
Random projections for Linear Programming: an improved retrieval

phase∗

LEO LIBERTI, LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, France

BENEDETTO MANCA, Dipartimento di Matematica e Informatica, Università di Cagliari, Italy

PIERRE-LOUIS POIRION, RIKEN Center for Advanced Intelligence Project, Japan

One way to solve very large linear programs in standard form is to apply a random projection to the constraints, then solve the
projected linear program [63]. This will yield a guaranteed bound on the optimal value, as well as a solution to the projected
linear program. The process of constructing an approximate solution of the original linear program is called solution retrieval.
We improve theoretical bounds on the approximation error of the retrieved solution obtained as in [42], and propose an
improved retrieval method based on alternating projections. We show empirical results illustrating the practical beneits of
the new approach.

CCS Concepts: · Mathematics of computing→ Combinatorial optimization; Probabilistic algorithms; Dimensional-

ity reduction.

Additional Key Words and Phrases: optimization, linear programming, Johnson-Lindenstrauss Lemma

1 INTRODUCTION

Random Projections (RP) are random matrices that act as linear transformations on sets of vectors. They map
vectors inR� toR� with � ≪ �, and guarantee that certain features of the original vector set remain approximately
invariant with high probability in the image of the transformation.
We look at RPs that guarantee approximate congruence, and consider their applications to optimization

problems. We formulate such problems using the Mathematical Programming (MP) formal language, and solve
them by passing the MP formulation as an input to an appropriate solver, e.g. CPLEX [26] for Linear Programming
(LP). The MP formulation of a general optimization problem is:

min{�� (�) | �� (�) ≤ 0 ∧ � ∈ � },
where � is an array of numerical parameters encoding the input of the problem, � is an �-vector of decision
variables that will contain the output after the solver has processed the formulation, �� is a function R� → R, ��
a map R� → R� , and � a possibly mixed-discrete subset of R� .

In general, the application of RPs to MPs of any type requires the following process:

(1) sample a RP matrix � from the appropriate distribution;
(2) project the given MP formulation using � ;

∗This paper is an extension of the conference paper [39]. The improved solution retrieval and its accompanying theory is new. The
computational results refer to larger instances, and show deinite improvements w.r.t. [39]. The text was re-written to a large extent.

Authors’ addresses: Leo Liberti, liberti@lix.polytechnique.fr, LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France,
91128; Benedetto Manca, bmanca@unica.it, Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy; Pierre-Louis
Poirion, pierre-louis.poirion@riken.jp, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1084-6654/2023/8-ART $15.00
https://doi.org/10.1145/3617506

ACM J. Exp. Algor.

HTTPS://ORCID.ORG/0000-0003-3139-6821
HTTPS://ORCID.ORG/0000-0003-0209-0655
HTTPS://ORCID.ORG/0000-0002-3783-3036
https://orcid.org/0000-0003-3139-6821
https://orcid.org/0000-0003-0209-0655
https://orcid.org/0000-0002-3783-3036
https://orcid.org/0000-0002-3783-3036
https://doi.org/10.1145/3617506

2 • Liberti, Manca, Poirion

(3) solve the projected MP formulation, collect the optimal solution �̄ and its value �̄ ;
(4) in cases where �̄ is infeasible w.r.t. the original constraints, perform a solution retrieval phase.

In this paper we make two theoretical contributions: we tighten two results about the accuracy of the solution
retrieval algorithm proposed in [42] by specializing them to the LP case, and we generalize this solution retrieval
algorithm to an Alternating Projection Method (APM). Lastly, we present new computational results on the
application of RPs to LPs. The main content diferences between this paper and [39] are: (i) a considerable amount
of additional theoretical and computational material about the APM, (ii) the proofs of the theoretical results, (iii)
the computational results.

1.1 Relevant literature and background

1.1.1 Linear programming. This paper is about eiciently inding approximate solutions of large LPs in stan-
dard form Ð see Eq. (LP) in Sect. 2 below. LP is the most technologically advanced subield of Mathematical
Programming, so most LP instances are routinely solved, exactly, in a matter of seconds (or less) by means of
state-of-the-art solvers (e.g. [22, 24, 25]). The algorithms implemented by such solvers are very advanced versions
of the simplex algorithm [17] and the interior point method (IPM) [33]. LP solvers are usually tuned to work
with extremely sparse constraint matrices, since most LPs modelled by humans have this property. There are
three reasons why we propose fast approximate methods for LP: (i) huge LP instances, albeit sparse, may take a
long time to solve; (ii) ła few seconds or lessž may be too long if a large number of LP solutions are needed to
solve a more diicult problem; (iii) even modestly-sized dense LPs may be problematic to solve for many good
quality solvers.

A lot of work has been devoted to improving LP algorithms such as the simplex method or the IPM. While the
earlier appears to have stabilized [6] (recent advances are more technological than scientiic), a lot of research
is still ongoing in the latter, some of which also concerns RPs, or more exactly matrix sketching (see Sect. 1.1.3
below). Speciically, RPs are applied to the system of complementarity constraints (or their linearization) that
often turns out to be the computational bottleneck of IPMs [11, 48, 52ś54].

1.1.2 Random projections. The fundamental result in the area of RPs is the Johnson-Lindenstrauss Lemma
(JLL) [31], which guarantees approximate congruence with probability tending to one exponentially fast. More
precisely, the JLL proves that, given an� × � matrix � and � > 0, there is an integer � = � (1

�2
ln�) such that, if

� is a random � ×� matrix sampled componentwise from N(0, 1/
√
�), where N(�, �) is a Gaussian distribution

with mean � and standard deviation � , then

Prob
(
∀� < � ≤ � (1 − �)∥�� −� � ∥2 ≤ ∥��� −�� � ∥2 ≤ (1 + �)∥�� −� � ∥2

)
≥ 1 −� (�−�) . (1)

The kind of probabilistic behaviour exhibited by Eq. (1) is referred to as łwith arbitrarily high probabilityž (wahp).
The application of RPs to raw numerical data is directly justiied by the JLL. In the last 30 years, its application

to algorithms involving Euclidean distances on large input data has had a considerable impact in the theoretical
computer science community [27ś30, 44ś46, 57] and, a little later, in the numerical algebra community [7, 55, 65].
The application of RPs to optimization problems requires further theoretical eforts in order to turn the approximate
congruence invariant to approximate feasibility and optimality: examples in this sense are [10, 15, 38ś42, 47, 48, 62ś
64].

The main reference for RPs and LP in standard form is [63], which presents the theory addressing the solution
process given above, a computational study that focuses on dense random LP instances, and a section about the
application to error correcting codes. RPs were also applied to some speciic LP problems: PAC learning [50] and
quantile regression [66], with dimensional reduction techniques tailored to the corresponding LP structure. LPs
in canonical form (inequalities instead of equations) are treated in [49].

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 3

We note that most of the early papers in RP are purely theoretical, with the exception of [58]. More recent
literature includes computational results, either on speciic algorithms [8, 48], or speciic problems [12, 38, 41], or
problem classes [15, 40, 62, 63]. On problem classes, the quality of results can range from excellent to catastrophic,
depending on the instance [39].
The irst of many computational diiculties (see Sect. 3.1 below) is that, in writing � = � (�−2 ln�), we are

neglecting a constant multiplicative coeicient C0 related to the łbig ohž, the appropriate value of which is usually
the fruit of guesswork. Another diiculty is that the the theoretical results in this area apply to łhigh dimensionsž,
without specifying a minimum dimension above which they hold. In catastrophic cases, the theory ensures that
results would improve for larger instance sizes, but just how large is unknown. At this time, in our opinion, it is
very hard to foresee whether RPs will be useful or not on a given problem instance. This justiies the continuing
interest in improving the projection process, and in verifying the empirical advantage of each improvement, both
of which are at the core of the contributions of the present paper.

1.1.3 Matrix sketching. Matrix sketching is a technique for applying RPs to whole subspaces instead of inite sets
of vectors. The algorithmic treatment is often the same: pre- or post-multiply a given data matrix by a random
Gaussian matrix. The theoretical analysis, however, leads to a more powerful result (subspaces instead of inite
sets) in exchange for a smaller decrease in size. A clear and uniied treatment of JLL and matrix sketching is
given in [43, ğ8.5-8.7]: the projected dimension � goes from � (�−2 ln(�)) in the JLL to � (�−2� log(�)) in matrix
sketching [43, ğ9.6], where � is the dimension of the subspace we project from. If we are projecting from R� ,
we need � = � (�−2� log(�)). This obviously only helps if �� = � is overconstrained (yielding columns of � in
R
� with � ≫ �), which is not the case we consider in this paper. Indeed, matrix sketching is often applied to

overconstrained linear systems [65], arising e.g. in linear regression.
The research carried out in matrix sketching and LP follows diferent directions from the one taken in this

paper (i.e. reducing the size of an LP). We look in particular at three papers [11, 53, 54] that apply matrix sketching
to the a step of the IPM in order to solve a linear system more eiciently.
In IPMs for LP, the main issue is that of solving complementary constraint systems, which are bilinear

constraints (eventually reformulated to linear systems). Quadratic forms are therefore the main object of interest:
instead of looking at ��⊤ for some matrix �, one considers instead ��⊤��⊤, where � is an appropriately sized
RP. In [11], in order to ensure a small value of the bound in the right hand side (rhs) of

∥��⊤��⊤ −��⊤∥2 ≤
�

4

(
∥�∥22 + ∥�∥2� /�

)
, (2)

which holds with probability ≥ 1 − � for any � ≥ 1, the estimate of the projected dimension � in [11] is
� (� ln(�/�)). This result is attributed to [13] by the authors of [11]. It is diicult to compare this result and the
JLL since the two statements are about diferent expressions.

We note that, in order to ensure a small rhs in Eq. (2), � should be small. But the authors of [11] do not mention
� in their order-of-magnitude expression for � because they consider it constant (in [13], on the other hand, it
plays a considerable role, as it appears in many complexity expressions as an additional multiplicative factor � −2).
Moreover, for the term ∥�∥2

�
/� to be small, � should be large. Lastly, for Eq. (2) to hold with high probability, �

should be small, which makes �/� large. All in all, the JLL expression � = � (�−2 ln(�)) must be compared with
� (� −2� ln(�/�)) in [11].

A term-by-term comparison becomes possible if we set � = 1, but this potentially makes the term ∥�∥2
�
/�

large. While � and � have comparable meanings (i.e., decreasing the error bound), in the JLL expression for � the
logarithm is applied to �, which is a part of the instance, whereas � in [11] controls the probability of success of
the statement, and is not part of the instance, but rather an algorithmic parameter. By contrast, the JLL parameter
that plays the same role as � has the form � (�−�), which depends on � , which in turn depends on � and �. Aside

ACM J. Exp. Algor.

4 • Liberti, Manca, Poirion

from the fact that � partly depends on the instance in the JLL, while it only depends on algorithmic parameters
in [11], it is hard to push the comparison further without making undue assumptions.

The papers [53, 54] also make use of matrix sketching within the IPM algorithm (in addition to several other
IPM improvements): the progress along the central path is stochastic, based on sketched matrices. The direction
is approximate, but the error is controlled using randomized error bounds, and the number of iterations turns
out to be lower than with the classic IPM. This approach does not, by itself, yield an exact solution, but [53]
argues that its error guarantees are small enough that a crossover phase [51] will provide the exact solution. In
[54] a new type of analysis leads to a matrix distribution T(�, �) s.t. for a � × � matrix � with � ≪ � sampled
from T(�, �) and any two vectors � and ℎ in R� , the quantity �⊤�⊤�� approximates �⊤ℎ well. While ��⊤ is a
full-rank � × � matrix close to the identity �� with high probability as shown in [67, Cor. 7], �⊤� is an � × �
matrix, evidently of deicient rank � , which looks componentwise like the identity �� , and acts like the identity
for a given, ixed vector [36, ğ7.3.2]. Matrices sampled from T(�, �) are called coordinate-wise embeddings. The
diference between the main results of [53] and [54] is in the type of error bound they aford: based on Frobenius
and ℓ2 norms in [53], and on ℓ1 norms in [54].

1.1.4 The formulation and the algorithm. This paper is a follow-up to [42, 63]. In those papers, as well as the
present one, we have pursued a formulation-based (rather than algorithmic) line of research. We apply RPs directly
to the formulation, rather than to the vectors or matrices that appear in the steps of some solution algorithm.
In other words, we use RPs to derive approximating reformulations [35]. This is a more general approach than
improving the eiciency of a given LP algorithm. Working at the formulation level yields algorithm-independent
results. Generality is usually at trade-of with bound quality: this is indeed the case in the present situation,
as discussed in Sect. 3.1. It also explains why our results do not always yield accurate solutions of the original
problem (but then, even in the case of [53], it is the crossover phase that outputs the exact solution rather than
the IPM itself).

