions
1: InitializePositions(x, t, j)
2: if t ≥ j then
3: return x and t.
4: end if
5: if t = 0 then
6: Initialize x1, . . . , xK as a solution of ‖x` − xi‖2 = d2`i, ∀{`, i} ∈ E(G[v1, . . . , vK ])
7: Set t = K
8: end if
9: for i = t+ 1, . . . , j do

10: Find solutions {x+i , x
−
i } for the system: ‖x` − xi‖2 = d2`,i, ` = i−K, . . . , i− 1.

11: Set xi = x−i
12: end for
13: Set t = j
14: return x and t.

Since subproblems spanned by edges in P ij are solved, positions x1, . . . , xt
are already initialized and satisfy (11), and (10) with vj = vt.

If j ≤ t, then there is nothing left to do. Thus, suppose j > t. Then,
positions xt+1, . . . , xj can be initialized by K-lateration (see Remark 1 and
Algorithm 3) based on discretization distances such that (10) holds. ut

Remark 5 The proof of Proposition 6 describes a procedure for initialization of
x1, . . . , xj before solving (Gij ,K). It is important to notice that such initializa-
tion is done sequentially and depends on previously computed positions which
are not recomputed in this step. Thus, after the initialization, the current
partial realization continues to be valid for all already solved subproblems.

Algorithm 3 gives a pseudocode for the function IntializePositions which re-
ceives a current realization x (actually, the current partial realization x1, . . . , xt),
the index of the last initialized position t, and the index j of the last vertex
whose position needs initialization. Updated x and t are returned by this func-
tion.

4.2.2 Solving DMDGP subproblems (Correction)

Now we explain how to find a valid partial realization for a DMDGP subprob-
lem (Gij ,K), given a valid partial realization x1, . . . , xt for (Guw,K), ∀{u,w} ∈
P ij .

Recall from Proposition 1 that given positions xi+1, . . . , xi+K+1, . . . , xj ,
valid or not, we can build all necessary symmetry hyperplanes and their corre-
sponding reflection operators Ri+K+1

x (·), . . . , Rjx(·). Then, based on Theorem 1
and Proposition 4, we can apply compositions of such reflection operators only
to xj until we find its correct position, as illustrated in Figure 1 for the 2D
case.

The only decision to be taken is whether each of the reflectors Ri+K+1
x (·),

. . . , Rjx(·) should be applied or not to xj in order to fulfill ‖xi−R(xj , s̄)‖ = dij ,
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where R(., s̄) is a composition of the chosen reflectors:

R(y, s̄) := (Ri+K+1
x )s̄1(Ri+K+2

x )s̄2 . . . (Rjx)s̄j−i−K (y). (12)

In (12), the binary vector s̄ is of size j − i −K, and (R`x)0 := I, the identity
operator in RK , whereas (R`x)1 := R`x, for ` = i+K + 1, . . . , j.

In contrast to Algorithm 2, where s is the global binary decision variable
and all the reflectors are computed based on the first realization x(0) = x ∈ X̂,
now the reflectors Ri+K+`

x (·) for which vi+K+` ∈ Sij are computed based
on the current partial realization x1, . . . , xt, and s̄ is a local binary decision
variable belonging to

B̄ij := {s̄ ∈ {0, 1}j−i−K | s̄` = 0 if vi+K+` /∈ Sij}. (13)

Thus, we look for a binary vector s̄ ∈ B̄ij such that

x′j = R(xj , s̄) = (Ri+K+1
x )s̄1(Ri+K+2

x )s̄2 . . . (Rjx)s̄j−i−K (xj) (14)

satisfies ‖xi − x′j‖ = dij . We remark that this search is exhaustive: we test all

|B̄ij | = 2|S
ij | possible choices for s̄ (recall that there is a unique s̄ that works,

as discussed after Proposition 4).
Once s̄ is found, the positions of vi+K+1, . . . , vt are updated according to:

x′` = Ū(x`, s̄) :=

(
`−i−K∏
t=1

(Ri+K+t
x )s̄t

)
(x`), ` = i+K + 1, . . . , t. (15)

This update maintain feasibility of x1, . . . , xt with respect to (Guw,K), for
every {u,w} ∈ P ij , because positions xu+K , . . . , xw are only updated simul-
taneously by partial reflections Rvx(xu+K), . . . , Rvx(xw), for v ≤ u+K.

