
Empirical comparison of semantic similarity
measures for technical question answering

No Author Given

No Institute Given

Abstract. We consider the task of looking for the answer to a given
user question by means of identifying the most relevant document in a
technical knowledge base. We briefly introduce the NLP fields related to
this task, then discuss what we think are the most promising methods
to accomplish the task. The main aim of the paper is to benchmark
the chosen methods on two different knowledge bases (one proprietary,
one public). Every document in each KB consists of a title and a text
describing a solution to a technical problem. Our tests point out that the
best method for the task at hand is the use on Sentence Transformers, a
deep learning based method using pre-trained language models.

1 Introduction

This paper concerns a variant of a well known Natural Language Processing
(NLP) task, namely Question Answering (QA) [8, Ch. 25]. QA aims at auto-
matically answering questions posed by humans in natural language (NL). The
variant we are interested in is actually a restriction of QA: our output is a rele-
vant document in a Knowledge Base (KB) instead of an answer written in NL.

The reason why we look at this variant is that it represents an important need
in industrial contexts. Typically, in our scenario of interest the “user” who asks
the question may be an employee of the firm, or a technically skilled client. This
scenario is very different from those leading to open-text QA systems yielding
NL answers, where the user may be any individual. In the latter case, users
may employ more informal language to phrase their questions, and will expect
answers in NL.

In our case, we expect the user to pose more precise questions, and, what’s
more important, we know that he or she will accept the pointer to documents
containing an explanation as a valid answer. This effectively sets our task at the
intersection of QA and Document Retrieval (DR) [9]. We note, however, that in
DR the user queries need not be cast in NL. For later reference, we name our task
of interest Natural Language Document Retrieval (NLDR). Methods that can be
used to address NLDR have to match the meaning of the user question to relevant
semantic indicators in the documents of the KB. This establishes a connection
between NLDR and semantic similarity measures and techniques [4]. All NL
tasks may either refer to a general language setting, or to a specific language
domain [5, 11]. The present research focuses on specific language domains: our

Leo Liberti
N. Boukhatem, D. Buscaldi, L. Liberti, Empirical comparison of semantic similarity measures for technical question answering, in S. Chiusano et al. (eds.), Proceedings of the 26th European Conference on Advances in Databases and Information Systems, accepted.

2 No Author Given

motivation stems from the interest of a service firm with several industrial clients:
each client is considered a specific domain.

The contribution of the paper is a computational comparison of known meth-
ods that can address the NLDR task, based on popular performance measures,
on two KBs: a proprietary one belonging to the service firm that motivates this
work, and the public IBM TechQA dataset [3]. In the rest of this section we
briefly survey the fields of NLP that are relevant to the NLDR task, from the
point of view of the methods we benchmark. In the rest of the paper we review
the benchmarked methods, and we comment our computational results.

1.1 Document Retrieval

Document retrieval methods are usually structured around a user query (which
may be expressed in either formal or NL) and a KB (database, corpus, graph. . .).
The goal is to return the KB entry that is the most relevant to the query.
The relevance depends on the satisfaction of the user’s information need. The
document ranking can be obtained in different ways: using word frequency and
co-occurrence (e.g. [14]); using several independent syntactical statistics and co-
occurrence measures (e.g. [2]); using a weighted variant of TF-IDF called BM25F
(e.g. [12]); using sentence transformers (ST) to compare the given query with
sentences in the corpus (e.g. [13]).

1.2 Technical Question Answering

By Technical QA (TQA) we mean QA over a restricted domain, where user
information needs are predominantly oriented to solving technical issues. The
interest about these systems has been growing in recent years, as testified by the
proliferation of technical forums, some dedicated to developers, such as Stack
Exchange1, while others are related to a particular product or service. Early
TQA systems were based on syntactical analysis of sentences, possibly with
some elementary form of logical entailment, complemented by semantics stored
in a specific-domain ontology [11]. More recently, ST have been used in TQA in
[15], where an elaborate pipeline was used to train a neural network to match
questions to answers, using training sets constructed from specific domains. In
[16], the authors address the difficulty of forming large enough training sets
for TQA related tasks. They propose a system relying on a general-purpose
QA training set, before applying a transfer learning techniques using the IBM
TechQA training set [3].