On the other hand, unlike the application of RPs to speciic algorithms, our results apply to all LP formulations
in standard form, independently of the way one chooses to solve them: they say something about the abstract
formulation entity rather than a chosen algorithm. For example, an obvious corollary to our general results is that
a łrandomly projectedž simplex method yields an approximate solution with an error bound, which appears to be
a new result obtained practically for free. Such overarching consequences cannot be derived from algorithmic
papers such as [11, 53, 54], which on the other hand, thanks to their speciicity, may obtain better error bounds.
More formally, if A denotes an LP algorithm and F an LP formulation, the universal approach taken in this

paper is:

∃� ∀A A(F) ≈ A(�F), (3)

whereas the existential approach is:

∃� ∃A A(F) ≈ A(�F). (4)

The approach in Eq. (3) is also known as łsketch-and-solvež in the matrix sketching community. An example of
existential approach is given by the łiterate-and-sketchž method employed in the papers [11, 53, 54] discussed
above. The fact that, in both Eq. (3) and (4) the RP � is existentially quantiied before the algorithm derives from
the oblivious properties of RPs, namely the fact that that they are sampled from a distribution without any input
(except for size) from the set of vectors to be projected.

Even if existential approaches ind better solutions than universal ones, we think universal approaches may
also be used to construct solutions in practice, as we argue in this paper. For this purpose, we restrict our attention
to a speciic algorithm, i.e. the APM proposed in Sect. 2.3. But this algorithm acts as a post-processing phase and
does not make use of RPs. So we can claim that we remain in the universal framework of Eq. (3).

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 5

1.2 Summary

The rest of this paper is organized as follows. In Sect. 2 we present new algorithmic and theoretical results,
which concern tightened error bounds, a new retrieval method based on the APM, and some results about its
convergence. Sect. 3 describes the computational benchmark: issues in estimating RP-related parameters and
how we addressed them, description of the four LP problem structures we consider (maximum low, diet, quantile
regression, basis pursuit) and the corresponding parameters, test pipeline, performance measures. Sect. 4 presents
and discusses the computational results obtained for each of our chosen LP structures. Sect. 5 concludes the
paper.

2 THEORETICAL RESULTS

An LP formulation in standard form is provided in Eq. (LP), where � ∈ R� , � is an� × � matrix, � ∈ R� . Given a
� ×� RP matrix � , the projected LP formulation is given in Eq. (T LP).

min ��

�� = �

� ≥ 0,





(LP)
min ��

��� = ��

� ≥ 0.





(T LP)

Eq. (T LP) is still an LP in standard form, but it has fewer constraints than Eq. (LP). Since the worst-case
running time of all LP solvers also depends on the number of constraints�, solving the latter takes less time
than the former. If �̄ is an optimal solution of Eq. (T LP) and �∗ of Eq. (LP), then ��̄ ≤ ��∗, and there is a � > 0
such that ��∗ ≤ ��̄ + � wahp [63].
Both � = {� | �� = �} and �� = {� | ��� = ��} are aine subspaces of R� . In general we have � ⊆ �� and

dim � = � −� < � − � = dim�� , which implies that �̄ ∈ � with probability zero. This justiies the need for
a post-processing algorithm that takes �̄ for input, and provides a solution that is feasible in (LP). Obviously,
solving Eq. (LP) directly (i.e. with an LP solver) is not a viable alternative, since otherwise we would not even
need to bother with the projected LP. In [42, 63] we proposed instead a simple projection of �̄ on the subspace � ,
which can be achieved with the pseudoinverse of �:

�̃ = �̄ +�⊤ (��⊤)−1 (� −��̄) (5)

The main issue with Eq. (5) is that �̃ may not satisfy the non-negativity constraints � ≥ 0. We prove in [42] that
the negativity error is bounded above wahp. An empirical veriication is provided in [63]. We address this issue
by iterating an alternation of Eq. (5) and a projection on the variable bounds (Sects. 2.3, 3.4).

The second issue with Eq. (5) is that, since the pseudoinverse is usually dense, its direct application is ineicient.
We address this issue by replacing Eq. (5) with an approximation thereof (Sect. 3.5).

2.1 Approximate feasibility invariance

The dual view of the feasible set � = {� | �� = � ∧� ≥ 0} of (LP) provides the following geometric interpretation:
� describes the set of conic combinations of the columns � � of �. More precisely, any � in � yields a conic
combination

∑
� � �� � that is equal to �. We consider cone(�), the cone spanned by the columns of�, as well as the

convex hull conv(�) of the same. Moreover, for any� ∈ cone(�), we let ∥�∥� = min{∑� � � | � =
∑

� � ��
�∧� ≥ 0}

be the �-norm of �.
We note that � is invariant w.r.t. the application of � to (LP): if � ∈ � then ��� = �� by linearity of � . On the

other hand, it is generally false that if � ≥ 0 but � ∉ � , then ��� ≠ ��. The following approximate feasibility
statement

� ∉ cone(�) ⇒ Prob
(
�� ∉ cone(��)

)
≥ 1 − 2(� + 1) (� + 2)�−C1 (�2−�3)� (6)

is proved in [63, Thm. 3] for all � ∈ (0,Δ2/(�� + 2��
√
1 − Δ2 + 1)), where C1 is the universal constant of the JLL,

�� = max{∥� ∥� | � ∈ cone(�) ∧ ∥� ∥2 ≤ 1}, and Δ is a lower bound to min�∈conv(�) ∥� − � ∥2.

ACM J. Exp. Algor.

6 • Liberti, Manca, Poirion

Let val(·) indicate the optimal objective function value of a MP formulation. The approximate optimality
statement for (LP) derived in [63, Thm. 4] is conditional to the LP formulation being feasible and bounded, so that,
if �∗ is an optimal solution, there is a scalar � (assumed w.l.o.g. ≥ 1) such that

∑
� �
∗
� < � . Given � ∈ (0, val(LP)),

Prob
(
val(LP) − � ≤ val(T LP) ≤ val(LP)

)
≥ 1 − �, (7)

where � = 4��−C1 (�
2−�3)� , � = � (�/(� 2∥�∗∥2)), and �∗ is an optimal dual solution of Eq. (LP). Like other

approximate optimality results in this ield, some quantities in the probabilistic statement depend on the norm
of a dual optimal solution. This adds a further diiculty to computational evaluations, since they cannot be
computed prior to solving the problem.

Let �̄ be a projected solution, i.e. an optimal solution of the projected formulation. In [63, Prop. 3], it is proved
that �̄ is feasible in the original formulation with zero probability. We therefore need to provide a way to construct
a feasible solution of the original formulation, i.e. a solution retrieval method. A couple were proposed in [63],
but the one found in [42, Eq. (6)] comes with an approximation guarantee and a good practical performance (see
Sect. 4.5). As already mentioned, the retrieved solution �̃ is deined as the projection of �̄ on the aine subspace
�� = �, and computed using the pseudoinverse, see Eq. (5). The fact that we only project on �� = � without
enforcing � ≥ 0 is necessary, since otherwise we would need to solve the whole high-dimensional LP. On the
other hand, it causes potential infeasibility errors w.r.t. � ≥ 0.

A probabilistic bound on this error is cast in general terms for Conic Programs (CP) in [42], where the analysis
is conducted in the framework of Formally Real Jordan Algebras (FRJA). This allows the same analysis to hold for
many types of CPs [2], including LPs. Speciically, the central result to the bound on the negativity error of the
retrieved solution �̃ is the�∗ bound theorem [59, Thm. 9.4.2], which bounds (wahp) the expected diameter of
the set ker� ∩ � in function of the radius and the Gaussian width of �, where � is any subset of R� . We recall
that the radius of � is max�∈� ∥� ∥2, and that the Gaussian width of � is E� (sup�∈� ⟨�, �⟩), where � is a standard
normal vector in R� , and E� is the mean w.r.t. the random vector �. Both Prop. 4.2 and Thm. 4.4 in [42], which
bound (wahp) the feasibility error of �̄ and the negativity error of �̃ , are consequences of the�∗ bound theorem,
by estimating radius and Gaussian width of an appropriately chosen set �. The foremost technical diiculty of
applying the�∗ bound theorem is to ind good estimations of the Gaussian width.
The irst theoretical contribution of this paper is a specialization of [42, Thm. 4.4] Ð originally cast in the

general conic case Ð to the case of the non-negative orthant (i.e. the case of LP). This result bounds the negativity
of the smallest component of �̃ in terms of �̄ and the condition number � of �.

Proposition 2.1. There is a universal constant C2 such that, for any � ≥ 0, we have:

Prob
(
min
�≤�

�̃ � ≥ min
�≤�

�̄ � − ��� (C2 + �
︁
2/ln(�))

)
≥ 1 − 2�−�2

. (8)

The proof is based on an improvement of [42, Eq. (7)] based on computing the Gaussian width and diameter of
{� ≥ 0 | ⟨1, �⟩ ≤ 1}.

Proof. The inequality above is given in general terms in [42, Eq. (7)] as:

�min (�̃) ≥ �min (�̄) − ���∥�1/2∥2 (C2� (B) + Δ�)/
︁
ln(�),

where � are generalized eigenvalues in a FRJAA,� is the realization of the bilinear form ofA,� (·) is the Gaussian
width, B = {� ∈ KA | ⟨e, �⟩ ≤ 1} (with KA the cone of squares of A), and Δ is the diameter of B. For LP, KA is
the non-negative orthant and � = �� , so �� (�) is the �-th component of the vector � in order of increasing value,
whence �min is the component of minimum value, ∥�1/2∥2 = 1, e = 1, and B = conv({0, �1, . . . , ��}). Now the

Gaussian width of a inite set � is� (�) = � (
︁
ln |� |) and� (�) = � (conv(�)) [59], therefore� (B) = � (

︁
ln(�)).

Finally, ∥0 − �� ∥2 = 1 for all � ≤ �, and ∥�� − � � ∥2 =
√
2 for each � < � ≤ �, so the diameter of B is

√
2. The result

follows by replacement. □

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 7

2.2 Approximate optimality of the retrieved solution

As a corollary to Prop. 2.1, we also have the following result about the diference between objective function
values of the retrieved and projected solutions.

Corollary 2.2. Let �̃ be the objective function value of the retrieved solution �̃ , and �̄ be the optimal objective

function value of the projected formulation. There is a universal constant C2 such that, for any � ≥ 0, we have:

Prob
(
| �̃ − �̄ | ≤ ���∥� ∥2 (C2 + �

︁
2/ln(�))

)
≥ 1 − 2�−�2

. (9)

Proof. Note that �̃ = �⊤�̃ and �̄ = �⊤�̄ . By Prop. 2.1, we have �̃ = �⊤�̄ + �⊤ (�⊤ (��⊤)−1 (� −��̄)). By Cauchy-
Schwartz inequality, this yields | �̃ − �̄ | ≤ ∥� ∥2∥�⊤ (��⊤)−1∥2∥� −��̄ ∥2. The result follows from [42, Prop. 4.2]
and [42, Thm. 4.4]. □

2.3 Improved solution retrieval

Our proposed improvement to the solution retrieval method shown in Eq. (5) and analysed in Prop. 2.1 and
Cor. 2.2 is based on alternating two projection steps: the aforementioned projection on �� = � (see Eq. (5)), and a
projection on the non-negative orthant � ≥ 0, which simply consists in zeroing all negative components of �̃ .
This suggests using the well-known APM [61, Thm. 13.10]. For two closed convex sets �,� with non-empty

intersection, the APM projects the current point on � , then the result on � , and repeats these two steps. The
APM converges (possibly in ininite time) to a point in the intersection � ∩� . In the current set-up, we have
� = {� | �� = �} and� = {� | � ≥ 0}. The irst projection is implemented as in Eq. (5). The second zeroes all the
negative components of the input vector.

There are many variants of the APM. We present the most basic one (von Neumann’s [61]) in this section. We
introduce and discuss two others in Sect. 3.4.
The new retrieval method is presented in Alg. 1. It takes as input: (i) the problem data �,�, (ii) the projected

solution �̄ , and (iii) two algorithmic parameters: the maximum number N of iterations, and a numeric threshold
� > 0 for the error ∥��̃ − �∥2. The loop in Alg. 1 is executed at most N times. It alternates between achieving

Algorithm 1 APM(�,�, �̄,N, �)
�̃ ← �̄

for � ≤ N do

�̃ ← �̃ +�⊤ (��⊤)−1 (� −��̃) // project on �� = �

if � ≥ 0 then
return �̃ // �̃ feasible

end if

for � ∈ {ℎ ≤ � | �̃ℎ < 0} do
�̃ � ← 0 // project on � ≥ 0

end for

if ∥��̃ − �∥2 ≤ � then

return �̃ // �̃ almost feasible

end if

end for

return �̃

feasibility w.r.t. �� = � and w.r.t. � ≥ 0. Alg. 1 returns a solution �̃ ← APM(�,�, �̃, �) which is closer to the
feasible set of Eq. (LP) than the projected solution �̄ .