4.2.3 Symmetry vertex sets

The ideas of the Subsections 4.2.1 and 4.2.2 lead to Algorithm 4. This
algorithm makes use of C, a partition of {vK+1, . . . , vn} used to obtain the sets
Sij . At the beginning, we set C = {{vi}}ni=K+1. This partition is updated in
Step 14 taking into account already solved subproblems. Assume that subsets
of vertices in C are ordered according to the vertex order of Definition 1. Let
us denote by first(C0) the first vertex of C0 ∈ C.

We also introduce a function ρC : {K + 1, . . . , n} → C, parametrized by
C, such that ρC(`) returns the unique element of C containing vertex v`. The
next proposition shows that this function is well-defined at every iteration of
Algorithm 4.

Proposition 7 At every iteration of Algorithm 4, C is a partition of the subset
of vertices {vK+1, . . . , vn}.
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Algorithm 4 SBBU
1: SBBU(G,K)
2: Order edges {vi, vj} ∈ EP in increasing order of j and decreasing order of i obtaining a

sequence (e1, . . . , em), with m = |EP |. Set t = 0, n = |V |
3: Set C = {{vi}}ni=K+1

4: InitializePositions(x, t,K) # positions for the initial clique
5: for k = 1, 2, . . . ,m do
6: {i, j} = ek
7: if ρC(i+K) 6= ρC(j) then
8: InitializePositions(x, t, j)
9: Set C0 = ρC(i+K) and D = ρC({i+K + 1, . . . , j}) \ {C0}

10: Let Sij = ∪C∈Dfirst(C) # local symmetry vertices
11: Compute R`

x(·) for each v` ∈ Sij

12: Find s ∈ B̄ij : ‖xi −R(xj , s̄)‖ = dij # find position xj
13: Update x` = Ū(x`, s̄), for ` = i+K + 1, . . . , j
14: Set C+ = (∪C∈DC) ∪ C0 and update C = (C \ (D ∪ {C0})) ∪ C+

15: end if
16: end for
17: if t < n then
18: InitializePositions(x, t, n)
19: end if
20: return a valid realization x

Proof At the first iteration C = {{vi}}ni=K+1. Assume that, at the beginning of
iteration k, C is a partition of {vK+1, . . . , vn}. If ρC(i+K) = ρC(j), then we go
to the next iteration with C unchanged. Otherwise, from Step 9, D and C0 are
subsets of C. Then, Step 14 updates C by removing these subsets and including
their union, hence, the updated C is still a partition of {vK+1, . . . , vn}. ut

Proposition 8 In Algorithm 4, after Step 14, there exists a unique C ∈ C
such that C ⊃ {vi+K , . . . , vj}.

Proof Follows directly from Steps 9 and 14 of Algorithm 4. ut

We remark that ρC({i+K+1, . . . , j}) denotes the image of {i+K+1, . . . , j}
by ρC in the definition of D (Step 9), i.e it returns elements of C whose union
contains vi+K+1, . . . , vj and C0 = ρC(i + K) is the element of C containing
vi+K .

Proposition 9 In Algorithm 4, ρC(i+K) = ρC(j) if and only if Sij = ∅.

Proof If Sij = ∅, then

∀ v` ∈ {vi+K+1, . . . , vj}, ∃{u,w} ∈ P ij : u+K < ` ≤ w ≤ j. (16)

In particular, for ` = i + K + 1, there exists {r, z} ∈ P ij such that r + K <
i + K + 1 ≤ z ≤ j. Clearly, r ≤ i. From Proposition 8 there exists a unique
C1 ∈ C such that C1 ⊃ {vr+K , . . . , vi+K , vi+K+1, . . . , vz}.

Thus, if z = j, then ρC(i+K) = ρC(j).
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Otherwise, for z < j, because i + K + 1 ≤ z, it follows that vz+1 ∈
{vi+K+1, . . . , vj} and from (16), there exists {u,w} ∈ P ij such that u+K <
z + 1 ≤ w ≤ j (clearly, u+K ≤ z). Thus, from Proposition 8:

∃!C2 ⊃ {vu+K , . . . , vz, vz+1, . . . , vw}. (17)

If u ≤ r ≤ i, then from (17), we obtain vi+K ∈ C2.
Otherwise, for r < u ≤ z − K, then r + K < u + K ≤ z, implying that

vu+K ∈ C1. In either case, we have ρC(u+K) = ρC(i+K). From Proposition 7,
we conclude that ρC(i+K) = ρC(w).