A TQA system can also be seen as an evolution towards an automatization
of a classic technical support system, relieving technical experts from the burden
of browsing the documentation necessary to answer users questions. A standard
situation in a classic support system can be described as follows: a user encoun-
ters an issue with its system, gets in touch with the support team and describes

1 https://data.stackexchange.com/

Comparison of semantic similarity measures for TQA 3

the situation he or she is facing. The contact can occur by phone, by email or
by filling a form directly in the support system.

The user usually tries to describe the situation to help the support agent
identify the source of the issue and how to fix it, for example : “Hello, I’ve been
struggling all day with my internet connection without any improvement. Is it
possible to help me please?”

Depending on the root cause, issues may need to be escalated to qualified
agents, investigated by means of technical user guides, and/or compared to
known issues. Finding a solution often requires time and effort. Each issue and
the corresponding solution is documented, and the information is archived for
later reference. The documentation process helps creating the set of documents
(or corpus) C that will be considered the knowledge base of a TQA system.

Typical users of TQA systems (usually clients or support agents) describe
their issues in NL by typing a query Q. The system then compares Q to the
documents in the set C so that the most fitting answer (or set K of answers)
can be retrieved. If an answer is found, it is returned to the user, who can rate
its pertinence by providing a score. In the above example, a typical TQA system
might infer issues in the internet connection because of the words “struggling”,
“internet” and “connection”. This would lead the system to retrieve a set of
documents about internet connection issues.

1.3 Semantic similarity measures

Semantic similarity measures are functions mapping sentence pairs to a simi-
larity measure (usually in [0, 1]), by means of semantic considerations. We refer
the reader to the recent comprehensive survey [4]. In particular, with reference
to [4, Fig. 1], the methods we benchmark are mostly based on edge counting
(e.g. WordNet information), information content (e.g. word frequency), trans-
former models (based on BERT).

2 Compared methods

We chose a set of semantic similarity methods that cover the most important
models for the semantic representation of documents: keyword-based similarity
methods represent the content of a document by means of selected words, which
are matched to the user question. Methods such as BM25, which is at the core of
Whoosh and Elasticsearch, rely instead on the fact that all words in a document
have some degree of importance. The document itself is represented by a (sparse)
vector in the space of words. Finally, ST take advantage from deep learning to
obtain a semantic representation of the document as dense vectors.

The TQA methods we test are organized around two pieces of input: Q, which
represents a question, and C, which represents a corpus. The representation could
be based on words, vectors, or the output of an artificial neural network. The
general algorithmic scheme is two-phase: pre-processing (on C) and on-the-fly
(on Q). The output is usually a ranked set of documents from C.

4 No Author Given

2.1 Keyword extraction based methods

In this section we summarize two of the methods we benchmark, where the rep-
resentation of Q and C is based on keyword extraction (KE). The first phase
(pre-processing) extracts keywords from C. The second phase (on-the-fly) ex-
tracts them from Q. The methods then match keywords from Q with those from
C in order to obtain relevant documents. The difference between the methods is
the computation of the weights assigned to keywords from C.

Algorithm 1 Weighting method 1
1: Corpus_KW, Tokens_L, Synonyms_L, Stemmed_Tokens, Scores, Orders : List
2: for D document in C corpus do
3: Corpus_KW.append(KW_extraction(D[“title”]))
4: Tokens_L ← (Tokenize(Q))
5: Remove Stopwords from Tokens_L
6: for T Token in Tokens_L do
7: Synonyms_L.append(Syn(T))
8: for X word in Synonyms_L do
9: Stemmed_Tokens.append(Stem(X))
10: Stemmed_Tokens.append(Stem(T))
11: for i from 0 to len(Corpus_KW) do
12: for k Word in Corpus_KW[i] do
13: for w Word in Stemmed_Tokens do
14: if w == k then
15: Scores[i] ← Scores[i] + 1
16: Scores[i] ← Scores[i] / len(Corpus_KW[i])
17: Return the documents of C with the highest scores

In the first method, the pre-processing phase scans C, and for each document
D in C extracts three keywords from the title and three from the content of the
document using a KE algorithm. Each keyword is simply assigned a unit weight.
During the on-fly-phase, Q is cleaned from stopwords and tokenized. Each token
is stemmed and listed along with its synonyms found in WordNet [7]. Each time
a token (or one of its synonyms) is found we increment the document score by
the token weight. We divide the score by the number of the document keywords
to obtain the final score of the document. The documents with maximum score
value are returned to the user.