ACM J. Exp. Algor.

8 • Liberti, Manca, Poirion

2.4 Error and termination of Alg. 1

The APM in Alg. 1 converges to a point �̂ in the intersection of�� = � and � ≥ 0. More in general, von Neumann’s
APM converges to a point in the intersection of two closed convex sets �,� if the intersection is non-empty
[18]. It is also well known that it may take ininite time to reach �̂ , and that convergence can be slow. The APM
can be extended to any inite number of closed convex sets �1, . . . , �� [23]. Alg. 1 can therefore be generalized
accordingly, for example in order to deal with diferent sets in SDPs that have equality, inequality, and range
constraints (� = 3 in this case). In this section we analyse the termination of Alg. 1.
Let us deine, for notational convenience, � = {� ∈ R� | �� = �} and� = R

�
+ (the non-negative orthant). For

any � ∈ R� we let �+ = (max(0, � �) | � ≤ �), �− = (min(0, � �) | � ≤ �), and neg(�) = |supp(�−) |. We denote
by � (�,�) the minimum Euclidean distance between a set � and a set � in the same Euclidean space. If either
� = {�} or � = {�} are singletons, we indicate them by �, � instead of {�}, {�} in the � (·, ·) expression (thus we
write � (�,�), � (�, �), or � (�, �)).

Assuming that the original LP is feasible, the APM deines a sequence of points �̄ = �0, �1, . . . , �̂ , where
�� is the orthogonal projection of ��−1 on � for odd � , and on � for even � . For general APMs this sequence
may be ininite. Alg. 1, however, terminates in inite time with �̂ = �̃ when the infeasibility w.r.t. �� = �

becomes smaller than a given � > 0. So we assume that there is a last index N of the sequence. We note that
�2ℎ+1 = �2ℎ + �⊤ (��⊤)−1 (� − ��2ℎ) for all ℎ ≥ 0, and that �2ℎ = (�2ℎ−1)+ for all ℎ ≥ 1. Since projections are
orthogonal, if � is odd we have � (��−1, �) = � (��−1, ��) and � (�� ,�) = � (�� , ��+1). Since APMs ensure that
distances between successive pairs of iterates decrease, we have:

∀� ≥ 1 � (��+1, ��) ≤ � (�� , ��−1). (10)

We now ind bounds on � in Alg. (1) and � (appearing in Eq. (8)-(9)) in terms of several expressions, among
which

A =

︁
ln(�)/2

(
C2 −

minℎ �̄ℎ
���

)
, B =

︄
ln(�)

2neg(�1) ���,

and D� =
︁
neg(�1)

��minℎ �̄ℎ − ��� (C2 + �
︁
2/ln(�))

��.

Proposition 2.3. Let � ≥ 0, � ≥ D� , and �
N
= �̃ be the last iterate of the sequence given by Alg. 1. If N > 1,

then A − B� ≤ � ≤ A + B� .

Proof. Consider the irst point �1 ∈ � obtained by projecting the point �̄ onto � . Since N > 1, we must have
min� �

1
� < 0, otherwise Alg. 1 would terminate. We can bound the distance between �1 and the set� : using (8),

for all � ≥ 0 we have

� (�1,�)2 = � (�1, �2)2 = ∥�1 − (�1)+∥2 =
︁

�≤�
�1
�
<0

(�1�)2

≤
︁

�≤�
�1
�
<0

(
min
ℎ

�̄ℎ − ��� (C2 + �
︁
2/ln(�))

)2
= D2

� (11)

with probability at least 1 − 2−�2
. Now, let � be an even index of the sequence. Using (10) and (11) we infer:

� (�� , �) = � (�� , ��+1) ≤ � (�1, �2) = � (�1,�) ≤ D�

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 9

with probability at least 1 − 2−�2
. Therefore, since D� ≤ � , Alg. (1) terminates at iteration N = � and �̃ = �N is

the retrieved solution. The last inequality gives us a bound on � as follows:

D� ≤ �

⇒
�����
(︂

2

ln(�) ���
)
+min

ℎ
�̄ℎ − ���C2

���� ≤
�

︁
neg(�1)

⇒ �
︁
neg(�1)

−min
ℎ

�̄ℎ + ���C2 ≤ �

(︂
2

ln(�) ���
)
≤ �

︁
neg(�1)

+min
ℎ

�̄ℎ − ���C2

⇒
︂

ln(�)
2

(
C2 −

minℎ �̄ℎ
���

)
+

�
︁
ln(�)

︁
2neg(�1)���

≤ � ≤
︂

ln(�)
2

(
minℎ �̄ℎ − C2

���

)
+

�
︁
ln(�)

︁
2neg(�1)���

⇒ A − B� ≤ � ≤ A + B�,
where A and B are as deined above. □

We observe that the quantityD� can be relatively large and give a loose upper bound for � (�1,�). However, if
we consider D� as a function of only � and impose D� ≥ 0 we can ind the value of � for which D� reach its
minimum:

D� =

︁
neg(�1)

��min
ℎ

�̄ℎ − ��� (C2 + �
︁
2/ln(�))

�� ≥ 0⇔ � ≤
(
minℎ �̄ℎ
���

− C2
)︂

log(�)
2

(12)

As a corollary of Prop. 2.3, since Alg. 1 terminates when � (�N,�) ≤ � and D� is an upper bound for � (�1,�)
(and thus for � (�2, �)), we have the following

Corollary 2.4. Under the same assumptions of Prop. 2.3, Alg. 1 terminates with N = 2.

The following result shows that, by ixing the parameter � (resp. N) in Alg. 1, it is possible to obtain an upper
(resp. lower) bound on the parameter N (resp. �). These bounds will give the possibility to choose the maximum
number of iterations needed to reach a certain feasibility error � w.r.t. the set � , or to choose the required feasibility
error � to reach in a certain number of iterations N.
The aforementioned bounds are constructed by considering the convergence rate of the APM algorithm, i.e.

the constant � ∈ (0, 1) such that
� (�� , �̂) ≤ �� (��−1, �̂) ∀� > 0, (13)

where �̂ is the accumulation point of the sequence {�� }, the fact that the distance between �1 and �2 is bounded
(cf. Eq. (11)) and the worst case scenario for the APM algorithm with convergence rate � (for more details on the
convergence rate of the APM algorithm we refer to [18]).

Theorem 2.5. Let � = {� ∈ R� | �� = �},� = {� ∈ R� | � ≥ 0}, � ∈ (0, 1) be the convergence rate of Alg. 1, D�

the quantity deined in Eq. (11) and � = arccos(�). For N ∈ N ixed and even, Alg. 1 terminates after N iterations if

the feasibility error � w.r.t. the set � satisies

� ≥ �N−1
D�

tan(�) . (14)

For � > 0 ixed, the number of iterations N required to terminate Alg. 1 with feasibility error � w.r.t. � satisies

N ≤ ln(tan(�)�/�)
ln(cos(�)) + 1. (15)

ACM J. Exp. Algor.

10 • Liberti, Manca, Poirion

Proof. We consider any line � ⊂ R� passing through �2 perpendicular to the vector �2 − �1 and another line
� passing through �1 intersecting � with angle � satisfying cos(�) = �. By construction, the APM algorithm
applied to � and � starting from �1, satisies

∀� > 1 � (�� , �̂) = cos(�)� (��−1, �̂) = �� (��−1, �̂), (16)

where {�� } is the sequence of points generated by the algorithm with �� = �� , � = 1, 2, and �̂ is its accumulation
point.

From Eq. (16) we can conclude that the sequence {�� } converges more slowly than the sequence {�� } generated
by Alg. 1. Therefore, if we bound the index N such that the sequence {�� } satisies � (�N, �) ≤ � , the same bound
holds for the sequence {�� }.

In order to ind such bound, let N ∈ N be even, then

� (�N, �) ≤ � (�N, �̂) = �N−1� (�1, �̂) = �N−1
� (�1, �2)
tan(�) = �N−1

� (�1, �2)
tan(�) ≤ �N−1

D�

tan(�) , (17)

where, in the last step, we have used Eq. (11). Since the APM algorithm terminates when � (�N, �) ≤ � , we obtain
the required bound on N as follows:

�N−1
D�

tan(�) ≤ � ⇔ N ≤ ln(tan(�)�/D�)
ln(cos(�)) + 1, (18)

where we recall that cos(�) = �. We also observe that the left hand side of (18) gives the required lower bound
on the feasibility error � for ixed N. □

3 COMPUTATIONAL BENCHMARK

As mentioned in the introduction, the computational application of RPs to problem classes (such as LP) is
questionable, because performance varies from problem to problem, as well as from instance to instance. Our
goal is to provide a computational comparison: how much precision do we lose, and how much time do we gain,
by solving projected instead of original instances?

3.1 The inapplicability of RP theory

Most theoretical results using RPs are of the łwahpž type: a certain statement occurs with probability tending
to one exponentially fast in terms of the projected size (see e.g. Eq. (6)). The statements themselves are often
bounds to a feasibility or optimality error expressed in terms of certain features of the problem instance (see
e.g. Eq. (7) and (8)): for example the number � of variables and the condition number � of the constraint matrix.
Among these features, some relate to the solution of the original problem: for example the boundedness

assumption (encoded by �) and the norm of the solution vector �∗ of the dual. Evidently, such information is not
available: if it were, the original problem would already have been solved, and there would be no need to solve
the projected problem. Another issue is raised by the presence of the universal constants C0, C1, C2: while for
speciic instances or problem structures one may be able to compute reasonable estimates [5] for the constants
related to measure concentration, to the best of our knowledge, their estimation over general problem classes
such as LP is useless.
This situation prevents a straightforward application of RP theory to practical cases. As mentioned in [39,

ğ3.3], easy bounds for � and ∥�∗∥ lead to tiny values for � , which imply huge values for � . In turn, this means
that the smallest sizes � to be considered for the applications of RPs to LP should be exponentials of huge values:
practically impossible. One might then question the signiicance of these results. Our answer is that they have an
epistemological value: they say that inserting randomness in an LP before solving it is not as crazy as it would

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 11

appear. Unfortunately, they do not say just how to go about choosing the parameters for the obtained solution to
be meaningful.

3.2 Choice of parameters

Our computational set-up relects the need for solving both the original and the projected instances, so as to be
able to compare results. Accordingly, we choose a range of sizes �, � so that our solver of choice can solve both
original and projected instances.
We arbitrarily ix C0 = 1 so as to be able to derive � as

︁
ln�/� . Since we do not know how to choose C1, C2,

and we can only obtain useless estimates for �, ∥�∗∥2, we give up entirely on � , � , and therefore also on estimating
the probability of success a priori.

In the implementation of the APM (Alg. 1), we chose a termination condition based on the maximum number
N of iterations rather than on the error threshold � w.r.t. ∥��̃ − �∥2, since if the APM takes too long, the entire
endeavor of projecting instances becomes moot. In our computational experiments, we set N = 30 and � = 0.01.
We also added a further termination test to the APM, namely that if ∥�� − ��+1∥2 < � at iteration � , then the
APM terminates prematurely.

3.3 Density of the projection matrix

All componentwise sampled sub-Gaussian distributions [19] can be used to prove the results cited in this paper.
Some sparse variants also exist, along the lines of [1, 32]. We use the sparse RPs described in [15, ğ5.1]. For a
given density � ∈ (0, 1) and standard deviation

︁
1/(��), with probability � we sample a component of the � ×�

RP � from the distribution N(0,
︁
1/(��)), and set it to zero with probability 1 − � . In our computational study,

we set � = 0.5��, where �� is the density of the constraint matrix � (the multiplicative constant 0.5 was chosen
empirically on the basis of a small subset of instances).

3.4 Alternating projection variants

We considered three APM variants: (i) von Neumann’s basic one [61] given in Alg. 1 and used in [39], (ii) Dykstra’s
one [20], and (iii) the Averaged Alternating Relections Method (AARM) [4]. While von Neumann’s APM is
designed to simply ind any point in the intersection of convex sets �,� ⊂ R� , Dykstra’s variant and AARM ind
the projection of a given point �0 on � ∩� , i.e. they ind � ∈ � ∩� such that ∥� − �0∥2 is minimum.
Von Neumann’s APM and the AARM can be described as operators R� → � ∩� composed of two distinct

projection operators �� : R� → � and �� : R� → � . We have:

�vn = �� ◦ ��
�aarm = (1 − �)� + � (2��� − �) ◦ (2��� − �),

where �, � ∈ [0, 1] were both set to 0.9. The Dykstra variant makes use of extra variables �, �, as shown in Alg. 2.
All three algorithms come with some form of convergence guarantee: for details, we refer the reader to the
corresponding references [4, 20, 61], as well as [14].