Hence, if w = j, ρC(i+K) = ρC(j).
Otherwise (w < j), in view of (16), we can apply the same argument to

vw+1, and repeat until we find {h, p} ∈ P ij with p = j.
On the other hand, to prove that ρC(i + K) = ρC(j) implies Sij = ∅, we

use the counter-positive. Suppose there exists v` ∈ {vi+K+1, . . . , vj} such that
6 ∃{u,w} ∈ P ij such that u+K < ` ≤ w ≤ j. This means that ∀{u,w} ∈ P ij
either (i) w < ` or (ii) ` ≤ w ≤ j and u+K ≥ `. If w < `, ∀{u,w} ∈ P ij , then
ρC(j) = {vj} 6= ρC(i+K), because w < ` ≤ j (v` and vj were never reached).

Thus, let us consider {u,w} ∈ P ij such that ` ≤ w ≤ j and u + K ≥ `.
Without loss of generality, assume w = j. Since ` ≥ i+K + 1, then u+K ≥
i+K + 1 (or u ≥ i+ 1), implying that ρC(i+K) 6= ρC(u+K) = ρC(j), where
the last equality follows from Proposition 8. ut

Proposition 9 shows that if vi+K and vj are in the same subset, i.e.,
ρC(i + K) = ρC(j), then this subproblem was already solved implicitly (see
Proposition 5). This is equivalent to condition |Sij | = 0 in Algorithm 2.

Otherwise, we need to obtain the set Sij of symmetry vertices for (Gij ,K).
This is accomplished in Step 10.

Theorem 4 If ρC(i+K) 6= ρC(j), then
⋃
C∈D first(C) = Sij.

Proof Let v` ∈ ∪C∈Dfirst(C). From Proposition 7, ∃!Ĉ ⊃ {v`} such that Ĉ ∈ D
and first(Ĉ) = v`. Suppose v` 6∈ Sij , i.e there exists {u,w} ∈ P ij such that
u + K < ` ≤ w. From Proposition 8, ∃!C ∈ C such that C ⊃ {vu+K , . . . , vw}
and since C is a partition, it follows that C = Ĉ. But first(Ĉ) = first(C) =
vu+K 6= v` contradicting first(Ĉ) = v`. Therefore, 6 ∃{u,w} ∈ P ij such that
u+K < ` ≤ w. Thus, v` ∈ Sij .

Conversely, let v` ∈ Sij . Then, for every {u,w} ∈ P ij either (i) w < `
or (ii) ` ≤ w ≤ j and u + K ≥ `. If ∀{u,w} ∈ P ij , we have w < `, then
C = ρC(`) = {v`} ∈ D and first(C) = v`. Otherwise, there are {u,w} ∈ P ij
such that ` ≤ w ≤ j. For all of these, u+K ≥ `. Recall from Algorithm 4 that
first(C+) = first(C0) = first(ρC(u+K)). We split the analysis in three cases.

Case 1: v` 6∈ ρC(u+K). Then, ` < u+K, implying that v` < first(u+K).
Thus, after iteration k with ek = {u,w}, we have ρC(`) = {v`}.

Case 2: v` ∈ ρC(u + K) and first(ρC(u + K)) = v`. In this case, after
iteration k with ek = {u,w}, ρC(`) = ρC(u + K) = {v`, . . . , vu+K , . . . , vp}.
Thus first(ρC(`)) = v`.
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Case 3: v` ∈ ρC(u+K) but first(ρC(u+K)) < v`. In this case, C0 = ρC(`) =
ρC(u+K) = {vq, . . . , v`, . . . , vu+K , . . . , vp}. The set C0 is the result of iteration
k′, with ek′ = {h, p} < {u,w} = ek. Clearly {h, p} ∈ P ij . From Proposition 8,
∃!C ⊃ {vh+K , . . . , vp}. Notice that u+K ≤ p ≤ w. Since q > h+K contradicts
the fact that first(ρC(u + K)) = vq, then q ≤ h + K < `. This leads to
h+K < ` ≤ u+K ≤ p which implies that v` 6∈ Sij , a contradiction.