In the second method, the pre-processing phase scans C, and for each doc-
ument D in C extracts three keywords from the title, which are given a weight
of 2, and three other keywords from the text, which are given a weight of 1,
using a KE algorithm. Identical keywords have their weights summed. The three
keywords with highest weight values are selected. The on-the-fly phase Q is the
same as for the first method. After finding keywords, for both methods we form a
list of all corpus documents containing at least one keyword from Q. Documents
are then ranked by decreasing keyword weight sums.

Comparison of semantic similarity measures for TQA 5

Algorithm 2 Weighting method 2
1: Document_KW, Corpus_KW, Query_Words, Tokens_L, Synonyms_L,

Stemmed_Tokens, Scores, Orders : List
2: Title_Weight = 2
3: Body_Weight = 1
4: for D document in C corpus do
5: // If an element already exists, weights are summed
6: Corpus_KW.append(KW_extraction(D[“title”]), Title_Weight)
7: Corpus_KW.append(KW_extraction(D[“body”]),Body_Weight)
8: Corpus_KW.append(Max(Document KW,3))
9: Tokens_L.append(Split(Q))
10: Remove Stopwords from Tokens_L
11: for T Token in Tokens_L do
12: Synonyms_L.append(Syn(T))
13: for X word in Synonyms_L do
14: Stemmed_Tokens.append(Stem(X))
15: Stemmed_Tokens.append(Stem(T))
16: for i from 0 to len(Corpus_KW) do
17: for k,l Word,weight in Corpus_KW[i] do
18: for w Word in Stemmed_Tokens do
19: if w == k then
20: Scores[i] = Scores[i] + l
21: Scores[i] = Scores[i] / len(Corpus_KW[i])
22: Return the documents of C with the highest scores

For KE purposes we used two well-known systems, namely Rapid Auto-
matic Keyword Extraction (RAKE) [14] and Yet Another Keyword Extraction
(YAKE) [2]. Two unsupervised automatic KE methods that are domain, corpus,
and language independent.

2.2 Word vector based methods

Whoosh is an open-source Python search engine library for indexing and search-
ing text based on the BM25F algorithm [12]. Whoosh is a native Python alter-
native to Lucene [1], which strongly inspired its development. Whoosh’s index
is fielded : the user defines a set fields(D) of fields that represent the structure
and content of the document D into the index. For instance, a classic fields
referring to scientific papers involve indexing title, abstract and body into differ-
ent fields. Keywords are selected by means of analyzers, which usually provide
language-dependent stemming algorithms and stop-word lists. Given a query
Q = {t(q)1 , . . . , t

(q)
n } and a document D = {t(d)1 , . . . , t

(d)
m }, the matching score

between them is calculated according to BM25F:

BM25F(D,Q) =
∑

t∈Q∩D

TF(t,D)

k1 + TF(t,D)
IDF(t),

6 No Author Given

where t is a term shared by both the query and the document, k1 a constant set
at 1.2, and TF(t,D) is the normalized term frequency :

TF(t,D) =
∑

c∈fields(D)

wc
freqc(t,D)

1 + bc
l(D,c)

l̂c

,

where freqc(t,D) are the occurrences of the term t in the field c of document
d, l(D,c) is the length of the field c in document D,and l̂c is the average length
of field c. Moreover,bc is a field-dependant parameter, usually set at 0.75, and
wc is a boost factor (by default set at 1.0) that can be specified by the user
at query time. The inverse document frequency IDF(t) is usually calculated as
IDF(t) = N−df(t)+0.5

DF(t)+0.5 , where N is the number of documents in the collection and
DF(t) is the document frequency of term t .