In the context of Alg. 1, � is a (possibly unbounded) hyper-rectangle �� ≤ � ≤ �� , where ��, �� are lower and
upper ranges for the decision variables (LP), and� is the aine subspace �� = �.
In order to choose the best variant for our purposes, we ran some preliminary tests on a small part of our

benchmark instances to compare these three variants. Dykstra’s APM gave the best trade-of between solution
quality and speed.

ACM J. Exp. Algor.

12 • Liberti, Manca, Poirion

Algorithm 2 The Dykstra APM

Input: starting point � ∈ R�
Output: candidate � ∈ � ∩�
� = 0, � = 0
while ∥�(� + �) − �∥2 ≥ tolerance do

� = �� (� + �)
� ← � + � − �
� = �� (� + �)
� ← � + � − �

end while

3.5 Approximating the pseudoinverse

Although Alg. 1 makes use of the pseudo-inverse of� in order to compute the projection �� of the current iterate
�̃ on �� = �, the computation of the pseudo-inverse of a large-sized matrix is costly, even if � is sparse (since the
pseudoinverse is usually dense), and even if it need be computed only once, at the beginning of Alg. 1. In this
section we present a fast heuristic method for computing argmin{∥� − �0∥2 | �� = �} for any given �0 (we note
that here �0 plays the role of the current iterate �̃ in Alg. 1).

Speciically, by łfastž we mean łfast in our Python implementationž based on scipy.sparse [60]. This library
ofers two relevant functions:

(1) linalg.lsmr, an iterative solver for least-squares problems: it solves argmin� ∥�� − �∥2, and provides a
solution � of minimum ℓ2 norm if there are multiple solutions to �� = �;

(2) linalg.lsqr, which solves argmin� (∥�� −�∥2 + �∥� −�0∥2) where � is given by the user: our preliminary
tests with varying � never managed to provide us with satisfactory results, as either ∥�� − �∥2 was too
large, or ∥� ∥2 was close to zero (and generally far from �0).

We therefore decided to focus on lsmr only. We computed �̌ = lsmr(�,�) once only before the APM loop, and
�̂ = lsmr(�,� +��0) with varying �0 at every iteration of the APM loop. We note that lsmr provides solutions
having minimum ℓ2 norm, so lsmr approximately solves argmin{∥� ∥2 | �� = �}. Therefore �̂ is an approximate
solution of argmin{∥� − �0∥2 | �(� − �0) = �}. Let � ′ = �̂ − �0: then �� ′ = �(�̂ − �0) = � by deinition of �̂ . This
implies that we now know two points on the aine subspace �� = �, namely �̌ and � ′. We look for a point �† that
minimizes ∥� − �0∥22 over the line �(�) = ��̌ + (1 − �)� ′: this can be done analytically, as it suices to replace �
with �(�) in ∥� − �0∥22, take the derivative w.r.t. �, and set it to zero, as the resulting function of � is convex. This
yields

�† =
⟨�̌ − � ′, �0 − � ′⟩
∥�̌ − � ′∥22

(�̌ − � ′) + � ′ . (19)

By construction �† is at least as close to �0 as �̌ and �̂ , and generally closer.
As a inal algorithmic post-processing, we implemented a bisection search over the segment between �†

(feasible in �� = �) and the projected solution �̄ of T LP (generally infeasible in �� = �), aimed at optimizing the
objective ⟨�, �⟩ of LP while keeping the iterates feasible w.r.t. �� = �. We found that, while the improvements of
this step were very small in general, the CPU time it took is negligible.

3.6 The problem set

A computational study of unstructured LPs was already provided in [63]. Here we study the same set of randomly
generated structured LPs from the problems Max Flow, Diet, uantile Regression, Basis Pursuit. This is the

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 13

same application set found in [39]; in this paper we present new results related to more (and larger) instances per
problem.

3.6.1 Maximum flow. The Max Flow formulation is deined on a weighted digraph� = (�,A, �) with a source
node � ∈ � , a target node � ∈ � (with � ≠ �) and � : A → R+, as follows:

max
�∈R|A|+

∑
�∈�∖{�}
(�,�) ∈A

��� − ∑
�∈�∖{�}
(�,�) ∈A

���

∀� ∈ � ∖ {�, �} ∑
� ∈�
(�,�) ∈A

�� � =
∑
� ∈�
(�,�) ∈A

� ��

∀(�, �) ∈ A 0 ≤ �� � ≤ �� � .




(MF)

We generate random weighted digraphs� = (�,A, �) with the property that a single (randomly chosen) node
� is connected (through paths) to all of the other nodes: we irst generate a random tree on � ∖ {�}, orient it
so that � is the root, add a node � with the same indegree as the outdegree of � , and then proceed to enrich this
digraph with arcs generated at random using the Erdős-Renyi model with probability 0.05. We then generate the
capacities � uniformly from [0, 1]. Finally, we compute the digraph’s incidence matrix �, which has� = |� | − 2
rows and |A| columns. Instances are feasible because the graph always has a path from � to � by construction,
and the zero low is always feasible.
Although (MF) is an LP, it is not in standard form, because of the upper bounding constraints � ≤ �. But,

by [63, ğ4.2], we can devise a block-structured RP matrix that only projects the equations �� = �, leaving the
inequalities � ≤ � alone. In this case, � is a low matrix with two nonzeros per column, one set to 1 the other
to −1, aside from columns referring to source and target nodes �, � that only have one nonzero; and � = 0. The

density of � is �� =
2 |A |−2
(�−2) |A | ≈ 2/�.

For our random (MF) instances, � = |A| is a valid upper bound to
∑
(�, �) ∈A �∗� � , since 0 ≤ �� � ≤ �� � ≤ 1 for all

(�, �) ∈ A.

3.6.2 Diet problem. The Diet formulation is deined on an� × � nutrient-food matrix � , a food cost vector
� ∈ R�+, and a nutrient requirement vector � ∈ R� , as follows:

min
�∈R�+

�⊤�

�� ≥ �.

}

(DP)

We sample �, �,� uniformly componentwise in [0, 1], and set the density of � to �� = 0.5. Instances are feasible
because one can always buy enough food to satisfy all nutrient requirements. If ∥�� ∥0 = |nonzeros of row �� |,
then �̂ =

(
max
�≤�
(��/(∥�� ∥0�� �)) | � ≤ �

)
is a feasible solution.

We remark that Diet is the only problem in our test set that does not natively include a system of linear
equations. The transformation using slack variables �� ≥ 0 for � ≤ � is immediate. We let � = (� | −�), where � is
�×�. The decision variable vector is� = (�, �). The density of� is�� = (����+�)/(�(�+�)) = (���+1)/(�+�).
The theory of RP would justify a fair comparison only between original and projected formulations both in
standard form. Since, however, this paper is about a practical comparison, and since no-one would convert (DP)
to standard form before solving it Ð because this type of transformations is carried out by solvers automatically,
and in the best way Ð we chose to compute objective function values and feasibility errors of the projected
formulation on the space of the original formulation variables �. Thus, for a retrieved solution �̃ = (�̃, �̃) we only
considered �̃ in order to compute the objective function value corresponding to �̃ .

Considering only the � variables is unproblematic if applied to the optimal solution �∗ = (�∗, � ∗) of the original
formulation in standard form, because � ∗ ≥ 0 and � = (� | −�) ensure that �∗ is a feasible solution in �� ≥ �.
When applied to the projected formulation, however, �� = (�� | −� �) yields a block matrix � � = � with both

ACM J. Exp. Algor.

14 • Liberti, Manca, Poirion

positive and negative entries, since � is sampled from a normal distribution. Thus, the underdetermined � ×�
system�� = �� has nontrivial solutions with probability 1. In this case, since the objective tends to minimize �⊤�,
the projected solution �̄ = (�̄, �̄) will have �̄ = 0, yielding zero projected objective function value. This, in turn,
may yield ��̃ ̸≥ �. The application of RPs to Diet (and any other LP in canonical form) is not straightforward.
We consider two alternative projected formulations. The irst is a scalarization of a bi-objective version of

Diet where
∑

� � � is also minimized:

min �⊤� + �1⊤�
��� −�� = ��

� ∈ R
�
+

� ∈ R
�
+





(�DP1),

where � is a given positive scalar. The second aims at minimizing the infeasibilities of the projected system
��� = ��:

min �⊤� + �1⊤ (�+ + �−)
��� + �� (�+ − �−) = ��

� ∈ R
�
+

�+, �− ∈ R
�
+.





(�DP2)

For (DP), the upper bounding solution �̂ yields slack values �̂� = ���̂ − �� for all � ≤ �, where �� is the �-th row
of � . So we let � =

∑
� �̂ � +

∑
� �̂� be an upper bound for

∑
� �
∗
� .

3.6.3 uantile regression. The uantile Regression formulation, for a quantile � ∈ (0, 1), is deined over
a database table � having density �� with � records and � ields, and a further column ield �. We make a
statistical hypothesis � =

∑
� � ��

� , and aim at estimating � = (� � | � ≤ �) from the data �, � so that errors from
the �-quantile are minimized. Instances may only have nonzero optimal value if� > � , as is clear from the
constraints of the formulation below:

min
�∈R�

�+,�− ∈R�+

�1⊤�+ + (1 − �)1⊤�−

�� + ��+ − ��− = �,





(QR)

where the constraint system �� = � has � = (� |� | −�), � = (�,�+, �−), and � (the quantile level) is given, and
ixed at 0.2 in our experiments. The data matrix (�,�) is sampled uniformly componentwise from [−1, 1], with
�� = 0.8. Instances are all feasible because the problem reduces to solving the overconstrained linear system
�� = � with a skew variant of an ℓ1 error function.
We note that (QR) is not in standard form, since the components of � are unconstrained; but this is not an

issue, insofar as the problem is bounded (since it is feasible and it minimizes a weighted sum of non-negative
variables), and this is enough for the results in [63] to hold. On the contrary, the lack of non-negative bounds on
� is an advantage, since we need not worry about negativity errors in the � components of the retrieved solution
(Prop. 2.1). The density of � is �� = (���� + 2�)/(�� + 2�2) = (��� + 2)/(� + 2�).

For (QR), given that all data is sampled uniformly from [−1, 1], no optimum can ever have |� � | > 1. As for�+, �− ,
we note that any feasible � yields an upper bound to the optimal objective function value, which only depends
on �+, �− : we can therefore choose � = 0, and obtain �+� − �−� = �� for all � ≤ �; we then let �+� = �� ∧ �−� = 0 if
�� > 0, and �+� = 0 ∧ �−� = −�� otherwise. This yields an upper bound estimate � = � +∑� |�� | to

∑
� �
∗
� .

3.6.4 Basis pursuit. The Basis Pursuit formulation aims at inding the sparsest vector � satisfying the underde-
termined linear system �� = � by resorting to a well-known approximation of the zero-norm by the ℓ1 norm

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 15

[9]:
min
�,�∈R�

1
⊤�

�� = �

∀� ≤ � −� � ≤ � � ≤ � � .





(BP)

According to sparse coding theory [16], we work with a fully dense� × � matrix � sampled componentwise
from N(0, 1) (with density �� = 1), a random message obtained as �/� from a sparse � ∈ (Z ∩ [−�, �])� (with
density 0.2) and � = 10, and compute the encoded message � = ��. We then solve (BP) in order to recover the
sparsest solution of the underconstrained system �� = �, which should provide an approximation of �. Basis
pursuit problems undergo a phase transition as� decreases from � down to zero [3], so it shouldn’t really make
sense to decrease� by using RPs, and yet some mileage can unexpectedly be extracted from this operation [37].
Similarly to (MF), in (BP) we can partition the constraints into equations �� = � and inequalities −� ≤ � ≤ � .

Again by [63, ğ4.2], we devise a block-structured RP matrix which only projects the equations.
As in Sect. 3.6.3, (BP) is not in standard form, since none of the variables are non-negative. In this case, moreover,

it is not easy to establish a bound � on
∑

� (�∗� + �∗�), since � is sampled from a normal distribution. On the other

hand, for �� � ∼ N(0, 1) we have Prob
(
�� � ∈ [−3, 3]

)
= 0.997. By construction, we have � ∈ [−3�, 3�]� , which

implies a deining interval [−�, �] on the components of optimal solutions, yielding � = 2�2 with probability
0.997.