Therefore, only cases 1 and 2 can happen and both imply in v` ∈
⋃
c∈D first(C).

ut

Corollary 2 Let (G,K) be a feasible KDMDGP instance. Considering exact
arithmetic, Algorithm 4 finds a valid realization x for (G,K).

Proof From Theorem 4 and Remark 4 correctness of Algorithm 4 follows from
Theorem 3. ut

In the end, we obtain a valid partial realization x1, . . . , xt for all subprob-
lems (Gij ,K), with {i, j} ∈ EP . If t = n, we are done. Otherwise, in view
of Remark 4, x1, . . . , xt can be extended to a valid realization x ∈ X. This
explains Step 18.

Even under Assumption 1, due to floating point arithmetic, in Step 12 we
may not be able to find s such that ‖xi − R(xj , s̄)‖ = dij . Thus, instead of
stopping as soon as we find a s such that |‖xi − R(xj , s̄)‖ − dij | ≤ ε, for a

prescribed tolerance ε, we actually consider all 2|S
ij | possibilities and choose s

for which |‖xi−R(xj , s̄)‖−dij | is minimum. In case |‖xi−R(xj , s̄)‖−dij | > ε for
every s̄ ∈ B̄ij , then we actually interrupt the algorithm and return “failure”.
However, this never happened in the numerical experiments of Section 5.

We remark that |Sij | is a good indicator of the computational cost for solv-

ing subproblem (Gij ,K), because it determines the number of 2|S
ij | reflection

compositions that we need to apply to xj in order to find its correct position.
Thus, we define the corresponding total work to solve a KDMDGP instance as

W :=
∑
{i,j}∈Ê

2|S
ij |, (18)

where Ê = {{vi, vj} ∈ EP | |Sij | > 0}. Let us also denote by W̄ = maxÊ 2|S
ij |,

the maximum work per pruning edge. We also remark that |Sij | depends on the
order in which the pruning edges are handled and, in this paper, we consider
only the order described in Assumption 2.

5 Experimental results

An efficient implementation of the function ρC needs to deal with its evaluation
and the update of the subsets of C. We adopted the structure proposed by
Newman and Ziff [28], which allows the evaluation of ρC and the subsets update
in time O(log2(|V |)) and memory O(|V |).
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In order to validate Algorithm 4 and assess its performance, we generate a
set of protein-like instances (K = 3) whose data were extracted from Protein
Data Bank (PDB) [2], and compare the results with those of the classic BP [18,
12]. For each protein, we consider only the backbone composed by the sequence
of atoms N − Cα − C and include an edge in the corresponding graph:

1. either when the atoms are separated by at most three covalent bonds
2. or the distance between pairs of atoms is smaller than a certain cut-off

value.

The resolution of NMR experiments usually varies between 5 Å and 6 Å. The
smaller the cut-off value, the sparser the DMDGP instance. Each instance was
generated by the first model and first chain of the PDB file.

The natural backbone order for instances generated in this way provides
a vertex order satisfying the assumptions of Definition 1, implying we are
working with 3DMDGP instances.

In our experiments we consider two test sets: one using cut-off 6 Å and
other using 5 Å . In Tables 1 and 2, we present the results obtained by both
algorithms: BP is the classic Branch-and-Prune implementing a depth-first
search [18,12], whereas SBBU (Symmetry-based Build-up) corresponds to Al-
gorithm 4.

The algorithms were implemented in C++ and the experiments carried
out in Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz, 8G RAM, running Linux
Ubuntu 18.04.4, gcc version 7.4.0 compiler. Our codes and datasets can be
found in https://github.com/michaelsouza/sbbu, whereas an implementa-
tion of the Branch-and-Prune algorithm is available at https://github.com/
mucherino/mdjeep.