ElasticSearch (ES) is another open-source search engine built on top of
Lucene [1]. It allows users to store, index and search large sets of documents.
Unlike Whoosh, explicit mapping schemata are not necessary. ES supports struc-
tured queries, full text queries, and complex queries that combine the two. Struc-
tured queries are similar to SQL queries, while full-text queries find and return
all documents that match the query, sorted by relevance. In addition to searching
for individual terms, ES supports phrase searches, similarity searches, and prefix
searches. ES, like Lucene [1], also uses the Okapi BM25 algorithm as a default
ranking function for documents relevance in the search process. BM25 is a bag-
of-words retrieval function that ranks documents based on the terms q1, . . . , qn
of a query Q appearing in each document D, regardless of their proximity within
the document and given by:

BM25(D,Q) =

n∑
i=1

IDF(qi)
F(qi, D)(k1 + 1)

F(qi, D) + k1(1− b+ b |D|avgdl)
,

where F(qi, D) is qi’s term frequency in the document D, |D| is the length of
the document D in words, and avgdl is the average document length in the text
collection from which documents are drawn. k1 and b are free parameters.

2.3 Deep learning based methods

ST are a Python framework for calculating sentence, paragraph and image em-
beddings. It is an implementation of Sentence-BERT (SBERT) [13], a modifica-
tion of the pretrained BERT network [6] that uses Siamese network structures to
derive semantically meaningful sentence embeddings. SBERT uses a pre-trained
BERT and RoBERTa networks, and adds a pooling operation to their output
in order to derive a fixed sized sentence embedding. It can be described as a
document processing method of mapping sentences to real-valued vectors such
that sentences with similar meanings are close in vector space.

To achieve this goal, a semantic representation of a sentence is built by adapt-
ing a transformer model in a Siamese architecture: sentences are processed pair

Comparison of semantic similarity measures for TQA 7

by pair, with the same neural network structure. A vector is produced by each
network, on which a distance is calculated. The loss function for the complete
network consists in minimizing the distance between semantically similar sen-
tences, and maximizing the distance between semantically distant sentences.

The obtained word embeddings can be compared using similarity measure-
ments, such as cosine similarity. Such scores can be exploited in different NLP
tasks, including information and document retrieval. Cosine similarity is the co-
sine of the angle between two word vectors E and V (the dot product of the two
vectors divided by the product of their lengths):

cos(E, V) =
E · V

‖E‖2‖V ‖2
=

∑n
i=1 EiVi√∑n

i=1 (Ei)2
√∑n

i=1 (Vi)2
.

The embeddings of the dataset are constructed using two different pre-trained
models (RoBERTa and MiniLM-L6), and then stored in D. Cosine similarity
ranges in [0, 1], with 0 indicating dissimilarity and 1 identity. Cosine similarity
is used in order to find the 3 most similar documents to return to the user.

The RoBERTa model [10] is based on Google’s BERT model [6]. It has dif-
ferent key hyperparameters and training data size. It maps sentences and para-
graphs to a 1024-dimensional vector space (with dense word vectors). It performs
well in tasks like clustering or semantic search.

The MiniLM-L6 model is a sentence-transformer model mapping sentences
and paragraphs to a 384-dimensional vector space (with dense word vectors). It
can be used as a sentence and short paragraph encoder to capture the semantic
information for information retrieval, clustering or sentence similarity tasks.

3 Computational comparison

3.1 Evaluation data

The different methods were evaluated using two different English datasets: one
small dataset from the sponsoring company, and a large dataset from IBM.

The company’s dataset, which we refer to as the “OT dataset” (from the
name of the company), is composed of 76 technical documents, considered as
a knowledge base, indicating how to fix common and less-common issues faced
by users. In addition, it contains a test set composed of 35 questions, with 19
answerable and 16 non-answerable questions. The test set was collected from
interactions between the company’s clients and the TQA system we put in place
at the company’s site. Documents in the dataset, which consist of a title and a
body, describe in which situation the solution was applied. The questions consist
of a query, a boolean truth value determining if the question is answerable or
not, and the ID of the corresponding answer if it is available.