3.7 Our pipeline: hardware and sotware

The solution pipeline is based on Python 3.11.2 [56] and the libraries scipy [60] and amplpy [21] (besides other
standard python libraries). For each problem type, we loop over instance (row) sizes in a certain set S, over �
values in a certain set E, and over 5 diferent runs for each pair (row size, �) in order to amortize the randomness
given by sampling � . We report average performance measures over the 5 instances.
We solve all of the original instances using CPLEX 22.1 [26]. The CPLEX settings are default for the original

instances (so the LP algorithm within CPLEX is chosen automatically). For the projected instances, we use the
HiGHS [24] LP solver: more speciically, we use the revised simplex algorithm for the Maximum Flow and
uantile Regression applications, and the barrier algorithm without crossover for the Diet application. For
the projected instances of the Basis Pursuit application we use the CPLEX solver (barrier algorithm).

We are aware that adapting the solution process to the application removes generality from the algorithm in
exchange for performance. This can be easily ixed by simply choosing CPLEX or HiGHS with the automatic
choice of algorithm. With HiGHS, the performance degradation is very small for all but Basis Pursuit, in which
case only some of the combination of (instance, �) will be impacted severely. Using CPLEX for all projected
instances will slow down most runs by a factor between 1 and 10, which is only noticeable inMaximum Flow.
This factor could well be reduced further by employing a direct interface to CPLEX rather than using AMPLpy.

All our tests have been carried out on a 128-core Intel Xeon Platinum 8362 2.8GHz CPU running on a CentOS
Rocky Linux 8.8 distribution with 2TB RAM.
Our code can be downloaded from github.com/leoliberti/rp4lp: we warn readers that it is a research

code, and therefore prone to changes, sometimes diicult to decypher, and with plenty of parameters we used to
test algorithmic choices. Some manual adaptation of the parameter setting is carried out before deploying the
code on a new application.

3.8 Performance measures

At the end of each solver call we record: the optimal objective function � ∗ of the original problem, the optimal
objective function �̄ of the projected problem, the objective function value �̃ of the retrieved solution �̃ , the
average feasibility error w.r.t. range inequalities � ≤ � ≤ � (avgin), equation constraints �� = � (avgeq), the

ACM J. Exp. Algor.

https://github.com/leoliberti/rp4lp

16 • Liberti, Manca, Poirion

CPU time �∗ taken to solve the original formulation, and the CPU time �̃ taken to construct and solve the projected
formulation and retrieve the solution.

To be precise, the CPU time �∗ takes into account: reading the instance, constructing the original formulation,
and solving it. The CPU time �̃ takes into account: reading the instance, sampling the RP, projecting the instance
data, constructing the projected formulation, solving it, and performing solution retrieval.
In summary, this benchmark is based on the following measures: the average objective function ratios �̄ /� ∗,

�̃ /� ∗, the average errors avgeq, avgin for �� = � and � ≥ 0, the ratio �/�, the average CPU ratio �̄/�∗: all
averages are computed over 5 solution runs over a given instance and � value.

4 COMPUTATIONAL RESULTS

We present computational results in tabular and graphical forms.
For each problem in our set (Max Flow, Diet, uantile Regression, Basis Pursuit) we randomly sampled

ive reasonably large-sized instances (generation details in Sect. 3.6, size details in speciic sections below), solved
them with the process described in Sect. 3.7 for a set E = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} of � values, and
collected the performance measures described in Sect. 3.8.

In all tested instances, the proposed RP-based solution methodology took less time than running CPLEX with
default settings: in other words, �̃ < �∗ for all instances and runs. In Table 1 we give a succinct summary of the
performance comparison: for each application problem we give averages (over all instances, � values, and runs)
of: original objective value � ∗, projected objective value �̄ , retrieved objective value �̃ , maximum range error over
variables, maximum equation error over linear equality constraints, CPU time �∗ to solve the original problem,
CPU time �̃ to construct and solve the projected problem and retrieve the solution. Although we do not present
instance sizes in this table, the CPLEX average CPU times �∗ bear witness to the fact that these are not easy LPs
to solve.

Problem � ∗ �̄ �̃ maxin maxeq �∗ �̃

Max Flow 147.562 148.233 74.296 0.000 0.000 47.70 33.33
Diet �DP1 0.243 0.830 1.817 0.033 0.187 3.65 1.40
Diet �DP2 0.243 0.831 0.973 0.039 0.683 3.68 0.22
uantile Regression 1361.976 0.000 1400.650 0.001 0.000 10.44 1.43
Basis Pursuit 19.820 7.987 89.509 0.000 0.000 649.58 7.57

Table 1. Average results over all instances, � values, and runs.

Since we are trying to ascertain how a new solution methodology works, we believe that the relative behaviour
change of objective function values and CPU times in function of instance size and � will give the reader a clearer
picture than their absolute counterpart. In the following detailed tables 2, 3, 4, 5, 7 we shall therefore show:

• the value of � ,
• the ratio �̄ /� ∗ of projected to original objective function value (the closer to 1 the better),
• the ratio �̃ /� ∗ of retrieved to original objective function value (the closer to 1 the better),
• the average error avgin on the inequality constraints � ≥ 0 (the closer to zero the better),
• the average error avgeq on the equality constraints �� = � (the closer to zero the better),
• the ratio �/� of the number of projected to original constraint (tends to zero as � increases),
• the ratio �̃/�∗ of the CPU time taken to construct and solve the projected problem and then perform the
solution retrieval, and of the CPU time taken to solve the original problem (the lower the better: a successful
run when < 1).

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 17

In each of Figures 1, 2, 3, 4, 5 we give 15 plots for each test set arranged in a 5 × 3 array, corresponding to
three plots per instance on each row, with instance size increasing downwards. Each plot maps two related
performance measures (� axis) in function of increasing � (� axis). The leftmost column of the array plots �̄ /� ∗
and �̃ /� ∗. The center column plots avgin and avgeq. The rightmost column plots �/� and �̃/�∗.

4.1 Maximum flow

We generatedMax Flow instances with constraint matrices having row sizes in

{5000, 5500, 6000, 6500, 7000}

(number of nodes aside from source and destination), and column sizes (number of arcs) approximately as the
row size ×1.05. the arc capacities were sampled from Uniform(0, 1).
The application of RPs toMax Flow is very successful according to most measures. The projected optimal

value is always very close to the original. The retrieved solution has objective value that is always close to half of
the original one, which is not ideal, but not bad either (we do not think this regularity is due to chance, but we
could not understand its reason). The errors are always very close to zero, so the retrieved solution is practically
feasible. The CPU time �̃ is always smaller than �∗.

Having said that, the results in Table 2 do not wholly justify choosing to use RPs rather than simply solve the
problem with a good LP solver: even though RPs take less time than CPLEX, �∗ and �̃ are in the same order of
magnitude. The point is what to do when the original problem is so large it cannot be solved, so that RPs become
the only alternative.

We sampled an instance having row size 20000 for which our pipeline fails to solve due to size, but were able
to solve it in 400.27s of CPU time, with a retrieved solution that is practically feasible in the original LP. We note
that the reason why this instance could not be solved is not the CPLEX solver, but a rather old version of AMPL
[21] (called by the amplpy library). So our test is realistic rather than real, but in the setting of an academic paper
the argument should remain convincing: increasing sizes further would eventually challenge the solver. To be
fair to AMPL, we also note that replacing the AMPL binary with a recent version allowed our pipeline to solve
the (original) instance in 531.76s, yielding �̄ /� ∗ ≈ 1 and �̃ /� ∗ ≈ 0.5 as in the rest of the instances.

4.2 Diet

We generated Diet instances with constraint matrices � having row sizes in

{3000, 4000, 5000, 6000, 7000}

(number of nutrients) and column size ixed to 400 (number of foods). The objective function coeicients were
sampled from Uniform(0, 1). The given constant � in Eq. (�DP1)-(�DP2) was set to 2�, to attempt to drive slack
variables to zero.

The application of RPs to Diet presents an abnormal behaviour of the relaxation property of the projected
problem w.r.t. the original one: namely, it is a minimization problem, so we should expect �̄ ≤ � ∗, and we ind
instead that �̄ is often much larger than � ∗. This is due to the fact that, according to Sect. 3.6.2, we use modiied
projected formulations for which the theory no longer holds. We therefore ignore the projected value, and look
at the other measures instead. It turns out that �DP1 yields smaller errors but worse retrieved solution values in
more CPU time than �DP2.
It is worth mentioning that a theory of RPs applied to LPs that are natively cast in canonical form (i.e. with

inequality constraints) is presented in [49]: �2 distributions are used instead of subgaussian distributions in
order to sample the RP � . The theory in [49] is partial because it does not propose a solution retrieval method
accompanied by a concentration of measure result. But it does show that the error between projected value and

ACM J. Exp. Algor.

18 • Liberti, Manca, Poirion

� �̄ /� ∗ �̃ /� ∗ avgin avgeq �/� �̄/�∗
maxlow-5000

0.20 1.0000 0.5055 0.0000 0.0000 0.0702 0.78
0.30 1.0000 0.5027 0.0000 0.0000 0.0308 0.71
0.40 1.0000 0.5025 0.0000 0.0000 0.0168 0.68
0.50 1.0000 0.5023 0.0000 0.0000 0.0112 0.64
0.60 1.0000 0.5012 0.0000 0.0000 0.0084 0.67
0.70 1.0000 0.5016 0.0000 0.0000 0.0056 0.66
0.80 1.0000 0.5024 0.0000 0.0000 0.0056 0.67
0.90 1.0000 0.5011 0.0000 0.0000 0.0028 0.60

maxlow-5500
0.20 1.0000 0.5058 0.0000 0.0000 0.0645 0.74
0.30 1.0000 0.5019 0.0000 0.0000 0.0284 0.67
0.40 1.0000 0.4978 0.0000 0.0000 0.0155 0.63
0.50 1.0000 0.4962 0.0000 0.0000 0.0102 0.61
0.60 1.0000 0.4953 0.0000 0.0000 0.0076 0.61
0.70 1.0000 0.4953 0.0000 0.0000 0.0051 0.61
0.80 1.0000 0.4957 0.0000 0.0000 0.0051 0.60
0.90 1.0000 0.4955 0.0000 0.0000 0.0025 0.52

maxlow-6000
0.20 1.0000 0.5096 0.0000 0.0000 0.0600 0.84
0.30 1.0000 0.5051 0.0000 0.0000 0.0263 0.74
0.40 1.0000 0.5040 0.0000 0.0000 0.0143 0.77
0.50 1.0000 0.5046 0.0000 0.0000 0.0095 0.68
0.60 1.0000 0.5035 0.0000 0.0000 0.0072 0.69
0.70 1.0000 0.5036 0.0000 0.0000 0.0047 0.69
0.80 1.0000 0.5041 0.0000 0.0000 0.0047 0.68
0.90 1.0000 0.5031 0.0000 0.0000 0.0023 0.63

maxlow-6500
0.20 1.0000 0.5035 0.0000 0.0000 0.0560 0.81
0.30 1.0000 0.4999 0.0000 0.0000 0.0246 0.75
0.40 1.0000 0.4991 0.0000 0.0000 0.0134 0.71
0.50 1.0000 0.4991 0.0000 0.0000 0.0089 0.69
0.60 1.0000 0.4998 0.0000 0.0000 0.0066 0.66
0.70 1.0000 0.4995 0.0000 0.0000 0.0045 0.66
0.80 1.0000 0.4986 0.0000 0.0000 0.0045 0.68
0.90 1.0000 0.4978 0.0000 0.0000 0.0022 0.63

maxlow-7000
0.20 1.0198 0.5149 0.0000 0.0000 0.0524 0.87
0.30 1.0198 0.5126 0.0000 0.0000 0.0230 0.79
0.40 1.0198 0.5113 0.0000 0.0000 0.0126 0.79
0.50 1.0198 0.5107 0.0000 0.0000 0.0083 0.73
0.60 1.0198 0.5098 0.0000 0.0000 0.0063 0.73
0.70 1.0198 0.5105 0.0000 0.0000 0.0041 0.73
0.80 1.0198 0.5101 0.0000 0.0000 0.0041 0.73
0.90 1.0198 0.5103 0.0000 0.0000 0.0020 0.66

Table 2. Max Flow results.

original value cannot be excessively diferent with arbitrarily high probability. Convincing computational results
are presented in this sense.

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 19

Fig. 1. Max Flow plots.

4.3 uantile regression

We generated uantile Regression instances with data matrices � with components from Uniform(−1, 1)
having row sizes in

{5000, 6000, 7000, 8000, 9000}
(number of records) and column size ixed at 400 (number of features). The constraint matrices have � = 399
columns corresponding to the independent features; the right-hand side is the 400-th column of � (dependent
feature).

The application of RPs touantile Regression yielded excellent results everywhere aside from the projected
solution value �̄ , which was always very close to zero. This denotes a poor relaxation quality, since the problem

ACM J. Exp. Algor.