Both tables bring the ID of the protein in PDB, the number of atoms |V |,
number of edges (available distances) |E|, CPU time in seconds for the two
algorithms and the normalized Mean Distance Error (MDE):

MDE(X,E, d) =
1

|E|
∑
{i,j}∈E

| ‖xi − xj‖2 − dij |
dij

. (19)

Both algorithms were stopped as soon as the first solution is found and a “–”
symbol means that the algorithm was not able to find a solution in less than
300 seconds. For each instance, we also present the total and maximum works
W and W̄ , respectively. The last column, called “Speed-up”, contains the ratio
time BP / time SBBU.

From the tables, we observe that the new algorithm provides a non-trivial
speed-up in most of the instances. In particular, the new algorithm is consid-
erably faster than the classic BP for the sparser instances where it was up to
1,000 times faster.

Concerning the estimated total work of SBBU, it seems that the time varies
linearly with W as depicted in Figure 2. The relationship between BP time
and W and/or W̄ is not so clear. However, we argue that while the most costly
subproblem (Gij ,K) represents a cost of W̄ in the total cost W for SBBU, for

https://github.com/michaelsouza/sbbu
https://github.com/mucherino/mdjeep
https://github.com/mucherino/mdjeep
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BP SBBU
ID |V | |E| Time MDE Time MDE W̄ W Speed-up
1N6T 30 236 7.60E-05 8.32E-05 1.77E-05 2.72E-12 2 52 4.29
1FW5 60 558 1.30E-04 1.51E-05 3.51E-05 4.22E-12 2 112 3.70
1ADX 120 1008 2.10E-04 5.62E-12 4.49E-05 3.78E-12 2 232 4.67
1BDO 241 2167 4.10E-04 3.79E-12 9.24E-05 1.39E-11 2 474 4.44
1ALL 480 4932 8.40E-04 8.91E-13 1.90E-04 3.80E-12 2 952 4.42
6S61 522 5298 8.70E-04 6.50E-13 2.06E-04 3.09E-12 2 1036 4.23
1FHL 1002 9811 2.00E-03 6.82E-12 3.97E-04 1.93E-11 2 1996 5.04
4WUA 1033 9727 1.80E-03 1.47E-11 3.94E-04 7.73E-12 8 2060 4.57
6CZF 1494 14163 2.60E-03 1.33E-12 5.79E-04 4.18E-12 2 2980 4.49
5IJN 1950 18266 3.40E-03 1.37E-12 7.64E-04 1.76E-11 16 3908 4.45
6RN2 2052 19919 3.70E-03 1.11E-12 8.27E-04 1.54E-11 16 4104 4.48
1CZA 2694 26452 4.90E-03 1.29E-12 1.07E-03 6.22E-11 2 5380 4.59
6BCO 2856 27090 7.90E-03 4.53E-13 1.10E-03 7.91E-12 16 5730 7.15
1EPW 3861 35028 7.80E-03 1.88E-11 1.44E-03 2.50E-10 2 7714 5.40
5NP0 7584 80337 3.10E-02 6.58E-12 3.58E-03 1.35E-10 256 15562 8.66
5NUG 8760 82717 2.40E-02 1.43E-06 3.45E-03 5.33E-10 16 17592 6.96
4RH7 9015 85831 2.50E-02 1.62E-12 3.67E-03 2.22E-10 16 18054 6.82
3VKH 9126 87621 2.70E+00 3.00E-08 3.62E-03 1.15E-09 256 18556 745.03

Table 1 Computational results in some protein-like instances (cut-off: 6Å).