The other dataset is called “TechQA” [3]. It consists of a collection of 28 481
technical documents, called technotes, that address specific technical questions,
and of annotated questions with answers in the collection. Questions are divided

8 No Author Given

into two sets, which the TechQA documentation describes as “training set”, con-
taining 450 answerable and 150 unanswerable questions, and “development set”,
containing 160 answerable and 150 unanswerable questions (by unanswerable we
mean that there is no document in the collection containing an answer to the
question). We chose the training set for testing purposes in this computational
evaluation as the methods that we tested do not require training. Each question
consists of a title and a body, and the answerable ones are paired with a set of
answers consisting in the technote ID and the start and end offset of the answer
within the document referenced by the ID.

3.2 Evaluation measures

The measures selected for the evaluation of the methods are: Precision, Recall,
F1-Score and Mean Reciprocal Rank (MRR). We considered for the set Q only
the answerable questions, to highlight the position in which the pertinent docu-
ment is returned when an answer is available. In the following, we refer to this
constrained measure as MRRa.

3.3 Results

The results obtained are detailed in Table 1. It can be noted that, for the key-
word extraction methods, RAKE is less accurate than YAKE: in particular, we
observed that it is often unable to find appropriate keywords, and, conversely,
repeats identified special characters (like “\\” or “&”) as keywords. Both meth-
ods, however, were ineffective on the QA dataset, showing that these keyword
extraction methods are not particularly fit to extract the technical keywords in
that dataset.

Applying the evaluation methods to document titles (instead of contents)
turned out to produce better results both with KE and ST methods. While titles
contain less information, it appears to be more valuable or better exploitable (by
current methods) than the information existing in the content.

ES gave good results on large datasets like TechQA, while Whoosh was better
suited to smaller datasets like OT. The reason is related to the indexing technique
of both methods: while Whoosh only indexes the two fields “title” and “content”,
ES makes use of all the fields of the document, including metadata.

ST gave the best results for both datasets, with a very high MRR score
in each case. We can add that the use MiniLM model is less time-consuming
(about 3 times less) with a vector size 3 times smaller compared to the use
of the RoBERTa model but with similar results. MiniLM even achieved better
results on TechQA, as well as a higher MRR score on OT.

We carried out an analysis of the results obtained by ST, focusing on ques-
tions for which the answer was either right but with a low score or wrong with
a high score. For the ST-MiniLM (T) model, we identified 49 questions of the
1st type and 11 questions of the 2nd type. We observed that in the second case,
many questions had acronyms and uncommon words so we carried out an evalu-
ation to compare the number of words of the questions to the number of tokens

Comparison of semantic similarity measures for TQA 9

Table 1. Results obtained for the chosen evaluation methods, on the OT and TechQA
datasets. When present, the labels (C) and (T) indicate that, respectively, only the
content and the title have been indexed. For RAKE and YAKE, the -w and +w suffixes
indicate the unweighted and weighted versions, respectively.

Method
OT Dataset TechQA Dataset

Precision Recall F1-Score MRRa Precision Recall F1-Score MRRa

RAKE-w (C) 12.86% 23.68% 16.66% 0.175 0.16% 0.22% 0.19% 0.001
RAKE-w (T) 17.14% 31.58% 22.22% 0.254 0.5% 0.67% 0.57% 0.001
RAKE+w 25.71% 47.37% 33.33% 0.228 0.22% 24.17% 0.44% 0.214
YAKE-w (C) 22.86% 42.11% 29.63% 0.333 1.78% 1.33% 1.52% 0.014
YAKE-w (T) 45.71% 84.21% 59.26% 0.781 0.5% 0.67% 0.57% 0.001
YAKE+w 42.86% 78.94% 55.55% 0.658 0.5% 0.67% 0.57% 0.006
ElasticSearch 11.76% 21.05% 15.09% 0.211 26.83% 35.78% 30.67% 0.358
Whoosh 31.43% 47.37% 37.79% 0.474 0.83% 1.02% 0.92% 0.011
ST-RoBERTa (C) 31.42% 57.89% 40.74% 0.697 12.83% 14.11% 14.67% 0.679
ST-RoBERTa (T) 51.43% 94.74% 66.67% 0.917 21.83% 29.11% 24.95% 0.917
ST-MiniLM (C) 37.14% 68.42% 48.15% 0.923 28.5% 38% 32.57% 0.812
ST-MiniLM (T) 51.43% 94.74% 66.67% 0.963 33.83% 45.11% 38.66% 0.889

extracted by the SBERT tokenizer. We could observe that the ratio token/words
is higher in questions of the 2nd type (1.67) than for questions of the 1st type
(1.53), which is also lower than the ratio for the other questions (1.58). This
proved our intuition and it also shows that the SBERT model is less effective
when dealing with words that are not in the vocabulary and it has to resort to
sub-word token to build a semantic representation of the full word.