20 • Liberti, Manca, Poirion

� �̄ /� ∗ �̃ /� ∗ avgin avgeq �/� �̄/�∗
diet-3000

0.20 4.2167 6.7057 0.0042 0.0035 0.0677 0.58
0.30 4.6096 6.7329 0.0042 0.0036 0.0297 0.46
0.40 4.8227 6.7726 0.0042 0.0037 0.0160 0.44
0.50 4.5505 6.7598 0.0042 0.0037 0.0107 0.43
0.60 3.7557 6.7526 0.0042 0.0037 0.0080 0.43
0.70 1.5655 6.7539 0.0042 0.0037 0.0053 0.43
0.80 1.6198 6.7534 0.0042 0.0037 0.0053 0.43
0.90 0.3558 6.7541 0.0042 0.0037 0.0027 0.42

diet-4000
0.20 5.3459 8.6092 0.0030 0.0040 0.0522 0.51
0.30 5.1756 8.5729 0.0030 0.0041 0.0230 0.44
0.40 4.9819 8.5718 0.0030 0.0041 0.0125 0.42
0.50 6.1089 8.5732 0.0030 0.0041 0.0083 0.41
0.60 4.6691 8.5740 0.0030 0.0041 0.0063 0.41
0.70 1.5736 8.5705 0.0030 0.0041 0.0040 0.41
0.80 1.4134 8.5701 0.0030 0.0041 0.0040 0.41
0.90 0.8319 8.5695 0.0030 0.0041 0.0020 0.41

diet-5000
0.20 5.0390 7.8446 0.0017 0.0042 0.0428 0.47
0.30 4.7305 7.8167 0.0017 0.0043 0.0188 0.40
0.40 4.4483 7.8166 0.0017 0.0043 0.0102 0.38
0.50 5.4889 7.8220 0.0017 0.0043 0.0068 0.38
0.60 3.5377 7.8292 0.0017 0.0044 0.0050 0.38
0.70 3.3575 7.8246 0.0017 0.0044 0.0034 0.37
0.80 2.8848 7.8266 0.0017 0.0044 0.0034 0.37
0.90 0.4368 7.8265 0.0017 0.0044 0.0016 0.37

diet-6000
0.20 4.4477 7.9308 0.0014 0.0043 0.0365 0.43
0.30 5.0808 7.9087 0.0014 0.0044 0.0160 0.37
0.40 5.2797 7.9091 0.0014 0.0044 0.0087 0.36
0.50 5.2320 7.9066 0.0014 0.0044 0.0058 0.36
0.60 3.6482 7.9054 0.0014 0.0044 0.0043 0.35
0.70 2.3367 7.9060 0.0014 0.0044 0.0028 0.35
0.80 1.5380 7.9063 0.0014 0.0044 0.0028 0.35
0.90 0.2818 7.9059 0.0014 0.0044 0.0013 0.35

diet-7000
0.20 4.1153 6.7361 0.0011 0.0045 0.0317 0.40
0.30 4.1567 6.7149 0.0011 0.0045 0.0140 0.34
0.40 3.6206 6.7017 0.0011 0.0046 0.0076 0.33
0.50 4.3503 6.7149 0.0011 0.0046 0.0050 0.33
0.60 5.0517 6.7136 0.0011 0.0046 0.0037 0.33
0.70 1.4903 6.7127 0.0011 0.0046 0.0024 0.33
0.80 1.1576 6.7125 0.0011 0.0046 0.0024 0.33
0.90 0.5228 6.7132 0.0011 0.0046 0.0011 0.33

Table 3. Diet results (with projected formulation �DP1).

is in minimization form. Looking at the results in [39], the reason is likely to be the fact that � = 0.2 is excessive
for the considered instance sizes. Further tests with � ∈ {0.10, 0.15} increased �̄ (but not signiicantly), at the
expense of longer computation times (Table 6). In particular, in the size range given in Table 6, the łsweet spotž
for � for uantile Regression is around 0.15.

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 21

Fig. 2. Diet plots from projected formulation �DP1.

4.4 Basis pursuit

We generated Basis Pursuit instances with encoding matrices � having row sizes in

{1000, 2000, 3000, 4000, 5000},

column sizes equal to row sizes +1000, and density 0.1. The (right-hand size) compressed vector � is obtained by
sampling a vector � and setting � = �� .
The application of RPs to Basis Pursuit yielded excellent results overall, specially at � = 0.2 for sizes up to

3000: the projected problem has almost the same value as the original one, and the retrieved solution is perfectly

ACM J. Exp. Algor.

22 • Liberti, Manca, Poirion

� �̄ /� ∗ �̃ /� ∗ avgin avgeq �/� �̄/�∗
diet-3000

0.20 4.3407 3.8700 0.0047 0.1141 0.0677 0.23
0.30 4.1194 3.8696 0.0047 0.1141 0.0297 0.08
0.40 4.6687 3.8698 0.0047 0.1141 0.0160 0.06
0.50 4.5584 3.8697 0.0047 0.1141 0.0107 0.06
0.60 3.8724 3.8700 0.0047 0.1141 0.0080 0.05
0.70 1.3965 3.8698 0.0047 0.1141 0.0053 0.05
0.80 1.3862 3.8700 0.0047 0.1141 0.0053 0.05
0.90 0.2955 3.8695 0.0047 0.1141 0.0027 0.05

diet-4000
0.20 5.3094 4.5163 0.0041 0.1186 0.0522 0.19
0.30 4.8067 4.5163 0.0041 0.1186 0.0230 0.07
0.40 5.7862 4.5163 0.0041 0.1186 0.0125 0.05
0.50 5.9006 4.5163 0.0041 0.1186 0.0083 0.05
0.60 4.4612 4.5163 0.0041 0.1186 0.0063 0.05
0.70 1.2559 4.5163 0.0041 0.1186 0.0040 0.04
0.80 1.5625 4.5163 0.0041 0.1186 0.0040 0.04
0.90 0.5322 4.5163 0.0041 0.1186 0.0020 0.04

diet-5000
0.20 4.9491 3.9406 0.0033 0.1203 0.0428 0.16
0.30 4.6016 3.9406 0.0033 0.1203 0.0188 0.06
0.40 5.0448 3.9406 0.0033 0.1203 0.0102 0.05
0.50 4.7865 3.9406 0.0033 0.1203 0.0068 0.04
0.60 6.0189 3.9405 0.0033 0.1203 0.0050 0.04
0.70 2.0706 3.9406 0.0033 0.1203 0.0034 0.04
0.80 1.9125 3.9406 0.0033 0.1203 0.0034 0.04
0.90 0.4111 3.9406 0.0033 0.1203 0.0016 0.04

diet-6000
0.20 4.3454 4.0887 0.0026 0.1200 0.0365 0.14
0.30 5.0528 4.0887 0.0026 0.1200 0.0160 0.06
0.40 5.4369 4.0887 0.0026 0.1200 0.0087 0.04
0.50 5.0093 4.0887 0.0026 0.1200 0.0058 0.04
0.60 4.7694 4.0887 0.0026 0.1200 0.0043 0.04
0.70 1.7530 4.0887 0.0026 0.1200 0.0028 0.04
0.80 1.8450 4.0887 0.0026 0.1200 0.0028 0.04
0.90 0.2088 4.0887 0.0026 0.1200 0.0013 0.04

diet-7000
0.20 4.0452 3.7501 0.0023 0.1221 0.0317 0.13
0.30 4.2951 3.7501 0.0023 0.1221 0.0140 0.05
0.40 4.6308 3.7501 0.0023 0.1221 0.0076 0.04
0.50 4.5838 3.7501 0.0023 0.1221 0.0050 0.04
0.60 3.8588 3.7501 0.0023 0.1221 0.0037 0.04
0.70 2.0121 3.7501 0.0023 0.1221 0.0024 0.03
0.80 1.5508 3.7501 0.0023 0.1221 0.0024 0.04
0.90 0.4129 3.7501 0.0023 0.1221 0.0011 0.03

Table 4. Diet results from projected formulation �DP2.

feasible in the original problem. Moreover, �̃ is only 4% to 12% of �∗. Larger sizes fare more poorly as far as
objective value is concerned, but the solution time is 1%: these are indications that � should be decreased.

See Table 8 for results where E = {0.05, 0.10, 0.15, 0.20}. We can see that the instances up to� = 3000 produce
wrong results for � = 0.05: this is due to the fact that �/� > 1 (i.e. � > �): the LP solver, presented with fully dense
over-constrained systems ��� = ��, attempts to reduce their ranks, and fails due to loating point inaccuracies

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 23

Fig. 3. Diet plots from projected formulation �DP2.

and extreme memory demands, which in turn yields an infeasible status and meaningless solutions. However, for
larger instances, where � < �, we see a decreasing CPU time ratio trend, which means that for huge instances, a
very small � is appropriate. The same trend can be read from the other values of � at all sizes. We can also see the
impact that extreme values of � have on performance: smaller � values yield better solution quality until � > �

occurs, while large � values yield poorer �̄ and �̃ but with a decrease in CPU time. In particular, in the size range
given in Table 8, the łsweet spotž for � in Basis Pursuit is around 0.1.

ACM J. Exp. Algor.

24 • Liberti, Manca, Poirion

� �̄ /� ∗ �̃ /� ∗ avgin avgeq �/� �̄/�∗
quantreg-5000

0.20 0.0000 1.0402 0.0001 0.0000 0.0462 0.19
0.30 0.0000 1.0402 0.0001 0.0000 0.0202 0.15
0.40 0.0000 1.0402 0.0001 0.0000 0.0110 0.14
0.50 0.0000 1.0402 0.0001 0.0000 0.0072 0.14
0.60 0.0000 1.0402 0.0001 0.0000 0.0054 0.14
0.70 0.0000 1.0402 0.0001 0.0000 0.0036 0.16
0.80 0.0000 1.0402 0.0001 0.0000 0.0036 0.14
0.90 0.0000 1.0402 0.0001 0.0000 0.0018 0.14

quantreg-6000
0.20 0.0000 1.0373 0.0001 0.0001 0.0392 0.18
0.30 0.0000 1.0373 0.0001 0.0001 0.0172 0.14
0.40 0.0000 1.0374 0.0001 0.0001 0.0093 0.14
0.50 0.0000 1.0374 0.0001 0.0001 0.0062 0.13
0.60 0.0000 1.0373 0.0001 0.0001 0.0047 0.14
0.70 0.0000 1.0373 0.0001 0.0001 0.0030 0.13
0.80 0.0000 1.0373 0.0001 0.0001 0.0030 0.15
0.90 0.0000 1.0373 0.0001 0.0001 0.0015 0.13

quantreg-7000
0.20 0.0000 1.0276 0.0001 0.0001 0.0341 0.18
0.30 0.0000 1.0276 0.0001 0.0001 0.0150 0.14
0.40 0.0000 1.0276 0.0001 0.0001 0.0081 0.13
0.50 0.0000 1.0276 0.0001 0.0001 0.0054 0.13
0.60 0.0000 1.0276 0.0001 0.0001 0.0040 0.13
0.70 0.0000 1.0276 0.0001 0.0001 0.0027 0.14
0.80 0.0000 1.0276 0.0001 0.0001 0.0027 0.14
0.90 0.0000 1.0276 0.0001 0.0001 0.0013 0.14

quantreg-8000
0.20 0.0000 1.0236 0.0001 0.0001 0.0302 0.17
0.30 0.0000 1.0235 0.0001 0.0001 0.0132 0.13
0.40 0.0000 1.0236 0.0001 0.0001 0.0073 0.12
0.50 0.0000 1.0236 0.0001 0.0001 0.0047 0.16
0.60 0.0000 1.0236 0.0001 0.0001 0.0036 0.13
0.70 0.0000 1.0236 0.0001 0.0001 0.0024 0.12
0.80 0.0000 1.0236 0.0001 0.0001 0.0024 0.12
0.90 0.0000 1.0236 0.0001 0.0001 0.0011 0.12

quantreg-9000
0.20 0.0000 1.0212 0.0001 0.0000 0.0272 0.16
0.30 0.0000 1.0212 0.0001 0.0000 0.0120 0.13
0.40 0.0000 1.0212 0.0001 0.0000 0.0064 0.12
0.50 0.0000 1.0212 0.0001 0.0000 0.0043 0.12
0.60 0.0000 1.0212 0.0001 0.0000 0.0032 0.12
0.70 0.0000 1.0212 0.0001 0.0000 0.0021 0.12
0.80 0.0000 1.0212 0.0001 0.0000 0.0021 0.12
0.90 0.0000 1.0212 0.0001 0.0000 0.0010 0.12

Table 5. Quantile Regression results.

4.5 Comments on the retrieval phase improvement

In this section we give a few insights about the computational improvement of our new retrieval phase. These
insights are based on the computational experience we gained by running the experiments many times over: this
is due to removing occasional bugs (which entails a re-computation of all results), and to hands-on, sometimes

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 25

Fig. 4. Quantile Regression plots.

interactive, experiments with parts of the solution retrieval algorithm, i.e. the APM with bisection postprocessing
described in Sect. 3.4-3.5.