BP SBBU
ID |V | |E| Time MDE Time MDE W̄ W Speed-up
1N6T 30 176 7.60E-05 5.14E-05 1.04E-05 5.64E-12 2 52 7.31
1FW5 60 417 1.40E-04 7.99E-06 2.11E-05 3.08E-12 2 112 6.63
1ADX 120 659 4.70E-04 3.50E-06 3.49E-05 2.53E-12 2 232 13.48
1BDO 241 1345 3.60E-04 1.50E-07 7.05E-05 1.04E-11 2 474 5.11
1ALL 480 3443 9.80E-04 2.81E-06 1.67E-04 1.27E-12 2 952 5.88
6S61 522 3699 8.70E-04 8.10E-07 1.75E-04 1.39E-12 2 1036 4.98
1FHL 1002 6378 2.70E-03 2.56E-12 2.88E-04 1.17E-11 2 1996 9.38
4WUA 1033 6506 1.80E-03 5.34E-12 2.96E-04 2.94E-12 16 2066 6.08
6CZF 1494 9223 2.40E-03 4.62E-13 4.36E-04 2.33E-12 2 2980 5.51
5IJN 1950 11981 4.00E-03 4.43E-13 6.08E-04 4.23E-12 16 3908 6.58
6RN2 2052 13710 5.50E-03 3.89E-13 8.58E-04 9.35E-12 16 4112 6.41
1CZA 2694 17451 5.80E-03 4.51E-13 8.03E-04 3.06E-11 2 5380 7.22
6BCO 2856 18604 5.00E-03 6.00E-07 1.05E-03 6.96E-12 16 5706 4.75
1EPW 3861 23191 2.30E-02 3.00E-08 1.13E-03 9.78E-11 8 7716 20.29
5NP0 7584 59478 2.90E-01 2.56E-12 2.80E-03 4.11E-11 256 16138 103.55
5NUG 8760 56979 2.70E+00 3.60E-07 2.67E-03 1.05E-10 128 17700 1011.09
4RH7 9015 59346 3.10E-02 5.64E-13 2.97E-03 1.20E-10 32 18068 10.43
3VKH 9126 59592 – – 2.45E-02 1.10E-09 65536 84066

Table 2 Computational results in some protein-like instances (cut-off: 5Å).

the usual DFS recursive implementation of BP, it may contribute much more
to the BP total cost because such subproblem may have to be solved several
times in the occasion of backtrackings.

6 Conclusion

We propose a new algorithm for the DMDGP which leverages symmetry infor-
mation to find the first solution quickly. By efficiently exploiting symmetries
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Fig. 2 Scatter plots W× time and linear regressions for the two datasets (Table 1 on the
left, Table 2 on the right but not considering the last row).

of subproblems defined by pruning edges, and reducing the degrees of freedom
by taking into account already solved subproblems, the resulting algorithm
appears to be quite efficient in sparse DMDGP instances, sometimes giving a
significant speed-up with respect to the classic BP algorithm.

We reinforce that the numerical experiments in [12] showed that the classic
BP has a better performance than continuous methods [25,10] in problems of
the DMDGP subclass. Thus, the new proposed algorithm can do even better
and, to the best of our knowledge, figures as one of the fastest algorithms for
this class of Distance Geometry problems.

In the proposed version of SBBU algorithm we consider a specific order for
the pruning edges. In future works we expect to generalize SBBU in order to
handle different pruning edges orderings and study the impact of these in the
total cost W .

A Proof of Lemma 2

Proof Since x(s′) from Eq. (4) involves only partial reflections, in view of Property 3 in

Remark 2, x(s′) ∈ X̂, i.e ‖xu(s′)− xw(s′)‖ = duw, ∀{u,w} ∈ ED.
It remains to show that x(s′) does not violate distance constraints associated to pruning

edges in P ij . Since the reflections are applied to positions x` such that ` ≥ i + K + 1,
pruning edges {u,w} ∈ P ij with u < w ≤ i + K are not affected. Thus, assume that
i + K + 1 ≤ w ≤ n. If u ≤ i, then for ` = i + K + 1, . . . , w there exists {u,w} such
that u + K + 1 ≤ ` ≤ w, which implies that vi+K+1, . . . , vw 6∈ Sij , meaning that the first
symmetry vertex v` in Sij is such that ` ≥ w + 1. Thus, according to (2) and (4), partial
reflections are not applied to xi+K+1, . . . , xw, i.e x`(s

′) = x`(s), for ` = i+K+1, . . . , w and
‖xu(s′) − xw(s′)‖ = duw holds. Otherwise, for u ≥ i + 1, we have that vu+K+1, . . . , vw 6∈
Sij , and from (4) and (2), positions x`, . . . , xu+K+1, . . . , xw are updated by reflections
R`

x(x`), . . . , R
`
x(xu+K+1), . . . , R`

x(xw), for i + K + 1 ≤ ` ≤ u + K such that v` ∈ Sij .
Since either u ≤ ` − 1, i.e xu is in the hyperplane associated to v`, or u ≥ `, i.e. xu
comes after this hyperplane, in view of Remark 2, Property 2, these reflections are such that
‖xu(s′)− xv(s′)‖ = duw. ut
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