4 Conclusion and further works

In this paper, we presented an empirical comparison of various semantic simi-
larity measures, based on both sparse and dense vector representations, on the
technical QA task. The results confirm for this task the general behaviour that
keyword-based and classic models may be useful in small scenarios but they are
not particularly useful for large and complex corpora. For the dense representa-
tions based on neural models, we observed that the results obtained using only
the title information exceed by a large margin those obtained with the content.
This may imply that further research on the representation of larger texts is
required and SBERT semantic similarity measures are meaningful only at sen-
tence level. We found out also that SBERT models have some problems with the
acronyms and rare words that are characteristics of the TechQA task, and their
results are worse when these words are not in the dictionary and they have to
recur to sub-word tokens.

10 No Author Given

References

1. Białecki, A., Muir, R., Ingersoll, G.: Apache Lucene 4. In: Proceedings of the SIGIR
2012 Workshop on Open Source Information Retrieval. pp. 17–24 (08 2012)

2. Campos, R., Mangaravite, V., Pasquali, A., Jorge, A., Nunes, C., Jatowt, A.: Yake!
keyword extraction from single documents using multiple local features. Informa-
tion Sciences 509, 257–289 (2020)

3. Castelli, V., Chakravarti, R., Dana, S., Ferritto, A., Florian, R., McCarley, S.,
Pendus, C., Franz, M., Garg, D., Khandelwal, D., McCawley, M., Nasr, M., Pan,
L., Pitrelli, J., Pujar, S., Roukos, S., Sakrajda, A., Sil, A., Uceda-Sosa, R., Ward,
T., Zhang, R.: The TechQA dataset. In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. pp. 1269–1278. ACL (2020)

4. Chandrasekaran, D., Mago, V.: Evolution of semantic similarity — a survey. ACM
Computing Surveys 54(2), Art. 41 (2021)

5. Cimiano, P., Unger, C., McCrae, J.: Ontology-Based Interpretation of Natural
Language. Morgan & Claypool, San Rafael, CA (2014)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1. pp. 4171–4186. ACL, Min-
neapolis, Minnesota (2019)

7. Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books (1998)
8. Jurafsky, D., Martin, J.: Speech and Language Processing. Stanford University,

Stanford (Draft 191016)
9. Kruschwitz, U.: Intelligent Document Retrieval. Springer, Dordrecht (2005)
10. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,

Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized BERT pretraining
approach. CoRR (2019)

11. Mollá, D., José Luis Vicedo: Question answering in restricted domains: An
overview. Computational Linguistics 33(1), 41–61 (2007)

12. Pérez-Agüera, J., Arroyo, J., Greenberg, J., Perez Iglesias, J., Fresno, V.: Using
bm25f for semantic search. In: Proceedings of the 3rd international semantic search
workshop. pp. 1–8 (2010)

13. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing. ACL (2019)

14. Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic keyword extraction from
individual documents. In: Berry, M., Kogan, J. (eds.) Text Mining: Applications
and Theory, pp. 1–20. Wiley, Hoboken, NJ (2010)

15. Yu, W., Wu, L., Deng, Y., Mahindru, R., Zeng, Q., Guven, S., Jiang, M.: A techni-
cal question answering system with transfer learning. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP): Sys-
tem Demonstrations. pp. 92–99. ACL (2020)

16. Yu, W., Wu, L., Deng, Y., Mahindru, R., Zeng, Q., Guven, S., Jiang, M.: Tech-
nical question answering across tasks and domains. In: Proceedings of the North-
American chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies: Industry Papers. pp. 178–186. ACL (2021)