The inal code that gave rise to these experiments stems out of trade-ofs and compromises. We do not present
complete comparisons on all instances to motivate each of our algorithmic choices. This is because these choices
inluence each other, and a fully convincing set of computational experiments would need to include all possible
combinations of all possible algorithic choices, which would give rise to an excessive amount of data, and an
unreadable or even łun-writablež paper. Here, however, we give some details about what we think are our two
most important choices.

ACM J. Exp. Algor.

26 • Liberti, Manca, Poirion

� �̄ /� ∗ �̃ /� ∗ avgin avgeq �/� �̄/�∗
quantreg-5000

0.10 0.1026 1.1994 0.0001 0.0000 0.1848 100.86
0.15 0.0050 1.0527 0.0001 0.0000 0.0812 0.30

quantreg-6000
0.10 0.0898 1.1803 0.0001 0.0001 0.1570 91.13
0.15 0.0070 1.0531 0.0001 0.0001 0.0690 0.31

quantreg-7000
0.10 0.0804 1.1572 0.0001 0.0001 0.1367 76.19
0.15 0.0091 1.0489 0.0001 0.0001 0.0601 0.31

quantreg-8000
0.10 0.0722 1.1418 0.0001 0.0001 0.1212 60.79
0.15 0.0080 1.0413 0.0001 0.0001 0.0534 0.26

quantreg-9000
0.10 0.0682 1.1373 0.0000 0.0000 0.1091 49.42
0.15 0.0081 1.0390 0.0001 0.0000 0.0480 0.24

Table 6. Quantile Regression results with � values in {0.1, 0.15}.

As mentioned at the end of Sect. 3.4, we chose Dykstra’s APM variant in a set of three possibilities: von
Neumann’s original APM, Dykstra’s, and the AARM. This choice was made by testing all three variants with a
couple of instances for each of our four LP applications. Other possible choices might have been:

(i) the retrieval strategy based on the LP dual used to estimate a basis of the original primal LP [63];
(ii) the retrieval strategy based on a single projection of the projected solution �̄ on�� = � via the pseudoinverse

[42];
(iii) running a few iterations of a local solver with �̄ as the starting point.

Theoretically speaking, (i) is very elegant: most LP solvers, deployed on �LP, will provide a primal-dual pair
(�̄, �̄), where �̄ solves the primal projected LP in standard form min{�� | ��� = �� ∧ � ≥ 0} and �̄ solves the
corresponding dual LP in canonical form max{��� | ��� ≤ �}. Speciically, since �̄ (��) ≤ � , by associativity
we have (�̄�)� ≤ � , which means that �̄� is a solution of the original dual LP max{�� | �� ≤ �}. In order to
reconstruct the corresponding primal, however, we need a basic feasible solution (bfs), which �̄� unfortunately
fails to be with probability 1. In practice, we tried estimating a basis by choosing the smallest components of �̄� ,
but this yielded the unsatisfactory results of [63, col. łneg1ž in Table 3] in terms of errors w.r.t. � ≥ 0.
As for (ii), this is simply the irst half-iteration of any APM used for retrieval purposes. The main issue with

this choice, which was already apparent in [63, col. łneg2ž in Table 3], is that the retrieved solution is perfectly
feasible w.r.t. �� = �, but infeasible w.r.t. � ≥ 0. In fact, this is the reason that motivated us to add a further
projection on � ≥ 0, which unfortunately ofset the feasibility w.r.t. �� = �, whence the idea of the APM. So,
more than a possible choice, this is actually our motivation to use an APM as a solution retrieval method.
Finally, we comment on (iii). Our tests with the generic local solver scipy.optimize.minimize were cata-

strophic in terms of CPU time. While we hoped to be able to test the more appropriate scipy.optimize.linprog,
this was not possible: as explained in docs.scipy.org, the argument łx0=Nonež is łcurrently used only by the
‘revised simplex’ method, and can only be used if x0 represents a basic feasible solutionž. This meant that we
could not use the HiGHS [24] IPM, since its scipy interface does not accept a starting point, and we could not
use the HiGHS simplex method because our starting point is not a bfs. We looked for another good quality IPM
for LP with a reasonably easy interface to Python, but we could not ind one.

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 27

� �̄ /� ∗ �̃ /� ∗ avgin avgeq �/� �̄/�∗
basispursuit-1000

0.20 1.0000 1.0000 0.0000 0.0000 0.1900 0.12
0.30 0.8254 4.2269 0.0000 0.0000 0.0830 0.05
0.40 0.6111 5.1504 0.0000 0.0000 0.0450 0.04
0.50 0.4694 5.0960 0.0000 0.0000 0.0300 0.03
0.60 0.3361 5.1374 0.0000 0.0000 0.0220 0.03
0.70 0.3237 5.3041 0.0000 0.0000 0.0150 0.03
0.80 0.3448 5.1774 0.0000 0.0000 0.0150 0.03
0.90 0.2002 5.1665 0.0000 0.0000 0.0070 0.03

basispursuit-2000
0.20 1.0000 1.0000 0.0000 0.0000 0.1000 0.04
0.30 0.7329 4.8814 0.0000 0.0000 0.0440 0.02
0.40 0.5218 5.2099 0.0000 0.0000 0.0240 0.02
0.50 0.3972 5.2238 0.0000 0.0000 0.0160 0.01
0.60 0.3065 5.2564 0.0000 0.0000 0.0120 0.01
0.70 0.2849 5.3341 0.0000 0.0000 0.0080 0.01
0.80 0.2734 5.3472 0.0000 0.0000 0.0080 0.01
0.90 0.1820 5.1992 0.0000 0.0000 0.0040 0.01

basispursuit-3000
0.20 1.0000 1.0000 0.0000 0.0000 0.0690 0.04
0.30 0.7012 5.0074 0.0000 0.0000 0.0303 0.02
0.40 0.5216 5.3400 0.0000 0.0000 0.0163 0.02
0.50 0.3314 5.3262 0.0000 0.0000 0.0110 0.01
0.60 0.3110 5.3398 0.0000 0.0000 0.0080 0.01
0.70 0.2700 5.4954 0.0000 0.0000 0.0053 0.01
0.80 0.2293 5.3591 0.0000 0.0000 0.0053 0.01
0.90 0.1483 5.2518 0.0000 0.0000 0.0027 0.01

basispursuit-4000
0.20 0.9009 3.6023 0.0000 0.0000 0.0530 0.02
0.30 0.6015 4.6420 0.0000 0.0000 0.0232 0.01
0.40 0.4004 4.6775 0.0000 0.0000 0.0127 0.01
0.50 0.3239 4.7214 0.0000 0.0000 0.0085 0.01
0.60 0.2969 4.7464 0.0000 0.0000 0.0063 0.01
0.70 0.2222 4.7108 0.0000 0.0000 0.0043 0.01
0.80 0.1811 4.6105 0.0000 0.0000 0.0043 0.01
0.90 0.1186 4.5642 0.0000 0.0000 0.0020 0.01

basispursuit-5000
0.20 0.8428 3.6947 0.0000 0.0000 0.0434 0.02
0.30 0.5196 4.4183 0.0000 0.0000 0.0190 0.01
0.40 0.3724 4.4592 0.0000 0.0000 0.0104 0.01
0.50 0.2866 4.4232 0.0000 0.0000 0.0068 0.01
0.60 0.2166 4.3016 0.0000 0.0000 0.0052 0.01
0.70 0.1592 4.3098 0.0000 0.0000 0.0034 0.01
0.80 0.1807 4.4115 0.0000 0.0000 0.0034 0.01
0.90 0.0883 4.2447 0.0000 0.0000 0.0016 0.01

Table 7. Basis Pursuit results.

One further point worth discussing is the CPU time bottleneck when exploiting RPs to solve LPs. This consists
of three distinct phases: sampling the RP, constructing and solving the projected LP, and performing solution
retrieval. In order to avoid cluttering our results table with too many data, we preferred to just showcase the
ratio of �̃/�∗, where �̃ is the sum of the CPU times of these three phases. On the other hand, this approach hides
the breakdown of �̃ into sampling, solving, and retrieving.

ACM J. Exp. Algor.

28 • Liberti, Manca, Poirion

Fig. 5. Basis Pursuit plots.

In Table 9 we look at the total averages over all instances and runs of the CPU times of each phase. It turns
out that sampling the RP was fastest, solution retrieval was ranked second, and solving the projected LP took
longest. The sampling phase is by far the simplest algorithm out of the three: it is therefore natural that it should
be fastest.

5 CONCLUSION

This paper studies the practical applicability to the theory of random projections to linear programming problems
with certain given structures: maximum low, diet, quantile regression, basis pursuit: the last three naturally
rather dense, the irst naturally sparse.

ACM J. Exp. Algor.

Random projections for Linear Programming: an improved retrieval phase • 29

� �̄ /� ∗ �̃ /� ∗ avgin avgeq �/� �̄/�∗
basispursuit-1000

0.05 40.8465 25528.2439 0.0000 0.0000 3.0400 5.01
0.10 1.0000 1.0000 0.0000 0.0000 0.7600 0.67
0.15 1.0000 1.0000 0.0000 0.0000 0.3340 0.18
0.20 1.0000 1.0000 0.0000 0.0000 0.1900 0.12

basispursuit-2000
0.05 3110.1331 3110.1331 0.0000 0.0000 1.6010 2.52
0.10 1.0000 1.0000 0.0000 0.0000 0.4000 0.19
0.15 1.0000 1.0000 0.0000 0.0000 0.1760 0.06
0.20 1.0000 1.0000 0.0000 0.0000 0.1000 0.04

basispursuit-3000
0.05 7.5265 7.5265 0.0000 0.0000 1.1057 3.13
0.10 1.0000 1.0000 0.0000 0.0000 0.2763 0.14
0.15 1.0000 1.0000 0.0000 0.0000 0.1213 0.05
0.20 1.0000 1.0000 0.0000 0.0000 0.0690 0.03

basispursuit-4000
0.05 1.0000 1.0000 0.0000 0.0000 0.8515 1.88
0.10 1.0000 1.0000 0.0000 0.0000 0.2127 0.09
0.15 1.0000 1.0000 0.0000 0.0000 0.0935 0.04
0.20 0.9179 3.6021 0.0000 0.0000 0.0530 0.02

basispursuit-5000
0.05 1.0000 1.0000 0.0000 0.0000 0.6958 1.15
0.10 1.0000 1.0000 0.0000 0.0000 0.1738 0.08
0.15 0.9979 1.1646 0.0000 0.0000 0.0764 0.03
0.20 0.8054 3.9630 0.0000 0.0000 0.0434 0.02

Table 8. Basis Pursuit results with � values in {0.05, 0.1, 0.15, 0.2}.

sampling solving retrieval
mean 1.13 42.97 7.00
standard deviation 3.84 214.43 15.89

Table 9. Breakdown of �̃ into sampling, projected problem solving, and solution retrieval.

A randomly projected linear program is obtained from the standard form by replacing the original equality
constraints with a version where each of the few constraints is a random aggregation of all the many original
constraints, with weights randomly sampled from a subgaussian distribution. This smaller linear program is
solved using any solver, which yields a projected optimal solution having a value which is a relaxation of of the
original problem. The projected solution is normally infeasible w.r.t. the original problem, so a feasible solution is
obtained by a solution retrieval methodology.
The investigation conducted in this paper tightened error bounds on the feasibility error of the retrieved

solution, and improved the existing retrieval methodology using an alternating projection method. We performed
a computational test on reasonably large-scale instances of the four linear programming structures mentioned
above. The CPU time taken to obtain an almost feasible solution of the LP using random projections was always
less than the time taken by CPLEX to solve the LP to optimality, while the solution quality varied, yielding best
results on the quantile regression problem.

ACM J. Exp. Algor.

30 • Liberti, Manca, Poirion

REFERENCES

[1] D. Achlioptas. 2003. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. System Sci. 66 (2003),
671ś687.

[2] F. Alizadeh. 2012. An Introduction to Formally Real Jordan Algebras and Their Applications in Optimization. In Handbook on Semideinite,

Conic and Polynomial Optimization, M. Anjos and J. Lasserre (Eds.). Operations Research & Management Science, Vol. 166. Springer,
Boston, MA.

[3] D. Amelunxen, M. Lotz, M. McCoy, and J. Tropp. 2014. Living on the edge: phase transitions in convex programs with random data.
Information and Inference: A Journal of the IMA 3 (2014), 224ś294.

[4] F. Aragón Artacho and R. Campoy. 2018. A new projection method for inding the closest point in the intersection of convex sets.
Computational Optimization and Applications 69 (2018), 99ś132.

[5] A. Barvinok. 1997. Measure concentration in optimization. Mathematical Programming 79 (1997), 33ś53.
[6] R. Bixby. 1992. Implementing the simplex method: The initial basis. ORSA Journal on Computing 4, 3 (1992), 267ś284.
[7] Andreas Bluhm and Daniel Stilck França. 2019. Dimensionality reduction of SDPs through sketching. Linear Algebra Appl. 563 (2019),

461ś475.
[8] C. Boutsidis, A. Zouzias, and P. Drineas. 2010. Random projections for �-means clustering. In Advances in Neural Information Processing

Systems (NIPS). NIPS Foundation, La Jolla, 298ś306.
[9] E. Candès and T. Tao. 2005. Decoding by Linear Programming. IEEE Transactions on Information Theory 51, 12 (2005), 4203ś4215.
[10] C. Cartis, E. Massart, and A. Otemissov. 2022. Global optimization using random embeddings. Mathematical Programming B online

(2022).
[11] A. Chowdhury, G. Dexter, P. London, H. Avron, and P. Drineas. 2022. Faster randomized interior point methods for tall/wide linear

programs. Journal of Machine Learning Research 23 (2022), 1ś48.
[12] L. Clarskon, P. Drineas, M. Magdon-Ismail, M. Mahoney, X. Meng, and D. Woodruf. 2013. The fast Cauchy transform and faster robust

linear regression. In Proceedings of the 24-th Symposium on Discrete Algorithms. ACM, New York.
[13] M.B. Cohen, J. Nelson, and D.P. Woodruf. 2016. Optimal approximate matrix product in terms of stable rank. In 43rd International

Colloquium on Automata, Languages, and Programming (LIPIcs, Vol. 55), I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, and D. Sangiorgi
(Eds.). Dagstuhl Publishing, Saarbrücken, 11:1ś11:14.

[14] P. Combettes and J-C. Pesquet. 2011. Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse problems in

science and engineering, H. Bauschke, R. Burachik, P. Combettes, V. Elser, D. Russel Luke, and H. Wolkowicz (Eds.). Optimization and Its
Applications, Vol. 49. Springer, New York, 185ś212.

[15] C. D’Ambrosio, L. Liberti, P.-L. Poirion, and K. Vu. 2020. Random projections for quadratic programs. Mathematical Programming B 183
(2020), 619ś647.

[16] S. Damelin and W. Miller. 2012. The mathematics of signal processing. CUP, Cambridge.
[17] G.B. Dantzig. 1963. Linear Programming and Extensions. Princeton University Press, Princeton, NJ.
[18] F. Deutsch and H. Hundal. 1997. The rate of convergence for the method of alternating projections, II. J. Math. Anal. Appl. 205 (1997),

381ś405.
[19] S. Dirksen. 2016. Dimensionality reduction with subgaussian matrices: A uniied theory. Foundations of Computational Mathematics 16

(2016), 1367ś1396.
[20] R. Dykstra. 1983. An algorithm for restricted least squares regression. Journal of the American Statistical Asociation 78, 384 (1983),

837ś842.
[21] R. Fourer and D. Gay. 2002. The AMPL Book. Duxbury Press, Paciic Grove.
[22] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https://www.gurobi.com
[23] I. Halperin. 1962. THe product of projection operators. Acta Scientiarum Mathematicarum (Szeged) 23 (1962), 96ś99.
[24] Q. Huangfu and J.A.J. Hall. 2018. Parallelizing the dual revised simplex method. Mathematical Programming Computation 10, 1 (2018),

119ś142.
[25] IBM. 2020. ILOG CPLEX 20.1 User’s Manual. IBM.
[26] IBM. 2022. ILOG CPLEX 22.1 User’s Manual. IBM.
[27] P. Indyk. 2001. Algorithmic applications of low-distortion geometric embeddings. In Foundations of Computer Science (FOCS, Vol. 42).

IEEE, Washington, DC, 10ś33.
[28] P. Indyk and J. Matoušek. 2004. Low-distortion embeddings of inite metric spaces. In Handbook of Discrete and Computational Geometry,

J. Goodman and J. O’Rourke (Eds.). Chapman and Hall, Boca Raton.
[29] P. Indyk and R. Motwani. 1998. Approximate nearest neighbors: towards removing the curse of dimensionality. In Proceedings of the

Symposium on the Theory Of Computing (STOC, Vol. 30). ACM, New York, 604ś613.
[30] P. Indyk and A. Naor. 2007. Nearest neighbor preserving embeddings. ACM Transactions on Algorithms 3, 3 (2007), Art. 31.

ACM J. Exp. Algor.

https://www.gurobi.com

Random projections for Linear Programming: an improved retrieval phase • 31

[31] W. Johnson and J. Lindenstrauss. 1984. Extensions of Lipschitz mappings into a Hilbert space. In Conference in Modern Analysis and

Probability (Contemporary Mathematics, Vol. 26), G. Hedlund (Ed.). AMS, Providence, RI, 189ś206.
[32] D. Kane and J. Nelson. 2014. Sparser Johnson-Lindenstrauss transforms. J. ACM 61, 1 (2014), 4.
[33] N. Karmarkar. 1984. A new polynomial time algorithm for linear programming. Combinatorica 4, 4 (1984), 373ś395.
[34] J. Lee. 1989. Turán’s triangle theorem and binary matroids. European Journal of Combinatorics 10 (1989), 85ś90.
[35] L. Liberti. 2009. Reformulations in Mathematical Programming: Deinitions and Systematics. RAIRO-RO 43, 1 (2009), 55ś86.
[36] L. Liberti. 220. Distance Geometry and Data Science. TOP 28 (220), 271ś339.
[37] L. Liberti. pending minor revisions. Decoding noisy messages: a method that just shouldn’t work. In Data Science and Optimization,

A. Deza, S. Gupta, and S. Pokutta (Eds.). Fields Institute, Toronto.
[38] L. Liberti and B. Manca. 2022. Side-constrained minimum sum-of-squares clustering: Mathematical programming and random projections.

Journal of Global Optimization 83 (2022), 83ś118.
[39] L. Liberti, B. Manca, and P.-L. Poirion. 2022. Practical performance of Random Projections in Linear Programming. In Proceedings of the

20th International Symposium on Experimental Algorithms (SEA22) (LIPIcs, Vol. 233), C. Schulz and B. Uçar (Eds.). Dagstuhl Publishing,
Saarbrücken.

[40] L. Liberti, B. Manca, and P.-L. Poirion. 2022. Random projections for semideinite programming. In Proceedings of the AIRO-ODS

Conference (AIRO Series), P. Cappanera et al. (Ed.). Springer, Cham.
[41] L. Liberti, B. Manca, and P.-L. Poirion. 2022. Random projections for the distance geometry problem. In Proceedings of the workshop

Discrete Mathematics Days, M. Noy et al. (Ed.). Universidad de Cantabria, Santander.
[42] L. Liberti, P.-L. Poirion, and K. Vu. 2021. Random projections for conic programs. Linear Algebra Appl. 626 (2021), 204ś220.
[43] P.-G. Martinsson and J.A. Tropp. 2020. Randomized numerical linear algebra: Foundations and algorithms. Acta Numerica 29 (2020),

403ś572.
[44] J. Matousek. 1996. On the distortion required for embedding inite metric spaces into normed spaces. Israel Journal of Mathematics 93

(1996), 333ś344.
[45] J. Matoušek. 2008. On variants of the Johnson-Lindenstrauss lemma. Random Structures and Algorithms 33 (2008), 142ś156.
[46] J. Matoušek. 2013. Lecture notes on metric embeddings. Technical Report. ETH Zürich.
[47] M. Pilanci and M. Wainwright. 2015. Randomized sketches of convex programs with sharp guarantees. IEEE Transactions on Information

Theory 61, 9 (2015), 5096ś5115.
[48] M. Pilanci and M. Wainwright. 2017. Newton sketch: A linear time optimization algorithm with linear-quadratic convergence. SIAM

Journal on Optimization 27, 1 (2017), 205ś245.
[49] P.-L. Poirion, B.F. Lourenço, and A. Takeda. 2020. Random projections of linear and semideinite problems with linear inequalities. Technical

Report 2007.00242. arXiv.
[50] D. Pucci de Farias and B. Van Roy. 2004. On constraint sampling in the Linear Programming approach to approximate Dynamic

Programming. Mathematics of Operations Research 29, 3 (2004), 462ś478.
[51] J. Renegar. 1988. A polynomial-time algorithm, based on Newton’s method, for linear programming. Mathematical Programming 40

(1988), 59ś93.
[52] F. Roosta-Khorasani and M.W. Mahoney. 2019. Sub-sampled Newton methods. Mathematical Programming 174, 1 (2019), 293ś326.
[53] Z. Song and Z. Yu. 2020. Solving tall dense linear programs in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT

Symposium on Theory of Computing (STOC). ACM, New York, 775ś788.
[54] Z. Song and Z. Yu. 2021. Oblivious sketching-based central path method for linear programming. In Proceedings of the 38th International

Conference on Machine Learning (PMLR, Vol. 139). 9835ś9847.
[55] J. Tropp, A. Yurtsever, M. Udell, and V. Cevher. 2017. Practical sketching algorithms for low-rank matrix approximation. SIAM Journal

of Matrix Analysis and Applications 38, 4 (2017), 1454ś1485.
[56] G. van Rossum and et al. 2019. Python Language Reference, version 3. Python Software Foundation.
[57] S. Vempala. 2004. The Random Projection Method. Number 65 in DIMACS Series in Discrete Mathematics and Theoretical Computer

Science. AMS, Providence, RI.
[58] S. Venkatasubramanian and Q. Wang. 2011. The Johnson-Lindenstrauss Transform: An Empirical Study. In Algorithm Engineering and

Experiments (ALENEX, Vol. 13). SIAM, Providence, RI, 164ś173.
[59] R. Vershynin. 2018. High-dimensional probability. CUP, Cambridge.
[60] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J.

van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, I. Polat, Y. Feng, E.W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F.
Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientiic Computing in Python.
Nature Methods 17 (2020), 261ś272. https://doi.org/10.1038/s41592-019-0686-2

[61] J. von Neumann. 1950. Functional Operators. Volume II: The geometry of orthogonal spaces. Number 22 in Annals of Mathematics Studies.
Princeton University Press, Princeton NJ.

ACM J. Exp. Algor.

https://doi.org/10.1038/s41592-019-0686-2

32 • Liberti, Manca, Poirion

[62] K. Vu, P.-L. Poirion, C. D’Ambrosio, and L. Liberti. 2019. Random projections for quadratic programs over a Euclidean ball. In Integer

Programming and Combinatorial Optimization (IPCO) (LNCS, Vol. 11480), A. Lodi and et al. (Eds.). Springer, New York, 442ś452.
[63] K. Vu, P.-L. Poirion, and L. Liberti. 2018. Random projections for linear programming. Mathematics of Operations Research 43, 4 (2018),

1051ś1071.
[64] K. Vu, P.-L. Poirion, and L. Liberti. 2019. Gaussian random projections for Euclidean membership problems. Discrete Applied Mathematics

253 (2019), 93ś102.
[65] D. Woodruf. 2014. Sketching as a tool for linear algebra. Foundations and Trends in Theoretical Computer Science 10, 1-2 (2014), 1ś157.
[66] J. Yang, X. Meng, and M. Mahoney. 2014. Quantile regression for large-scale applications. SIAM Journal of Scientiic Computing 36, 5

(2014), S78śS110.
[67] L. Zhang, M. Mahdavi, R. Jin, T. Yang, and S. Zhu. 2013. Recovering the Optimal Solution by Dual Random Projection.. In Conference

on Learning Theory (COLT) (Proceedings of Machine Learning Research, Vol. 30), S. Shalev-Shwartz and I. Steinwart (Eds.). ⟨jmlr.org⟩,
135ś157.

ACM J. Exp. Algor.

jmlr.org

	Abstract
	1 Introduction
	1.1 Relevant literature and background
	1.2 Summary

	2 Theoretical results
	2.1 Approximate feasibility invariance
	2.2 Approximate optimality of the retrieved solution
	2.3 Improved solution retrieval
	2.4 Error and termination of Alg. 1

	3 Computational benchmark
	3.1 The inapplicability of RP theory
	3.2 Choice of parameters
	3.3 Density of the projection matrix
	3.4 Alternating projection variants
	3.5 Approximating the pseudoinverse
	3.6 The problem set
	3.7 Our pipeline: hardware and software
	3.8 Performance measures

	4 Computational Results
	4.1 Maximum flow
	4.2 Diet
	4.3 Quantile regression
	4.4 Basis pursuit
	4.5 Comments on the retrieval phase improvement

	5 Conclusion
	References

